JP2020158367A - Near-infrared ray absorbing material, near-infrared ray absorbing layer and near-infrared ray absorbing member - Google Patents

Near-infrared ray absorbing material, near-infrared ray absorbing layer and near-infrared ray absorbing member Download PDF

Info

Publication number
JP2020158367A
JP2020158367A JP2019061724A JP2019061724A JP2020158367A JP 2020158367 A JP2020158367 A JP 2020158367A JP 2019061724 A JP2019061724 A JP 2019061724A JP 2019061724 A JP2019061724 A JP 2019061724A JP 2020158367 A JP2020158367 A JP 2020158367A
Authority
JP
Japan
Prior art keywords
infrared absorbing
powder
resin
present
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019061724A
Other languages
Japanese (ja)
Other versions
JP6743226B1 (en
Inventor
佳弘 米田
Yoshihiro Yoneda
佳弘 米田
高橋 進
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2019061724A priority Critical patent/JP6743226B1/en
Application granted granted Critical
Publication of JP6743226B1 publication Critical patent/JP6743226B1/en
Publication of JP2020158367A publication Critical patent/JP2020158367A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

To provide a near-infrared ray absorbing particle having reduced bluish color, to provide a powder composed of the near-infrared ray absorbing particles, to provide a dispersion liquid including the powder, to provide a resin composition including the powder, to provide a near-infrared ray absorbing layer including the powder and to provide a near-infrared ray absorbing member including the powder.SOLUTION: The near-infrared ray absorbing particle has a composition represented by formula (I) as given below: (I): CspMqW1-qOr [in the formula, M represents one kind or two or more kinds of elements selected from the group consisting of Nb, Ta, Al and Sc; p satisfies 0.01≤p<0.3; q satisfies 0.01≤q<0.5; and q and r satisfy 3<r/(1-q)].SELECTED DRAWING: None

Description

本発明は、近赤外線吸収性材料(近赤外線吸収性粒子、該近赤外線吸収性粒子で構成される粉体、該粉体を含む分散液、該粉体を含む樹脂組成物等)並びに該近赤外線吸収性材料を使用して得られた近赤外線吸収性層及び近赤外線吸収性部材に関する。 The present invention relates to near-infrared absorbing materials (near-infrared absorbing particles, powders composed of the near-infrared absorbing particles, dispersions containing the powders, resin compositions containing the powders, etc.) and the near-infrared rays. The present invention relates to a near-infrared absorbing layer and a near-infrared absorbing member obtained by using an infrared absorbing material.

近赤外線吸収性材料としてタングステン系、LaB、ATO、ITO等が一般的に知られているが、タングステン系として、次の技術が知られている。即ち、一般式:M(1−Y)[式中、Mは、H、He、アルカリ金属、アルカリ土類金属等から選択される1種類以上の元素を表し、Aは、Mo、Nb、Ta等から選択される1種類以上の元素を表し、Wはタングステンを表し、Oは酸素を表し、Xは、0<X≦1.2を満たす数を表し、Yは、0<Y≦1を満たす数を表す。]で表される複合酸化物微粒子(特許文献1)、一般式:M[式中、Mは、H、He、アルカリ金属、アルカリ土類金属等から選択される1種類以上の元素を表し、Wはタングステンを表し、Oは酸素を表し、x、y及びzは、0.001≦x/y≦1、2.2≦z/y≦3.0を満たす数を表す。]で表される複合タングステン酸化物微粒子(特許文献2)等が知られている。 Tungsten-based materials, LaB 6 , ATO, ITO and the like are generally known as near-infrared absorbing materials, but the following techniques are known as tungsten-based materials. In other words, the general formula: M X A Y W (1- Y) O 3 [ wherein, M represents H, the He, alkali metals, one or more elements selected from alkaline earth metals such as, A is , Mo, Nb, Ta and the like, W represents tungsten, O represents oxygen, X represents a number satisfying 0 <X≤1.2, and Y represents Represents a number that satisfies 0 <Y ≦ 1. ], Composite oxide fine particles represented by [Patent Document 1], general formula: M x W y Oz [In the formula, M is one or more selected from H, He, alkali metal, alkaline earth metal, etc. W represents tungsten, O represents oxygen, and x, y and z represent numbers satisfying 0.001 ≦ x / y ≦ 1 and 2.2 ≦ z / y ≦ 3.0. .. ], The composite tungsten oxide fine particles (Patent Document 2) and the like are known.

当該特許文献1及び2に記載の近赤外線吸収性粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系となる旨が記載されている。ここで、青味は視認性に影響を及ぼすため、極力低減させたい要望がある。 It is described that the near-infrared absorbing particles described in Patent Documents 1 and 2 largely absorb light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, and therefore the transmitted color tone is bluish. Here, since bluishness affects visibility, there is a demand to reduce it as much as possible.

特開2006−299086号公報Japanese Unexamined Patent Publication No. 2006-299086 WO2005/037932号公報WO2005 / 037932

本発明は、青味が低減した近赤外線吸収性粒子、該近赤外線吸収性粒子で構成される粉体、該粉体を含む分散液、該粉体を含む樹脂組成物、該粉体を含む近赤外線吸収性層、及び、該粉体を含む近赤外線吸収性部材を提供することを目的とする。 The present invention includes near-infrared absorbing particles having reduced bluish tint, a powder composed of the near-infrared absorbing particles, a dispersion liquid containing the powder, a resin composition containing the powder, and the powder. It is an object of the present invention to provide a near infrared ray absorbing layer and a near infrared ray absorbing member containing the powder.

本発明は、下記式(I):
Cs1−q ・・・(I)
[式中、
Mは、Nb、Ta、Al及びScからなる群から選択される1種又は2種以上の元素を表し、
pは、0.01≦p<0.3を満たし、
qは、0.01≦q<0.5を満たし、
q及びrは、3<r/(1−q)を満たす。]
で表される組成を有する、近赤外線吸収性粒子を提供する。
The present invention has the following formula (I):
Cs p M q W 1-q Or ... (I)
[During the ceremony,
M represents one or more elements selected from the group consisting of Nb, Ta, Al and Sc.
p satisfies 0.01 ≦ p <0.3 and
q satisfies 0.01 ≦ q <0.5 and
q and r satisfy 3 <r / (1-q). ]
Provided are near-infrared absorbing particles having a composition represented by.

また、本発明は、本発明の近赤外線吸収性粒子で構成される粉体、該粉体を含む分散液、該粉体を含む樹脂組成物、該粉体を含む近赤外線吸収性層、及び、該粉体を含む近赤外線吸収性部材を提供する。 In addition, the present invention comprises a powder composed of the near-infrared absorbing particles of the present invention, a dispersion containing the powder, a resin composition containing the powder, a near-infrared absorbing layer containing the powder, and , Provide a near-infrared absorbing member containing the powder.

本発明によれば、青味が低減した近赤外線吸収性粒子、該近赤外線吸収性粒子で構成される粉体、該粉体を含む分散液、該粉体を含む樹脂組成物、該粉体を含む近赤外線吸収性層、及び、該粉体を含む近赤外線吸収性部材が提供される。 According to the present invention, near-infrared absorbing particles having reduced bluish tint, a powder composed of the near-infrared absorbing particles, a dispersion liquid containing the powder, a resin composition containing the powder, and the powder. A near-infrared absorbing layer containing the above and a near-infrared absorbing member containing the powder are provided.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

<粒子及び粉体>
本発明の粒子及び粉体は、近赤外線吸収性を有する。本発明の粒子及び粉体が吸収し得る近赤外線の波長は、通常780nm以上2500nm以下である。
<Particles and powders>
The particles and powders of the present invention have near infrared absorption. The wavelength of near infrared rays that can be absorbed by the particles and powder of the present invention is usually 780 nm or more and 2500 nm or less.

本発明の粉体は、本発明の粒子で構成される。本発明の粉体を構成する本発明の粒子は、1種であってもよいし、2種以上であってもよい。本発明の粉体は、本発明の粒子以外の粒子(例えば、本発明の粒子以外の近赤外線吸収性粒子)を含んでもよいが、好ましくは、本発明の粒子からなる。 The powder of the present invention is composed of the particles of the present invention. The particles of the present invention constituting the powder of the present invention may be one kind or two or more kinds. The powder of the present invention may contain particles other than the particles of the present invention (for example, near-infrared absorbing particles other than the particles of the present invention), but is preferably composed of the particles of the present invention.

本発明の粒子及び粉体は、下記式(I):
Cs1−q ・・・(I)
で表される組成を有する。
The particles and powders of the present invention have the following formula (I):
Cs p M q W 1-q Or ... (I)
It has a composition represented by.

式(I)において、Csは、セシウムを表し、Wは、タングステンを表し、Oは、酸素を表す。 In formula (I), Cs represents cesium, W represents tungsten, and O represents oxygen.

式(I)において、Mは、Nb、Ta、Al及びScからなる群から選択される1種又は2種以上の元素を表す。Nbは、ニオブを表し、Taは、タンタルを表し、Alは、アルミニウムを表し、Scは、スカンジウムを表す。Mが1種の元素を表す場合、Mで表される1種の元素は、好ましくは、Nb、Al又はSc、さらに好ましくは、Nb又はAlである。Mが2種以上の元素を表す場合、Mで表される2種以上の元素は、好ましくはNb、Al及びScから選択される2種以上、さらに好ましくは、Nb及びAlを含む。 In formula (I), M represents one or more elements selected from the group consisting of Nb, Ta, Al and Sc. Nb represents niobium, Ta represents tantalum, Al represents aluminum, and Sc represents scandium. When M represents one element, the one element represented by M is preferably Nb, Al or Sc, and more preferably Nb or Al. When M represents two or more elements, the two or more elements represented by M preferably include two or more selected from Nb, Al and Sc, and more preferably Nb and Al.

式(I)において、pは、0.01≦p<0.3を満たす数を表す。pで表される数は、好ましくは0.1≦p<0.3、さらに好ましくは0.15≦p<0.3、さらに一層好ましくは0.2≦p<0.3を満たす。 In formula (I), p represents a number satisfying 0.01 ≦ p <0.3. The number represented by p preferably satisfies 0.1 ≦ p <0.3, more preferably 0.15 ≦ p <0.3, and even more preferably 0.2 ≦ p <0.3.

式(I)において、qは、0.01≦q<0.5を満たす数を表す。qで表される数は、好ましくは0.05≦q<0.5、さらに好ましくは0.1≦q<0.5、さらに一層好ましくは0.1≦q≦0.3を満たす。 In formula (I), q represents a number satisfying 0.01 ≦ q <0.5. The number represented by q preferably satisfies 0.05 ≦ q <0.5, more preferably 0.1 ≦ q <0.5, and even more preferably 0.1 ≦ q ≦ 0.3.

