JP2020160081A - Three-dimensional magnetic field detector - Google Patents

Three-dimensional magnetic field detector Download PDF

Info

Publication number
JP2020160081A
JP2020160081A JP2020106637A JP2020106637A JP2020160081A JP 2020160081 A JP2020160081 A JP 2020160081A JP 2020106637 A JP2020106637 A JP 2020106637A JP 2020106637 A JP2020106637 A JP 2020106637A JP 2020160081 A JP2020160081 A JP 2020160081A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field detection
axis direction
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020106637A
Other languages
Japanese (ja)
Other versions
JP6800458B2 (en
Inventor
晋平 本蔵
Shimpei Motokura
晋平 本蔵
本蔵 義信
Yoshinobu Motokura
義信 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnedesign Co Ltd
Original Assignee
Magnedesign Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnedesign Co Ltd filed Critical Magnedesign Co Ltd
Priority to JP2020106637A priority Critical patent/JP6800458B2/en
Publication of JP2020160081A publication Critical patent/JP2020160081A/en
Application granted granted Critical
Publication of JP6800458B2 publication Critical patent/JP6800458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a three-dimensional magnetic field detector which performs three magnetic field detection element functions of an X-axis, a Y-axis, a Z-axis on an integrated circuit chip and is composed of an ultrahigh sensitivity three-dimensional magnetic field detection element of 0.35 mm or less thickness.SOLUTION: On an integrated circuit chip, two magnetic field detection elements are arranged in an X-axis direction and aY-axis direction point symmetrically around an origin point of the integrated circuit chip respectively, a lower part soft magnetic material plate is arranged in a lower part of a magnetic field detection element arrangement surface parallel to a magnetic field detection element arrangement surface and four upper part soft magnetic material plates are arranged in an upper part of four magnetic field detection elements, the lower part soft magnetic material plate and magnetic wires of the four magnetic field detection elements are magnetically connected at an origin point position, magnetosensitive bodies of the four magnetic field detection elements and the four upper part soft magnetic material plates are magnetically connected at an end part opposite the origin point, a Z-axis direction magnetic field is effectively flux concentrated in one of the upper part and the lower part soft magnetic material plates, magnetic-field components in three directions of the X-axis direction, theY-axis direction, and the Z-axis direction are measured, so that a magnetic field vector at the origin point position is detected.SELECTED DRAWING: Figure 10

Description

本発明は、方位センサなどに用いられるX軸Y軸Z軸の3つの磁界検出素子の機能を一つの基板上に実現することにより、方位センサの高い感度、低いノイズ、広い測定レンジなどの基本性能を維持した状態で、3次元磁界検出素子の高さと縦幅と横幅を小さくすることを可能として、薄く小さく高性能な3次元磁界検出装置を可能にする技術に関するものである。 The present invention realizes the functions of the three magnetic field detection elements of the X-axis, Y-axis, and Z-axis used in the orientation sensor and the like on one substrate, thereby providing the basics such as high sensitivity, low noise, and wide measurement range of the orientation sensor. The present invention relates to a technique that enables a thin, small and high-performance three-dimensional magnetic field detection device by making it possible to reduce the height, length and width of the three-dimensional magnetic field detection element while maintaining the performance.

方位センサは、X軸、Y軸およびZ軸の3つの磁気センサ素子と集積回路を組み合わせて地磁気ベクトルを測定し、その値から方位を計算するものである。スマートフォン、タブレット、インターネットTVのリモコン、ゲーム、モーションキャプチャなどで、加速度センサ、振動式ジャイロセンサと組み合わせて3次元方位計として広く使用されているが、近年これらの装置の一層の高感度化、低ノイズ化、測定レンジの広域化とともに小型化、薄型化が強く要求されている。特にスマートフォンの薄型化に伴い、方位センサの高さを従来の1.0mmから0.6mmと40%以上の薄型化、サイズを従来の2.0mm角から1.5mm角と50%以上の小型化が求められている。またノイズに関しても、従来の10mG以下から1mG以下と10倍の性能向上が求められている。 The azimuth sensor measures a geomagnetic vector by combining three magnetic sensor elements of the X-axis, Y-axis, and Z-axis and an integrated circuit, and calculates the azimuth from the values. It is widely used as a 3D azimuth meter in combination with an acceleration sensor and a vibration gyro sensor in smartphones, tablets, Internet TV remote controls, games, motion capture, etc., but in recent years these devices have become even more sensitive and low. There is a strong demand for miniaturization and thinning along with noise reduction and widening of the measurement range. In particular, as smartphones have become thinner, the height of the azimuth sensor has been reduced from the conventional 1.0 mm to 0.6 mm, which is 40% or more thinner, and the size has been reduced from the conventional 2.0 mm square to 1.5 mm square, which is 50% or more smaller. Is required. Further, regarding noise, it is required to improve the performance 10 times from the conventional 10 mG or less to 1 mG or less.

方位センサには、磁界検出用素子としてホール素子、MR素子、MI(Magnet−Impedanceの略)素子、GSR(GHz−Spin−Rotationの略)素子が用いられる。通常、X軸方向、Y軸方向、およびZ軸方向の磁界ベクトル成分Hx,Hy,Hzの強さを測定するために、X軸素子、Y軸素子、Z軸素子の3つの素子を用いて測定を行う。ホール素子の場合は素子面と垂直方向に磁界を検知するので、Z軸素子を面上に配置し、X軸素子、Y軸素子をセンサ基板に立てて組み付ける必要がある。一方、MR素子やMI素子などは素子面と平行な磁界を検知するので、X軸素子とY軸素子は面上に配置して、Z軸素子をセンサ基板に立てて組み付ける必要がある。3つの素子を使う限り、センサの高さが大きくなるという問題があった。 A Hall element, an MR element, an MI (abbreviation of Magnet-Impedance) element, and a GSR (abbreviation of GHz-Spin-Rotation) element are used as the magnetic field detection element in the azimuth sensor. Usually, three elements, an X-axis element, a Y-axis element, and a Z-axis element, are used to measure the strength of the magnetic field vector components Hx, Hy, and Hz in the X-axis direction, the Y-axis direction, and the Z-axis direction. Make a measurement. In the case of a Hall element, since the magnetic field is detected in the direction perpendicular to the element surface, it is necessary to arrange the Z-axis element on the surface and assemble the X-axis element and the Y-axis element upright on the sensor substrate. On the other hand, since MR elements and MI elements detect a magnetic field parallel to the element surface, it is necessary to arrange the X-axis element and the Y-axis element on the surface and assemble the Z-axis element upright on the sensor substrate. As long as three elements are used, there is a problem that the height of the sensor becomes large.

この問題に対して、旭化成(株)社がホール素子を使って、ひとつの基板上にZ軸素子4個を配置してX軸素子とY軸素子を使わない3次元磁界検出素子の開発に成功し、方位センサとして生産販売している。その3次元磁界検出素子の構造は、基板上にX軸方向とY軸方向にそれぞれ一対となるZX1素子とZX2素子および一対となるZY1素子とZY2素子をクロス状に配置しその中心部に磁性材料であるパーマロイの薄円盤を磁界変向体として配置したものである。この装置は、3次元の磁界ベクトルを、まずZ軸方向の磁界はZX1素子、ZX2素子、ZY1素子、ZY2素子の4つの出力を加算することによって検知し、X軸方向の磁界とY軸方向の磁界はそれぞれパーマロイ円盤によってZ軸方向に変向成分を発生させて、X軸方向の磁界はZX1素子とZX2素子の出力の差分で、Y軸方向の磁界はZY1素子とZY2素子の出力の差分で検知するものである。センサ基板上に立てる素子が無いので、高さは薄く、サイズは小さくすることができる。ホール素子のように素子面と垂直の磁界を検知することができる磁界検出素子は容易に装置を薄くできるが、ホールセンサなどのこの種の磁界検出素子は、ノイズが10mG程度と1mGの要求に対して大きすぎるという欠点があり、使用に当たっては大きな問題であった。 To solve this problem, Asahi Kasei Co., Ltd. has developed a three-dimensional magnetic field detection element that does not use X-axis elements and Y-axis elements by arranging four Z-axis elements on one substrate using Hall elements. It has been successful and is produced and sold as an orientation sensor. The structure of the three-dimensional magnetic field detection element is such that a pair of ZX1 element and ZX2 element and a pair of ZY1 element and ZY2 element are arranged in a cross shape on a substrate in the X-axis direction and the Y-axis direction, respectively, and magnetic at the center thereof. A thin disk of permalloy, which is a material, is arranged as a magnetic field modifier. This device detects a three-dimensional magnetic field vector by first adding the four outputs of ZX1 element, ZX2 element, ZY1 element, and ZY2 element to the magnetic field in the Z-axis direction, and then detects the magnetic field in the X-axis direction and the Y-axis direction. The magnetic fields of are generated by the permalloy disk in the Z-axis direction, the magnetic field in the X-axis direction is the difference between the outputs of the ZX1 element and the ZX2 element, and the magnetic field in the Y-axis direction is the output of the ZY1 element and the ZY2 element. It is detected by the difference. Since there is no element to stand on the sensor board, the height can be thin and the size can be reduced. A magnetic field detection element that can detect a magnetic field perpendicular to the element surface, such as a Hall element, can easily make the device thinner, but this type of magnetic field detection element, such as a Hall sensor, requires noise of about 10 mG and 1 mG. On the other hand, it had the drawback of being too large, which was a big problem in use.

一方、MI素子はノイズ1mG以下に改善することは可能であるが、Z軸素子を基板面上に立てて組み付けた場合、MI素子の高さと検出感度は背反するためその高さを小さくすることは困難であった。というのは、MI素子は、アモルファスワイヤ等の感磁体に検出コイルを巻き付けたもので、感磁体に高周波のパルス電流等を流して、その時に発生する外部磁界に比例した検出コイル電圧を検知するものである。MI素子の検出感度はMI素子の長さやコイルの巻数に比例するので、検出磁界の方向に長さが必要なためである。 On the other hand, although it is possible to improve the noise of the MI element to 1 mG or less, when the Z-axis element is assembled upright on the substrate surface, the height of the MI element and the detection sensitivity are contradictory, so the height should be reduced. Was difficult. This is because the MI element is made by winding a detection coil around a magnetic sensor such as an amorphous wire, and a high-frequency pulse current or the like is passed through the magnetic sensor to detect the detection coil voltage proportional to the external magnetic field generated at that time. It is a thing. This is because the detection sensitivity of the MI element is proportional to the length of the MI element and the number of turns of the coil, so that the length is required in the direction of the detection magnetic field.

これに対して、特許文献1は、一つの基板上にX軸素子とY軸素子を配置してZ軸素子機能を備えた一体型のMIセンサ装置を記載している。基板面上にX軸方向とY軸方向にそれぞれ一対のX1素子とX2素子およびY1素子とY2素子をクロス状に配置しその中心点下部にパーマロイ心棒を磁界変向体として配置したものである。この装置は、3次元の磁界ベクトルを、まずX軸方向の磁界はX1素子とX2素子の出力を加算することによって検知し、Y軸方向の磁界はY1素子とY2素子の出力を加算することによって検知し、さらにZ軸方向の磁界はZ軸方向磁界をパーマロイ心棒によって平面方向に変向成分を発生させ、それをX1素子とX2素子の出力の差分とY1素子とY2素子の出力の差分とを加算することで検知するものである。
しかし、パーマロイ心棒によるZ軸方向磁界を平面方向に変向する力は極めて弱いため、長くて直径の大きなパーマロイを必要とし、装置の厚さは0.5mm以上必要で実用的でなかった。
On the other hand, Patent Document 1 describes an integrated MI sensor device having an X-axis element and a Y-axis element arranged on one substrate and having a Z-axis element function. A pair of X1 elements and X2 elements and Y1 elements and Y2 elements are arranged in a cross shape on the substrate surface in the X-axis direction and the Y-axis direction, respectively, and a permalloy mandrel is arranged as a magnetic field modifier below the center point. .. This device detects a three-dimensional magnetic field vector by first adding the outputs of the X1 element and the X2 element to the magnetic field in the X-axis direction, and adding the outputs of the Y1 element and the Y2 element to the magnetic field in the Y-axis direction. Further, the magnetic field in the Z-axis direction generates a conversion component in the plane direction by the permalloy mandrel, and the difference between the output of the X1 element and the X2 element and the difference between the output of the Y1 element and the Y2 element. It is detected by adding and.
However, since the force of the permalloy mandrel to convert the magnetic field in the Z-axis direction in the plane direction is extremely weak, a long and large-diameter permalloy is required, and the thickness of the device is 0.5 mm or more, which is not practical.

特許文献2には、磁界検出素子軸と平行方向の磁界を検出するタイプの磁界検出素子を使って、基板面上に4つの磁界検出素子を、原点を中心にして第1軸方向に沿って2つ、第1軸と交差する第2軸方向に沿って2つ配置し、さらに原点の下部の基板内と4つの素子の原点と反対側の端部の上部に軟磁性体を配置した構造による磁界検出素子と軟磁性体の間に磁気回路を形成する磁界検出ユニットを有することによって、4つの磁界検出素子の出力からX軸、Y軸およびZ軸方向の磁界の強さを効果的に検出する3次元磁界検出素子を記載している。
その素子の上部の軟磁性体の高さは0.05mmから0.2mm程度であり、下部の軟磁性体も同様の大きさとして、上部の軟磁性体と磁界検出素子と下部の軟磁性体の3つの部品はクランク状に配置されている。
In Patent Document 2, a magnetic field detection element of a type that detects a magnetic field in a direction parallel to the magnetic field detection element axis is used, and four magnetic field detection elements are placed on the substrate surface along the first axis direction with the origin as the center. A structure in which two are arranged along the second axis direction intersecting the first axis, and a soft magnetic material is arranged in the substrate below the origin and above the end opposite to the origin of the four elements. By having a magnetic field detection unit that forms a magnetic circuit between the magnetic field detection element and the soft magnetic material, the strength of the magnetic field in the X-axis, Y-axis, and Z-axis directions can be effectively measured from the outputs of the four magnetic field detection elements. The three-dimensional magnetic field detection element to be detected is described.
The height of the upper soft magnetic material of the element is about 0.05 mm to 0.2 mm, and the lower soft magnetic material has the same size, and the upper soft magnetic material, the magnetic field detection element, and the lower soft magnetic material have the same size. The three parts are arranged in a crank shape.

