JP2020161213A - Method of producing negative electrode active material - Google Patents

Method of producing negative electrode active material Download PDF

Info

Publication number
JP2020161213A
JP2020161213A JP2019055961A JP2019055961A JP2020161213A JP 2020161213 A JP2020161213 A JP 2020161213A JP 2019055961 A JP2019055961 A JP 2019055961A JP 2019055961 A JP2019055961 A JP 2019055961A JP 2020161213 A JP2020161213 A JP 2020161213A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
carbon material
lto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019055961A
Other languages
Japanese (ja)
Other versions
JP7148873B2 (en
Inventor
祐輝 松田
Yuki Matsuda
祐輝 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Toyota Motor Corp
Original Assignee
Toyota Boshoku Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp, Toyota Motor Corp filed Critical Toyota Boshoku Corp
Priority to JP2019055961A priority Critical patent/JP7148873B2/en
Publication of JP2020161213A publication Critical patent/JP2020161213A/en
Application granted granted Critical
Publication of JP7148873B2 publication Critical patent/JP7148873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a method of producing a negative electrode active material, suppressing Joule heat generation in the case of abnormalities such as an internal short circuit or a nail piercing test.SOLUTION: A production method disclosed herein is a method of producing a negative electrode active material comprising a carbon material that can occlude and release lithium ions and a coated material formed on the surface of the carbon material. The production method is characterized to include: preparing a mixture containing the carbon material, a titanium alkoxide, a lithium salt and a solvent; and removing the solvent from the mixture and then firing it at a temperature range of 550-600°C.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池に用いられる負極活物質材料の製造方法に関する。詳しくは、リチウムイオンを吸蔵および放出可能な炭素粒子(負極活物質)の表面にチタン化合物からなる被覆物が形成された負極活物質材料の形成方法に関する。 The present invention relates to a method for producing a negative electrode active material used in a lithium ion secondary battery. More specifically, the present invention relates to a method for forming a negative electrode active material material in which a coating made of a titanium compound is formed on the surface of carbon particles (negative electrode active material) capable of occluding and releasing lithium ions.

リチウムイオン二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源さらには車両駆動用電源として好ましく用いられている。リチウムイオン二次電池は、特に、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として、益々の普及が期待されている。 Lithium-ion secondary batteries are lighter in weight and have a higher energy density than existing batteries, and are therefore preferably used as so-called portable power sources for personal computers, mobile terminals, etc., and as power sources for driving vehicles in recent years. Lithium-ion secondary batteries are expected to become more and more popular as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV).

この種のリチウムイオン二次電池では、構造的に安定でありリチウムイオンの吸蔵/放出も比較的良好なことから、負極活物質として黒鉛等の炭素粒子がよく用いられている。さらに、かかる黒鉛等からなる炭素粒子のリチウムイオン拡散経路を増大させ、抵抗を低減するために当該炭素粒子の表面を他の化合物で被覆することが行われている。例えば、以下の特許文献1には、炭素粒子の表面をチタン酸リチウム(LTO)で被覆する技術が開示されている。 In this type of lithium ion secondary battery, carbon particles such as graphite are often used as the negative electrode active material because they are structurally stable and have relatively good occlusion / release of lithium ions. Further, in order to increase the lithium ion diffusion path of the carbon particles made of graphite or the like and reduce the resistance, the surface of the carbon particles is coated with another compound. For example, Patent Document 1 below discloses a technique of coating the surface of carbon particles with lithium titanate (LTO).