式(I)において、q及びrは、3<r/(1−q)を満たす数を表す。q及びrで表される数は、好ましくは3.05≦r/(1−q)、さらに好ましくは3.1≦r/(1−q)、さらに一層好ましくは3.3≦r/(1−q)を満たす。 In formula (I), q and r represent numbers that satisfy 3 <r / (1-q). The numbers represented by q and r are preferably 3.05 ≦ r / (1-q), more preferably 3.1 ≦ r / (1-q), and even more preferably 3.3 ≦ r / (. 1-q) is satisfied.

式(I)において、rで表される数は、好ましくは2.7≦r≦3.0、さらに好ましくは2.8≦r≦3.0を満たす。 In the formula (I), the number represented by r preferably satisfies 2.7 ≦ r ≦ 3.0, more preferably 2.8 ≦ r ≦ 3.0.

本発明の粒子及び粉体は、式(I)で表される組成を有することにより、低減した青味を有する。青味の指標として、L表色系のL値及びb値を使用することができる。L表色系のL値及びb値については後述する。 The particles and powders of the present invention have a reduced bluish tint by having a composition represented by the formula (I). As the index of bluish tint, the L * value and b * value of the L * a * b * color system can be used. The L * a * b * color system L * value and b * value will be described later.

以下、本発明の粒子及び粉体の特性(L表色系のL値及びb値、結晶構造、平均粒径、BET比表面積等)について説明する。本発明の粒子及び粉体は、本明細書に記載された2種以上の特性を有することができる。 Hereinafter, the characteristics of the particles and powders of the present invention (L * a * b * color system L * and b * values, crystal structure, average particle size, BET specific surface area, etc.) will be described. The particles and powders of the present invention can have two or more of the properties described herein.

樹脂と、該樹脂に分散した本発明の粉体とを含む樹脂層を形成し、該樹脂層のL表色系のL値及びb値を測定したとき、L値は、好ましくは85以上97以下、さらに好ましくは85以上95以下、さらに一層好ましくは85以上93以下であり、b値は、好ましくは−2以上7以下、さらに好ましくは−1以上5以下、さらに一層好ましくは−0.5以上4.5以下である。本発明の粒子及び粉体は、低減した青味を有するため、このようなL値及びb値を実現することができる。 When a resin layer containing the resin and the powder of the present invention dispersed in the resin is formed and the L * a * b * color system L * value and b * value of the resin layer are measured, L *. The value is preferably 85 or more and 97 or less, more preferably 85 or more and 95 or less, still more preferably 85 or more and 93 or less, and the b * value is preferably -2 or more and 7 or less, still more preferably -1 or more and 5 or less. , Even more preferably −0.5 or more and 4.5 or less. Since the particles and powders of the present invention have a reduced bluish tint, such L * and b * values can be realized.

なお、L表色系は、CIE(国際照明委員会)で規格化され、JIS Z 8781−4:2013で採用されている表色系を意味する。 The L * a * b * color system means the color system standardized by the CIE (Commission Internationale de l'Eclairage) and adopted in JIS Z 8781-4: 2013.

表色系のL値及びb値の測定方法の好ましい実施形態は、次の通りである。本発明の粉体を20重量%、2−ブタノンを75重量%、分散剤を5重量%含有する混合物を調製する。この混合物に対してペイントシェイカーを使用したメディア分散処理を行って分散液を調製する。この分散液を10重量%、熱硬化性樹脂を10重量%、2−ブタノンを80重量%含有する塗料を調製する。この塗料をポリエチレンテレフタレート(PET)フィルム上にバーコーターで塗布して塗膜(厚み3μm)を形成し、80℃で10分間乾燥して溶剤を蒸発させ、PETフィルム上に樹脂層を形成する。次に、色差計(例えば、コニカミノルタ製CM−2600d)を使用して、樹脂層表面側から入射角0度(樹脂層表面の法線方向を0度とする)でパルスキセノンランプを照射し、SCI方式に基づいて、L値及びb値を測定する。任意の10箇所に関してL値及びb値を測定し、10箇所のL値の平均値及び10箇所のb値の平均値を、それぞれ、粉体のL値及びb値とする。 Preferable embodiments of the method for measuring the L * value and the b * value of the L * a * b * color system are as follows. A mixture containing 20% by weight of the powder of the present invention, 75% by weight of 2-butanone, and 5% by weight of the dispersant is prepared. A media dispersion treatment using a paint shaker is performed on this mixture to prepare a dispersion liquid. A coating material containing 10% by weight of this dispersion, 10% by weight of a thermosetting resin, and 80% by weight of 2-butanone is prepared. This paint is applied on a polyethylene terephthalate (PET) film with a bar coater to form a coating film (thickness 3 μm), dried at 80 ° C. for 10 minutes to evaporate the solvent, and a resin layer is formed on the PET film. Next, using a color difference meter (for example, CM-2600d manufactured by Konica Minolta), a pulse xenon lamp is irradiated from the resin layer surface side at an incident angle of 0 degrees (the normal direction of the resin layer surface is 0 degrees). , L * value and b * value are measured based on the SCI method. The L * and b * values are measured at any 10 points, and the average value of the L * values at 10 points and the average value of the b * values at 10 points are taken as the L * value and b * value of the powder, respectively. To do.

本発明の粒子は、好ましくは結晶構造を有する。結晶構造としては、例えば、六方晶、正方晶、立方晶等が挙げられる。本発明の粒子が六方晶の結晶構造を有しない場合、L表色系のb値が顕著に減少する傾向がある。したがって、L表色系のb値を所望の範囲に調整し、低減した青味を実現する点から、本発明の粒子は六方晶の結晶構造を有することが好ましい。 The particles of the present invention preferably have a crystal structure. Examples of the crystal structure include hexagonal crystals, tetragonal crystals, and cubic crystals. When the particles of the present invention do not have a hexagonal crystal structure, the b * value of the L * a * b * color system tends to decrease significantly. Therefore, it is preferable that the particles of the present invention have a hexagonal crystal structure from the viewpoint of adjusting the b * value of the L * a * b * color system to a desired range and realizing a reduced bluish tint.

結晶構造は、X線回折装置(リガク社製RINT−TTRIII)を使用し、試料を専用のガラスホルダーに充填し、50kV−300mAの電圧−電流を印加して発生させたCu Kα線によって、サンプリング角0.02°、走査速度4.0°/minの条件で測定し、測定結果を使用してXRD解析ソフトウエアJADEによる解析を行い、結晶構造を同定することにより確認することができる。 The crystal structure is sampled by Cu Kα rays generated by filling a sample in a dedicated glass holder and applying a voltage-current of 50 kV-300 mA using an X-ray diffractometer (RINT-TTRIII manufactured by Rigaku). It can be confirmed by measuring under the conditions of an angle of 0.02 ° and a scanning speed of 4.0 ° / min, performing an analysis with the XRD analysis software JADE using the measurement results, and identifying the crystal structure.

本発明の粉体の平均粒径は、例えば、動的光散乱法によって測定することができる。動的光散乱法で測定された本発明の粉体の平均粒径は、動的光散乱法によって得られた体積基準の粒度分布において、累積体積が50%となる粒径を意味する。 The average particle size of the powder of the present invention can be measured by, for example, a dynamic light scattering method. The average particle size of the powder of the present invention measured by the dynamic light scattering method means a particle size in which the cumulative volume is 50% in the volume-based particle size distribution obtained by the dynamic light scattering method.

動的光散乱法による平均粒径の測定方法の好ましい実施形態は、次の通りである。本発明の粉体を20重量%、2−ブタノンを75重量%、分散剤を5重量%含有する混合物を調製する。この混合物に対してペイントシェイカーを使用したメディア分散処理を行って分散液を調製する。当該分散液を1/10濃度に希釈し、測定装置として例えばMalvern Panalytical製「ゼータサイザーナノZS」を使用して、上記希釈液中に含まれる粉体の平均粒径を測定する。 A preferred embodiment of the method for measuring the average particle size by the dynamic light scattering method is as follows. A mixture containing 20% by weight of the powder of the present invention, 75% by weight of 2-butanone, and 5% by weight of the dispersant is prepared. A media dispersion treatment using a paint shaker is performed on this mixture to prepare a dispersion liquid. The dispersion is diluted to a concentration of 1/10, and the average particle size of the powder contained in the diluent is measured using, for example, Malvern Panasonic's "Zetasizer Nano ZS" as a measuring device.

上記実施形態において、動的光散乱法で測定された本発明の粉体の平均粒径は、近赤外線吸収性部材とした際の透明性を維持する観点から、好ましくは150nm以下、さらに好ましくは125nm以下、さらに一層好ましくは100nm以下である。下限値は特に限定されないが、好ましくは10nm、さらに好ましくは20nm、さらに一層好ましくは30nmである。 In the above embodiment, the average particle size of the powder of the present invention measured by the dynamic light scattering method is preferably 150 nm or less, more preferably 150 nm or less, from the viewpoint of maintaining transparency when used as a near-infrared absorbing member. It is 125 nm or less, and even more preferably 100 nm or less. The lower limit is not particularly limited, but is preferably 10 nm, more preferably 20 nm, and even more preferably 30 nm.

本発明の粉体の平均粒径は、例えば、X線小角散乱法で測定することができる。X線小角散乱法で測定される本発明の粉体の平均粒径は、X線小角散乱法によって得られた体積基準の粒度分布において、累積体積が50%となる粒径を意味する。 The average particle size of the powder of the present invention can be measured by, for example, the small-angle X-ray scattering method. The average particle size of the powder of the present invention measured by the small-angle X-ray scattering method means a particle size in which the cumulative volume is 50% in the volume-based particle size distribution obtained by the small-angle X-ray scattering method.

X線小角散乱法による平均粒径の測定方法の好ましい実施形態は、次の通りである。上述した動的光散乱法による平均粒径の測定のために調製した分散液と同様のものを用意する。この分散液を10重量%、アクリル樹脂を10重量%、2−ブタノンを80重量%含有する塗料を調製する。この塗料をポリエチレンテレフタレート(PET)フィルム上にバーコーターで塗布して塗膜(厚み3μm)を形成し、80℃で10分間乾燥して溶剤を蒸発させ、樹脂層を形成する。当該樹脂層中に含まれる粉体の平均粒径を、以下の装置で測定する。 A preferred embodiment of the method for measuring the average particle size by the small-angle X-ray scattering method is as follows. Prepare the same dispersion as the dispersion prepared for the measurement of the average particle size by the dynamic light scattering method described above. A coating material containing 10% by weight of this dispersion, 10% by weight of acrylic resin, and 80% by weight of 2-butanone is prepared. This paint is applied on a polyethylene terephthalate (PET) film with a bar coater to form a coating film (thickness 3 μm), and dried at 80 ° C. for 10 minutes to evaporate the solvent to form a resin layer. The average particle size of the powder contained in the resin layer is measured by the following apparatus.