そのクランク状の磁気回路の機能は、Z軸方向の磁界は素子の片方の端にある軟磁性体から素子の中の感磁体を通過して、他方の軟磁性体に流れる。Z軸方向の磁界はX軸とY軸の方向に変向されて各素子の中の感磁体を通過するため、各素子はZ軸方向の磁界に比例した強い磁界を検出できることになる。このことにより、両端にある軟磁性体が小さくても、大きな出力を得ることができる。従って、この磁気回路を活用すれば3次元磁界検出素子の高さを、特許文献1の0.5mmレベルから0.10mm〜0.30mm程度の小さなものにすることができる。
しかし、特許文献1の検出力と比べれば遙かに効果的な検出ができるものの、X軸方向およびY軸方向の磁界検出感度に比べて十分なZ軸方向の磁界検出感度を得るのは困難である。十分なZ軸方向の磁界検出感度を得るには、各軟磁性体を大きくする必要があるが、そうすると大型化した軟磁性体がX軸方向およびY軸方向の磁界に対しても磁気回路を形成してX軸方向およびY軸方向の磁界を過度に集めて検出してしまうことでZ軸方向の磁界検出力との釣り合いが悪くなり、さらにX軸方向およびY軸方向の測定レンジが狭くなってしまう問題があった。また複雑な形状と大きな部品により製造上にも困難が生じる問題があった。
The function of the crank-shaped magnetic circuit is that the magnetic field in the Z-axis direction flows from the soft magnetic material at one end of the element through the magnetic sensitive body in the element to the other soft magnetic material. Since the magnetic field in the Z-axis direction is redirected in the X-axis and Y-axis directions and passes through the magnetic sensory body in each element, each element can detect a strong magnetic field proportional to the magnetic field in the Z-axis direction. As a result, even if the soft magnetic materials at both ends are small, a large output can be obtained. Therefore, if this magnetic circuit is utilized, the height of the three-dimensional magnetic field detection element can be reduced from the 0.5 mm level of Patent Document 1 to about 0.10 mm to 0.30 mm.
However, although it is possible to perform detection much more effectively than the detection force of Patent Document 1, it is difficult to obtain sufficient magnetic field detection sensitivity in the Z-axis direction as compared with the magnetic field detection sensitivity in the X-axis direction and the Y-axis direction. Is. In order to obtain sufficient magnetic field detection sensitivity in the Z-axis direction, it is necessary to increase the size of each soft magnetic material, so that the enlarged soft magnetic material also creates a magnetic circuit for magnetic fields in the X-axis direction and the Y-axis direction. By forming and detecting by excessively collecting and detecting the magnetic fields in the X-axis direction and the Y-axis direction, the balance with the magnetic field detection force in the Z-axis direction becomes poor, and the measurement range in the X-axis direction and the Y-axis direction is narrowed. There was a problem that it became. In addition, there is a problem that manufacturing is difficult due to a complicated shape and large parts.

WO2010/110456WO2010 / 110456 特許第6021239号Patent No. 602239

本発明者らは、電子コンパス搭載モバイル機器の薄型化に鑑み、3次元磁界検出素子の高さを0.10mm以下で、しかもZ軸方向の磁界検出感度がX軸およびY軸方向の磁界検出感度と等しくなる3次元磁界検出素子を実現することを目指すことにした。従来の磁界変向体や磁気回路の構造では、非常に薄い素子構造ではZ軸方向の磁界検出感度をX軸およびY軸方向の磁界検出感度と等しくすることは困難であった。 In view of the thinning of mobile devices equipped with an electronic compass, the present inventors have set the height of the three-dimensional magnetic field detection element to 0.10 mm or less, and the magnetic field detection sensitivity in the Z-axis direction is magnetic field detection in the X-axis and Y-axis directions. We decided to aim to realize a three-dimensional magnetic field detection element that has the same sensitivity. In the conventional magnetic field transforming body or magnetic circuit structure, it is difficult to make the magnetic field detection sensitivity in the Z-axis direction equal to the magnetic field detection sensitivity in the X-axis and Y-axis directions with a very thin element structure.

本発明者は、基板面を広く覆う軟磁性体プレートでZ軸方向の磁界を効果的に集磁することを思いつき、磁界検出素子を配置する面(以下、磁界検出素子配置面という。)の下部と上部に、磁界検出素子配置面と平行に軟磁性体プレートを設けて、磁界検出素子配置面において原点を中心に点対称で配置された各磁界検出素子の中心寄りの端部と下部の軟磁性体プレートを磁気的に接続し、各磁界検出素子の他方の端部と上部の軟磁性体プレートを磁気的に接続することで、Z軸方向に広い集磁面と放磁面を有した磁気回路を形成して、Z軸方向の磁界を効果的に検出するとともにX軸方向、Y軸方向、Z軸方向の磁界検出感度を同等として、さらに3次元磁界検出素子の高さを非常に小さくすることを考案した。
また、磁界検出素子は、小型、高感度、低ノイズ、ワイドレンジを実現できるGSR素子を対象としているが、感磁体として導電性ワイヤ(磁性ワイヤという)を使用し、磁気回路を形成することができるFGセンサ素子やMIセンサ素子にも適用可能である。
The present inventor has come up with the idea of effectively collecting a magnetic field in the Z-axis direction with a soft magnetic plate that widely covers the substrate surface, and is a surface on which a magnetic field detection element is arranged (hereinafter referred to as a magnetic field detection element arrangement surface). Soft magnetic plate is provided on the lower part and the upper part in parallel with the magnetic field detection element arrangement surface, and the ends and the lower part of each magnetic field detection element arranged point-symmetrically with respect to the origin on the magnetic field detection element arrangement surface. By magnetically connecting the soft magnetic material plates and magnetically connecting the other end of each magnetic field detection element and the upper soft magnetic material plate, a wide magnetic collecting surface and demagnetizing surface are provided in the Z-axis direction. By forming a magnetic circuit, the magnetic field in the Z-axis direction is effectively detected, the magnetic field detection sensitivities in the X-axis, Y-axis, and Z-axis directions are equalized, and the height of the three-dimensional magnetic field detection element is extremely high. I devised to make it smaller.
The magnetic field detection element is intended for GSR elements that can realize small size, high sensitivity, low noise, and wide range, but it is possible to form a magnetic circuit by using a conductive wire (called a magnetic wire) as a magnetic sensor. It can also be applied to FG sensor elements and MI sensor elements that can be used.

第1の発明は、基板面上に磁界検出素子配置面と平行方向の磁界を検出するタイプの4つの磁界検出素子を、基板の原点を中心とした点対称の位置に、X軸方向の磁界を検出するために2つ、Y軸方向の磁界を検出するために2つを配置し、磁界検出素子配置面と平行に、磁界検出素子配置面の下部に下部軟磁性体プレート、4つの磁界検出素子の上部に4つの上部軟磁性体プレートをそれぞれ配置して、原点位置において下部軟磁性体プレートと4つの磁界検出素子の感磁体とを下部軟磁性体を介して磁気的に接続し、原点と反対側の端部で4つの磁界検出素子の感磁体と4つの上部軟磁性体プレートとを上部軟磁性体ワイヤを介して磁気的に接続して、Z軸方向磁界を上部と下部の軟磁性体プレートの一方で効果的に集磁して、X軸方向およびY軸方向の各素子の感磁体に磁束を流し、他方の軟磁性体プレートで放磁する磁気回路を形成することで、X軸方向、Y軸方向、Z軸方向の3つの方向の磁界成分を測定し、原点位置における磁界ベクトルを検出することを特徴とする3次元磁界検出素子である。
ここで、下部軟磁性体とは下部軟磁性体プレートと磁界検出素子を構成する感磁体とを接続する軟磁性体をいい、上部軟磁性体とは上部軟磁性体プレートと磁界検出素子を構成する感磁体とを接続する軟磁性体をいう。
In the first invention, four magnetic field detection elements of a type that detect a magnetic field in a direction parallel to a magnetic field detection element arrangement surface on a substrate surface are placed at point-symmetrical positions centered on the origin of the substrate, and a magnetic field in the X-axis direction. Two are arranged to detect the magnetic field in the Y-axis direction, two are arranged to detect the magnetic field in the Y-axis direction, and the lower soft magnetic material plate and four magnetic fields are arranged below the magnetic field detection element arrangement surface in parallel with the magnetic field detection element arrangement surface. Four upper soft magnetic material plates are arranged on the upper part of the detection element, and the lower soft magnetic material plate and the magnetic sensitive body of the four magnetic field detection elements are magnetically connected via the lower soft magnetic material at the origin position. At the end opposite to the origin, the magnetic sensors of the four magnetic field detection elements and the four upper soft magnetic plates are magnetically connected via the upper soft magnetic wire, and the Z-axis direction magnetic field is applied to the upper and lower parts. By forming a magnetic circuit that effectively collects magnetism on one side of the soft magnetic material plate, applies magnetic flux to the magnetic sensor of each element in the X-axis direction and Y-axis direction, and demagnetizes on the other soft magnetic material plate. , X-axis direction, Y-axis direction, and Z-axis direction. The three-dimensional magnetic field detection element is characterized by measuring magnetic field components in three directions and detecting a magnetic field vector at the origin position.
Here, the lower soft magnetic material means a soft magnetic material that connects the lower soft magnetic material plate and the magnetic sensor that constitutes the magnetic field detection element, and the upper soft magnetic material constitutes the upper soft magnetic material plate and the magnetic field detection element. A soft magnetic material that connects to a magnetically sensitive material.

この磁気回路は、下部と上部の軟磁性体プレートで、基板全面の広い面積を大胆に使ってZ軸方向の磁束を多く集磁・放磁することで、効果的にZ軸方向磁界の検出を可能とするものである。X軸、Y軸、Z軸方向の磁界検出素子の磁界検出感度を等しくすることが望ましいが、違いがある場合は、電子回路および補償プログラムで調整するものとする。 This magnetic circuit is a soft magnetic plate at the bottom and top, and by boldly using a large area of the entire surface of the substrate to collect and demagnetize a large amount of magnetic flux in the Z-axis direction, it effectively detects the magnetic field in the Z-axis direction. Is possible. It is desirable that the magnetic field detection sensitivities of the magnetic field detection elements in the X-axis, Y-axis, and Z-axis directions be the same, but if there is a difference, it shall be adjusted by the electronic circuit and the compensation program.

磁界検出素子は、出力用の+側電極と−側電極と内部の感磁体である磁性ワイヤへの通電用の+側電極と−側電極の4つの電極を有しており、基板面上の磁界検出素子と外部の電子回路を接続するための電極のために基板上に電極面が必要であり、上部軟磁性体プレートはこの電極面を覆わないように配置する必要がある。各磁界検出素子内部の磁性ワイヤへの通電用の−側電極については、原点位置に電極を設けて、4つの磁界検出素子で共通として、残りの各3つ、合計12個の電極は原点対称に基板面上に配置し、磁界検出素子と基板面上で配線する必要がある。 The magnetic field detection element has four electrodes, a + side electrode for output, a-side electrode, a + side electrode for energizing a magnetic wire which is an internal magnetic sensor, and a-side electrode, and is on the substrate surface. An electrode surface is required on the substrate for the electrode for connecting the magnetic field detection element and the external electronic circuit, and the upper soft magnetic material plate needs to be arranged so as not to cover this electrode surface. Regarding the negative side electrode for energizing the magnetic wire inside each magnetic field detection element, an electrode is provided at the origin position, and it is common to the four magnetic field detection elements, and the remaining three, for a total of twelve electrodes, are origin-symmetrical. It is necessary to place it on the substrate surface and wire it to the magnetic field detection element on the substrate surface.

上部軟磁性体プレートは、各磁界検出素子内部の磁性ワイヤの原点と反対側の端部で接続される。つまり、磁性ワイヤの+側電極配線部近辺に上部軟磁性体プレートが接続されるため、上部軟磁性体プレート同士が接触すると、各磁界検出素子が電気的に短絡してしまうため、4つの上部軟磁性体プレートは互いに接触してはならない。 The upper soft magnetic plate is connected at the end opposite to the origin of the magnetic wire inside each magnetic field detection element. That is, since the upper soft magnetic material plate is connected to the vicinity of the + side electrode wiring portion of the magnetic wire, when the upper soft magnetic material plates come into contact with each other, each magnetic field detection element is electrically short-circuited. The soft magnetic plates must not come into contact with each other.

上記の通り、電極のための空間の確保、電気的短絡の防止のため、上部軟磁性体プレートが使うことのできる面積は限られている。これによりZ軸方向の磁界検出力が落ちてしまうが、下部軟磁性体プレートの面積を4つの上部軟磁性体プレートの総面積よりも広く取ることでZ軸方向の磁界検出力を保つことができる。また、各磁界検出素子へ流れる磁束を安定させるためには磁気回路が対称であることが必要である。上部軟磁性体プレートが原点を中心に点対称な形状で配置されることから、電極のための空間も原点を中心とした点対称な形状で確保することができるので、各磁界検出素子への電極配線も原点を中心とした点対称な形状とすることが望ましい。
なお、製造上の都合その他の事情で、理想的な点対称が確保できない場合、X軸、Y軸、Z軸の感度について、感度の増減および相互干渉が生じる。それらの問題については感度補償および相互干渉補償することで解決することが望ましい。
すなわち、第2の発明は、外部の電子回路と接合可能な空間を、原点を中心とした点対称形状で有し、かつ下部軟磁性体プレートの面積を上部の4つの軟磁性体プレートの総面積よりも広くとることで、下部軟磁性体プレートと4つの磁界検出素子と上部軟磁性体プレートで形成される磁気回路により、効果的にZ軸方向磁界を検出し、X軸方向、Y軸方向、Z軸方向の3つの方向の磁界成分を同じ感度で測定し、原点位置における磁界ベクトルを検出することを特徴とする3次元磁界検出素子である。
As mentioned above, the area that can be used by the upper soft magnetic plate is limited in order to secure a space for the electrodes and prevent an electrical short circuit. As a result, the magnetic field detection force in the Z-axis direction is reduced, but the magnetic field detection force in the Z-axis direction can be maintained by making the area of the lower soft magnetic material plate wider than the total area of the four upper soft magnetic material plates. it can. Further, in order to stabilize the magnetic flux flowing through each magnetic field detection element, it is necessary that the magnetic circuit is symmetrical. Since the upper soft magnetic plate is arranged in a point-symmetrical shape centered on the origin, the space for the electrode can also be secured in a point-symmetrical shape centered on the origin, so that each magnetic field detection element can be provided. It is desirable that the electrode wiring also has a point-symmetrical shape centered on the origin.
If ideal point symmetry cannot be ensured due to manufacturing reasons or other reasons, the sensitivity of the X-axis, Y-axis, and Z-axis may increase or decrease and mutual interference may occur. It is desirable to solve these problems by compensation for sensitivity and mutual interference.
That is, the second invention has a space that can be joined to an external electronic circuit in a point-symmetrical shape centered on the origin, and the area of the lower soft magnetic plate is the total of the upper four soft magnetic plates. By making it wider than the area, the magnetic circuit formed by the lower soft magnetic material plate, the four magnetic field detection elements, and the upper soft magnetic material plate effectively detects the magnetic field in the Z-axis direction, and the X-axis direction and the Y-axis direction. It is a three-dimensional magnetic field detection element characterized by measuring magnetic field components in three directions in the direction and the Z-axis direction with the same sensitivity and detecting a magnetic field vector at the origin position.

この基板面上に4つの磁界検出素子配置面と平行方向の磁界を検出するタイプの磁界検出素子を配置して、磁界検出素子配置面と平行に、磁界検出素子配置面の上部と下部に軟磁性体プレートを配置する3次元磁界検出素子においては、磁界検出素子と軟磁性体プレートが近接しており、さらに磁界検出素子と軟磁性体プレートが磁気的に接続して磁気回路を形成していることから、各軟磁性体プレートが各磁界検出素子の磁気感度に与える影響を無視することはできない。 A type of magnetic field detection element that detects a magnetic field in a direction parallel to the four magnetic field detection element arrangement surfaces is arranged on this substrate surface, and is soft on the upper and lower parts of the magnetic field detection element arrangement surface in parallel with the magnetic field detection element arrangement surface. In the three-dimensional magnetic field detection element in which the magnetic material plate is arranged, the magnetic field detection element and the soft magnetic material plate are close to each other, and the magnetic field detection element and the soft magnetic material plate are magnetically connected to form a magnetic circuit. Therefore, the influence of each soft magnetic plate on the magnetic sensitivity of each magnetic field detection element cannot be ignored.