特開2018−185931号公報Japanese Unexamined Patent Publication No. 2018-185931

ところで、負極活物質たる炭素粒子の表面に存在するチタン酸リチウム(LTO)は、上述したリチウムイオン拡散経路の増大やそれに伴う抵抗の低減に加えて、内部短絡や釘刺し試験等において瞬間的に大電流が負極側に流れた際の安全性を向上させ得るという効果を奏する。即ち、チタン酸リチウムは、放電状態(即ち、リチウムイオンがLTOから放出された酸化状態)では絶縁体となり導電性を示さなくなるため、短絡電流を抑制することができる。
しかしながら、特許文献1に記載されるLTO被膜付き負極活物質は、内部短絡や釘刺し試験等の異常時においての電池反応の進行を抑制するという観点からは、まだまだ改善の余地があった。
そこで、本発明はかかる課題を解決すべく創出されたものであり、その目的とするところは、チタン酸リチウムが表面に存在する炭素粒子からなる負極活物質材料であって、抵抗の低減に加えて内部短絡や釘刺し試験等の異常時のジュール熱発生を抑制する負極活物質材料およびその製造方法を提供することである。また、当該負極活物質材料を用いることによって、より高い安全性と信頼性を実現したリチウムイオン二次電池の提供を他の目的とする。
By the way, lithium titanate (LTO) present on the surface of carbon particles, which is a negative electrode active material, momentarily in an internal short circuit, a nail piercing test, etc. It has the effect of improving safety when a large current flows to the negative electrode side. That is, lithium titanate becomes an insulator in a discharged state (that is, an oxidized state in which lithium ions are released from LTO) and does not exhibit conductivity, so that a short-circuit current can be suppressed.
However, the negative electrode active material with an LTO coating described in Patent Document 1 still has room for improvement from the viewpoint of suppressing the progress of the battery reaction at the time of an abnormality such as an internal short circuit or a nail piercing test.
Therefore, the present invention was created to solve such a problem, and an object of the present invention is a negative electrode active material material composed of carbon particles in which lithium titanate is present on the surface, in addition to reducing resistance. It is an object of the present invention to provide a negative electrode active material material that suppresses Joule heat generation at the time of an abnormality such as an internal short circuit or a nail piercing test, and a method for producing the same. Another object of the present invention is to provide a lithium ion secondary battery that realizes higher safety and reliability by using the negative electrode active material.

本発明者は、炭素材料にLTOを被覆物として形成させる際、所定の温度域で焼成を行うことによって、該炭素材料表面にリチウムイオン導電性を有する物質(LTO)とともにリチウムイオン導電性を有さない物質(二酸化チタン;TiO)とを含む被覆物が形成されて両物質の界面においてLTOからのリチウムイオンの放出が顕著に促進されることを見出した。そして、これを備えたリチウムイオン二次電池においては、内部短絡時のジュール熱発生が顕著に抑制されることを見出し、本発明を完成するに至った。 The present inventor has lithium ion conductivity together with a substance (LTO) having lithium ion conductivity on the surface of the carbon material by firing in a predetermined temperature range when forming LTO as a coating material on the carbon material. It has been found that a coating containing a non-substance (titanium dioxide; TiO 2 ) is formed and the release of lithium ions from the LTO is significantly promoted at the interface between the two substances. Then, they have found that the generation of Joule heat at the time of internal short circuit is remarkably suppressed in the lithium ion secondary battery equipped with this, and have completed the present invention.

即ち、上記目的を実現するべく、本発明は、リチウムイオンを吸蔵および放出可能な炭素材料と該炭素材料の表面に形成された被覆物とから構成される負極活物質材料を製造する方法を提供する。上記炭素材料と、チタンアルコキシドと、リチウム塩と、溶媒とを含む混合物を調製すること、および、上記混合物から上記溶媒を除去した後に550〜600℃の温度域で焼成することを特徴とする。 That is, in order to realize the above object, the present invention provides a method for producing a negative electrode active material composed of a carbon material capable of occluding and releasing lithium ions and a coating formed on the surface of the carbon material. To do. It is characterized in that a mixture containing the carbon material, titanium alkoxide, a lithium salt and a solvent is prepared, and the solvent is removed from the mixture and then fired in a temperature range of 550 to 600 ° C.

かかる構成の製造方法は、上記混合物を550〜600℃の温度域で焼成することによって、炭素材料の表面にリチウムイオン伝導性を有するLTOと、リチウムイオン伝導性を有さないTiOの両方を含む被覆物を形成することができる。これら2つの物質の界面におけるLTOからのリチウム放出が促進されることによって、抵抗の低減に加えて、内部短絡や釘刺し試験などの異常時のジュール熱発生を抑制する負極活物質材料、および、安全性および信頼性の高いリチウムイオン二次電池を提供することができる。 In the production method having such a configuration, the mixture is fired in a temperature range of 550 to 600 ° C. to obtain both LTO having lithium ion conductivity on the surface of the carbon material and TiO 2 having no lithium ion conductivity. The inclusion coating can be formed. By promoting the release of lithium from the LTO at the interface between these two substances, in addition to reducing resistance, a negative electrode active material that suppresses Joule heat generation during abnormal conditions such as internal short circuits and nail piercing tests, and negative electrode active material. It is possible to provide a lithium ion secondary battery having high safety and reliability.