X線小角散乱プロファイルを得るために、株式会社リガク製全自動多目的X線回折装置SmartLabに、光学系としてX線小角散乱仕様を適用し、透過法にて試料のX線小角散乱プロファイルを測定する。X線源としてCuターゲットを使用し、検出器としてシンチレーションカウンターを使用する。次いで、試料のX線小角散乱プロファイルを、粒子形状を球形とし、粒子サイズのバラつきがガンマ分布関数で与えられると仮定して、株式会社リガク製解析ソフト NANO−Solverを使用してプロファイル解析を実施する。なお、プロファイル解析の対象角度範囲は、2θ=4degまでとする。 In order to obtain the small-angle X-ray scattering profile, the small-angle X-ray scattering specification is applied as an optical system to the fully automatic multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd., and the small-angle X-ray scattering profile of the sample is measured by the transmission method. .. A Cu target is used as the X-ray source and a scintillation counter is used as the detector. Next, assuming that the X-ray small-angle scattering profile of the sample has a spherical particle shape and the variation in particle size is given by the gamma distribution function, profile analysis is performed using the analysis software NANO-Solver manufactured by Rigaku Co., Ltd. To do. The target angle range for profile analysis is up to 2θ = 4 deg.

上記実施形態において、X線小角散乱法で測定された本発明の粉体の平均粒径は、近赤外線吸収性部材とした際の透明性を維持する観点から、好ましくは200nm以下、さらに好ましくは100nm以下、さらに一層好ましくは40nm以下である。下限値は特に限定されないが、好ましくは5nm、さらに好ましくは10nm、さらに一層好ましくは15nmである。 In the above embodiment, the average particle size of the powder of the present invention measured by the small-angle X-ray scattering method is preferably 200 nm or less, more preferably 200 nm or less, from the viewpoint of maintaining transparency when used as a near-infrared absorbing member. It is 100 nm or less, and even more preferably 40 nm or less. The lower limit is not particularly limited, but is preferably 5 nm, more preferably 10 nm, and even more preferably 15 nm.

本発明の粉体のBET比表面積は特に限定されず、用途等に応じて適宜調整することができる。平均粒径を小さくし、透明性を向上させる点からは、本発明の粉体のBET比表面積は大きい方が好ましい。 The BET specific surface area of the powder of the present invention is not particularly limited, and can be appropriately adjusted according to the intended use. From the viewpoint of reducing the average particle size and improving the transparency, it is preferable that the powder of the present invention has a large BET specific surface area.

本発明の粉体のBET比表面積は、好ましくは10m/g以上、さらに好ましくは12m/g以上、さらに一層好ましくは14m/g以上である。上限値は特に限定されないが、好ましくは100m/g、さらに好ましくは70m/g、さらに一層好ましくは50m/g、さらにより一層好ましくは30m/gである The BET specific surface area of the powder of the present invention is preferably 10 m 2 / g or more, more preferably 12 m 2 / g or more, and even more preferably 14 m 2 / g or more. The upper limit is not particularly limited, but is preferably 100 m 2 / g, more preferably 70 m 2 / g, even more preferably 50 m 2 / g, and even more preferably 30 m 2 / g.

本発明の粉体のBET比表面積は、JIS R1626「ファインセラミック粉体の気体吸着BET法による比表面積測定方法」の「6.2流動法」における「(3.5)一点法」に従って測定される。気体としては、吸着ガスである窒素を30容量%、キャリアガスであるヘリウムを70容量%含有する窒素−ヘリウム混合ガスが使用される。測定装置としては、マイクロトラック・ベル製の「BELSORP−MR6」が使用される。 The BET specific surface area of the powder of the present invention is measured according to "(3.5) One-point method" in "6.2 Flow method" of JIS R1626 "Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method". To. As the gas, a nitrogen-helium mixed gas containing 30% by volume of nitrogen as an adsorbed gas and 70% by volume of helium as a carrier gas is used. As the measuring device, "BELSORP-MR6" manufactured by Microtrack Bell is used.

本発明の粉体は、原料を不活性ガス及び/又は還元性ガスを含む雰囲気中で熱処理することにより製造することができる。 The powder of the present invention can be produced by heat-treating a raw material in an atmosphere containing an inert gas and / or a reducing gas.

原料は、セシウム、タングステン及びM元素を含む限り特に限定されない。原料は、例えば、セシウムを含む化合物と、タングステンを含む化合物と、M元素を含む化合物との混合物である。原料として使用される化合物は、セシウム、タングステン及びM元素のうちの2種以上を含む化合物であってもよい。原料として使用される化合物としては、例えば、セシウム、タングステン及びM元素のうちの1種又は2種以上を含む酸化物、酸化物の水和物、塩化物、アンモニウム塩、炭酸塩、硝酸塩、硫酸塩、シュウ酸塩、水酸化物、過酸化物等が挙げられる。これらのうち酸化物、炭酸塩、水和物等は、加熱還元時に除去が困難な不純物を生成しないため、工業的製造方法に適している。セシウムを含む化合物は、好ましくは、セシウムの炭酸塩である。タングステンを含む化合物は、好ましくは、タングステンの酸化物である。M元素を含む化合物は、好ましくは、M元素の酸化物である。また、原料には焼結抑制剤、還元助剤等の添加剤を含めても良い。 The raw material is not particularly limited as long as it contains cesium, tungsten and M element. The raw material is, for example, a mixture of a compound containing cesium, a compound containing tungsten, and a compound containing M element. The compound used as a raw material may be a compound containing two or more of cesium, tungsten and M element. Compounds used as raw materials include, for example, oxides containing one or more of cesium, tungsten and M element, oxide hydrates, chlorides, ammonium salts, carbonates, nitrates and sulfuric acid. Examples thereof include salts, oxalates, hydroxides and peroxides. Of these, oxides, carbonates, hydrates and the like do not generate impurities that are difficult to remove during heat reduction, and are therefore suitable for industrial production methods. The compound containing cesium is preferably a carbonate of cesium. The compound containing tungsten is preferably an oxide of tungsten. The compound containing the M element is preferably an oxide of the M element. Further, the raw material may contain additives such as a sintering inhibitor and a reduction aid.

原料は、式(I)で表される組成で配合された後、不活性ガス及び/又は還元性ガスを含む雰囲気中で熱処理される。不活性ガスとしては、例えば、アルゴンガス、窒素ガス等が挙げられ、還元性ガスとしては、例えば、水素ガス、アンモニアガス等が挙げられる。還元性ガスとして水素ガスを使用する場合、雰囲気中の水素ガスの量は、好ましくは0.1〜100体積%、さらに好ましくは1〜10体積%である。熱処理の温度は、好ましくは400〜1000℃、さらに好ましくは450〜900℃、さらに一層好ましくは500〜800℃であり、熱処理の時間は、好ましくは1〜20時間である。 The raw material is blended with the composition represented by the formula (I) and then heat-treated in an atmosphere containing an inert gas and / or a reducing gas. Examples of the inert gas include argon gas, nitrogen gas and the like, and examples of the reducing gas include hydrogen gas, ammonia gas and the like. When hydrogen gas is used as the reducing gas, the amount of hydrogen gas in the atmosphere is preferably 0.1 to 100% by volume, more preferably 1 to 10% by volume. The heat treatment temperature is preferably 400 to 1000 ° C., further preferably 450 to 900 ° C., even more preferably 500 to 800 ° C., and the heat treatment time is preferably 1 to 20 hours.

一実施形態において、原料を、不活性ガス及び還元性ガスの雰囲気中で400〜600℃で1〜20時間焼成した後、不活性ガスの雰囲気中で600〜900℃で1〜20時間焼成する。熱処理によって得られる焼成物は、必要に応じて、粉砕処理される。 In one embodiment, the raw material is calcined at 400-600 ° C. for 1-20 hours in an atmosphere of an inert gas and a reducing gas, and then calcined at 600-900 ° C. for 1-20 hours in an atmosphere of an inert gas. .. The fired product obtained by the heat treatment is pulverized, if necessary.

<分散液>
本発明の分散液は、分散媒と、該分散媒に分散した本発明の粉体とを含む。
<Dispersion>
The dispersion liquid of the present invention contains a dispersion medium and the powder of the present invention dispersed in the dispersion medium.

本発明の分散液に含まれる本発明の粉体の量は特に限定されず、本発明の分散液の用途等に応じて適宜調整することができる。本発明の分散液は、本発明の粉体の含有量に応じて種々の粘度を有し、粘度に応じて、インク、スラリー、ペースト等の種々の形態をとる。本発明の分散液に含まれる本発明の粉体の量は、本発明の分散液の総質量を基準として、好ましくは0.1〜95質量%、さらに好ましくは1〜80質量%、さらに一層好ましくは1〜50質量%である。 The amount of the powder of the present invention contained in the dispersion liquid of the present invention is not particularly limited, and can be appropriately adjusted according to the use of the dispersion liquid of the present invention and the like. The dispersion liquid of the present invention has various viscosities depending on the content of the powder of the present invention, and takes various forms such as ink, slurry, and paste depending on the viscosity. The amount of the powder of the present invention contained in the dispersion liquid of the present invention is preferably 0.1 to 95% by mass, more preferably 1 to 80% by mass, further more based on the total mass of the dispersion liquid of the present invention. It is preferably 1 to 50% by mass.

本発明の分散液に含まれる分散媒は、本発明の粉体を分散させることができる液体である限り特に限定されない。分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、1種の溶媒であってもよいし、2種以上の溶媒の混合物であってもよい。2種以上の溶媒の混合物としては、例えば、水と1種又は2種以上の有機溶媒との混合物、2種以上の有機溶媒の混合物等が挙げられる。分散媒は、好ましくは、有機溶媒を含む。有機溶媒としては、以下の具体例が挙げられる。 The dispersion medium contained in the dispersion liquid of the present invention is not particularly limited as long as it is a liquid capable of dispersing the powder of the present invention. Examples of the dispersion medium include water, an organic solvent and the like. The dispersion medium may be one kind of solvent or a mixture of two or more kinds of solvents. Examples of the mixture of two or more kinds of solvents include a mixture of water and one kind or two or more kinds of organic solvents, and a mixture of two or more kinds of organic solvents. The dispersion medium preferably contains an organic solvent. Specific examples of the organic solvent include the following.