上部軟磁性体プレートと下部軟磁性体プレートの面積の大小はZ軸方向の磁束を集める能力に直結しており、両者ともに面積が大きくなるほどZ軸方向の磁束を多く集め、多くの磁束を各磁界検出素子に流すため、Z軸方向の磁気感度が高くなり、面積が小さいほどZ軸方向の磁束を少ししか集められなくなるため、少しの磁束しか各磁界検出素子に流れなくなり、Z軸方向の磁気感度が低くなる。 The size of the area of the upper soft magnetic material plate and the lower soft magnetic material plate is directly related to the ability to collect magnetic flux in the Z-axis direction, and the larger the area of both, the more magnetic flux in the Z-axis direction is collected, and more magnetic flux is collected. Since it flows through the magnetic field detection element, the magnetic sensitivity in the Z-axis direction increases, and the smaller the area, the less magnetic flux in the Z-axis direction can be collected. Therefore, only a small amount of magnetic flux flows through each magnetic field detection element, and the magnetic flux in the Z-axis direction The magnetic sensitivity is low.

X軸方向およびY軸方向の磁気感度への影響については、磁界検出素子と上部軟磁性体プレートと下部軟磁性体プレートの各々の形状と位置関係が関係している。 The influence on the magnetic sensitivity in the X-axis direction and the Y-axis direction is related to the shape and positional relationship of the magnetic field detection element, the upper soft magnetic plate, and the lower soft magnetic plate.

X軸方向およびY軸方向の磁束は、磁界検出素子内部の磁性ワイヤおよび上部軟磁性体プレート、下部軟磁性体プレートに沿って流れるが、上部と下部の軟磁性体プレートが磁束を吸収するため、上部と下部の軟磁性体プレートが存在しない場合よりも、磁性ワイヤに流れる磁束が減少するが、上部と下部の軟磁性体プレートと磁性ワイヤとから磁気回路を形成することで磁束の増減を防ぐことができる。 The magnetic fluxes in the X-axis direction and the Y-axis direction flow along the magnetic wire inside the magnetic field detection element, the upper soft magnetic material plate, and the lower soft magnetic material plate, but the upper and lower soft magnetic material plates absorb the magnetic flux. , The magnetic flux flowing through the magnetic wire is smaller than when the upper and lower soft magnetic plates are not present, but the magnetic flux can be increased or decreased by forming a magnetic circuit from the upper and lower soft magnetic plates and the magnetic wire. It can be prevented.

上部軟磁性体プレートは、それぞれ各磁界検出素子の原点と反対側の端部で接続されており、磁界検出素子とともに各軸方向で原点を中心に点対称で配置されており、X軸方向およびY軸方向の磁束を集磁すると、他方の磁界検出素子と上部軟磁性体プレートに向かって磁束を流す磁気回路を形成し、集磁された磁束の一部が磁界検出素子内部の磁性ワイヤに流れ込んで各軸方向に流れる磁束を増加させるため、X軸方向およびY軸方向の磁界検出素子に対する増幅器として働く。上部軟磁性体プレートが吸収する磁束の量は、上部軟磁性体プレートの大きさによって決まるため、上部軟磁性体プレートが大きいほど磁界検出素子に流れる磁束が増えて、X軸方向およびY軸方向のる磁気感度が高くなる。 The upper soft magnetic plate is connected at the end opposite to the origin of each magnetic flux detection element, and is arranged point-symmetrically with respect to the origin in each axial direction together with the magnetic flux detection element in the X-axis direction and. When the magnetic flux in the Y-axis direction is collected, a magnetic circuit is formed in which the magnetic flux flows toward the other magnetic field detection element and the upper soft magnetic material plate, and a part of the collected magnetic flux is transferred to the magnetic wire inside the magnetic field detection element. Since it flows in and increases the magnetic flux flowing in each axial direction, it acts as an amplifier for the magnetic field detection elements in the X-axis direction and the Y-axis direction. Since the amount of magnetic flux absorbed by the upper soft magnetic material plate is determined by the size of the upper soft magnetic material plate, the larger the upper soft magnetic material plate, the more magnetic flux flows in the magnetic field detection element, and the X-axis direction and the Y-axis direction The magnetic sensitivity of the load increases.

下部軟磁性体プレートは、各磁界検出素子の原点側の端部で接続されているが、X軸方向およびY軸方向の磁界に対しては、下部軟磁性体プレートは、上記の上部軟磁性体プレートと磁界検出素子とで形成される磁気回路の主な流路である各磁界検出素子内部の磁性ワイヤよりも下部にあり、かつX軸方向およびY軸方向の磁界に対して平行な平面上に広がっているため、高さの異なる平面上にある磁性ワイヤよりも同一平面上のプレート内部の方へ磁束が流れやすいため、下部軟磁性体プレートが一方の端部から集磁した磁束は、ほとんど各磁界検出素子内部の磁性ワイヤに影響を与えずに他方の端部へと通過して放磁される。つまり、下部軟磁性体プレートは磁界検出素子内部の磁性ワイヤに対する磁束の迂回路となって磁性ワイヤに流れる磁束を減少させるため、各磁界検出素子に対する減衰器として働く。下部軟磁性体プレートを大きくするほどX軸方向およびY軸方向の磁気感度が低くなる。 The lower soft magnetic material plate is connected at the end on the origin side of each magnetic field detection element, but for magnetic fields in the X-axis direction and the Y-axis direction, the lower soft magnetic material plate is the above-mentioned upper soft magnetic material. A plane that is below the magnetic wire inside each magnetic field detection element, which is the main flow path of the magnetic circuit formed by the body plate and the magnetic field detection element, and is parallel to the magnetic field in the X-axis direction and the Y-axis direction. Since it spreads upward, the magnetic flux easily flows toward the inside of the plate on the same plane as the magnetic wires on the planes with different heights, so the magnetic flux collected by the lower soft magnetic plate from one end is , Passes through to the other end and is demagnetized with almost no effect on the magnetic wire inside each magnetic field detection element. That is, the lower soft magnetic plate acts as an attenuator for each magnetic field detection element because it acts as a detour for the magnetic flux inside the magnetic field detection element and reduces the magnetic flux flowing through the magnetic wire. The larger the lower soft magnetic material plate, the lower the magnetic sensitivity in the X-axis direction and the Y-axis direction.

上記の通り、上部軟磁性体プレートを大きくするとZ軸方向の磁気感度が高まるが、X軸方向およびY軸方向の磁気感度に増幅がかかる。過度に磁気感度が増幅されることは、各軸方向の磁気感度の不均衡や測定レンジの縮小につながるため望ましくない。また、下部軟磁性体プレートを大きくすると、Z軸方向の磁界成分の検出力が高まるが、X軸方向およびY軸方向の磁気感度に減衰がかかる。磁界検出素子としては高感度が望まれており、磁気感度に減衰がかかるのは望ましくない。 As described above, when the upper soft magnetic plate is enlarged, the magnetic sensitivity in the Z-axis direction is increased, but the magnetic sensitivity in the X-axis direction and the Y-axis direction is amplified. Excessive amplification of magnetic sensitivity is not desirable because it leads to imbalance of magnetic sensitivity in each axial direction and reduction of measurement range. Further, when the lower soft magnetic material plate is enlarged, the detection force of the magnetic field component in the Z-axis direction is increased, but the magnetic sensitivity in the X-axis direction and the Y-axis direction is attenuated. High sensitivity is desired as a magnetic field detection element, and it is not desirable that the magnetic sensitivity is attenuated.

そこで、この3次元磁界検出素子において、上部軟磁性体プレートと下部軟磁性体プレートの形状を調整することで、上部軟磁性体プレートがX軸方向およびY軸方向の磁気感度に増幅をかける効果と、下部軟磁性体プレートがX軸方向およびY軸方向の磁気感度に減衰をかける効果がちょうど打ち消し合い、かつZ軸方向の磁気感度とX軸方向およびY軸方向の磁気感度が同じとなるようにした。 Therefore, in this three-dimensional magnetic field detection element, by adjusting the shapes of the upper soft magnetic material plate and the lower soft magnetic material plate, the effect that the upper soft magnetic material plate amplifies the magnetic sensitivity in the X-axis direction and the Y-axis direction. And, the effect that the lower soft magnetic material plate attenuates the magnetic sensitivity in the X-axis direction and the Y-axis direction just cancels each other, and the magnetic sensitivity in the Z-axis direction and the magnetic sensitivity in the X-axis direction and the Y-axis direction are the same. I did it.

つまり、X軸方向およびY軸方向の各磁界検出素子が、磁気回路を構成する軟磁性体が存在しない時のX軸方向の磁界およびY軸方向の磁界を受けて出力する値を1とすると、この3次元磁界検出素子としては、各軸方向に配置された2つの磁界検出素子の出力を加算して出力とするため、3次元磁界検出素子としてのX軸方向およびY軸方向の出力は2となり、Z軸方向の磁界を磁気回路によって各磁界検出素子に流すことによって各磁界検出素子で得られるZ軸方向磁界分の出力をΔZとすると、4つの素子の出力を加算して出力とするため、3次元磁界検出素子としてのZ軸方向出力は4ΔZであるから、4ΔZ=2つまりΔZ=0.5であればよいから、各磁界検出素子の各軸方向の感度とZ軸方向の感度との比が1:0.5となり、かつ各磁界検出素子の各軸方向の磁気感度を増幅も減衰もしないように、上部軟磁性体プレートと下部軟磁性体プレートの形状を調整した。
なお、3次元磁界検出装置においては電子回路の増幅度により磁気感度の調整ができるため、3次元磁界検出素子においてZ軸方向の磁気感度とX軸方向およびY軸方向の磁気感度が同じとは、X軸方向およびY軸方向の磁気感度に対するZ軸方向の磁気感度の比が、理想的な感度比の±70%の範囲に収まると言う意味である。つまり、ΔZは0.35から0.85の範囲が許容される。
That is, assuming that each magnetic field detection element in the X-axis direction and the Y-axis direction receives and outputs a magnetic field in the X-axis direction and a magnetic field in the Y-axis direction when the soft magnetic material constituting the magnetic circuit does not exist. As this three-dimensional magnetic field detection element, the outputs of the two magnetic field detection elements arranged in each axial direction are added to obtain an output, so that the output in the X-axis direction and the Y-axis direction as the three-dimensional magnetic field detection element is If the output of the magnetic field in the Z-axis direction obtained by each magnetic field detection element is ΔZ by passing the magnetic field in the Z-axis direction to each magnetic field detection element by a magnetic circuit, the outputs of the four elements are added to obtain the output. Therefore, since the output in the Z-axis direction as the three-dimensional magnetic field detection element is 4ΔZ, 4ΔZ = 2, that is, ΔZ = 0.5, so that the sensitivity in each axial direction of each magnetic field detection element and the Z-axis direction The shapes of the upper soft magnetic plate and the lower soft magnetic plate were adjusted so that the ratio to the sensitivity was 1: 0.5 and the magnetic sensitivity in each axial direction of each magnetic field detection element was neither amplified nor attenuated.
In the three-dimensional magnetic field detection device, the magnetic sensitivity can be adjusted by the amplification degree of the electronic circuit. Therefore, the magnetic sensitivity in the Z-axis direction and the magnetic sensitivity in the X-axis direction and the Y-axis direction are the same in the three-dimensional magnetic field detection element. This means that the ratio of the magnetic sensitivity in the Z-axis direction to the magnetic sensitivity in the X-axis direction and the Y-axis direction falls within the range of ± 70% of the ideal sensitivity ratio. That is, ΔZ is allowed in the range of 0.35 to 0.85.

X軸、Y軸、Z軸方向の素子の磁界検出感度を上記のように調整することによって、この3次元磁界検出素子によって構成される3次元磁界検出装置は、3次元の磁界ベクトルを、まずX軸方向の磁界はX1素子とX2素子の出力を加算することによって検知し、Y軸方向の磁界はY1素子とY2素子の出力を加算することによって検知し、さらにZ軸方向の磁界は、集磁したZ軸方向磁界を磁気回路によってX軸方向およびY軸方向に変向して各磁界検出素子に流して、X1素子とX2素子の出力の差分とY1素子とY2素子の出力の差分とを加算することで検知することができる。 By adjusting the magnetic field detection sensitivity of the elements in the X-axis, Y-axis, and Z-axis directions as described above, the three-dimensional magnetic field detection device configured by the three-dimensional magnetic field detection element first obtains a three-dimensional magnetic field vector. The magnetic field in the X-axis direction is detected by adding the outputs of the X1 element and the X2 element, the magnetic field in the Y-axis direction is detected by adding the outputs of the Y1 element and the Y2 element, and the magnetic field in the Z-axis direction is further detected. The collected Z-axis magnetic field is converted in the X-axis direction and the Y-axis direction by a magnetic circuit and passed through each magnetic field detection element, and the difference between the output of the X1 element and the X2 element and the difference between the output of the Y1 element and the Y2 element. It can be detected by adding and.

すなわち、第3の発明は、基板面上に4つの磁界検出素子配置面と平行方向の磁界を検出するタイプの磁界検出素子を配置して、磁界検出素子配置面と平行に、磁界検出素子配置面の上部と下部に軟磁性体プレートを配置して磁気回路を形成する3次元磁界検出素子において、各軟磁性体プレートがX軸方向およびY軸方向の磁気感度に与える影響を打ち消し、かつZ軸方向の磁界を効果的に検出して、X軸方向、Y軸方向、Z軸方向の各軸方向の磁気感度が等しいことを特徴とする3次元磁界検出素子である。 That is, in the third invention, a magnetic field detection element of a type that detects a magnetic field in a direction parallel to the four magnetic field detection element arrangement surfaces is arranged on the substrate surface, and the magnetic field detection element is arranged in parallel with the magnetic field detection element arrangement surface. In a three-dimensional magnetic field detection element in which soft magnetic material plates are arranged at the upper and lower parts of a surface to form a magnetic circuit, the influence of each soft magnetic material plate on the magnetic sensitivity in the X-axis direction and the Y-axis direction is canceled out, and Z It is a three-dimensional magnetic field detecting element characterized by effectively detecting a magnetic field in the axial direction and having equal magnetic sensitivities in each of the X-axis direction, the Y-axis direction, and the Z-axis direction.

下部軟磁性体プレートと上部軟磁性体プレートは、それぞれ磁界検出素子配置面と平行に磁界検出素子配置面の下部と上部に配置されるが、3次元磁界検出素子としては薄型化が望まれており、下部軟磁性体プレートと上部軟磁性体プレートの間の距離は小さい方が望ましい。 The lower soft magnetic material plate and the upper soft magnetic material plate are arranged in the lower part and the upper part of the magnetic field detection element arrangement surface in parallel with the magnetic field detection element arrangement surface, respectively, but thinning is desired as a three-dimensional magnetic field detection element. Therefore, it is desirable that the distance between the lower soft magnetic plate and the upper soft magnetic plate is small.

しかし、各磁界検出素子と各軟磁性体プレートは、その接続部において、磁界検出素子と軟磁性体プレートの間に軟磁性体を配置することで磁気的に接続するが、この軟磁性体の高さが小さいと反磁界が強くなるため磁気抵抗が大きくなって、磁気回路を流れる磁束が減少して、Z軸方向の磁気感度が減少してしまうため、各磁界検出素子と各軟磁性体プレートを接続する軟磁性体はある程度の高さが必要となる。 However, each magnetic field detection element and each soft magnetic material plate are magnetically connected by arranging a soft magnetic material between the magnetic field detection element and the soft magnetic material plate at the connection portion of the soft magnetic material. If the height is small, the demagnetic field becomes strong, so the magnetic resistance increases, the magnetic flux flowing through the magnetic circuit decreases, and the magnetic sensitivity in the Z-axis direction decreases. Therefore, each magnetic field detection element and each soft magnetic material The soft magnetic material that connects the plates needs to have a certain height.