一実施形態に係る製造方法を模式的に示すフロー図である。It is a flow figure which shows typically the manufacturing method which concerns on one Embodiment. 一実施形態に係る負極活物質材料を示した模式図である。It is a schematic diagram which showed the negative electrode active material material which concerns on one Embodiment.

以下、図面を参照しながら、本発明による一実施形態を説明する。なお、以下に説明する図面において、同じ作用を奏する部材、部位には同じ符号を付し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
なお、本明細書において数値範囲:A〜B(ここでAとBは、A<Bの関係にある任意の数値)と記載している場合は、A以上B以下を意味しており、Aを上回る場合(Aを含まずにそれ以上の場合)、Bを下回る場合(Bを含まずにそれ以下の場合)も包含される数値範囲である。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In the drawings described below, members and parts that perform the same action may be designated by the same reference numerals, and duplicate description may be omitted or simplified. Moreover, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations. In addition, matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art.
In this specification, when the numerical range: A to B (where A and B are arbitrary numerical values having a relationship of A <B) is described, it means A or more and B or less, and A. It is a numerical range that includes the case where it exceeds (when it is more than A without including it) and the case where it is less than B (when it is less than that without including B).

本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)のほか、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。また、「負極活物質」とは、リチウムイオン二次電池において電荷担体となる化学種(即ち、リチウムイオン)を化学的に吸蔵および放出(典型的には挿入および脱離)可能な物質(負極活物質)をいう。 As used herein, the term "secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric secondary batteries. Includes capacitors (ie, physical batteries) such as multi-layer capacitors. The "negative electrode active material" is a substance (negative electrode) capable of chemically storing and releasing (typically inserting and removing) a chemical species (that is, lithium ion) that serves as a charge carrier in a lithium ion secondary battery. Active substance).

図1には、一実施形態に係る製造方法のフローが模式的に示されている。図1に示されるように、混合物調製工程S10においては、出発物質である、炭素材料と、チタンアルコキシド(ROTi)と、リチウム塩と、溶媒とを準備し、これらを含む混合物を調製する。これらの混合の際には、必要に応じて撹拌処理を行ってもよく、市販のミキサー等の適当な撹拌手段によって行うことができる。
炭素材料としては、リチウムイオンを吸蔵および放出可能な炭素材料を好ましく用いることができ、例えば、天然黒鉛および人造黒鉛等の黒鉛材料が挙げられる。
FIG. 1 schematically shows a flow of a manufacturing method according to an embodiment. As shown in FIG. 1, in the mixture preparation step S10, a carbon material, a titanium alkoxide (ROTi), a lithium salt, and a solvent, which are starting materials, are prepared, and a mixture containing these is prepared. At the time of mixing these, a stirring treatment may be performed if necessary, and it can be performed by an appropriate stirring means such as a commercially available mixer.
As the carbon material, a carbon material capable of occluding and releasing lithium ions can be preferably used, and examples thereof include graphite materials such as natural graphite and artificial graphite.

黒鉛材料として、これを一般的な加工プロセス(粉砕プロセス、球状成形プロセス)によって球状に加工したものを使用することができる。黒鉛材料の粒子サイズは、通常、リチウムイオン二次電池の負極活物質として使用される黒鉛材料と同程度のものであればよく、平均粒径は、レーザー散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出されるメジアン径(平均粒径D50:50%体積平均粒径)においておよそ1μm〜30μm(典型的には5μm〜25μm)であることが好ましい。 As the graphite material, a graphite material processed into a spherical shape by a general processing process (crushing process, spherical molding process) can be used. The particle size of the graphite material may be about the same as that of the graphite material usually used as the negative electrode active material of the lithium ion secondary battery, and the average particle size is a particle size distribution measuring device based on the laser scattering / diffraction method. The median diameter (average particle size D 50 : 50% volume average particle size) derived from the particle size distribution measured based on the above is preferably about 1 μm to 30 μm (typically 5 μm to 25 μm).

ROTiとしては、特に限定されないが、例えば、オルトチタン酸テトライソプロピル、チタン酸テトラ−n−ブチル、チタン酸テトラエチル等であってよい。1種のROTiが単独で使用されてもよいし、2種類以上のROTiを組み合わせて使用してもよい。
リチウム塩としては、例えば、硝酸リチウム等が挙げられる。
また、溶媒としては、例えば、低級アルコール(典型的には、エタノール等)を好適に用いることができる。
The ROTi is not particularly limited, and may be, for example, tetraisopropyl orthotitanate, tetra-n-butyl titanate, tetraethyl titanate, or the like. One kind of ROTi may be used alone, or two or more kinds of ROTi may be used in combination.
Examples of the lithium salt include lithium nitrate and the like.
Further, as the solvent, for example, a lower alcohol (typically, ethanol or the like) can be preferably used.