アルコール:例えば、1−プロパノール、1−ブタノール、1−ペンタノール、1−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、1−ノナノール、1−デカノール、グリシドール、ベンジルアルコール、メチルシクロヘキサノール、2−メチル−1−ブタノール、3−メチル−2−ブタノール、4−メチル−2−ペンタノール、2−プロパノール、2−エチルブタノール、2−エチルヘキサノール、2−オクタノール、2−メトキシエタノール、2−エトキシエタノール、2−n−ブトキシエタノール、2−フェノキシエタノール等。 Alcohols: For example, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, glycidol, benzyl alcohol, methylcyclohexanol, 2 -Methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, 2-propanol, 2-ethylbutanol, 2-ethylhexanol, 2-octanol, 2-methoxyethanol, 2-ethoxy Ethanol, 2-n-butoxyethanol, 2-phenoxyethanol and the like.

多価アルコール:例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール等。 Polyhydric alcohols: For example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol and the like.

多価アルコールアルキルエーテル:例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル等。 Polyhydric alcohol alkyl ether: For example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, Propylene glycol monobutyl ether, etc.

多価アルコールアリールエーテル:例えば、エチレングリコールモノフェニルエーテル等。 Polyhydric alcohol aryl ether: For example, ethylene glycol monophenyl ether and the like.

エステル類:例えば、エチルセロソルブアセテート、ブチルセロソルブアセテート、γ−ブチロラクトン等。 Esters: For example, ethyl cellosolve acetate, butyl cellosolve acetate, γ-butyrolactone and the like.

含窒素複素環化合物:例えば、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン等。 Nitrogen-containing heterocyclic compounds: for example, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like.

アミド類:例えば、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド等。 Amides: For example, formamide, N-methylformamide, N, N-dimethylformamide and the like.

アミン類:例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、トリプロピルアミン、トリブチルアミン等。 Amines: For example, monoethanolamine, diethanolamine, triethanolamine, tripropylamine, tributylamine and the like.

飽和炭化水素:例えば、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン等。 Saturated hydrocarbons: for example, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane and the like.

ケトン類:例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロン。 Ketones: For example, acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone.

芳香族炭化水素:例えば、ベンゼン、トルエン、キシレン等。 Aromatic hydrocarbons: for example, benzene, toluene, xylene, etc.

本発明の分散液は、必要に応じて、分散剤を含んでいてもよい。分散剤としては、例えば、非イオン性界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、Si,Ti,Zr,Al等の各種カップリング剤及びキレート剤等が挙げられる。 The dispersion liquid of the present invention may contain a dispersant, if necessary. Examples of the dispersant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, various coupling agents such as Si, Ti, Zr, and Al, and chelating agents. Be done.

非イオン性界面活性剤としては、例えば、多価アルコール脂肪酸エステル、プロピレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルアミン、ポリオキシアルキレンアルキルアミン、アルキルアルカノールアミド、ポリオキシエチレンアルキルフェニルエーテル等が挙げられる。 Examples of the nonionic surfactant include polyhydric alcohol fatty acid ester, propylene glycol fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene alkyl ether, and polyoxyethylene polyoxypropylene. Alkyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkylamine, polyoxyalkylene alkylamine, alkylalkanolamide, poly Examples thereof include oxyethylene alkyl phenyl ether and the like.

シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等が挙げられる。 Examples of the silane coupling agent include vinyl trichlorosilane, vinyl trimethoxysilane, vinyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid. Xypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxy Silane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) -3-aminopropyltrimethoxy Silane, N-2 (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) ) Propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyl Trimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanuppropyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane , Methyltriethoxysilane, dimethyltriethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, decyltrimethoxysilane and the like.

本発明の分散液は、例えば後述する樹脂と混合して樹脂組成物として使用することができる。また、本発明の樹脂成形体を成形する過程にて、樹脂に当該分散液をスプレー塗布して使用することもできる。 The dispersion liquid of the present invention can be used as a resin composition by mixing with, for example, a resin described later. Further, in the process of molding the resin molded product of the present invention, the dispersion liquid can be spray-coated on the resin and used.

<樹脂組成物>
本発明の樹脂組成物は、樹脂と、本発明の粉体とを含む。
<Resin composition>
The resin composition of the present invention contains the resin and the powder of the present invention.

本発明の樹脂組成物に含まれる本発明の粉体の量は、本発明の樹脂組成物の用途等に応じて適宜調整することができる。本発明の樹脂組成物に含まれる本発明の粉体の量は、本発明の樹脂組成物の総質量を基準として、好ましくは0.1〜95質量%、さらに好ましくは0.1〜70質量%、さらに一層好ましくは1〜50質量%である。 The amount of the powder of the present invention contained in the resin composition of the present invention can be appropriately adjusted according to the use of the resin composition of the present invention and the like. The amount of the powder of the present invention contained in the resin composition of the present invention is preferably 0.1 to 95% by mass, more preferably 0.1 to 70% by mass, based on the total mass of the resin composition of the present invention. %, More preferably 1 to 50% by mass.

本発明の樹脂組成物に含まれる樹脂としては、例えば、熱硬化性樹脂、電離放射線硬化性樹脂、熱可塑性樹脂等が挙げられる。本発明の樹脂組成物に含まれる樹脂は、1種であってもよいし、2種以上であってもよい。本発明の樹脂組成物に含まれる樹脂は、好ましくは、熱硬化性樹脂、電離放射線硬化性樹脂等の硬化性樹脂である。硬化性樹脂は、例えば、電離放射線硬化性樹脂と熱硬化性樹脂とを併用する、あるいは、硬化性樹脂と熱可塑性樹脂とを併用する、いわゆるハイブリッドタイプであってもよい。樹脂は、後述する所望のL値及びb値を得る観点から無色透明であることが好ましいが、これに限定されない。 Examples of the resin contained in the resin composition of the present invention include thermosetting resins, ionizing radiation curable resins, thermoplastic resins and the like. The resin contained in the resin composition of the present invention may be one kind or two or more kinds. The resin contained in the resin composition of the present invention is preferably a curable resin such as a thermosetting resin and an ionizing radiation curable resin. The curable resin may be, for example, a so-called hybrid type in which an ionizing radiation curable resin and a thermosetting resin are used in combination, or a curable resin and a thermoplastic resin are used in combination. The resin is preferably colorless and transparent from the viewpoint of obtaining the desired L * and b * values described later, but is not limited thereto.

熱硬化性樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン−尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等が挙げられる。 Examples of the thermosetting resin include acrylic resin, silicone resin, phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, and melamine-urea. Examples thereof include condensed resin, silicon resin, and polysiloxane resin.

電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合又は架橋し得るエネルギー量子を有するものを意味し、通常、紫外線(UV)又は電子線(EB)が使用されるが、その他、X線、γ線等の電磁波、α線、イオン線等の荷電粒子線も使用可能である。電離放射線硬化性樹脂としては、例えば、電離放射線の照射により架橋可能な重合性不飽和結合、カチオン重合性官能基等を分子中に有するモノマー、オリゴマー、プレポリマー等の1種以上を使用することができ、単官能、2官能、多官能のいずれでも良く、アクリレートやメタクリレートで良い。例えば、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等のアクリレート樹脂が挙げられる。 Ionizing radiation means electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules. Usually, ultraviolet rays (UV) or electron beams (EB) are used, but in addition, X Electromagnetic waves such as rays and γ-rays, and charged particle beams such as α-rays and ion rays can also be used. As the ionizing radiation curable resin, for example, one or more of a monomer, an oligomer, a prepolymer, etc. having a polymerizable unsaturated bond, a cationically polymerizable functional group, etc. in the molecule that can be crosslinked by irradiation with ionizing radiation shall be used. It may be monofunctional, bifunctional or polyfunctional, and may be acrylate or methacrylate. For example, acrylate resins such as pentaerythritol triacrylate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, urethane acrylate, polyester acrylate, and epoxy acrylate can be mentioned.

熱可塑性樹脂としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエチレンナフタレート、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂等が挙げられる。 Examples of the thermoplastic resin include styrene resin, (meth) acrylic resin, vinyl acetate resin, vinyl ether resin, halogen-containing resin, alicyclic olefin resin, polycarbonate resin, polyethylene naphthalate, polyethylene terephthalate and the like. Examples thereof include polyester-based resins, polyamide-based resins, cellulose derivatives, and silicone-based resins.

本発明の樹脂組成物は、必要に応じて、硬化性樹脂の硬化反応に関与する成分、例えば、光重合開始剤(増感剤)を含んでいてもよい。 If necessary, the resin composition of the present invention may contain a component involved in the curing reaction of the curable resin, for example, a photopolymerization initiator (sensitizer).

本発明の樹脂組成物は、必要に応じて、溶剤又は分散媒を含んでいてもよい。溶剤又は分散媒としては、上記で列挙した有機溶媒や水等が使用される。溶剤又は分散媒は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The resin composition of the present invention may contain a solvent or a dispersion medium, if necessary. As the solvent or dispersion medium, the organic solvents and water listed above are used. As the solvent or dispersion medium, one type may be used alone, or two or more types may be used in combination.

本発明の樹脂組成物は、必要に応じて、ガラスフリットを含んでいてもよい。ガラスフリットとしては、例えば、ホウケイ酸ガラス、ホウケイ酸バリウムガラス、ホウケイ酸亜鉛ガラス等が挙げられる。 The resin composition of the present invention may contain a glass frit, if necessary. Examples of the glass frit include borosilicate glass, barium borosilicate glass, zinc borosilicate glass and the like.

本発明の樹脂組成物は、近赤外線吸収性組成物として使用することができる。例えば、所望の部材(例えば、樹脂成形体)の表面に本発明の樹脂組成物を塗布して乾燥させ、必要に応じて、樹脂を硬化させることにより、所望の部材の表面に近赤外線吸収性層を形成することができる。塗布方法としては、例えば、インクジェット法、ディスペンサ法、マイクロディスペンサ法、グラビア印刷法、スクリーン印刷法、ディップコーティング法、スピンコーティング法、スプレー塗布法、バーコーティング法、ロールコーティング法、カレンダー法等が挙げられる。また、本発明の樹脂組成物は、近赤外線吸収性部材を製造するための材料として使用することができる。例えば、本発明の樹脂組成物を常法に従って成形することにより近赤外線吸収性部材を製造することができる。 The resin composition of the present invention can be used as a near-infrared absorbing composition. For example, the resin composition of the present invention is applied to the surface of a desired member (for example, a resin molded product), dried, and if necessary, the resin is cured to absorb near infrared rays on the surface of the desired member. Layers can be formed. Examples of the coating method include an inkjet method, a dispenser method, a micro dispenser method, a gravure printing method, a screen printing method, a dip coating method, a spin coating method, a spray coating method, a bar coating method, a roll coating method, a calendar method and the like. Be done. In addition, the resin composition of the present invention can be used as a material for producing a near-infrared absorbing member. For example, a near-infrared absorbing member can be manufactured by molding the resin composition of the present invention according to a conventional method.