そこで、各軟磁性体プレートを大きくして、集磁面および放磁面をさらに大きくして磁気回路に流れる磁束を増やすことによって、軟磁性体の高さが小さくなることで磁気回路に磁束が流れにくくなる効果を上回るほどの磁束を磁気回路に流し込めば、Z軸方向の磁気感度を減少させることなく、下部軟磁性体プレートと上部軟磁性体プレートの間の距離を小さくすることができる。 Therefore, by enlarging each soft magnetic material plate and further enlarging the magnetic collecting surface and the magnetizing surface to increase the magnetic flux flowing through the magnetic circuit, the height of the soft magnetic material is reduced and the magnetic flux is generated in the magnetic circuit. If a magnetic flux that exceeds the effect of making it difficult to flow is flowed into the magnetic circuit, the distance between the lower soft magnetic material plate and the upper soft magnetic material plate can be reduced without reducing the magnetic sensitivity in the Z-axis direction. ..

磁性ワイヤの直径が10μmの場合、両軟磁性体プレートは基板面から5μm以上離れていることが必要であるので、両軟磁性体プレート間の距離は最低でも0.01mm以上となる。両軟磁性体プレート間の距離が大きいほどZ軸の感度を容易に増加させることができるが、極力小さくすることを目標とする場合には、0.08mm以下が望ましい。 When the diameter of the magnetic wire is 10 μm, both soft magnetic plates need to be separated from the substrate surface by 5 μm or more, so that the distance between the two soft magnetic plates is at least 0.01 mm. The larger the distance between the two soft magnetic plates, the easier it is to increase the sensitivity of the Z-axis, but when the goal is to make it as small as possible, 0.08 mm or less is desirable.

すなわち、第4の発明は、基板面上に磁界検出素子配置面と平行方向の磁界を検出するタイプの4つの磁界検出素子を配置して、磁界検出素子配置面と平行に、磁界検出素子配置面の上部と下部に軟磁性体プレートを配置して磁気回路を形成する3次元磁界検出素子において、各磁界検出素子と各軟磁性体プレートを磁気的に接続する接続部に配置される軟磁性体の高さを小さくして下部軟磁性体プレートと上部軟磁性体プレートの間の距離を0.01mm以上で0.08mm以下と縮小して、全体の高さを低くすることができることを特徴とする3次元磁界検出素子である。 That is, in the fourth invention, four magnetic field detection elements of the type that detect a magnetic field in a direction parallel to the magnetic field detection element arrangement surface are arranged on the substrate surface, and the magnetic field detection element is arranged in parallel with the magnetic field detection element arrangement surface. In a three-dimensional magnetic field detection element that forms a magnetic circuit by arranging soft magnetic material plates on the upper and lower parts of the surface, soft magnetic field is arranged at a connection portion that magnetically connects each magnetic field detection element and each soft magnetic material plate. The feature is that the height of the body can be reduced and the distance between the lower soft magnetic plate and the upper soft magnetic plate can be reduced from 0.01 mm or more to 0.08 mm or less to lower the overall height. It is a three-dimensional magnetic field detection element.

第4の発明のサイズは、前記3次元磁界検出素子は、長さ0.2mm以上で1.0mm以下、幅0.2mm以上で1.0mm以下,および厚さ0.01mm以上で0.35mm以下で、下部軟磁性体プレートの下面から上部軟磁性体プレートの上面までの高さが0.01mm以上で0.08mm以下である。 The size of the fourth invention is that the three-dimensional magnetic field detection element has a length of 0.2 mm or more and 1.0 mm or less, a width of 0.2 mm or more and 1.0 mm or less, and a thickness of 0.01 mm or more and 0.35 mm or less. Below, the height from the lower surface of the lower soft magnetic plate to the upper surface of the upper soft magnetic plate is 0.01 mm or more and 0.08 mm or less.

この3次元磁界検出素子において、下部軟磁性体プレートの配置にあたっては、基板上の磁界検出素子配置位置以外の広い面積を有する領域を掘り下げて、そこに下部軟磁性体プレートを形成する掘り下げ方式や、基板上の広い領域に下部軟磁性体プレートを形成してから樹脂等で磁界検出素子配置面を形成する積み上げ方式が考えられる。 In this three-dimensional magnetic field detection element, when arranging the lower soft magnetic material plate, a digging method is performed in which a region having a large area other than the magnetic field detection element arrangement position on the substrate is dug down and the lower soft magnetic material plate is formed there. A stacking method is conceivable in which the lower soft magnetic material plate is formed in a wide area on the substrate and then the magnetic field detection element arrangement surface is formed with resin or the like.

磁界検出素子配置面上に外部の電子回路と接続するための電極を十分広い空間に配置し、電極が配置されている磁界検出素子配置面から上部軟磁性体プレートの上面までの高さが十分小さければ、この3次元磁界検出素子と外部の電子回路である集積回路チップをフリップチップはんだ接合することが可能となり、3次元磁界検出素子と外部の電子回路との簡単に接続することができる。集積回路チップと3次元磁界検出素子を接続して構成した3次元磁界検出装置全体としての薄型化が可能となる。 An electrode for connecting to an external electronic circuit is arranged on a magnetic field detection element arrangement surface in a sufficiently wide space, and the height from the magnetic field detection element arrangement surface on which the electrode is arranged to the upper surface of the upper soft magnetic material plate is sufficient. If it is small, the three-dimensional magnetic field detection element and the integrated circuit chip which is an external electronic circuit can be flip-chip solder-bonded, and the three-dimensional magnetic field detection element and the external electronic circuit can be easily connected. The overall thickness of the three-dimensional magnetic field detection device configured by connecting the integrated circuit chip and the three-dimensional magnetic field detection element can be reduced.

また、集積回路チップ上に直接3次元磁界検出素子を形成することも考えられる。
この場合は、集積回路チップ上面に上部軟磁性体プレートを形成し、その上に樹脂等で磁界検出素子配置面を形成、磁界検出素子配置後さらに上部に下部軟磁性体プレートを配置して、各磁界検出素子と集積回路チップの間を直接配線メッキ接合で接続することで、集積回路チップと3次元磁界検出素子とが一体化した3次元磁界検出装置を構成する。これにより、さらに薄型化が可能となる。
なお、集積回路チップを底として上に積み上げていく方式において、3次元磁界検出素子の外部の電子回路との接続側つまり集積回路チップに面した側が3次元磁界検出素子の上部となる定義であるため、集積回路チップに近い側つまり下側に上部軟磁性体プレート、集積回路チップから遠い側、つまり上側に下部軟磁性体プレートと言う表記の逆転があるが、3次元磁界検出素子の構造は同じである。
It is also conceivable to form a three-dimensional magnetic field detection element directly on the integrated circuit chip.
In this case, an upper soft magnetic material plate is formed on the upper surface of the integrated circuit chip, a magnetic field detection element arrangement surface is formed on the upper surface of the integrated circuit chip, and a lower soft magnetic material plate is further arranged on the upper surface after the magnetic field detection element is arranged. By directly connecting each magnetic field detection element and the integrated circuit chip by wiring plating, a three-dimensional magnetic field detection device in which the integrated circuit chip and the three-dimensional magnetic field detection element are integrated is configured. This makes it possible to further reduce the thickness.
In the method of stacking the integrated circuit chips on the bottom, the connection side of the three-dimensional magnetic field detection element with the external electronic circuit, that is, the side facing the integrated circuit chip is defined as the upper part of the three-dimensional magnetic field detection element. Therefore, there is a reversal of the notation that the upper soft magnetic material plate is on the side closer to the integrated circuit chip, that is, the lower side, and the lower soft magnetic material plate is on the side farther from the integrated circuit chip, that is, the upper side, but the structure of the three-dimensional magnetic field detection element is It is the same.

上記の通り、第5の発明は、集積回路チップ上に3次元磁界検出素子を形成して、直接配線メッキ接合することを特徴とする3次元磁界検出装置である。 As described above, the fifth invention is a three-dimensional magnetic field detection device characterized in that a three-dimensional magnetic field detection element is formed on an integrated circuit chip and directly wired and plated.

実施例1に係る3次元磁界検出素子のXY平面図である。It is XY plan view of the 3D magnetic field detection element which concerns on Example 1. FIG. 実施例1に係る3次元磁界検出素子のZX平面図である。It is a ZX plan view of the 3D magnetic field detection element which concerns on Example 1. FIG. GSR素子の基本構造を示す平面図である。It is a top view which shows the basic structure of a GSR element. 実施例1に係るZ軸方向磁界に対する磁気回路のZX平面図である。It is a ZX plan view of the magnetic circuit with respect to the magnetic field in the Z-axis direction which concerns on Example 1. FIG. 実施例1に係るX軸方向磁界に対する磁気回路のZX平面図である。It is a ZX plan view of the magnetic circuit with respect to the magnetic field in the X-axis direction which concerns on Example 1. FIG. 実施例1に係る磁界検出素子の電子回路図である。It is an electronic circuit diagram of the magnetic field detection element which concerns on Example 1. FIG. 実施例1に係る3次元磁界検出素子の電子回路図である。It is an electronic circuit diagram of the 3D magnetic field detection element which concerns on Example 1. FIG. 実施例1に係る3次元磁界検出素子と外部の電子回路との接合の図である。It is a figure of the junction of the 3D magnetic field detection element which concerns on Example 1 and an external electronic circuit. 実施例2に係る3次元磁界検出素子のXY平面図である。It is XY plan view of the 3D magnetic field detection element which concerns on Example 2. FIG. 実施例3に係る3次元磁界検出素子と外部の電子回路との接合の図である。It is a figure of the junction of the 3D magnetic field detection element which concerns on Example 3 and an external electronic circuit.

発明の実施形態を挙げて本発明をより詳しく説明する。
本発明の3次元磁界検出素子は、
基板面上に、または基板を用いないで集積回路チップ上に(以下、基板等という。)磁界検出素子配置面と平行方向の磁界を検出するタイプの4つの磁界検出素子を、基板等の原点を中心とした点対称の位置に、X軸方向の磁界を検出するために2つ、Y軸方向の磁界を検出するために2つを配置し、磁界検出素子配置面と平行に、磁界検出素子配置面の下部に下部軟磁性体プレート、4つの磁界検出素子の上部に4つの上部軟磁性体プレートを配置して、原点位置において下部軟磁性体プレートと4つの磁界検出素子の感磁体とを下部軟磁性体を介して磁気的に接続し、原点と反対側の端部で4つの磁界検出素子の感磁体と4つの上部軟磁性体プレートとを上部軟磁性体を介して磁気的に接続して、Z軸方向磁界を上部と下部の軟磁性体プレートの一方で効果的に集磁して、X軸方向およびY軸方向の各磁界検出素子の感磁体(磁性ワイヤ)に磁束を流し、他方の軟磁性体プレートで放磁する磁気回路を形成することで、X軸方向、Y軸方向、Z軸方向の3つの方向の磁界成分を測定し、原点位置における磁界ベクトルを検出するものである。
The present invention will be described in more detail with reference to embodiments of the invention.
The three-dimensional magnetic field detection element of the present invention
Four magnetic field detection elements of the type that detect the magnetic field in the direction parallel to the magnetic field detection element placement surface on the substrate surface or on the integrated circuit chip without using the substrate (hereinafter referred to as the substrate, etc.) are the origins of the substrate, etc. Two are placed at point-symmetrical positions centered on the above to detect the magnetic field in the X-axis direction, and two are placed to detect the magnetic field in the Y-axis direction, and the magnetic field is detected parallel to the magnetic field detection element placement surface. A lower soft magnetic plate is placed below the element placement surface, and four upper soft magnetic plates are placed above the four magnetic field detection elements, and the lower soft magnetic plate and the magnetic sensors of the four magnetic field detection elements are arranged at the origin position. Is magnetically connected via the lower soft magnetic material, and at the end opposite to the origin, the magnetic sensitive bodies of the four magnetic field detection elements and the four upper soft magnetic material plates are magnetically connected via the upper soft magnetic material. By connecting, the magnetic field in the Z-axis direction is effectively collected on one of the upper and lower soft magnetic material plates, and the magnetic flux is applied to the magnetic sensor (magnetic wire) of each magnetic field detection element in the X-axis direction and the Y-axis direction. By forming a magnetic circuit that flows and demagnetizes with the other soft magnetic material plate, the magnetic field components in the three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction are measured, and the magnetic field vector at the origin position is detected. It is a thing.

また、本発明の3次元磁界検出装置は、
集積回路チップと、
前記集積回路チップの上面に絶縁材料を介して、前記集積回路チップの原点を中心とする点対称の位置に、X軸方向の磁界方向に形成された2つの上部軟磁性体プレートとY軸方向の磁界方向に形成された2つの上部軟磁性体プレートとからなる4つの上部軟磁性プレートと、前記上部軟磁性体プレートの上部に4つの前記上部軟磁性体プレートに対応して配置された前記X軸方向の磁界を検出するための2つの磁界検出素子と前記Y軸方向の磁界を検出するための他の2つの磁界検出素子とからなる4つの磁界検出素子と、4つの前記磁界検出素子が配置されている面(磁界検出素子配置面という。)の上部に形成された1つの下部軟磁性体プレートと、4つの前記上部軟磁性体プレートの原点とは反対側の端部と4つの前記磁界検出素子の感磁体の端部とを磁気的に接続する上部軟磁性体と、4つの前記磁界検出素子の4つの前記感磁体の他方の端部と前記下部軟磁性体プレートの中心部とを磁気的に接続する下部軟磁性体とを備えることにより、
前記下部軟磁性体プレートと前記下部軟磁性体と前記磁界検出素子の前記感磁体と前記上部軟磁性体と前記上部軟磁性体プレートとからなる磁気回路を形成し、
前記集積回路チップと前記磁界検出素子とを接合する配線とからなることを特徴とする。
Further, the three-dimensional magnetic field detection device of the present invention is
With integrated circuit chips
Two upper soft magnetic plates formed in the magnetic field direction in the X-axis direction and the Y-axis direction at point-symmetrical positions centered on the origin of the integrated circuit chip via an insulating material on the upper surface of the integrated circuit chip. The four upper soft magnetic plates composed of the two upper soft magnetic plates formed in the direction of the magnetic field of the above, and the four upper soft magnetic plates arranged above the upper soft magnetic plates corresponding to the upper soft magnetic plates. Four magnetic field detection elements consisting of two magnetic field detection elements for detecting a magnetic field in the X-axis direction and two other magnetic field detection elements for detecting the magnetic field in the Y-axis direction, and four magnetic field detection elements. One lower soft magnetic plate formed on the upper part of the surface on which the magnetic field detection element is arranged (referred to as a magnetic field detection element arrangement surface), four ends of the upper soft magnetic plate opposite to the origin, and four. An upper soft magnetic material that magnetically connects the end of the magnetic field sensing element of the magnetic field detecting element, the other end of the four magnetic field sensing elements of the four magnetic field detecting elements, and the central portion of the lower soft magnetic material plate. By providing a lower soft magnetic material that magnetically connects with
A magnetic circuit including the lower soft magnetic material plate, the lower soft magnetic material, the magnetic sensitive material of the magnetic field detection element, the upper soft magnetic material, and the upper soft magnetic material plate is formed.
It is characterized by comprising a wiring for joining the integrated circuit chip and the magnetic field detection element.

これにより、直接、集積回路チップ上にX軸方向、Y軸方向およびZ軸方向の磁界を検出する3次元磁界検出素子を形成することにより、3次元磁界検出装置の薄型化が可能となる。 As a result, the three-dimensional magnetic field detection device can be made thinner by forming the three-dimensional magnetic field detection element that directly detects the magnetic fields in the X-axis direction, the Y-axis direction, and the Z-axis direction on the integrated circuit chip.