ROTiおよびリチウム塩の混合物の質量%は、炭素材料100質量%に対して、0.05質量%〜10質量%程度であることが好ましく、0.1質量%〜5質量%程度、あるいは、0.5質量%〜3質量%程度であることがさらに好ましい。 The mass% of the mixture of ROTi and the lithium salt is preferably about 0.05% by mass to 10% by mass, about 0.1% by mass to 5% by mass, or 0 with respect to 100% by mass of the carbon material. It is more preferably about 5.5% by mass to 3% by mass.

焼成工程S20においては、まず、前処理として、混合物調製工程S10で得た混合物から、溶媒を、例えば乾燥させることにより除去する。そして、溶媒を除去した後に、当該混合物を所定の条件で焼成する。
具体的には、例えば、溶媒を除去した混合物を不活性雰囲気(例えば、アルゴン雰囲気、または窒素雰囲気等)において、550〜600℃の温度域で焼成する。ここで、焼成時間は、例えば、2〜15時間程度(または、4〜10時間程度)であってよい。
In the firing step S20, first, as a pretreatment, the solvent is removed from the mixture obtained in the mixture preparation step S10 by, for example, drying. Then, after removing the solvent, the mixture is calcined under predetermined conditions.
Specifically, for example, the solvent-removed mixture is fired in an inert atmosphere (eg, argon atmosphere, nitrogen atmosphere, etc.) in a temperature range of 550 to 600 ° C. Here, the firing time may be, for example, about 2 to 15 hours (or about 4 to 10 hours).

上述したような手法によって、炭素材料の表面に被覆物が形成された負極活物質材料を製造することができる。ここで、図2に、一実施形態に係る製造方法によって製造される負極活物質材料を示す。図2に示されるように、チタン酸リチウム(LTO)30および二酸化チタン(TiO)40を含む被覆物が、炭素材料20の表面に形成された負極活物質材料10が製造される。
炭素材料20表面に形成されたチタン酸リチウム(LTO)30および二酸化チタン(TiO)40は、市販のX線回折装置または分光分析装置等により解析することができる。
また、エネルギー分散型X線分析法に基づく分析機器を用いた負極活物質材料10の断面構造観察により、以下の式に基づいて被覆率を算出することができる。
被覆率=(被覆物厚み)/(炭素材料全周)×100 (1)
By the method as described above, a negative electrode active material having a coating formed on the surface of the carbon material can be produced. Here, FIG. 2 shows a negative electrode active material material produced by the production method according to one embodiment. As shown in FIG. 2, a negative electrode active material 10 is produced in which a coating containing lithium titanate (LTO) 30 and titanium dioxide (TiO 2 ) 40 is formed on the surface of the carbon material 20.
Lithium titanate (LTO) 30 and titanium dioxide (TiO 2 ) 40 formed on the surface of the carbon material 20 can be analyzed by a commercially available X-ray diffractometer or spectroscopic analyzer.
In addition, the coverage can be calculated based on the following formula by observing the cross-sectional structure of the negative electrode active material 10 using an analytical instrument based on the energy dispersive X-ray analysis method.
Coverage = (cover thickness) / (whole circumference of carbon material) x 100 (1)

本発明においては、焼成を550〜600℃の温度域で行うことにより、炭素材料20の表面に、被覆物としてリチウムイオン導電性を有する物質(チタン酸リチウム(LTO)30)とともにリチウムイオン導電性を有さない物質(二酸化チタン(TiO)40)とを含む被覆物が形成される。これらの物質の界面においては、チタン酸リチウム(LTO)30からのリチウムイオンの放出が顕著に促進される。この性質により、負極活物質材料10を使用することによって、リチウムイオン二次電池における内部短絡や釘刺し試験等の異常時のジュール熱発生を抑制することができる。そのため、より高い安全性と信頼性を実現したリチウムイオン二次電池が提供される。 In the present invention, by performing firing in a temperature range of 550 to 600 ° C., the surface of the carbon material 20 is lithium ion conductive together with a substance having lithium ion conductivity (lithium titanate (LTO) 30) as a coating material. A coating containing a substance (titanium dioxide (Tio 2 ) 40) that does not have the above is formed. At the interface of these substances, the release of lithium ions from lithium titanate (LTO) 30 is significantly promoted. Due to this property, by using the negative electrode active material material 10, it is possible to suppress the generation of Joule heat in an abnormal case such as an internal short circuit or a nail piercing test in a lithium ion secondary battery. Therefore, a lithium ion secondary battery that achieves higher safety and reliability is provided.