<近赤外線吸収性層>
本発明の近赤外線吸収性層は、マトリックス樹脂と、該マトリックス樹脂に分散した本発明の粉体とを含む。
<Near infrared absorbing layer>
The near-infrared absorbing layer of the present invention contains a matrix resin and the powder of the present invention dispersed in the matrix resin.

本発明の近赤外線吸収性層は、支持体の表面上に形成された層の形態であってもよいし、支持体から独立した層の形態(例えば、フィルム、シート等)であってもよい。 The near-infrared absorbing layer of the present invention may be in the form of a layer formed on the surface of the support or in the form of a layer independent of the support (for example, a film, a sheet, etc.). ..

本発明の近赤外線吸収性層の厚みは特に限定されず、求められる近赤外線吸収性等に応じて適宜調整することができる。本発明の近赤外線吸収性層の厚みは、通常1〜1000μm、好ましくは1〜100μm、さらに好ましくは2〜100μmである。なお、近赤外線吸収性層の厚みが均一でない場合、任意の5箇所における厚みを測定し、5箇所の厚みの平均値が上記範囲内にあることが好ましい。 The thickness of the near-infrared absorbing layer of the present invention is not particularly limited, and can be appropriately adjusted according to the required near-infrared absorbing property and the like. The thickness of the near-infrared absorbing layer of the present invention is usually 1 to 1000 μm, preferably 1 to 100 μm, and more preferably 2 to 100 μm. When the thickness of the near-infrared absorbing layer is not uniform, it is preferable that the thickness at any five points is measured and the average value of the thicknesses at the five points is within the above range.

一実施形態において、本発明の近赤外線吸収性層は、本発明の樹脂組成物の乾燥物又は硬化物である。この実施形態において、マトリックス樹脂は、例えば、熱硬化性樹脂、電離放射線硬化性樹脂、熱可塑性樹脂等の樹脂の乾燥物又は硬化物であり、好ましくは、熱硬化性樹脂、電離放射線硬化性樹脂等の硬化性樹脂の硬化物である。樹脂の乾燥物又は硬化物は、後述する所望のL値及びb値を得る観点から無色透明であることが好ましいが、これに限られない。 In one embodiment, the near-infrared absorbing layer of the present invention is a dried or cured product of the resin composition of the present invention. In this embodiment, the matrix resin is, for example, a dried product or a cured product of a resin such as a thermosetting resin, an ionizing radiation curable resin, or a thermoplastic resin, and preferably a thermosetting resin or an ionizing radiation curable resin. It is a cured product of a curable resin such as. The dried or cured resin is preferably colorless and transparent from the viewpoint of obtaining the desired L * and b * values described later, but is not limited thereto.

<近赤外線吸収性部材>
本発明の近赤外線吸収性部材の形態は、本発明の粉体を含む限り特に限定されない。
<Near infrared absorbing member>
The form of the near-infrared absorbing member of the present invention is not particularly limited as long as it contains the powder of the present invention.

一実施形態において、本発明の近赤外線吸収性部材は、支持体と、該支持体の表面上に形成された本発明の近赤外線吸収性層とを備える。支持体の形状が板状である場合、本発明の近赤外線吸収性層は、支持体の一方又は両方の面に設けることができる。なお、板状には、平板状に加え、湾曲部、折曲部等を有する三次元形状が包含される。この実施形態に係る近赤外線吸収性部材は、支持体の表面上に本発明の分散液又は樹脂組成物を塗布して乾燥させ、必要に応じて樹脂を硬化させることにより製造することができる。なお、近赤外線吸収性層は、近赤外線吸収性部材の表面の少なくとも一部を形成している。 In one embodiment, the near-infrared absorbing member of the present invention comprises a support and a near-infrared absorbing layer of the present invention formed on the surface of the support. When the shape of the support is plate-like, the near-infrared absorbing layer of the present invention can be provided on one or both surfaces of the support. In addition to the flat plate shape, the plate shape includes a three-dimensional shape having a curved portion, a bent portion, and the like. The near-infrared absorbing member according to this embodiment can be produced by applying the dispersion liquid or the resin composition of the present invention on the surface of the support, drying the member, and curing the resin if necessary. The near-infrared absorbing layer forms at least a part of the surface of the near-infrared absorbing member.

別の実施形態において、本発明の近赤外線吸収性部材は、樹脂成形体と、該樹脂成形体中に含まれる本発明の粉体とを含む。この実施形態に係る近赤外線吸収性部材において、本発明の粉体は、例えば、樹脂成形体中に練り込まれている。この実施形態に係る近赤外線吸収性部材は、本発明の樹脂組成物を、例えばインフレーション法、Tダイ法、カレンダー法等によって樹脂成形体とすることにより製造することができる。 In another embodiment, the near-infrared absorbing member of the present invention includes a resin molded product and the powder of the present invention contained in the resin molded product. In the near-infrared absorbing member according to this embodiment, the powder of the present invention is kneaded into, for example, a resin molded product. The near-infrared absorbing member according to this embodiment can be produced by forming the resin composition of the present invention into a resin molded product by, for example, an inflation method, a T-die method, a calendar method, or the like.

支持体又は樹脂成形体を構成する樹脂は、近赤外線吸収性部材の用途等に応じて適宜選択することができる。樹脂は、後述する所望のL値及びb値を得る観点から無色透明であることが好ましいが、これに限られない。樹脂としては、例えば、上述で列挙した熱可塑性樹脂、熱硬化性樹脂等と同様の樹脂が挙げられる。樹脂は、1種であってもよいし、2種以上であってもよい。樹脂を成形する際、成形用樹脂が熱可塑性樹脂である場合には、加熱溶融によって流動状態とした樹脂が使用され、成形用樹脂が熱硬化性樹脂である場合には、未硬化の液状組成物が室温又は適宜加熱されて使用される。成形用樹脂の加熱温度は、樹脂の種類によるが、一般に180〜320℃程度である。 The resin constituting the support or the resin molded product can be appropriately selected depending on the use of the near-infrared absorbing member and the like. The resin is preferably colorless and transparent from the viewpoint of obtaining the desired L * and b * values described later, but is not limited thereto. Examples of the resin include the same resins as the thermoplastic resins and thermosetting resins listed above. The resin may be one kind or two or more kinds. When molding the resin, if the molding resin is a thermoplastic resin, a resin that has been made into a fluid state by heating and melting is used, and if the molding resin is a thermosetting resin, an uncured liquid composition is used. The product is used at room temperature or heated appropriately. The heating temperature of the molding resin depends on the type of resin, but is generally about 180 to 320 ° C.

近赤外線吸収性部材の形状が板状である場合、近赤外線吸収性部材の厚みは、ハンドリング性や耐久性の観点から、20μm以上とすることが好ましく、50μm以上とすることがさらに好ましい。一方、重量等を考慮すると、10mm以下とすることが現実的である。なお、板状には、平板状に加え、湾曲部、折曲部等を有する三次元形状が包含される。 When the shape of the near-infrared absorbing member is plate-shaped, the thickness of the near-infrared absorbing member is preferably 20 μm or more, and more preferably 50 μm or more from the viewpoint of handleability and durability. On the other hand, considering the weight and the like, it is realistic to make it 10 mm or less. In addition to the flat plate shape, the plate shape includes a three-dimensional shape having a curved portion, a bent portion, and the like.

以下、本発明の近赤外線吸収性部材の特性(L表色系のL値及びb値、ヘーズ値、全光線透過率、波長700nmの光の透過率(Tλ700)、波長1400nmの光の透過率(Tλ1400)、比(Tλ1400/Tλ700)等)について説明する。本発明の近赤外線吸収性部材は、本明細書に記載された2種以上の特性を有することができる。 Hereinafter, the characteristics of the near-infrared absorbing member of the present invention (L * a * b * color system L * value and b * value, haze value, total light transmittance, light transmittance at a wavelength of 700 nm (T λ700 )) , The transmittance of light having a wavelength of 1400 nm (T λ1400 ), the ratio (T λ1400 / T λ700 ), etc.) will be described. The near-infrared absorbing member of the present invention can have two or more of the properties described herein.

近赤外線吸収性部材のL表色系のL値及びb値を測定したとき、L値は、好ましくは85以上97以下、さらに好ましくは85以上95以下、さらに一層好ましくは85以上93以下であり、b値は、好ましくは−2以上7以下、さらに好ましくは−1以上5以下、さらに一層好ましくは−0.5以上4.5以下である。本発明の粒子及び粉体は、低減した青味を有するため、このようなL値及びb値を実現することができる。 When the L * a * b * color system L * value and b * value of the near-infrared absorbing member are measured, the L * value is preferably 85 or more and 97 or less, more preferably 85 or more and 95 or less, and further. It is preferably 85 or more and 93 or less, and the b * value is preferably -2 or more and 7 or less, more preferably -1 or more and 5 or less, and even more preferably -0.5 or more and 4.5 or less. Since the particles and powders of the present invention have a reduced bluish tint, such L * and b * values can be realized.

近赤外線吸収性部材のL表色系のL値及びb値は、支持体又は樹脂成形体を構成する樹脂の種類、含有量等、近赤外線吸収性層におけるマトリックス樹脂の種類、含有量等、本発明の粉体の含有量、結晶構造、平均粒径、BET比表面積等を調整することにより、所望の範囲に調整することができる。 The L * a * b * color-based L * value and b * value of the near-infrared absorbing member are the type and content of the resin constituting the support or resin molded body, and the matrix resin in the near-infrared absorbing layer. By adjusting the content, crystal structure, average particle size, BET specific surface area, etc. of the powder of the present invention, such as the type and content of the above, it can be adjusted to a desired range.