この3次元磁界検出素子中の各磁界検出素子としてはGSR素子が望ましい。GSR素子は磁気に感応して電子スピンの回転を生じ得る感磁体とその感磁体の磁気変化を検出する検出手段を有しており、感磁体はその材質や形態を問わない。また、検知手段は感磁体の周囲に巻回され、磁束量変化に応じた起電力を出力する検出コイルである。感磁体は通常はアモルファスワイヤ等の軟磁性材からなり、相応の長さを有するワイヤまたは薄膜からなる。感磁体は、磁界検出能力、強度、コスト等の点で、特に零磁歪のアモルファスワイヤが好ましい。 A GSR element is desirable as each magnetic field detection element in the three-dimensional magnetic field detection element. The GSR element has a magnetic body that can generate rotation of electron spins in response to magnetism and a detection means for detecting magnetic changes in the magnetic body, and the magnetic body is not limited in its material or form. Further, the detection means is a detection coil that is wound around a magnetic sensitive body and outputs an electromotive force according to a change in the amount of magnetic flux. The magnetic sensitive material is usually made of a soft magnetic material such as an amorphous wire, and is made of a wire or a thin film having an appropriate length. As the magnetic sensitive material, an amorphous wire having zero magnetostriction is particularly preferable in terms of magnetic field detection ability, strength, cost and the like.

上部軟磁性体プレートおよび下部軟磁性体プレート(以下、軟磁性体プレートという。)は、基板等の原点を中心とした点対称の位置でX軸方向磁界に配置されたX1素子、X2素子、Y軸方向磁界に配置されたY1素子、Y2素子、また各素子と各軟磁性体プレートを接続する軟磁性体(上部軟磁性体および下部軟磁性体)により磁気回路を形成し、Z軸方向磁界をX軸方向およびY軸方向に変向して各素子に流すことでZ軸方向磁界の強さを効果的に検出することを可能とする。軟磁性体プレートおよび接続部の軟磁性体は、このような磁気回路形成が可能である限り、軟磁性体の材質は問わない。軟磁性体としては、高透磁率であるほど、集磁効果が大きいので、通常はパーマロイ合金が望ましい。 The upper soft magnetic plate and the lower soft magnetic plate (hereinafter referred to as soft magnetic plates) are X1 elements, X2 elements, which are arranged in a magnetic field in the X-axis direction at point-symmetrical positions about the origin of the substrate or the like. A magnetic circuit is formed by Y1 elements and Y2 elements arranged in a magnetic field in the Y-axis direction, and soft magnetic materials (upper soft magnetic material and lower soft magnetic material) connecting each element and each soft magnetic material plate, and in the Z-axis direction. By directing the magnetic field in the X-axis direction and the Y-axis direction and flowing it through each element, it is possible to effectively detect the strength of the magnetic field in the Z-axis direction. The soft magnetic material of the soft magnetic material plate and the connection portion may be made of any material as long as such a magnetic circuit can be formed. As the soft magnetic material, the higher the magnetic permeability, the greater the magnetic collecting effect, so that a permalloy alloy is usually desirable.

軟磁性体プレートの形状は、その面積が広いほどプレート面に垂直な方向の磁束を多く集磁することができるので、できるだけ面積が広いことが好ましいが、GSR素子内の感磁体の端部に近づくほど、基板面上の感磁体が集磁すべき磁束を軟磁性体プレートが吸収してしまってGSR素子の磁気感度に与える影響が大きくなってしまう。そのため、感磁体の端部付近では軟磁性体プレートに切り込みを入れるなどの方法で、GSR素子の磁気感度に与える影響をコントロールすることが好ましい。 As for the shape of the soft magnetic material plate, the larger the area, the more magnetic flux in the direction perpendicular to the plate surface can be collected. Therefore, it is preferable that the soft magnetic material plate has as large an area as possible, but at the end of the magnetic sensitive material in the GSR element. The closer it is, the more the soft magnetic plate absorbs the magnetic flux that the magnetic sensor on the substrate surface should collect, and the greater the influence on the magnetic sensitivity of the GSR element. Therefore, it is preferable to control the influence on the magnetic sensitivity of the GSR element by making a notch in the soft magnetic material plate near the end portion of the magnetic sensitive material.

また、軟磁性体プレートの厚さは、薄い方が軟磁性体プレート面の垂直方向に対する反磁界が強くなり水平方向に磁束を流しやすくなるので、磁気回路の磁気抵抗を下げて、効果的に磁束を集めることができるようになり、かつ水平方向に対する面積が減るため、水平方向磁束の吸収量が減って、GSR素子の磁気感度に与える影響が小さくなる。さらに、プレートが薄い方が3次元磁界検出素子全体の高さを縮小するのに有利であるから、軟磁性体プレートは薄い方が好ましい。ただし、あまりにも薄い場合にはプレート面の垂直方向に対する反磁界が強くなりすぎて磁束を集めにくくなってしまうので、適切な厚さが必要である。この厚さは0.005mmから0.020mm程度が望ましい。 In addition, the thinner the soft magnetic plate, the stronger the demagnetic field in the vertical direction of the soft magnetic plate surface, and the easier it is for magnetic flux to flow in the horizontal direction. Therefore, the magnetic resistance of the magnetic circuit can be reduced effectively. Since the magnetic flux can be collected and the area with respect to the horizontal direction is reduced, the amount of absorption of the horizontal magnetic flux is reduced, and the influence on the magnetic sensitivity of the GSR element is reduced. Further, since a thin plate is advantageous for reducing the height of the entire three-dimensional magnetic field detection element, a thin soft magnetic plate is preferable. However, if it is too thin, the demagnetic field in the vertical direction of the plate surface becomes too strong and it becomes difficult to collect magnetic flux, so an appropriate thickness is required. This thickness is preferably about 0.005 mm to 0.020 mm.

本発明において2つのX軸素子と2つのY軸素子は直交する第1軸、第2軸に配置されるので、各素子が配置される各軸がなす角度は直角であるべきである。しかし、その角度にずれがある場合には、そのずれ角度を測定して補正演算を加えることで対応することができる。 In the present invention, since the two X-axis elements and the two Y-axis elements are arranged on the first and second axes that are orthogonal to each other, the angle formed by each axis on which each element is arranged should be a right angle. However, if there is a deviation in the angle, it can be dealt with by measuring the deviation angle and adding a correction calculation.

対称に配置されるGSR素子同士または磁気回路を形成する上部軟磁性体プレートまたはGSR素子内部の感磁体と各軟磁性体プレートとの各接続部の軟磁性体は、それぞれ感応特性、検出特性または集磁特性などが、実質的に同一であり、磁気回路として対称性を持つことが望ましい。特性が異なる場合は、各素子の測定値は電子回路と演算処理装置に送られて補正して同一化することによって処理することができる。 The upper soft magnetic material plates that form symmetrically arranged GSR elements or a magnetic circuit, or the soft magnetic material at each connection between the magnetic sensitive material inside the GSR element and each soft magnetic material plate, have sensitive characteristics, detection characteristics, or It is desirable that the magnetic collection characteristics and the like are substantially the same and that the magnetic circuit has symmetry. When the characteristics are different, the measured value of each element can be processed by being sent to the electronic circuit and the arithmetic processing unit, corrected and made the same.

いずれにせよ、X軸方向の一対のGSR素子またはY軸方向の一対のGSR素子と、磁気回路の対称性を巧みに利用して、演算式中の補正係数または補正項等を簡略化できるようにすることが、高精度な磁界検出を容易にすることができるため好ましい。 In any case, the correction coefficient or correction term in the calculation formula can be simplified by skillfully utilizing the pair of GSR elements in the X-axis direction or the pair of GSR elements in the Y-axis direction and the symmetry of the magnetic circuit. Is preferable because it can facilitate highly accurate magnetic field detection.

本発明は、Z軸方向の磁界を基板上に設置したX軸素子とY軸素子と軟磁性体プレートとで磁気回路を形成することによって検出するため、3次元磁界検出装置の小型化または薄型化を図れる点に特徴がある。本発明の3次元磁界検出素子と外部の電子回路である集積回路チップとの配線は、ワイヤボンディングによって行うこともできるが、ワイヤボンディングのために余分に面積と高さが必要となり、3次元磁界検出素子の面積が小さく各電極同士が近接していることもあって製造上の困難も生じる。そこで、この3次元磁界検出素子は集積回路チップ上に積層してフリップチップはんだ接合をするか、または直接集積回路チップ上に3次元磁界検出素子を形成し、集積回路チップの電極と磁界検出素子の電極との配線は両者間をメッキや蒸着により接合することが、全体的な小型化または薄型化を進めるために望ましい。 In the present invention, since the magnetic field in the Z-axis direction is detected by forming a magnetic circuit with the X-axis element, the Y-axis element, and the soft magnetic material plate installed on the substrate, the three-dimensional magnetic field detection device is downsized or thin. It is characterized in that it can be transformed. Wiring between the three-dimensional magnetic field detection element of the present invention and the integrated circuit chip which is an external electronic circuit can be performed by wire bonding, but an extra area and height are required for wire bonding, and the three-dimensional magnetic field is required. Since the area of the detection element is small and the electrodes are close to each other, manufacturing difficulties also occur. Therefore, this three-dimensional magnetic field detection element is laminated on an integrated circuit chip and flip-chip solder-bonded, or a three-dimensional magnetic field detection element is formed directly on the integrated circuit chip, and the electrode of the integrated circuit chip and the magnetic field detection element are formed. It is desirable to join the wiring with the electrode by plating or vapor deposition between the two in order to promote overall miniaturization or thinning.

また、集積される層は、3次元磁界検出素子と集積回路チップ層には限らない。本発明の3次元磁界検出素子は加速度センサ、温度センサなどと積層されて複合型センサとして組み立てて使用できる。 Further, the integrated layer is not limited to the three-dimensional magnetic field detection element and the integrated circuit chip layer. The three-dimensional magnetic field detection element of the present invention can be assembled and used as a composite sensor by being laminated with an acceleration sensor, a temperature sensor, or the like.

図面を参照しつつ以下に挙げる実施例に基づいて詳細に説明する。
[実施例1]
実施例1に係る3次元磁界検出素子1を図1に示す。図1(a)は3次元磁界検出素子1のXY平面図であり、図1(b)は図1(a)から抜き出した下部軟磁性体プレートの図である。図2は3次元磁界検出素子1をY軸方向から見たZX平面図であり、簡単のためY軸方向の構造物は省略している。図3はGSR素子の基本構造を示す平面図である。
It will be described in detail based on the following examples with reference to the drawings.
[Example 1]
The three-dimensional magnetic field detection element 1 according to the first embodiment is shown in FIG. FIG. 1 (a) is an XY plan view of the three-dimensional magnetic field detection element 1, and FIG. 1 (b) is a view of a lower soft magnetic material plate extracted from FIG. 1 (a). FIG. 2 is a ZX plan view of the three-dimensional magnetic field detection element 1 viewed from the Y-axis direction, and the structure in the Y-axis direction is omitted for simplicity. FIG. 3 is a plan view showing the basic structure of the GSR element.

3次元磁界検出素子1は、地磁気など微小磁界を検出することができる4つのGSR素子2、すなわちX1素子2X1、X2素子2X2、Y1素子2Y1、Y2素子2Y2と、それら4つのGSR素子2が配置された基板10上の磁界検出素子配置面12と、磁界検出素子配置面12を掘り込んで設けた広いくぼみの中に配置された下部軟磁性体プレート11と、基板の中心である原点位置で下部軟磁性体プレート11と各GSR素子2内部の感磁体である磁性ワイヤ21を接続する軟磁性体(下部軟磁性体)31と、各GSR素子2を覆うように配置された4つの上部軟磁性体プレート13と、磁性ワイヤ21と上部軟磁性体プレート13を、磁性ワイヤ21の基板10の外縁側の端部で接続する軟磁性体(上部軟磁性体)32からなる3層構造、つまり下部軟磁性体プレート11、磁界検出素子配置面12および上部軟磁性体プレート13からなる3層で、層間が軟磁性体3によって接続されている3層構造および、下部軟磁性体プレート11が設けられたくぼみを絶縁性材料で埋めて磁界検出素子配置面12と同じ高さとして、そこを電極配置面14として、そこに配置された各GSR素子2の電極22からなる。 In the three-dimensional magnetic field detection element 1, four GSR elements 2 capable of detecting a minute magnetic field such as geomagnetism, that is, X1 element 2X1, X2 element 2X2, Y1 element 2Y1, Y2 element 2Y2, and these four GSR elements 2 are arranged. At the origin position, which is the center of the substrate, the magnetic field detection element arrangement surface 12 on the substrate 10 and the lower soft magnetic material plate 11 arranged in a wide recess provided by digging the magnetic field detection element arrangement surface 12. A soft magnetic material (lower soft magnetic material) 31 that connects a lower soft magnetic material plate 11 and a magnetic wire 21 that is a magnetic sensor inside each GSR element 2, and four upper soft magnetic materials arranged so as to cover each GSR element 2. A three-layer structure consisting of a soft magnetic material (upper soft magnetic material) 32 connecting the magnetic material plate 13, the magnetic wire 21 and the upper soft magnetic material plate 13 at the outer edge side end of the substrate 10 of the magnetic wire 21, that is, A three-layer structure consisting of a lower soft magnetic material plate 11, a magnetic field detection element arranging surface 12 and an upper soft magnetic material plate 13, and layers connected by the soft magnetic material 3 and a lower soft magnetic material plate 11 are provided. The recess is filled with an insulating material so that the height is the same as the magnetic field detection element arrangement surface 12, and this is used as the electrode arrangement surface 14, and the electrodes 22 of each GSR element 2 arranged there are formed.

電極22は、基板10の原点位置に、4つのGSR素子2の感磁体である磁性ワイヤ21それぞれに共通の−側電極となる電極パッド221が配置され、電極配置面14の外縁部寄りに各磁性ワイヤ21の+側電極となる電極パッド222が配置され、磁性ワイヤ21を挟んで電極パッド222が配置された電極配置面14と向かい合う位置の電極配置面14に、磁性ワイヤ21沿いにGSR素子2の検出コイルの+側と−側の2つの電極223が並べて設置される。また、図8で示すように、電極22に接合用のはんだパッドを設置することで、外部の電子回路である集積回路チップ5とフリップチップはんだ接合8によって連結できる。 The electrode 22 is provided with an electrode pad 221 as a negative electrode common to each of the magnetic wires 21 which are magnetic sensitive bodies of the four GSR elements 2 at the origin position of the substrate 10, and each of the electrodes 22 is located near the outer edge of the electrode arrangement surface 14. An electrode pad 222 serving as a + side electrode of the magnetic wire 21 is arranged, and a GSR element is placed along the magnetic wire 21 on the electrode arrangement surface 14 at a position facing the electrode arrangement surface 14 on which the electrode pad 222 is arranged with the magnetic wire 21 interposed therebetween. Two electrodes 223 on the + side and the-side of the detection coil 2 are installed side by side. Further, as shown in FIG. 8, by installing a solder pad for bonding on the electrode 22, it can be connected to the integrated circuit chip 5 which is an external electronic circuit by the flip chip solder bonding 8.

下部軟磁性体プレート11は、基板10に4つの開口部の大きさ260μm角、深さ20μmの広く浅い穴を掘り込んでくぼみとし、その底全体に、メッキ法で厚さ10μmにて45at%Ni−Fe組成の4つのパーマロイ合金のプレートを形成し、さらに原点位置に深さ10μm、大きさ80μm角の穴を掘り込んでくぼみとし、4つに分かれているプレートを原点位置のくぼみを介して接合するように45at%Ni−Fe組成のパーマロイ合金の厚さ5μmの磁性膜をメッキ法で形成することで、1つの下部軟磁性体プレート11となるものである。 The lower soft magnetic plate 11 is formed by digging a wide shallow hole having a size of 260 μm square and a depth of 20 μm in the substrate 10 to form a dent, and the entire bottom thereof is plated to have a thickness of 45 at% at 10 μm. Four permalloy alloy plates with a Ni-Fe composition are formed, and a hole with a depth of 10 μm and a size of 80 μm is dug into a recess at the origin position, and the plate divided into four is made through the recess at the origin position. By forming a magnetic film having a thickness of 5 μm of a permalloy alloy having a 45 at% Ni—Fe composition so as to be joined by a plating method, one lower soft magnetic material plate 11 is formed.