以下、本発明に関するいくつかの試験例を説明するが、本発明をかかる試験例に示すものに限定することを意図したものではない。 Hereinafter, some test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in such test examples.

[負極活物質材料の製造]
以下に説明するプロセスにより、実施例1、実施例2、比較例1〜6に係る負極活物質材料を製造した。
<実施例1>
リチウムイオン二次電池に一般的に用いられる黒鉛材料(平均粒径20μm)を炭素材料として使用し、以下の処理を施して実施例1の負極活物質材料を製造した。
即ち、まず、オルトチタン酸テトライソプロピルおよび硝酸リチウムを、これらから生成されるLTOおよびTiOの配合比が表1に示される値になるように混合する。これを、黒鉛材料を100質量%としたときに1質量%の割合で混合した混合物を調製し、溶媒としてのエタノール中で撹拌した。撹拌処理後、該混合物から溶媒を乾燥させることにより除去した。その後、混合物に対してアルゴン雰囲気下600℃で8時間の焼成を実施し、実施例1に係る負極活物質材料を作製した。
<実施例2>
LTOおよびTiOの配合比を表1に記載されるものとし、焼成温度を550℃にしたこと以外は実施例1と同じ条件で実施例2に係る負極活物質材料を作製した。
<比較例1>
LTOおよびTiOの配合比を表1に記載されるものとし、焼成温度を630℃にしたこと以外は実施例1と同じ条件で比較例1に係る負極活物質材料を作製した。
<比較例2>
LTOおよびTiOの配合比を表1に記載されるものとし、焼成温度を500℃にしたこと以外は実施例1と同じ条件で比較例2に係る負極活物質材料を作製した。
<比較例3>
被覆物形成反応を行わない黒鉛材料を、比較例3に係る負極活物質材料とした。
<比較例4>
黒鉛材料100質量%に対して1質量%のTiO粉末(粒子径50nm)を添加して混合し、比較例4に係る負極活物質材料を作製した。
<比較例5>
黒鉛材料100質量%に対して1質量%のLTO粉末(粒子径50nm)を添加して混合し、比較例5に係る負極活物質材料を作製した。
<比較例6>
黒鉛材料100質量%に対して1質量%のLTOおよびTiO粉末(混合比8:2)を添加して混合し、比較例6に係る負極活物質材料を作製した。
[Manufacturing of negative electrode active material]
The negative electrode active material materials according to Examples 1, 2 and Comparative Examples 1 to 6 were produced by the process described below.
<Example 1>
A graphite material (average particle size 20 μm) generally used for a lithium ion secondary battery was used as a carbon material, and the following treatment was performed to produce the negative electrode active material material of Example 1.
That is, first, tetraisopropyl orthotitamate and lithium nitrate are mixed so that the blending ratio of LTO and TiO 2 produced from them becomes the values shown in Table 1. This was mixed at a ratio of 1% by mass when the graphite material was 100% by mass, and the mixture was stirred in ethanol as a solvent. After the stirring treatment, the solvent was removed from the mixture by drying. Then, the mixture was calcined at 600 ° C. for 8 hours under an argon atmosphere to prepare a negative electrode active material material according to Example 1.
<Example 2>
The negative electrode active material material according to Example 2 was prepared under the same conditions as in Example 1 except that the compounding ratios of LTO and TiO 2 were shown in Table 1 and the firing temperature was set to 550 ° C.
<Comparative example 1>
The negative electrode active material material according to Comparative Example 1 was prepared under the same conditions as in Example 1 except that the compounding ratios of LTO and TiO 2 were shown in Table 1 and the firing temperature was set to 630 ° C.
<Comparative example 2>
The negative electrode active material material according to Comparative Example 2 was prepared under the same conditions as in Example 1 except that the blending ratios of LTO and TiO 2 were shown in Table 1 and the firing temperature was set to 500 ° C.
<Comparative example 3>
A graphite material that did not undergo a coating formation reaction was used as the negative electrode active material material according to Comparative Example 3.
<Comparative example 4>
1% by mass of TiO 2 powder (particle diameter 50 nm) was added to 100% by mass of the graphite material and mixed to prepare a negative electrode active material material according to Comparative Example 4.
<Comparative example 5>
1% by mass of LTO powder (particle diameter 50 nm) was added to 100% by mass of the graphite material and mixed to prepare a negative electrode active material material according to Comparative Example 5.
<Comparative Example 6>
1% by mass of LTO and TiO 2 powder (mixing ratio 8: 2) were added to 100% by mass of the graphite material and mixed to prepare a negative electrode active material material according to Comparative Example 6.