近赤外線吸収性部材のL表色系のL値及びb値の測定方法の好ましい実施形態は、次の通りである。近赤外線吸収性部材が、支持体と、該支持体の表面上に形成された近赤外線吸収性層とを備える実施形態においては、色差計(例えば、コニカミノルタ製CM−2600d)を使用して、近赤外線吸収性部材における近赤外線吸収性層の表面へ入射角0度(近赤外線吸収性層の表面の法線方向を0度とする)でパルスキセノンランプを照射し、SCI方式に基づいて、L値及びb値を測定する。一方、近赤外線吸収性部材が、樹脂成形体と、該樹脂成形体中に含まれる本発明の粉体とを含む実施形態においては、上記と同様にして、樹脂成形体の表面へ入射角0度(樹脂成形体の表面の法線方向を0度とする)でパルスキセノンランプを照射し、L値及びb値を測定する。いずれの実施形態においても、任意の10箇所に関してL値及びb値を測定し、10箇所のL値の平均値及び10箇所のb値の平均値を、それぞれ、近赤外線吸収性部材のL値及びb値とする。 A preferred embodiment of the method for measuring the L * a * b * color system L * value and the b * value of the near-infrared absorbing member is as follows. In an embodiment in which the near-infrared absorbing member includes a support and a near-infrared absorbing layer formed on the surface of the support, a color difference meter (for example, CM-2600d manufactured by Konica Minolta) is used. , The surface of the near-infrared absorbing layer in the near-infrared absorbing member is irradiated with a pulse xenon lamp at an incident angle of 0 degrees (the normal direction of the surface of the near-infrared absorbing layer is 0 degrees), and based on the SCI method. , L * value and b * value are measured. On the other hand, in the embodiment in which the near-infrared absorbing member contains the resin molded body and the powder of the present invention contained in the resin molded body, the angle of incidence on the surface of the resin molded body is 0 in the same manner as described above. The pulse xenon lamp is irradiated at a degree (the normal direction of the surface of the resin molded product is 0 degree), and the L * value and the b * value are measured. In any of the embodiments, the L * value and the b * value are measured at any 10 points, and the average value of the L * values at the 10 points and the average value of the b * values at the 10 points are set to have near-infrared ray absorption, respectively. Let it be the L * value and b * value of the member.

本発明の近赤外線吸収性部材のヘーズ値は、特に、本発明の近赤外線吸収性層又は樹脂成形体に含まれる本発明の粉体の平均粒径と関連する。本発明の近赤外線吸収性部材に透明性が求められる場合、ヘーズ値は好ましくは10%以下、さらに好ましくは8%以下、さらに一層好ましくは5%以下である。 The haze value of the near-infrared absorbing member of the present invention is particularly related to the average particle size of the powder of the present invention contained in the near-infrared absorbing layer or the resin molded body of the present invention. When the near-infrared absorbing member of the present invention is required to be transparent, the haze value is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.

本発明の近赤外線吸収性部材のヘーズ値は、マトリックス樹脂の種類、含有量等、本発明の粉体の含有量、結晶構造、平均粒径、BET比表面積等を調整することにより、所望の範囲に調整することができる。 The haze value of the near-infrared absorbing member of the present invention is desired by adjusting the type and content of the matrix resin, the content of the powder of the present invention, the crystal structure, the average particle size, the BET specific surface area, and the like. It can be adjusted to a range.

本発明の近赤外線吸収性部材の全光線透過率は、特に、本発明の近赤外線吸収性層又は樹脂成形体に含まれる本発明の粉体の平均粒径と関連する。本発明の近赤外線吸収性部材に透明性が求められる場合、全光線透過率は好ましくは60%以上92%未満、さらに好ましくは60%以上85%以下、さらに一層好ましくは60%以上75%以下である。 The total light transmittance of the near-infrared absorbing member of the present invention is particularly related to the average particle size of the powder of the present invention contained in the near-infrared absorbing layer or the resin molded body of the present invention. When transparency is required for the near-infrared absorbing member of the present invention, the total light transmittance is preferably 60% or more and less than 92%, more preferably 60% or more and 85% or less, and even more preferably 60% or more and 75% or less. Is.

本発明の近赤外線吸収性部材における波長700nmの光の透過率(Tλ700)は、赤色の可視光の透過性の指標である。可視光の透過性の向上は、青味の低減に寄与する。したがって、波長700nmの光の透過率は、大きい方が好ましく具体的には40%以上、さらに好ましくは45%以上、さらに一層好ましくは50%以上である。波長700nmの光の透過率の上限値は特に限定されないが、好ましくは80%、さらに好ましくは70%である。 The transmittance (T λ700 ) of light having a wavelength of 700 nm in the near-infrared absorbing member of the present invention is an index of the transmittance of red visible light. Improving the transparency of visible light contributes to the reduction of bluish tint. Therefore, the transmittance of light having a wavelength of 700 nm is preferably large, specifically 40% or more, more preferably 45% or more, and even more preferably 50% or more. The upper limit of the transmittance of light having a wavelength of 700 nm is not particularly limited, but is preferably 80%, more preferably 70%.

一方、波長1400nmの光の透過率(Tλ1400)は、近赤外線の吸収性(遮断性)の指標である。したがって、波長1400nmの光の透過率は小さい方が好ましく、具体的には50%以下、さらに好ましくは35%以下、さらに一層好ましくは25%以下である。 On the other hand, the transmittance of light having a wavelength of 1400 nm (T λ 1400 ) is an index of the absorbency (blocking property) of near infrared rays. Therefore, the transmittance of light having a wavelength of 1400 nm is preferably small, specifically 50% or less, more preferably 35% or less, and even more preferably 25% or less.

本発明の近赤外線吸収性部材における比(Tλ1400/Tλ700)は、赤色の可視光の透過性と、近赤外線の吸収性(遮断性)とのバランスの指標である。赤色の可視光の透過性を維持しつつ、近赤外線の吸収性(遮断性)が実現されることにより、青味を低減することができる。即ち、比(Tλ1400/Tλ700)の減少は、青味の低減の指標となる。つまり、比(Tλ1400/Tλ700)は、好ましくは0.50以下、さらに好ましくは0.4以下、さらに一層好ましくは0.25以下である。比(Tλ1400/Tλ700)の下限値は特に限定されないが、好ましくは0.01、さらに好ましくは0.03である。 The ratio (T λ1400 / T λ700 ) in the near-infrared absorbing member of the present invention is an index of the balance between the transmission of red visible light and the absorption (blocking property) of near-infrared rays. The bluish tint can be reduced by realizing the absorption (blocking property) of near infrared rays while maintaining the transmission of visible red light. That is, a decrease in the ratio (T λ1400 / T λ700 ) is an index for reducing the bluish tint . That is, the ratio (T λ1400 / T λ700 ) is preferably 0.50 or less, more preferably 0.4 or less, and even more preferably 0.25 or less. The lower limit of the ratio (T λ1400 / T λ700 ) is not particularly limited, but is preferably 0.01, more preferably 0.03.

上述した本発明の近赤外線吸収性部材の全光線透過率、波長700nmの光の透過率及び波長1400nmの光の透過率は、マトリックス樹脂の種類、含有量等、本発明の粉体の含有量、結晶構造、平均粒径、BET比表面積等を調整することにより、所望の範囲に調整することができる。 The total light transmittance, the light transmittance at a wavelength of 700 nm, and the light transmittance at a wavelength of 1400 nm of the near-infrared absorbing member of the present invention described above are the content of the powder of the present invention, such as the type and content of the matrix resin. , The crystal structure, the average wavelength, the BET specific surface area, and the like can be adjusted to a desired range.

ヘーズの測定は、JIS K 7136:2000に準拠して実施される。全光線透過率の測定は、JIS K 7375:2008に準拠して実施される。ヘーズ及び全光線透過率の測定には、例えば、ヘーズメーター(日本電色工業株式会社製「NDH2000」)が使用される。 Haze measurements are performed in accordance with JIS K 7136: 2000. Measurements of total light transmittance are performed in accordance with JIS K 7375: 2008. For the measurement of haze and total light transmittance, for example, a haze meter (“NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd.) is used.

以上のように、本発明の近赤外線吸収性材料(近赤外線吸収性粒子、該近赤外線吸収性粒子で構成される粉体、該粉体を含む分散液、該粉体を含む樹脂組成物等)並びに該近赤外線吸収性材料を使用して得られた近赤外線吸収性層及び近赤外線吸収性部材によれば、近赤外線吸収性が求められる窓材、電子機器等として好適に用いることができる。 As described above, the near-infrared absorbing material of the present invention (near-infrared absorbing particles, powder composed of the near-infrared absorbing particles, dispersion liquid containing the powder, resin composition containing the powder, etc. ) And the near-infrared absorbing layer and the near-infrared absorbing member obtained by using the near-infrared absorbing material, it can be suitably used as a window material, an electronic device, etc. that are required to have near-infrared absorbing property. ..

〔実施例1〕
(1)近赤外線吸収性粒子の作製
モル比がCs:Nb:W=0.25:0.1:0.9、合計量が4gとなるように、タングステン酸(富士フイルム和光純薬社製)、炭酸セシウム(富士フイルム和光純薬社製)及び五酸化ニオブ(三井金属鉱業社製)を配合し、乳鉢により混合した後、2vol.%H−Arガス雰囲気の管状炉を使用して、550℃で3時間焼成した。その後、カーボン粉末を得られた粉末量に対して0.1wt%添加し、乳鉢により混合した後、Arガス雰囲気の管状炉を使用して、800℃で3時間焼成した。それにより、Cs0.25Nb0.10.9で表される組成式を有する粉体を得た。
[Example 1]
(1) Preparation of near-infrared absorbing particles Tungstic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) so that the molar ratio is Cs: Nb: W = 0.25: 0.1: 0.9 and the total amount is 4 g. ), Cesium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and niobium pentoxide (manufactured by Mitsui Mining & Smelting Co., Ltd.), and mixed in a dairy pot. % Using a tubular furnace of H 2 -Ar gas atmosphere, and then calcined 3 hours at 550 ° C.. Then, 0.1 wt% of carbon powder was added to the obtained powder amount, mixed in a mortar, and then calcined at 800 ° C. for 3 hours using a tubular furnace having an Ar gas atmosphere. As a result, a powder having a composition formula represented by Cs 0.25 Nb 0.1 W 0.9 O 3 was obtained.

(2)分散液の調製
上記(1)で得られた粉体を27重量%、2−ブタノンを65重量%、分散剤を8重量%含有する混合物を調製し、この混合物に対してペイントシェイカーを使用して20時間分散処理を行って分散液を調製した。
(2) Preparation of Dispersion Solution A mixture containing 27% by weight of the powder obtained in (1) above, 65% by weight of 2-butanone, and 8% by weight of the dispersant was prepared, and a paint shaker was used for this mixture. Was used for 20 hours of dispersion treatment to prepare a dispersion.