下部軟磁性体プレート11と磁性ワイヤ21を接続する軟磁性体(下部軟磁性体)31は、原点位置のくぼみの底から、磁性ワイヤ21と接触するようにメッキ法で大きさ20μm角、高さ10μmで形成される45atNi−Fe組成のパーマロイ合金である。
上部軟磁性体プレート13と磁性ワイヤ21を接続する軟磁性体(上部軟磁性体)32は、磁性ワイヤ21の基板10の外縁側の端部に、磁性ワイヤ21からメッキ法で大きさ20μm角、高さ10μmで形成される45at%Ni−Fe組成のパーマロイ合金である。
The soft magnetic material (lower soft magnetic material) 31 that connects the lower soft magnetic material plate 11 and the magnetic wire 21 is 20 μm square and high in size by a plating method so as to come into contact with the magnetic wire 21 from the bottom of the recess at the origin position. It is a permalloy alloy having a 45atNi—Fe composition formed at a size of 10 μm.
The soft magnetic material (upper soft magnetic material) 32 that connects the upper soft magnetic material plate 13 and the magnetic wire 21 is 20 μm square in size from the magnetic wire 21 on the outer edge side of the substrate 10 of the magnetic wire 21 by a plating method. , A permalloy alloy having a 45 at% Ni—Fe composition formed at a height of 10 μm.

上部軟磁性体プレート13は、軟磁性体(上部軟磁性体)32の上面と接触するように、メッキ法で厚さ5μm、基板10の外縁沿いの長さである横幅が100μm、磁性ワイヤ21沿いの長さである縦幅が175μmの45at%Ni−Fe組成のパーマロイ合金のプレートを形成するものである。 The upper soft magnetic plate 13 has a thickness of 5 μm by a plating method, a width of 100 μm which is the length along the outer edge of the substrate 10, and a magnetic wire 21 so as to be in contact with the upper surface of the soft magnetic material (upper soft magnetic material) 32. It forms a plate of a permalloy alloy having a 45 at% Ni—Fe composition having a vertical width of 175 μm, which is the length along the line.

下部軟磁性体プレート11、上部軟磁性体プレート13、軟磁性体3は、純Ni、純鉄、他組成のパーマロイ合金、センダスト、パーメンジュール等の公知軟磁性材料を使用することができる。 For the lower soft magnetic material plate 11, the upper soft magnetic material plate 13, and the soft magnetic material 3, known soft magnetic materials such as pure Ni, pure iron, permalloy alloys having other compositions, sendust, and permendur can be used.

GSR素子2の構造について、図3を用いて説明する。
4つのGSR素子は同じ構造を有しており、その構造は直径10μm、長さ300μmの上記磁性ワイヤ21であるアモルファスワイヤを中心部に配置し、その周りを内径16μm、コイルピッチ5μm、巻数30回の検出コイル23を配置し、さらに磁性ワイヤ21と検出コイル23の両端にはそれぞれ電極端子であるワイヤ接続用端子24と検出コイル接続用端子25が取り付けられている。ワイヤ用接続端子24は電極221および222に接続され、検出コイル用端子25は電極223に接続されている。GSR素子2は4つの電極22をそれぞれ使って、外部の電子回路(図示せず)に対応している。各GSR素子2の上記各端子と外部電子回路の各端子とは、電極パッドで電気的に接合される。
The structure of the GSR element 2 will be described with reference to FIG.
The four GSR elements have the same structure, and the structure is such that the amorphous wire, which is the magnetic wire 21 having a diameter of 10 μm and a length of 300 μm, is arranged in the center, and the inner diameter is 16 μm, the coil pitch is 5 μm, and the number of turns is 30. The detection coil 23 is arranged, and the wire connection terminal 24 and the detection coil connection terminal 25, which are electrode terminals, are attached to both ends of the magnetic wire 21 and the detection coil 23, respectively. The wire connection terminal 24 is connected to the electrodes 221 and 222, and the detection coil terminal 25 is connected to the electrode 223. The GSR element 2 uses four electrodes 22 respectively to correspond to an external electronic circuit (not shown). The terminals of each GSR element 2 and the terminals of the external electronic circuit are electrically joined by an electrode pad.

本実施例1の基板上に配置されたGSR素子2X1、2X2、2Y1、2Y2の4つの素子と原点位置で接続される下部軟磁性体プレート11と各素子の外縁側の端部で接続される4つの上部軟磁性体プレート13によって磁気回路を形成して、Z軸方向の磁界の強さを効果的に検出することを可能にする。 The lower soft magnetic plate 11 connected to the four elements of the GSR elements 2X1, 2X2, 2Y1 and 2Y2 arranged on the substrate of the first embodiment at the origin position is connected to the outer edge side of each element. A magnetic circuit is formed by the four upper soft magnetic plate 13s, which makes it possible to effectively detect the strength of the magnetic field in the Z-axis direction.

この磁気回路のZ軸方向の磁界に対する機能について図4を使って説明する。
Z軸方向の磁界Hzは軟磁性体3、軟磁性体プレート11および13を磁化する。各軟磁性体および軟磁性体プレートの下面がS極となるとすると、下部軟磁性体プレート11の下面が集磁面となって集めた磁束は、プレート面に垂直な方向に対する強い反磁界と、プレート11の中心部に接続されて磁束を吸い寄せる軟磁性体31のS極によって、プレート11の面に対して平行にプレート11の中心部に向かう方向に変向され、軟磁性体31を通して磁界検出素子配置面12へと上がり、軟磁性体31のN極で接続されているX軸およびY軸方向の磁性ワイヤ21に向けて流れ込み、磁性ワイヤ21の他方の端部で上部軟磁性体プレート13と接続する軟磁性体32のS極へと流れ込み、軟磁性体32のN極から上部軟磁性体プレート13へ流れ込んで、上部軟磁性体プレート13から放磁される。
The function of this magnetic circuit with respect to the magnetic field in the Z-axis direction will be described with reference to FIG.
The magnetic field Hz in the Z-axis direction magnetizes the soft magnetic material 3, the soft magnetic material plates 11 and 13. Assuming that the lower surface of each soft magnetic material and the soft magnetic material plate is the S pole, the magnetic flux collected by the lower surface of the lower soft magnetic material plate 11 as the magnetic collecting surface is a strong countermagnetic field in the direction perpendicular to the plate surface. The S pole of the soft magnetic material 31 connected to the central part of the plate 11 and attracting magnetic flux is converted in the direction toward the central part of the plate 11 parallel to the surface of the plate 11, and the magnetic field passes through the soft magnetic material 31. It rises to the detection element arrangement surface 12 and flows toward the magnetic wire 21 in the X-axis and Y-axis directions connected by the N pole of the soft magnetic body 31, and the upper soft magnetic material plate is formed at the other end of the magnetic wire 21. It flows into the S pole of the soft magnetic material 32 connected to 13, flows from the N pole of the soft magnetic material 32 into the upper soft magnetic material plate 13, and is demagnetized from the upper soft magnetic material plate 13.

この時、GSR素子の磁性ワイヤ21には、Z軸方向磁界に比例した強い磁界が流れることになり、この磁気回路形成によって効果的に大きなZ軸方向の磁気感度を得ることができる。下部軟磁性体プレート11の下面から上部軟磁性体プレート13の上面までの高さは、磁界検出素子配置面12から掘り込んだ20μm、磁性ワイヤ21が磁界検出素子配置面12から飛び出す高さ5μm、軟磁性体32、上部軟磁性体プレート13の厚さ5μmを合わせて40μmとなり、下部軟磁性体プレート11は基板10を掘り込んで配置されるため、3次元磁界検出素子1の実質の高さは磁界検出素子配置面12から上部軟磁性体プレート13の上面までの高さ20μmであり、基板10の厚さ0.1mmも合わせて、3次元磁界検出素子1全体の高さを0.12mmとすることができた。 At this time, a strong magnetic field proportional to the magnetic field in the Z-axis direction flows through the magnetic wire 21 of the GSR element, and a large magnetic sensitivity in the Z-axis direction can be effectively obtained by forming this magnetic circuit. The height from the lower surface of the lower soft magnetic plate 11 to the upper surface of the upper soft magnetic plate 13 is 20 μm dug from the magnetic field detection element arrangement surface 12, and the height at which the magnetic wire 21 protrudes from the magnetic field detection element arrangement surface 12 is 5 μm. The total thickness of the soft magnetic material 32 and the upper soft magnetic material plate 13 is 40 μm, and the lower soft magnetic material plate 11 is arranged by digging the substrate 10, so that the actual height of the three-dimensional magnetic field detection element 1 is high. The height from the magnetic field detection element arrangement surface 12 to the upper surface of the upper soft magnetic plate 13 is 20 μm, and the height of the entire three-dimensional magnetic field detection element 1 is set to 0, including the thickness of the substrate 10 of 0.1 mm. It could be 12 mm.

この磁気回路のX軸方向およびY軸方向の磁界に対する機能について、図5を使って説明する。
X軸方向の磁界Hxは軟磁性体3、軟磁性体プレート11および13、X1素子とX2素子の磁性ワイヤ21を磁化する。各磁性体の図5中の左側をS極とすると、まずS極側の上部軟磁性体プレート13が集磁した磁束の一部が軟磁性体(上部軟磁性体)32を通って磁性ワイヤ21に流れ込み、集磁側の磁性ワイヤ21を通った磁束は原点位置で軟磁性体31および下部軟磁性体プレート11の中心部を介して放磁側の磁性ワイヤ21に流れ込み、N極となる右側端部で軟磁性体(上部軟磁性体)32および上部軟磁性体プレート13から放磁される。上部軟磁性体プレート13と磁性ワイヤ21は磁気回路を形成し、磁性ワイヤ21に流れる磁束を増加させてX軸方向の磁気感度に対する増幅器として働き、この効果の大きさは上部軟磁性体プレート13の形状によって決まる。
The function of this magnetic circuit with respect to magnetic fields in the X-axis direction and the Y-axis direction will be described with reference to FIG.
The magnetic field Hx in the X-axis direction magnetizes the soft magnetic material 3, the soft magnetic material plates 11 and 13, and the magnetic wires 21 of the X1 element and the X2 element. Assuming that the left side in FIG. 5 of each magnetic material is the S pole, first, a part of the magnetic flux collected by the upper soft magnetic material plate 13 on the S pole side passes through the soft magnetic material (upper soft magnetic material) 32 and the magnetic wire. The magnetic flux that flows into 21 and passes through the magnetic wire 21 on the magnetizing side flows into the magnetic wire 21 on the magnetizing side via the central portion of the soft magnetic material 31 and the lower soft magnetic material plate 11 at the origin position and becomes an N pole. At the right end, magnetism is emitted from the soft magnetic material (upper soft magnetic material) 32 and the upper soft magnetic material plate 13. The upper soft magnetic plate 13 and the magnetic wire 21 form a magnetic circuit, increase the magnetic flux flowing through the magnetic wire 21 and act as an amplifier for the magnetic sensitivity in the X-axis direction, and the magnitude of this effect is the magnitude of this effect. It depends on the shape of.

一方、下部軟磁性体プレート11は、上記の上部軟磁性体プレート13と磁性ワイヤ21とで形成される磁気回路の主な流路である磁性ワイヤ21よりも下部にあり、かつX軸方向の磁界に対して平行な平面上に広がっているため、高さの異なる平面上にある磁性ワイヤ21よりも同一平面上のプレート11内部の方へ磁束が流れやすいため、下部軟磁性体プレート11のS極が集磁した磁束は、ほとんど磁性ワイヤ21に影響を与えずに下部軟磁性体プレート11のN極へと通過して放磁される。つまり、下部軟磁性体プレート11は磁性ワイヤ21に対する磁束の迂回路となって磁性ワイヤ21に流れる磁束を減少させるため、X軸方向の磁気感度に対する減衰器として働き、この効果の大きさは下部軟磁性体プレート11の形状によって決まる。
上記のことは、Y軸方向の磁界に対しても同じである。
On the other hand, the lower soft magnetic plate 11 is located below the magnetic wire 21, which is the main flow path of the magnetic circuit formed by the upper soft magnetic plate 13 and the magnetic wire 21, and is in the X-axis direction. Since it spreads on a plane parallel to the magnetic field, magnetic flux easily flows toward the inside of the plate 11 on the same plane as the magnetic wires 21 on the planes having different heights, so that the lower soft magnetic material plate 11 The magnetic flux collected by the S pole passes through the north pole of the lower soft magnetic plate 11 and is demagnetized with almost no effect on the magnetic wire 21. That is, the lower soft magnetic plate 11 acts as a detour for the magnetic flux with respect to the magnetic wire 21 and reduces the magnetic flux flowing through the magnetic wire 21, so that it acts as an attenuator for the magnetic sensitivity in the X-axis direction, and the magnitude of this effect is lower. It depends on the shape of the soft magnetic plate 11.
The above is the same for the magnetic field in the Y-axis direction.

上部軟磁性体プレート13と下部軟磁性体プレート11、磁性ワイヤ21が形成する磁気回路のX軸方向およびY軸方向の磁界に対する機能は、上記の通り上部軟磁性体プレート13の形状により増幅器としての効果があり、下部軟磁性体プレート11の形状により減衰器としての効果があるので、この両者の効果を打ち消しあわせて、磁性ワイヤに影響を与えないようにすることである。つまりX軸方向およびY軸方向の磁気感度に影響を与えないことである。 The function of the magnetic circuit formed by the upper soft magnetic plate 13, the lower soft magnetic plate 11, and the magnetic wire 21 against magnetic fields in the X-axis direction and the Y-axis direction is as an amplifier due to the shape of the upper soft magnetic plate 13 as described above. Since the shape of the lower soft magnetic material plate 11 has an effect as an attenuator, it is necessary to cancel both of these effects so as not to affect the magnetic wire. That is, it does not affect the magnetic sensitivity in the X-axis direction and the Y-axis direction.

4つのGSR素子2の出力は個々に測定され、X1素子2X1、X2素子2X2、Y1素子2Y1、Y2素子2Y2の各素子の測定値をHx1、Hx2、Hy1、Hy2とすると計算処理によって、X軸方向、Y軸方向およびZ軸方向の磁界の強さHx、Hy、Hzが算出される。 The outputs of the four GSR elements 2 are individually measured, and assuming that the measured values of the X1 element 2X1, the X2 element 2X2, the Y1 element 2Y1, and the Y2 element 2Y2 are Hx1, Hx2, Hy1, and Hy2, the X axis is calculated. The magnetic field strengths Hx, Hy, and Hz in the direction, Y-axis direction, and Z-axis direction are calculated.