[サンプル電池の作製]
<正極の作製>
正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物と、導電材としてのアセチレンブラックと、バインダとしてのポリフッ化ビニリデンとを、質量比100:10:3となるように秤量し、これらをNMPに分散させて正極ペーストを調製した。
該正極ペーストを厚み20μmのアルミニウム製正極集電体上に塗布し、真空乾燥させ、所定の寸法に加工した後にプレス機で圧延処理を施して正極シートを作製した。加工寸法については、正極板厚みは70μm、正極板長さ3000mm、正極活物質層幅95mm、正極集電体未塗工部幅20mmとした。
<負極の作製>
上記作製した各々の負極活物質材料と、増粘剤としてのカルボキシメチルセルロースと、バインダとしてのスチレンブタジエンラバーとを、質量比100:1:1となるように秤量し、これらを水に分散させて負極ペーストを調製した。
該負極ペーストを厚み10μmの銅製負極集電体上に塗布し、真空乾燥させ、所定の寸法に加工した後にプレス機で圧延処理を施して負極シートを作製した。加工寸法については、負極板厚みは80μm、負極板長さ3300mm、正極活物質層幅100mm、負極集電体未塗工部幅20mmとした。
<電池の構築>
各正負極シートを、耐熱層を形成した厚み20μmのセパレータ(ポリプロピレン/ポリエチレン/ポリプロピレン)を介在させつつ捲回し、扁平形状の捲回電極体を得た。なお、この時、耐熱層は負極に対向させた。そして、当該捲回電極体を角型の電池ケースに収容し、5Ahのサンプル電池を構築した。当該電池の電解液としては、エチレンカーボネートと、ジメチルカーボネートと、エチルメチルカーボネートとを体積比1:1:1で混合して調製した非水溶媒に1MのLiPFを溶解した非水電解液を使用した。
[活性化処理(初期充電)]
上記サンプル電池の活性化処理(初期充電)を行った。
具体的には、25℃の温度条件下において、1/3Cの電流で電池電圧が4.1Vになるまで定電流(CC)充電を行った後、電流値が1/50Cになるまで定電圧(CV)充電を行い、満充電状態とした。その後、1/3Cの電流で電池電圧が3.0VになるまでCC放電を行い、この時の容量を初期容量とした。
[Preparation of sample battery]
<Preparation of positive electrode>
Lithium nickel-cobalt-manganese composite oxide as the positive electrode active material, acetylene black as the conductive material, and polyvinylidene fluoride as the binder are weighed so as to have a mass ratio of 100: 10: 3, and these are dispersed in NMP. To prepare a positive electrode paste.
The positive electrode paste was applied onto an aluminum positive electrode current collector having a thickness of 20 μm, vacuum dried, processed to a predetermined size, and then rolled with a press to prepare a positive electrode sheet. Regarding the processing dimensions, the thickness of the positive electrode plate was 70 μm, the length of the positive electrode plate was 3000 mm, the width of the positive electrode active material layer was 95 mm, and the width of the uncoated portion of the positive electrode current collector was 20 mm.
<Manufacturing of negative electrode>
Each of the prepared negative electrode active material, carboxymethyl cellulose as a thickener, and styrene-butadiene rubber as a binder were weighed so as to have a mass ratio of 100: 1: 1 and dispersed in water. A negative electrode paste was prepared.
The negative electrode paste was applied onto a copper negative electrode current collector having a thickness of 10 μm, vacuum dried, processed to a predetermined size, and then rolled with a press to prepare a negative electrode sheet. Regarding the processing dimensions, the negative electrode plate thickness was 80 μm, the negative electrode plate length was 3300 mm, the positive electrode active material layer width was 100 mm, and the negative electrode current collector uncoated portion width was 20 mm.
<Battery construction>
Each positive and negative electrode sheet was wound with a separator (polypropylene / polyethylene / polypropylene) having a thickness of 20 μm having a heat-resistant layer interposed therebetween to obtain a flat-shaped wound electrode body. At this time, the heat-resistant layer was opposed to the negative electrode. Then, the wound electrode body was housed in a square battery case, and a 5 Ah sample battery was constructed. As the electrolytic solution of the battery, a non-aqueous electrolytic solution prepared by mixing ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate in a volume ratio of 1: 1: 1 and dissolving 1 M of LiPF 6 in a non-aqueous solvent was used. used.
[Activation process (initial charge)]
The sample battery was activated (initially charged).
Specifically, under a temperature condition of 25 ° C., constant current (CC) charging is performed with a current of 1 / 3C until the battery voltage reaches 4.1V, and then a constant voltage until the current value reaches 1 / 50C. (CV) Charging was performed to bring the battery into a fully charged state. After that, CC discharge was performed with a current of 1/3 C until the battery voltage became 3.0 V, and the capacity at this time was used as the initial capacity.