(3)近赤外線吸収性層及び近赤外線吸収性部材の形成
上記(2)で得られた分散液を8重量%、熱硬化性樹脂(DIC製アクリディックA−165)を12重量%、2−ブタノンを80重量%含有する塗料を調製し、この塗料をポリエチレンテレフタレート(PET)フィルム(厚み100μm)上にバーコーターで塗布して塗膜(厚み3μm)を形成し、80℃で10分間乾燥して溶剤を蒸発させ、PETフィルム上に樹脂層(近赤外線吸収性層)を形成し、近赤外線吸収性部材とした。
(3) Formation of near-infrared absorbing layer and near-infrared absorbing member 8% by weight of the dispersion obtained in (2) above, 12% by weight of the thermosetting resin (Acridic A-165 manufactured by DIC), 2 -A paint containing 80% by weight of butanone is prepared, and this paint is applied on a polyethylene terephthalate (PET) film (thickness 100 μm) with a bar coater to form a coating film (thickness 3 μm), and dried at 80 ° C. for 10 minutes. The solvent was evaporated to form a resin layer (near-infrared absorbing layer) on the PET film to form a near-infrared absorbing member.

(4)粉体物性の分析及び測定
上記(1)で得られた粉体の物性を明らかにするために、上記と同様にして、BET比表面積、動的光散乱法(DLS)による平均粒径、X線小角散乱法(SAXS)による平均粒径及び結晶構造の分析又は測定を実施した。また、上記と同様にして、当該粉体を用いた近赤外線吸収性部材のL値、b値、ヘーズ値(Hz)、全光線透過率(TT)、波長700nmの光の透過率(Tλ700)及び波長1400nmの光の透過率(Tλ1400)の分析又は測定を実施した。
結果を表1に示す。
(4) Analysis and measurement of powder physical properties In order to clarify the physical properties of the powder obtained in (1) above, the BET specific surface area and the average grain size by dynamic light scattering method (DLS) are obtained in the same manner as above. Analysis or measurement of diameter, average particle size and crystal structure by small-angle X-ray scattering (SAXS) was performed. Further, in the same manner as described above, the L * value, b * value, haze value (Hz), total light transmittance (TT), and light transmittance at a wavelength of 700 nm of the near-infrared absorbing member using the powder ( T λ700) and transmittance of light having a wavelength of 1400nm the analysis or measurement of the (T λ1400) was performed.
The results are shown in Table 1.

〔実施例2〕
モル比をCs:Nb:W=0.25:0.2:0.8に変更した点を除き、実施例1と同様にして、Cs0.25Nb0.20.8で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 2]
Cs 0.25 Nb 0.2 W 0.8 O 3 in the same manner as in Example 1 except that the molar ratio was changed to Cs: Nb: W = 0.25: 0.2: 0.8. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例3〕
モル比をCs:Nb:W=0.25:0.3:0.7に変更した点を除き、実施例1と同様にして、Cs0.25Nb0.30.7で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 3]
Cs 0.25 Nb 0.3 W 0.7 O 3 in the same manner as in Example 1 except that the molar ratio was changed to Cs: Nb: W = 0.25: 0.3: 0.7. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例4〕
モル比をCs:Nb:W=0.25:0.4:0.6に変更した点を除き、実施例1と同様にして、Cs0.25Nb0.40.6で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 4]
Cs 0.25 Nb 0.4 W 0.6 O 3 in the same manner as in Example 1 except that the molar ratio was changed to Cs: Nb: W = 0.25: 0.4: 0.6. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例5〕
用いる原料を五酸化ニオブから酸化アルミニウム(富士フイルム和光純薬社製)に変更し、モル比をCs:Al:W=0.25:0.1:0.9に変更した点を除き、実施例1と同様にして、Cs0.25Al0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 5]
Implemented except that the raw material used was changed from niobium pentoxide to aluminum oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and the molar ratio was changed to Cs: Al: W = 0.25: 0.1: 0.9. In the same manner as in Example 1, a powder having a composition formula represented by Cs 0.25 Al 0.1 W 0.9 O 3 was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例6〕
モル比をCs:Al:W=0.25:0.2:0.8に変更した点を除き、実施例5と同様にして、Cs0.25Al0.20.8で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 6]
Cs 0.25 Al 0.2 W 0.8 O 3 in the same manner as in Example 5 except that the molar ratio was changed to Cs: Al: W = 0.25: 0.2: 0.8. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例7〕
モル比をCs:Al:W=0.25:0.3:0.7に変更した点を除き、実施例5と同様にして、Cs0.25Al0.30.7で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 7]
Cs 0.25 Al 0.3 W 0.7 O 3 in the same manner as in Example 5 except that the molar ratio was changed to Cs: Al: W = 0.25: 0.3: 0.7. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例8〕
モル比をCs:Al:W=0.25:0.4:0.6に変更した点を除き、実施例5と同様にして、Cs0.25Al0.40.6で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 8]
Cs 0.25 Al 0.4 W 0.6 O 3 in the same manner as in Example 5 except that the molar ratio was changed to Cs: Al: W = 0.25: 0.4: 0.6. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例9〕
モル比をCs:Al:W=0.25:0.1:0.9に変更した点、及び、湿式粉砕の条件を変更した点(粉砕時間を5時間に変更した点)を除き、実施例5と同様にして、Cs0.25Al0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 9]
Implementation except that the molar ratio was changed to Cs: Al: W = 0.25: 0.1: 0.9 and the wet pulverization conditions were changed (the pulverization time was changed to 5 hours). In the same manner as in Example 5, a powder having a composition formula represented by Cs 0.25 Al 0.1 W 0.9 O 3 was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔実施例10〕
用いる原料を五酸化ニオブから酸化スカンジウム(富士フイルム和光純薬社製)に変更し、モル比をCs:Sc:W=0.25:0.1:0.9に変更した点を除き、実施例1と同様にして、Cs0.25Sc0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Example 10]
Conducted except that the raw material used was changed from niobium pentoxide to scandium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and the molar ratio was changed to Cs: Sc: W = 0.25: 0.1: 0.9. In the same manner as in Example 1, a powder having a composition formula represented by Cs 0.25 Sc 0.1 W 0.9 O 3 was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔比較例1〕
モル比がRb:Nb:W=0.25:0.1:0.9、合計量が4gとなるように、タングステン酸(富士フイルム和光純薬社製)、炭酸ルビジウム(富士フイルム和光純薬社製)及び五酸化ニオブ(三井金属鉱業社製)を配合した点を除き、実施例1と同様にして、Rb0.25Nb0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Comparative Example 1]
Tungsic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), rubidium carbonate (Fujifilm Wako Pure Chemical Industries, Ltd.) so that the molar ratio is Rb: Nb: W = 0.25: 0.1: 0.9 and the total amount is 4 g. Rb 0.25 Nb 0.1 W 0.9 O 3 in the same manner as in Example 1 except that niobium pentoxide (manufactured by Mitsui Metal Mining Co., Ltd.) was blended. Obtained powder to have. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔比較例2〕
モル比がNa:Nb:W=0.25:0.1:0.9、合計量が4gとなるように、タングステン酸(富士フイルム和光純薬社製)、炭酸ナトリウム(富士フイルム和光純薬社製)及び五酸化ニオブ(三井金属鉱業社製)を配合した点を除き、実施例1と同様にして、Na0.25Nb0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Comparative Example 2]
Tungstic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), sodium carbonate (Fujifilm Wako Pure Chemical Industries, Ltd.) so that the molar ratio is Na: Nb: W = 0.25: 0.1: 0.9 and the total amount is 4 g. The composition formula represented by Na 0.25 Nb 0.1 W 0.9 O 3 was obtained in the same manner as in Example 1 except that niobium pentoxide (manufactured by Mitsui Mining & Smelting Co., Ltd.) was blended. Obtained powder to have. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔比較例3〕
モル比がK:Nb:W=0.25:0.1:0.9、合計量が4gとなるように、タングステン酸(富士フイルム和光純薬社製)、炭酸カリウム(富士フイルム和光純薬社製)及び五酸化ニオブ(三井金属鉱業社製)を配合した点を除き、実施例1と同様にして、K0.25Nb0.10.9で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Comparative Example 3]
Tungsic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), potassium carbonate (Fujifilm Wako Pure Chemical Industries, Ltd.) so that the molar ratio is K: Nb: W = 0.25: 0.1: 0.9 and the total amount is 4 g. The composition formula represented by K 0.25 Nb 0.1 W 0.9 O 3 was obtained in the same manner as in Example 1 except that niobium pentoxide (manufactured by Mitsui Mining & Smelting Co., Ltd.) was blended. Obtained powder to have. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔比較例4〕
モル比をCs:Nb:W=0.25:0.5:0.5に変更した点を除き、実施例1と同様にして、Cs0.25Nb0.50.5で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Comparative Example 4]
Cs 0.25 Nb 0.5 W 0.5 O 3 in the same manner as in Example 1 except that the molar ratio was changed to Cs: Nb: W = 0.25: 0.5: 0.5. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

〔比較例5〕
モル比をCs:Al:W=0.25:0.5:0.5に変更した点を除き、実施例5と同様にして、Cs0.25Al0.50.5で表される組成式を有する粉体を得た。得られた粉体に関する分析及び測定を実施例1と同様にして実施した。
[Comparative Example 5]
Cs 0.25 Al 0.5 W 0.5 O 3 in the same manner as in Example 5 except that the molar ratio was changed to Cs: Al: W = 0.25: 0.5: 0.5. A powder having the composition formula shown was obtained. The analysis and measurement of the obtained powder were carried out in the same manner as in Example 1.

実施例1〜10及び比較例1〜5の結果を表1に示す。 The results of Examples 1 to 10 and Comparative Examples 1 to 5 are shown in Table 1.

Figure 2020158367
Figure 2020158367

表1に示すように、実施例1〜10の粉末は本発明の式(I)で示される組成を有するため、そのような組成を有さない比較例1〜5の粉末と比較して透明性を維持しつつ青味が低減していることが分かる。 As shown in Table 1, since the powders of Examples 1 to 10 have the composition represented by the formula (I) of the present invention, they are transparent as compared with the powders of Comparative Examples 1 to 5 having no such composition. It can be seen that the bluish tint is reduced while maintaining the sex.