上述のように、X1素子2X1、X2素子2X2、Y1素子2Y1、Y2素子2Y2は原点を中心とした点対称に配置され、下部軟磁性体プレート11が集磁した磁束は原点から各磁界検出素子の磁性ワイヤに点対称で流れ込むと言う磁気回路が形成されているので、Z軸方向の磁界は、X1素子2X1とX2素子2X2およびY1素子2Y1とY2素子2Y2に、それぞれ対向する向きで影響する。つまり、X1素子2X1とX2素子2X2およびY1素子2Y1とY2素子2Y2のZ軸方向の磁界成分に対応した出力は、Z軸方向の磁界の強さに比例し、その符号は反対である。 As described above, the X1 element 2X1, the X2 element 2X2, the Y1 element 2Y1, and the Y2 element 2Y2 are arranged point-symmetrically with respect to the origin, and the magnetic flux collected by the lower soft magnetic plate 11 is the magnetic field detection element from the origin. Since a magnetic circuit is formed that flows into the magnetic wire in a point-symmetric manner, the magnetic field in the Z-axis direction affects the X1 element 2X1 and the X2 element 2X2 and the Y1 element 2Y1 and the Y2 element 2Y2 in opposite directions, respectively. .. That is, the outputs corresponding to the magnetic field components in the Z-axis direction of the X1 element 2X1 and the X2 element 2X2 and the Y1 element 2Y1 and the Y2 element 2Y2 are proportional to the strength of the magnetic field in the Z-axis direction, and their signs are opposite.

よって、Z軸方向の磁界により各素子の出力が変化した分をΔZとし、本来の出力をHx’、Hy’とすると、以下の通りである。
Hx1=Hx’+ΔZ
Hx2=Hx’−ΔZ
Hy1=Hy’+ΔZ
Hy2=Hy’−ΔZ
これらの値の内、X軸方向の磁界の強さに比例した値がHx’、Y軸方向の磁界の強さに比例する値がHy’、Z軸方向の磁界の強さに比例する値がΔZである。一つの方向の磁界成分だけに比例する出力を得るように計算処理をすれば、X軸方向、Y軸方向、およびZ軸方向の磁界の強さHx、Hy、Hzを算出できる。
Therefore, assuming that the amount of change in the output of each element due to the magnetic field in the Z-axis direction is ΔZ and the original outputs are Hx'and Hy', it is as follows.
Hx1 = Hx'+ ΔZ
Hx2 = Hx'-ΔZ
Hy1 = Hy'+ ΔZ
Hy2 = Hy'-ΔZ
Of these values, the value proportional to the strength of the magnetic field in the X-axis direction is Hx', the value proportional to the strength of the magnetic field in the Y-axis direction is Hy', and the value proportional to the strength of the magnetic field in the Z-axis direction. Is ΔZ. If the calculation process is performed so as to obtain an output proportional to the magnetic field component in only one direction, the magnetic field strengths Hx, Hy, and Hz in the X-axis direction, the Y-axis direction, and the Z-axis direction can be calculated.

Z軸方向の磁界成分の影響を取り除いてX軸方向およびY軸方向の磁界の強さHxおよびHyを得るには、まずX1素子2X1とX2素子2X2およびY1素子2Y1とY2素子2Y2の出力をそれぞれ加算してΔZを消去すればよい。
Hx=Hx1+Hx2=2Hx’
Hy=Hy1+Hy2=2Hy’
また、Z軸方向の磁界の強さHzを得るには、X軸方向およびY軸方向の磁界の強さに比例する成分を取り除けばよいので、X1素子2X1とX2素子2X2の出力の差分とY1素子2Y1とY2素子2Y2の出力の差分を加算すればよい。
Hz=(Hx1−Hx2)+(Hy1−Hy2)=4ΔZ
以上により、各軸方向の磁界成分の強さHx,Hy,Hzが算出できる。この時、Hx=Hy=Hz=2とすると、Hx’=Hy’=1、ΔZ=0.5である。各軸方向の磁気感度をそろえるためには、各X素子と各Y素子の感度比率がHx’:Hy’:ΔZ=1:1:0.5であればよく、この3次元磁界検出素子は磁気回路の機能によって、この感度比率を実現することができる。
In order to remove the influence of the magnetic field component in the Z-axis direction and obtain the magnetic field strengths Hx and Hy in the X-axis direction and the Y-axis direction, first, the outputs of the X1 element 2X1 and the X2 element 2X2 and the Y1 element 2Y1 and the Y2 element 2Y2 are output. Each of them may be added to eliminate ΔZ.
Hx = Hx1 + Hx2 = 2Hx'
Hy = Hy1 + Hy2 = 2Hy'
Further, in order to obtain the magnetic field strength Hz in the Z-axis direction, a component proportional to the magnetic field strength in the X-axis direction and the Y-axis direction may be removed, so that the difference between the outputs of the X1 element 2X1 and the X2 element 2X2 The difference between the outputs of the Y1 element 2Y1 and the Y2 element 2Y2 may be added.
Hz = (Hx1-Hx2) + (Hy1-Hy2) = 4ΔZ
From the above, the strengths Hx, Hy, and Hz of the magnetic field components in each axial direction can be calculated. At this time, if Hx = Hy = Hz = 2, then Hx'= Hy'= 1 and ΔZ = 0.5. In order to make the magnetic sensitivities in each axial direction uniform, the sensitivity ratio of each X element and each Y element may be Hx': Hy': ΔZ = 1: 1: 0.5, and this three-dimensional magnetic field detection element This sensitivity ratio can be achieved by the function of the magnetic circuit.

本実施例で使用した3次元磁界検出素子1の駆動用の電子回路4について、図6と図7を使って説明する。
まずGSRセンサの電子回路4の基本動作を、図6を使って説明する。電子回路4は、パルス発信器41および信号処理回路42を有する。信号処理回路42は、サンプルタイミング調整回路421と、電子スイッチ422と、サンプルホールド回路423および増幅器424からなる。パルス発信器41により発生した1.3GHz相当の高周波パルス電流をGSR素子2のアモルファスワイヤ21へ供給する。そうすると、パルス電流によりアモルファスワイヤ21のワイヤ円周方向に生じた磁場と外部磁場とが作用して、その外部磁場に対応した電圧が検出コイル23に発生する。
なお、ここでいるパルス周波数は、パルス電流の「立ち下がり」時間Δtの2倍をその周期としてその逆数をパルス周波数として便宜上定義した。
The electronic circuit 4 for driving the three-dimensional magnetic field detection element 1 used in this embodiment will be described with reference to FIGS. 6 and 7.
First, the basic operation of the electronic circuit 4 of the GSR sensor will be described with reference to FIG. The electronic circuit 4 includes a pulse transmitter 41 and a signal processing circuit 42. The signal processing circuit 42 includes a sample timing adjustment circuit 421, an electronic switch 422, a sample hold circuit 423, and an amplifier 424. A high-frequency pulse current equivalent to 1.3 GHz generated by the pulse transmitter 41 is supplied to the amorphous wire 21 of the GSR element 2. Then, the magnetic field generated in the wire circumferential direction of the amorphous wire 21 and the external magnetic field act due to the pulse current, and a voltage corresponding to the external magnetic field is generated in the detection coil 23.
The pulse frequency here is conveniently defined with twice the "falling down" time Δt of the pulse current as its period and its reciprocal as the pulse frequency.

検出コイル23の出力電圧は、サンプルタイミング調整回路421により、パルス電流の立ち下がりから所定のタイミングで、電子スイッチ422を0.1n秒の短時間スイッチング(オン−オフ)することでサンプルホールド回路423へ供給される。この時、検出コイル23に発生した電圧はサンプルホールド回路423のコンデンサ電圧としてホールドされ、このサンプリング電圧は、増幅器424により増幅されて出力される。 The output voltage of the detection coil 23 is measured by the sample timing adjustment circuit 421 by switching the electronic switch 422 for a short time (on-off) of 0.1 nsec at a predetermined timing from the fall of the pulse current to the sample hold circuit 423. Is supplied to. At this time, the voltage generated in the detection coil 23 is held as the capacitor voltage of the sample hold circuit 423, and this sampling voltage is amplified by the amplifier 424 and output.

次に、4つのGSR素子を有する本実施例の電子回路4の機能を、図7を使って説明する。本回路は、パルス発信器41は一つで、信号処理回路42は各素子出力を同時に測定するために4つを備えている。4つのGSR素子からの出力は、切替スイッチ43を使って順番にADコンバータ44でデジタル信号に変換された後、演算回路45に転送され、適当に演算処理され、3次元の磁界ベクトルの強さに換算される。その後、スマートフォンなどのシステムを制御している中央演算処理装置にデータ通信回路46を介して転送される。 Next, the function of the electronic circuit 4 of this embodiment having four GSR elements will be described with reference to FIG. 7. In this circuit, the pulse transmitter 41 is one, and the signal processing circuit 42 is provided with four for simultaneously measuring the output of each element. The outputs from the four GSR elements are sequentially converted into digital signals by the AD converter 44 using the changeover switch 43, then transferred to the arithmetic circuit 45, appropriately subjected to arithmetic processing, and the strength of the three-dimensional magnetic field vector. Is converted to. After that, it is transferred to a central processing unit that controls a system such as a smartphone via a data communication circuit 46.

図8を使って、本実施例の3次元磁界検出素子1と外部の電子回路4である集積回路チップ5との接合を説明する。
本発明の3次元磁界検出素子1は各GSR素子2の電極22が配置される電極配置面14から上部軟磁性体プレートの上面までの高さが20μmと低く抑えられているため、電極22と集積回路チップ上の電極とは、集積回路チップ5に3次元磁界検出素子1を積層して高さ20μmのフリップチップはんだ接合8をすることによって容易に接続できる。これによって3次元磁界検出装置全体の厚さを、ASIC基板0.15mm、素子基板0.10mm、接合部0.02mm、全体で0.27mmと薄型化をすることができる。
The joining of the three-dimensional magnetic field detection element 1 of this embodiment and the integrated circuit chip 5 which is an external electronic circuit 4 will be described with reference to FIG.
In the three-dimensional magnetic field detection element 1 of the present invention, the height from the electrode arrangement surface 14 on which the electrodes 22 of each GSR element 2 are arranged to the upper surface of the upper soft magnetic material plate is suppressed to a low value of 20 μm. The electrodes on the integrated circuit chip can be easily connected by laminating the three-dimensional magnetic field detection element 1 on the integrated circuit chip 5 and forming a flip chip solder joint 8 having a height of 20 μm. As a result, the thickness of the entire three-dimensional magnetic field detection device can be reduced to 0.15 mm for the ASIC substrate, 0.10 mm for the element substrate, 0.02 mm for the joint portion, and 0.27 mm as a whole.

[実施例2]
実施例2に係る3次元磁界検出素子6を図9に示す。図9(a)はこの3次元磁界検出素子6のXY平面図であり、図9(b)は図9(a)から下部軟磁性体プレートを抜き出した図である。
実施例2は、基板60に穴を掘らずに、まず基板60全面を使って下部軟磁性体プレート61をメッキ法で形成し、その後樹脂等の絶縁材料で下部軟磁性体プレート61を覆って、この絶縁材料層の上面を磁界検出素子配置面62および電極配置面64として、実施例1と同様にGSR素子2、上部軟磁性体プレート63、原点位置で下部軟磁性体プレート61と磁性ワイヤ21を接続する軟磁性体(下部軟磁性体)33、磁性ワイヤ21と上部軟磁性体プレート63を接続する軟磁性体(上部軟磁性体)34を形成するものである。
[Example 2]
The three-dimensional magnetic field detection element 6 according to the second embodiment is shown in FIG. 9 (a) is an XY plan view of the three-dimensional magnetic field detection element 6, and FIG. 9 (b) is a view of the lower soft magnetic material plate extracted from FIG. 9 (a).
In the second embodiment, the lower soft magnetic plate 61 is first formed by a plating method using the entire surface of the substrate 60 without digging a hole in the substrate 60, and then the lower soft magnetic plate 61 is covered with an insulating material such as resin. The upper surface of this insulating material layer is used as the magnetic field detection element arranging surface 62 and the electrode arranging surface 64, and the GSR element 2, the upper soft magnetic material plate 63, the lower soft magnetic material plate 61 and the magnetic wire at the origin position are the same as in the first embodiment. It forms a soft magnetic material (lower soft magnetic material) 33 that connects 21 and a soft magnetic material (upper soft magnetic material) 34 that connects the magnetic wire 21 and the upper soft magnetic material plate 63.

下部軟磁性体プレート61は、基板10に穴を掘って配置された下部軟磁性体プレート11よりも広い面積を有することができ、Z軸方向磁界に対する磁気感度を高めやすい。ただし、磁性ワイヤ21の基板60の外縁側の端部と下部軟磁性体プレート61との距離が近すぎるとX軸方向およびY軸方向の磁気感度に対する減衰効果が大きくなるため、磁性ワイヤ21の下部では下部軟磁性体プレート61に切れ込みを入れて距離を調整している。 The lower soft magnetic plate 61 can have a larger area than the lower soft magnetic plate 11 arranged by digging a hole in the substrate 10, and it is easy to increase the magnetic sensitivity to the magnetic field in the Z-axis direction. However, if the distance between the outer edge side end of the substrate 60 of the magnetic wire 21 and the lower soft magnetic plate 61 is too close, the damping effect on the magnetic sensitivity in the X-axis direction and the Y-axis direction becomes large, so that the magnetic wire 21 At the lower part, a notch is made in the lower soft magnetic material plate 61 to adjust the distance.

下部軟磁性体プレート61の大きさは560μm角で厚さは5μmであり、4本の磁性ワイヤ21の基板60の外縁側の端部の下側では、下部軟磁性体プレート61に切れ込みが入っており、切れ込みの形は磁性ワイヤ21を中心とした線対称で、切れ込みの大きさは基板60の外縁沿いの幅が100μm、磁性ワイヤ21沿いの長さが50μmである。 The size of the lower soft magnetic plate 61 is 560 μm square and the thickness is 5 μm, and the lower soft magnetic plate 61 is notched below the outer edge side end of the substrate 60 of the four magnetic wires 21. The shape of the notch is line-symmetrical around the magnetic wire 21, and the size of the notch is 100 μm along the outer edge of the substrate 60 and 50 μm along the magnetic wire 21.

上部軟磁性体プレート63の大きさは、基板60外縁沿いの幅が140μm、磁性ワイヤ21沿いの長さが225μmで、厚さは5μmである。 The size of the upper soft magnetic plate 63 is 140 μm in width along the outer edge of the substrate 60, 225 μm in length along the magnetic wire 21, and 5 μm in thickness.

下部軟磁性体プレート61と磁性ワイヤ21をつなぐ軟磁性体33および上部軟磁性体プレート63と磁性ワイヤ21をつなぐ軟磁性体34は、いずれも大きさ20μm角、高さは5μmである。 The soft magnetic material 33 that connects the lower soft magnetic material plate 61 and the magnetic wire 21 and the soft magnetic material 34 that connects the upper soft magnetic material plate 63 and the magnetic wire 21 are both 20 μm square in size and 5 μm in height.

この3次元磁界検出素子6は、基板60の全面を使って下部軟磁性体プレート61の面積を広げてZ軸方向の磁界に対する磁気感度を高めているため、下部軟磁性体プレート61の下面と上部軟磁性体プレート63の上面の間の距離を小さくすることができ、その間の距離は、磁性ワイヤの直径10μmも合わせて、30μmであり、実施例1よりも小さい。基板の厚さ0.1mmも合わせて、3次元磁界検出素子6全体の厚さを、0.13mmとすることができた。磁界検出素子配置面62および電極配置面64は磁性ワイヤ21が半分埋まる高さにあるので、電極配置面64から上部軟磁性体プレート63の上面までの高さは15μmとなり、高さ15μmのフリップチップはんだ接合することによって容易に外部の電子回路4である集積回路チップ5と接続できる。3次元磁界検出装置全体の厚さは、ASIC基板0.150mm、素子基板0.100mm、電極配置面までの高さ0.015mm、接合部0.015mmとすると、0.28mmとなる。 Since the three-dimensional magnetic field detection element 6 uses the entire surface of the substrate 60 to expand the area of the lower soft magnetic material plate 61 to increase the magnetic sensitivity to the magnetic field in the Z-axis direction, the three-dimensional magnetic field detection element 6 and the lower surface of the lower soft magnetic material plate 61 The distance between the upper surfaces of the upper soft magnetic plate 63 can be reduced, and the distance between them is 30 μm including the diameter of the magnetic wire of 10 μm, which is smaller than that of the first embodiment. Together with the substrate thickness of 0.1 mm, the overall thickness of the three-dimensional magnetic field detection element 6 could be 0.13 mm. Since the magnetic field detection element arrangement surface 62 and the electrode arrangement surface 64 are at a height at which the magnetic wire 21 is half filled, the height from the electrode arrangement surface 64 to the upper surface of the upper soft magnetic plate 63 is 15 μm, and the flip height is 15 μm. By soldering the chips, it can be easily connected to the integrated circuit chip 5 which is an external electronic circuit 4. The thickness of the entire three-dimensional magnetic field detection device is 0.28 mm when the ASIC substrate is 0.150 mm, the element substrate is 0.100 mm, the height to the electrode arrangement surface is 0.015 mm, and the joint portion is 0.015 mm.

[実施例3]
実施例3は、3次元磁界検出素子の外部の電子回路4となる集積回路チップ5上に直接3次元磁界検出素子7を形成することで、実施例1および実施例2における3次元磁界検出素子の基板を無くし、さらなる薄型化をすることができる。
図10は、この実施例3における3次元磁界検出素子7と集積回路チップ5との直接配線メッキ接合9を示している。
[Example 3]
In the third embodiment, the three-dimensional magnetic field detection element 7 in the first and second embodiments is formed directly on the integrated circuit chip 5 which is the electronic circuit 4 outside the three-dimensional magnetic field detection element. It is possible to eliminate the substrate and further reduce the thickness.
FIG. 10 shows the direct wiring plating joint 9 between the three-dimensional magnetic field detection element 7 and the integrated circuit chip 5 in the third embodiment.

実施例3においては、集積回路チップ5の電極が配置される上面を底面として、層を積み上げるように3次元磁界検出素子7を形成する。この際3次元磁界検出素子は外部の電子回路との接続側が基板面の上面と定義されるので、3次元磁界検出素子7としては上下をひっくり返した形として下から形成していく。つまり、上部軟磁性体プレートが最も下側であり、下部軟磁性体プレートが最も上側となるように下から形成していくが、集積回路チップと3次元磁界検出素子を接合した3次元磁界検出装置としての各部の形状および位置関係は、実施例2における基板60が無くなること以外は実施例2と同じである。また、この際集積回路チップ5との電極22の接合は、素子形成と同時に直接配線メッキ接合9で行われる。 In the third embodiment, the three-dimensional magnetic field detection element 7 is formed so as to stack layers with the upper surface on which the electrodes of the integrated circuit chip 5 are arranged as the bottom surface. At this time, since the connection side of the three-dimensional magnetic field detection element with the external electronic circuit is defined as the upper surface of the substrate surface, the three-dimensional magnetic field detection element 7 is formed from below as an inverted shape. That is, the upper soft magnetic plate is formed from the bottom so that the lower soft magnetic plate is on the uppermost side, and the lower soft magnetic plate is formed from the bottom so that the integrated circuit chip and the three-dimensional magnetic field detection element are joined to detect the three-dimensional magnetic field. The shape and positional relationship of each part as an apparatus are the same as those in the second embodiment except that the substrate 60 in the second embodiment is eliminated. At this time, the electrode 22 is joined to the integrated circuit chip 5 by the direct wiring plating joint 9 at the same time as the element formation.

3次元磁界検出素子7の大きさ、高さは基板60を除いて実施例2の3次元磁界検出素子6と同じである。つまり、3次元磁界検出素子7の高さは、下部軟磁性体プレートの下面から上部軟磁性体プレートの上面までの高さとしても、3次元磁界検出素子全体の高さとしても、30μmである。このため、3次元磁界検出装置の厚さとしては、実施例2から基板の厚さ0.1mmを減じたものとなり、0.18mmと非常に薄型化ができる。 The size and height of the three-dimensional magnetic field detection element 7 are the same as those of the three-dimensional magnetic field detection element 6 of the second embodiment except for the substrate 60. That is, the height of the three-dimensional magnetic field detection element 7 is 30 μm regardless of whether it is the height from the lower surface of the lower soft magnetic material plate to the upper surface of the upper soft magnetic material plate or the height of the entire three-dimensional magnetic field detection element. .. Therefore, the thickness of the three-dimensional magnetic field detection device is 0.1 mm less than that of the second embodiment, and can be made very thin to 0.18 mm.

本発明の3次元磁界検出素子は、電子コンパス、磁気ジャイロ等の3次元の地磁気測定を必要とする3次元方位計に必要なもので、特に本発明の3次元磁界検出装置は、スマートフォンをはじめとする携帯端末等のように、載置する基板に垂直な方向(いわゆるZ軸方向)に小型化、薄型化が必要なものに好適である。 The three-dimensional magnetic field detection element of the present invention is necessary for a three-dimensional azimuth meter that requires three-dimensional geomagnetic measurement such as an electronic compass and a magnetic gyro. In particular, the three-dimensional magnetic field detection device of the present invention includes a smartphone. It is suitable for those that need to be miniaturized and thinned in the direction perpendicular to the substrate to be mounted (so-called Z-axis direction), such as a portable terminal.

1:実施例1の3次元磁界検出素子
10:実施例1の3次元磁界検出素子の基板
11:実施例1の3次元磁界検出素子の下部軟磁性体プレート
12:実施例1の3次元磁界検出素子配置面
13:実施例1の3次元磁界検出素子の上部軟磁性体プレート
14:実施例1の3次元磁界検出素子の電極配置面
2:GSR素子(2X1、2X2、2Y1、2Y2の4つの素子)
21:GSR素子の感磁体である磁性ワイヤ(アモルファスワイヤ)
22:GSR素子の電極
221:GSR素子の磁性ワイヤ通電用の−側電極
222:GSR素子の磁性ワイヤ通電用の+側電極
223:GSR素子の検出コイル用電極
23:GSR素子の検出コイル
24:GSR素子の磁性ワイヤの接続用端子
25:GSR素子の検出コイルの接続用端子
3:軟磁性体
31:実施例1の磁性ワイヤと下部軟磁性体プレートを接続する軟磁性体(下部軟磁性体)
32:実施例1の磁性ワイヤと上部軟磁性体プレートを接続する軟磁性体(上部軟磁性体)
33:実施例2の磁性ワイヤと下部軟磁性体プレートを接続する軟磁性体(下部軟磁性体)
34:実施例2の磁性ワイヤと上部軟磁性体プレートを接続する軟磁性体(上部軟磁性体)
4:電子回路
41:パルス発信器
42:信号処理回路
421:サンプルタイミング調整回路
422:電子スイッチ
423:サンプルホールド回路
424:増幅器
43:切替スイッチ
44:ADコンバータ
45:演算回路
46:データ通信回路
5:集積回路チップ
6:実施例2の3次元磁界検出
60:実施例2の基板
61:実施例2の下部軟磁性体プレート
62:実施例2の磁界検出素子配置面
63:実施例2の上部軟磁性体プレート
64:実施例2の電極配置面
7:実施例3の3次元磁界検出素子
8:フリップチップはんだ接合
9:直接配線メッキ接合

1: 3D magnetic field detection element of Example 1 10: Substrate of 3D magnetic field detection element of Example 1: Lower soft magnetic material plate of 3D magnetic field detection element of Example 1 12: 3D magnetic field of Example 1 Detection element arrangement surface 13: Upper soft magnetic material plate of the three-dimensional magnetic field detection element of Example 1: Electrode arrangement surface of the three-dimensional magnetic field detection element of Example 1: GSR element (2X1, 2X2, 2Y1, 2Y2 4) One element)
21: Magnetic wire (amorphous wire) that is a magnetic sensor of the GSR element
22: GSR element electrode 221: GSR element magnetic wire energization-side electrode 222: GSR element magnetic wire energization + side electrode 223: GSR element detection coil electrode 23: GSR element detection coil 24: Terminal for connecting the magnetic wire of the GSR element 25: Terminal for connecting the detection coil of the GSR element 3: Soft magnetic material 31: Soft magnetic material for connecting the magnetic wire of Example 1 and the lower soft magnetic material plate (lower soft magnetic material) )
32: A soft magnetic material (upper soft magnetic material) that connects the magnetic wire of Example 1 and the upper soft magnetic material plate.
33: A soft magnetic material (lower soft magnetic material) that connects the magnetic wire of Example 2 and the lower soft magnetic material plate.
34: A soft magnetic material (upper soft magnetic material) that connects the magnetic wire of Example 2 and the upper soft magnetic material plate.
4: Electronic circuit 41: Pulse transmitter 42: Signal processing circuit 421: Sample timing adjustment circuit 422: Electronic switch 423: Sample hold circuit 424: Amplifier 43: Changeover switch 44: AD converter 45: Arithmetic circuit 46: Data communication circuit 5 : Integrated circuit chip 6: Three-dimensional magnetic field detection of Example 2 60: Substrate of Example 2 61: Lower soft magnetic material plate of Example 2: Magnetic field detection element arrangement surface of Example 2 63: Upper part of Example 2 Soft magnetic plate 64: Electrode arrangement surface of Example 2: Three-dimensional magnetic field detection element of Example 3 8: Flip chip solder joint 9: Direct wiring plating joint

Claims (1)

集積回路チップと、
前記集積回路チップの上面に絶縁材料を介して、前記集積回路チップの原点を中心とする点対称の位置に、X軸方向の磁界方向に形成された2つの上部軟磁性体プレートとY軸方向の磁界方向に形成された2つの上部軟磁性体プレートとからなる4つの上部軟磁性プレートと、
前記上部軟磁性体プレートの上部に4つの前記上部軟磁性体プレートに対応して配置された前記X軸方向の磁界を検出するための2つの磁界検出素子と前記Y軸方向の磁界を検出するための他の2つの磁界検出素子とからなる4つの磁界検出素子と、
4つの前記磁界検出素子が配置されている面(磁界検出素子配置面という。)の上部に形成された1つの下部軟磁性体プレートと、
4つの前記上部軟磁性体プレートの原点とは反対側の端部と4つの前記磁界検出素子の感磁体の端部とを磁気的に接続する上部軟磁性体と、
4つの前記磁界検出素子の4つの前記感磁体の他方の端部と前記下部軟磁性体プレートの中心部とを磁気的に接続する下部軟磁性体とを備えることにより、
前記下部軟磁性体プレートと前記下部軟磁性体と前記磁界検出素子の前記感磁体と前記上部軟磁性体と前記上部軟磁性体プレートとからなる磁気回路を形成し、
前記集積回路チップと前記磁界検出素子とを接合する配線とからなることを特徴とする3次元磁界検出装置。


With integrated circuit chips
Two upper soft magnetic plates formed in the magnetic field direction in the X-axis direction and the Y-axis direction at point-symmetrical positions centered on the origin of the integrated circuit chip via an insulating material on the upper surface of the integrated circuit chip. Four upper soft magnetic plates composed of two upper soft magnetic plates formed in the direction of the magnetic field of
Two magnetic field detection elements for detecting the magnetic field in the X-axis direction and the magnetic field in the Y-axis direction are detected, which are arranged on the upper part of the upper soft magnetic material plate corresponding to the four upper soft magnetic material plates. 4 magnetic field detection elements consisting of 2 other magnetic field detection elements for
One lower soft magnetic material plate formed on the upper part of the surface on which the four magnetic field detection elements are arranged (referred to as the magnetic field detection element arrangement surface), and
An upper soft magnetic material that magnetically connects the end portions of the four upper soft magnetic material plates opposite to the origin and the end portions of the magnetic sensitive bodies of the four magnetic field detection elements.
By providing a lower soft magnetic material that magnetically connects the other end of the four magnetic sensitive bodies of the four magnetic field detection elements and the central portion of the lower soft magnetic material plate.
A magnetic circuit including the lower soft magnetic material plate, the lower soft magnetic material, the magnetic sensitive material of the magnetic field detection element, the upper soft magnetic material, and the upper soft magnetic material plate is formed.
A three-dimensional magnetic field detection device comprising wiring for joining the integrated circuit chip and the magnetic field detection element.


JP2020106637A 2020-06-20 2020-06-20 3D magnetic field detector Active JP6800458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106637A JP6800458B2 (en) 2020-06-20 2020-06-20 3D magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106637A JP6800458B2 (en) 2020-06-20 2020-06-20 3D magnetic field detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018173168A Division JP6800456B2 (en) 2018-09-17 2018-09-17 3D magnetic field detection element and 3D magnetic field detection device

Publications (2)

Publication Number Publication Date
JP2020160081A true JP2020160081A (en) 2020-10-01
JP6800458B2 JP6800458B2 (en) 2020-12-16

Family

ID=72643049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106637A Active JP6800458B2 (en) 2020-06-20 2020-06-20 3D magnetic field detector

Country Status (1)

Country Link
JP (1) JP6800458B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046234A (en) * 2018-09-17 2020-03-26 マグネデザイン株式会社 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP7126645B1 (en) 2021-04-23 2022-08-29 マグネデザイン株式会社 Magnet position/direction detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028863A1 (en) * 2013-07-29 2015-01-29 Innovative Micro Technology Microfabricated magnetic field transducer with flux guide
JP6240994B1 (en) * 2016-12-15 2017-12-06 朝日インテック株式会社 3D magnetic field detection element and 3D magnetic field detection device
JP2018128390A (en) * 2017-02-09 2018-08-16 Tdk株式会社 Magnetic sensor and manufacturing method thereof
JP2020046234A (en) * 2018-09-17 2020-03-26 マグネデザイン株式会社 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028863A1 (en) * 2013-07-29 2015-01-29 Innovative Micro Technology Microfabricated magnetic field transducer with flux guide
JP6240994B1 (en) * 2016-12-15 2017-12-06 朝日インテック株式会社 3D magnetic field detection element and 3D magnetic field detection device
JP2018128390A (en) * 2017-02-09 2018-08-16 Tdk株式会社 Magnetic sensor and manufacturing method thereof
JP2020046234A (en) * 2018-09-17 2020-03-26 マグネデザイン株式会社 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046234A (en) * 2018-09-17 2020-03-26 マグネデザイン株式会社 Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP7126645B1 (en) 2021-04-23 2022-08-29 マグネデザイン株式会社 Magnet position/direction detector
JP2022167609A (en) * 2021-04-23 2022-11-04 マグネデザイン株式会社 Device for detecting position and orientation of magnet

Also Published As

Publication number Publication date
JP6800458B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6021239B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JP4626728B2 (en) Magnetic detector
US11009566B2 (en) Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP6222351B2 (en) Magnetic detection device and manufacturing method thereof
JP2014153309A5 (en)
JP6800458B2 (en) 3D magnetic field detector
JP6036938B1 (en) Magnetic detector
JP6800456B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JPH07270507A (en) Terrestrial magnetism azimuth sensor
JP6609947B2 (en) Magnetic detector
CN117075007A (en) Z-axis magnetic field sensor and processing and preparing method thereof
JP2016003866A (en) Gmi element for z-axis, and ultrathin three-dimensional gmi sensor
JPH07324935A (en) Terrestrial-magnetism direction sensor and its manufacture
JP2019015550A (en) Three-dimensional magnetic field detection element
CN117075008A (en) Multi-axis magnetic field sensor and multi-axis magnetic field sensor chip
JPH08233576A (en) Magnetic sensor
JPH07324934A (en) Terrestrial-magnetism direction sensor

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6800458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350