[釘刺し試験]
上記各サンプル電池をSOC100%に調整した。そして、25℃の試験後で、充電後のサンプル電池に直径3mm、長さ50mm、先端角度30°の四角錐形状の釘を10mm/秒の速度で貫通させた。この際、各サンプル電池における発煙の有無を確認した。
結果を表1に示す。ここで、表1中、発煙がなかったサンプルを〇印で表し、発煙があったサンプルを△印で表す。
[Nail piercing test]
Each of the above sample batteries was adjusted to SOC 100%. Then, after the test at 25 ° C., a quadrangular pyramid-shaped nail having a diameter of 3 mm, a length of 50 mm, and a tip angle of 30 ° was passed through the charged sample battery at a speed of 10 mm / sec. At this time, the presence or absence of smoke in each sample battery was confirmed.
The results are shown in Table 1. Here, in Table 1, the samples without smoke are indicated by ◯, and the samples with smoke are indicated by Δ.

表1から明らかなように、実施例1および実施例2に係るサンプル電池においては、釘刺しによる発煙は確認されなかった。これに対し、比較例1〜6ではいずれも発煙が確認された。即ち、炭素材料の表面にLTOおよびTiOがヘテロの状態で被覆物として形成されたことにより、内部短絡時に速やかにLTOからリチウムイオンが放出されて絶縁状態が形成され、内部短絡時の温度上昇(発煙)を抑制し得ることが確認された。 As is clear from Table 1, in the sample batteries according to Example 1 and Example 2, no smoke was confirmed due to nail sticking. On the other hand, smoke was confirmed in all of Comparative Examples 1 to 6. That is, since LTO and TiO 2 are formed as a coating on the surface of the carbon material in a heterogeneous state, lithium ions are rapidly released from the LTO at the time of an internal short circuit to form an insulating state, and the temperature rises at the time of an internal short circuit. It was confirmed that (smoke) can be suppressed.

Figure 2020161213
Figure 2020161213

[電池抵抗および出力特性の測定]
あらかじめ電圧を3.70V(SOC56%)に調整した各電池について、25℃の温度条件下でCC充電を行って、端子間電圧を3.0Vに調整した。そして、5秒間のCC放電を行い、電池抵抗(IV抵抗)および出力値を求めた。
結果を表1に示す。
[Measurement of battery resistance and output characteristics]
Each battery whose voltage was adjusted to 3.70 V (SOC 56%) in advance was CC-charged under a temperature condition of 25 ° C. to adjust the voltage between terminals to 3.0 V. Then, CC discharge was performed for 5 seconds, and the battery resistance (IV resistance) and the output value were obtained.
The results are shown in Table 1.

表1から明らかなように、LTOを含む被覆物が炭素材料に形成されているサンプル電池においては、放電後の電池容量が維持され、電池抵抗は低下していた。そして、実施例1および実施例2に係るサンプル電池の電池抵抗は比較例と比べて、顕著に低下することが確認された。これにより、負極活物質材料を550〜600℃の温度域で焼成して作製することにより、電池抵抗が低下することが確認された。
このように、本発明によれば、優れた電池特性を維持しつつ内部短絡時の温度上昇を抑制し得る負極活物質材料の製造方法を提供することができる。
As is clear from Table 1, in the sample battery in which the coating containing LTO was formed on the carbon material, the battery capacity after discharge was maintained and the battery resistance was lowered. Then, it was confirmed that the battery resistance of the sample batteries according to Examples 1 and 2 was remarkably lowered as compared with Comparative Example. As a result, it was confirmed that the battery resistance was reduced by firing the negative electrode active material material in a temperature range of 550 to 600 ° C.
As described above, according to the present invention, it is possible to provide a method for producing a negative electrode active material which can suppress a temperature rise at the time of an internal short circuit while maintaining excellent battery characteristics.

10 負極活物質材料
20 炭素材料
30 LTO
40 TiO
10 Negative electrode active material material 20 Carbon material 30 LTO
40 TiO 2

Claims (1)

リチウムイオンを吸蔵および放出可能な炭素材料と該炭素材料の表面に形成された被覆物とから構成される負極活物質材料を製造する方法であって、
前記炭素材料と、チタンアルコキシドと、リチウム塩と、溶媒とを含む混合物を調製すること、および、
前記混合物から前記溶媒を除去した後に550〜600℃の温度域で焼成することを特徴とする、製造方法。
A method for producing a negative electrode active material material composed of a carbon material capable of occluding and releasing lithium ions and a coating formed on the surface of the carbon material.
To prepare a mixture containing the carbon material, titanium alkoxide, lithium salt, and a solvent, and
A production method, which comprises removing the solvent from the mixture and then firing in a temperature range of 550 to 600 ° C.
JP2019055961A 2019-03-25 2019-03-25 Manufacturing method of negative electrode active material Active JP7148873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055961A JP7148873B2 (en) 2019-03-25 2019-03-25 Manufacturing method of negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055961A JP7148873B2 (en) 2019-03-25 2019-03-25 Manufacturing method of negative electrode active material

Publications (2)

Publication Number Publication Date
JP2020161213A true JP2020161213A (en) 2020-10-01
JP7148873B2 JP7148873B2 (en) 2022-10-06

Family

ID=72639641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055961A Active JP7148873B2 (en) 2019-03-25 2019-03-25 Manufacturing method of negative electrode active material

Country Status (1)

Country Link
JP (1) JP7148873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021153044A1 (en) * 2020-01-31 2021-08-05

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
CN103022459A (en) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 Preparation method of graphene/lithium titanate composite anode material
JP2014022041A (en) * 2012-07-12 2014-02-03 Sony Corp Negative-electrode active material, manufacturing method thereof, lithium ion battery, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
CN109449412A (en) * 2018-10-31 2019-03-08 辽宁大学 A kind of preparation method and applications of lithium ionic cell cathode material lithium titanate/nitrogen-doped graphene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2014022041A (en) * 2012-07-12 2014-02-03 Sony Corp Negative-electrode active material, manufacturing method thereof, lithium ion battery, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
CN103022459A (en) * 2012-11-27 2013-04-03 中国科学院大连化学物理研究所 Preparation method of graphene/lithium titanate composite anode material
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
CN109449412A (en) * 2018-10-31 2019-03-08 辽宁大学 A kind of preparation method and applications of lithium ionic cell cathode material lithium titanate/nitrogen-doped graphene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021153044A1 (en) * 2020-01-31 2021-08-05
WO2021153044A1 (en) * 2020-01-31 2021-08-05 株式会社村田製作所 Secondary-battery positive electrode active material, secondary-battery positive electrode, and secondary battery
JP7331958B2 (en) 2020-01-31 2023-08-23 株式会社村田製作所 Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery

Also Published As

Publication number Publication date
JP7148873B2 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5070686B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5614592B2 (en) Method for manufacturing electrode for secondary battery
JP2009259605A (en) Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
JP5738563B2 (en) Positive electrode active material and lithium secondary battery using the active material
JP4168402B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2011146158A (en) Lithium secondary battery
JP6011785B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5743150B2 (en) Non-aqueous secondary battery manufacturing method
JP2013062089A (en) Lithium ion secondary battery
CN106450425B (en) Nonaqueous electrolytic solution secondary battery
JP6229563B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP7148873B2 (en) Manufacturing method of negative electrode active material
JP6844602B2 (en) electrode
JP2015195185A (en) Method of manufacturing lithium-rich type positive electrode active material composite particle
JP2019040721A (en) Lithium ion secondary battery
JP7308847B2 (en) battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2004179008A (en) Positive electrode material for lithium secondary battery and its manufacturing method
Opra et al. Facile synthesis of α-Fe2O3/carbon core-shell composite for lithium storage and conversion
JP2020155319A (en) Lithium ion secondary battery
US20150162640A1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP2016072188A (en) Method for manufacturing coated complex oxide particles for positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use of coated complex oxide particles manufactured thereby
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R151 Written notification of patent or utility model registration

Ref document number: 7148873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151