なお、実施例9の粉末は、動的光散乱法で測定された平均粒径が150nm超、BET比表面積が10m/g未満であり、粒径が大きいため、均一な樹脂層を形成できなかった。このため、実施例9の粉末については、ヘーズ値及び全光線透過率の測定を実施しなかった。 The powder of Example 9 has an average particle size of more than 150 nm and a BET specific surface area of less than 10 m 2 / g measured by a dynamic light scattering method, and has a large particle size, so that a uniform resin layer can be formed. There wasn't. Therefore, for the powder of Example 9, the haze value and the total light transmittance were not measured.

Claims (16)

下記式(I):
Cs1−q ・・・(I)
[式中、
Mは、Nb、Ta、Al及びScからなる群から選択される1種又は2種以上の元素を表し、
pは、0.01≦p<0.3を満たし、
qは、0.01≦q<0.5を満たし、
q及びrは、3<r/(1−q)を満たす。]
で表される組成を有する、近赤外線吸収性粒子。
The following formula (I):
Cs p M q W 1-q Or ... (I)
[During the ceremony,
M represents one or more elements selected from the group consisting of Nb, Ta, Al and Sc.
p satisfies 0.01 ≦ p <0.3 and
q satisfies 0.01 ≦ q <0.5 and
q and r satisfy 3 <r / (1-q). ]
Near-infrared absorbing particles having a composition represented by.
六方晶の結晶構造を有する、請求項1に記載の近赤外線吸収性粒子。 The near-infrared absorbing particle according to claim 1, which has a hexagonal crystal structure. 請求項1又は2に記載の近赤外線吸収性粒子で構成される粉体。 A powder composed of the near-infrared absorbing particles according to claim 1 or 2. 動的光散乱法で測定された平均粒径が150nm以下である、請求項3に記載の粉体。 The powder according to claim 3, wherein the average particle size measured by a dynamic light scattering method is 150 nm or less. X線小角散乱法で測定された平均粒径が200nm以下である、請求項3又は4に記載の粉体。 The powder according to claim 3 or 4, wherein the average particle size measured by the small-angle X-ray scattering method is 200 nm or less. BET比表面積が10m/g以上である、請求項3〜5のいずれか一項に記載の粉体。 The powder according to any one of claims 3 to 5, which has a BET specific surface area of 10 m 2 / g or more. 分散媒と、前記分散媒に分散した請求項3〜6のいずれか一項に記載の粉体とを含む、分散液。 A dispersion liquid containing a dispersion medium and the powder according to any one of claims 3 to 6 dispersed in the dispersion medium. 樹脂と、請求項3〜6のいずれか一項に記載の粉体とを含む、樹脂組成物。 A resin composition containing a resin and the powder according to any one of claims 3 to 6. マトリックス樹脂と、前記マトリックス樹脂に分散した請求項3〜6のいずれか一項に記載の粉体とを含む、近赤外線吸収性層。 A near-infrared absorbing layer containing the matrix resin and the powder according to any one of claims 3 to 6 dispersed in the matrix resin. 支持体と、前記支持体の表面上に形成された請求項9に記載の近赤外線吸収性層とを備える、近赤外線吸収性部材。 A near-infrared absorbing member comprising a support and a near-infrared absorbing layer formed on the surface of the support according to claim 9. 樹脂成形体と、前記樹脂成形体中に含まれる請求項3〜6のいずれか一項に記載の粉体とを含む、近赤外線吸収性部材。 A near-infrared absorbing member containing a resin molded body and the powder according to any one of claims 3 to 6 contained in the resin molded body. 表色系のL値及びb値が、それぞれ、85以上97以下及び−2以上7以下である、請求項10又は11に記載の近赤外線吸収性部材。 The near-infrared absorbing member according to claim 10 or 11, wherein the L * value and b * value of the L * a * b * color system are 85 or more and 97 or less and -2 or more and 7 or less, respectively. ヘーズ値が10%以下である、請求項10〜12のいずれか一項に記載の近赤外線吸収性部材。 The near-infrared absorbing member according to any one of claims 10 to 12, wherein the haze value is 10% or less. 全光線透過率が60%以上92%未満である、請求項10〜13のいずれか一項に記載の近赤外線吸収性部材。 The near-infrared absorbing member according to any one of claims 10 to 13, wherein the total light transmittance is 60% or more and less than 92%. 波長700nmの光の透過率が40%以上である、請求項10〜14のいずれか一項に記載の近赤外線吸収性部材。 The near-infrared absorbing member according to any one of claims 10 to 14, wherein the transmittance of light having a wavelength of 700 nm is 40% or more. 波長700nmの光の透過率(Tλ700)に対する、波長1400nmの光の透過率(Tλ1400)の比(Tλ1400/Tλ700)が、0.50以下である、請求項10〜15のいずれか一項に記載の近赤外線吸収性部材。 For the transmittance of light having a wavelength of 700nm (T λ700), the ratio of the transmittance of light having a wavelength of 1400nm (T λ1400) (T λ1400 / T λ700) is 0.50 or less, any one of claims 10 to 15 The near-infrared absorbing member according to item 1.
JP2019061724A 2019-03-27 2019-03-27 Near infrared absorbing material, near infrared absorbing layer, and near infrared absorbing member Expired - Fee Related JP6743226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061724A JP6743226B1 (en) 2019-03-27 2019-03-27 Near infrared absorbing material, near infrared absorbing layer, and near infrared absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061724A JP6743226B1 (en) 2019-03-27 2019-03-27 Near infrared absorbing material, near infrared absorbing layer, and near infrared absorbing member

Publications (2)

Publication Number Publication Date
JP6743226B1 JP6743226B1 (en) 2020-08-19
JP2020158367A true JP2020158367A (en) 2020-10-01

Family

ID=72048015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061724A Expired - Fee Related JP6743226B1 (en) 2019-03-27 2019-03-27 Near infrared absorbing material, near infrared absorbing layer, and near infrared absorbing member

Country Status (1)

Country Link
JP (1) JP6743226B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258581A (en) * 2008-03-21 2009-11-05 Sumitomo Metal Mining Co Ltd Near-infrared absorption filter for plasma display panel, manufacturing method, and plasma display panel
JP2012072402A (en) * 2011-09-26 2012-04-12 Sumitomo Metal Mining Co Ltd Particulate dispersion of infrared-shielding material, infrared-shielding body, method for producing particulate of infrared-shielding material, and particulate of infrared-shielding material
JP2017007889A (en) * 2015-06-19 2017-01-12 ナガセケムテックス株式会社 Composite tungsten oxide fine particle, infrared ray shielding resin composition and infrared ray shielding molded body
WO2018203025A1 (en) * 2017-05-05 2018-11-08 William Blythe Limited Tungsten oxide-based material
JPWO2017159791A1 (en) * 2016-03-16 2019-01-31 住友金属鉱山株式会社 Near-infrared shielding material fine particle dispersion, near-infrared shielding body, near-infrared shielding laminated structure, and methods for producing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258581A (en) * 2008-03-21 2009-11-05 Sumitomo Metal Mining Co Ltd Near-infrared absorption filter for plasma display panel, manufacturing method, and plasma display panel
JP2012072402A (en) * 2011-09-26 2012-04-12 Sumitomo Metal Mining Co Ltd Particulate dispersion of infrared-shielding material, infrared-shielding body, method for producing particulate of infrared-shielding material, and particulate of infrared-shielding material
JP2017007889A (en) * 2015-06-19 2017-01-12 ナガセケムテックス株式会社 Composite tungsten oxide fine particle, infrared ray shielding resin composition and infrared ray shielding molded body
JPWO2017159791A1 (en) * 2016-03-16 2019-01-31 住友金属鉱山株式会社 Near-infrared shielding material fine particle dispersion, near-infrared shielding body, near-infrared shielding laminated structure, and methods for producing them
WO2018203025A1 (en) * 2017-05-05 2018-11-08 William Blythe Limited Tungsten oxide-based material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. R. DEY, ET AL: "Crystal structure of caesium niobium tungsten bronzes, Cs0.23(Nb0.09W0.91)O3 and Cs0.29(Nb0.10W0.90)", ZEITSCHRIFT FUR KRISTALLOGRAPHIE - NEW CRYSTAL STRUCTURES, vol. Volume 217, Issue JG, Pages 461-462, JPN6020005515, 19 September 2002 (2002-09-19), ISSN: 0004213181 *
MARIA D. SORIANO: "Self-organized transformation from hexagonal to orthorhombic bronze of Cs-Nb-W-O mixed oxides prepar", CRYSTAL GROWTH & DESIGN, vol. Vol.17, Issue 12, 6320-6331, JPN6020005516, 27 October 2017 (2017-10-27), ISSN: 0004253711 *

Also Published As

Publication number Publication date
JP6743226B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
KR101194180B1 (en) Antireflection laminate
CN105579123B (en) Inorganic particle dispersion, inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP6354409B2 (en) Metal oxide particle dispersion, metal oxide particle-containing composition, coating film, display device
JP5308635B2 (en) Absorbency control method of near-infrared absorbing composition
JP2021517522A (en) Environmentally friendly heat-shielding film using non-radioactive stable isotopes and its manufacturing method
US11136241B2 (en) Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, coating liquid for heat ray shielding layer, and heat ray shielding layer, heat ray shielding resin film, heat ray shielding dispersion body using them
TWI421316B (en) Transparent conductive film forming composition, transparent conductive film, and display
JP6443041B2 (en) Silica sol dispersion and silica porous film forming composition
JP5082814B2 (en) Inorganic oxide-containing transparent composite and method for producing the same
JP6743226B1 (en) Near infrared absorbing material, near infrared absorbing layer, and near infrared absorbing member
EP4238931A1 (en) Zirconium-containing nitride powder and ultraviolet ray-curable black organic composition
JP4696098B2 (en) Black material, black material dispersion, black light shielding film, and substrate with black light shielding film
JP2015044921A (en) Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
JP2015017012A (en) Oily dispersion liquid, thin film and method for producing the same
JP5686942B2 (en) Hard coat film-forming coating material and substrate with hard coat film
JP2009137774A (en) Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
JP6489049B2 (en) Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP6547749B2 (en) Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film, and display device
WO2022202762A1 (en) Antibacterial and antiviral agent, coating composition, resin composition, coating layer and molded body
WO2024122578A1 (en) Black dispersion liquid, ultraviolet ray curable black composition, resin composition, material for manufacturing electronic components, and electronic component
JP2012058506A (en) Optical material, tin oxide fine particle dispersion, tin oxide fine particle dispersion coating material, method for manufacturing optical material, high refractive index film, and antistatic film
KR102166845B1 (en) Hard coating film
JP2017222091A (en) Heat ray-shielding film and heat ray-shielding glass
JP2013075824A (en) Transparent composite and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6743226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees