JP2020157455A - Diamond-coated cemented carbide tool - Google Patents

Diamond-coated cemented carbide tool Download PDF

Info

Publication number
JP2020157455A
JP2020157455A JP2019062302A JP2019062302A JP2020157455A JP 2020157455 A JP2020157455 A JP 2020157455A JP 2019062302 A JP2019062302 A JP 2019062302A JP 2019062302 A JP2019062302 A JP 2019062302A JP 2020157455 A JP2020157455 A JP 2020157455A
Authority
JP
Japan
Prior art keywords
tool
diamond
mass
cemented carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019062302A
Other languages
Japanese (ja)
Inventor
智紀 安見
Tomonori Yasumi
智紀 安見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019062302A priority Critical patent/JP2020157455A/en
Publication of JP2020157455A publication Critical patent/JP2020157455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a diamond-coated cemented carbide tool which suppresses chipping, defects, detachment and the like, even in high-speed and high-feed cutting work of hard-to-cut materials, such as CFRP/AI materials, and which exhibits excellent wear resistance over a long period of use.SOLUTION: In a diamond-coated cemented carbide tool, a surface of a tool substrate is coated with a diamond film. The tool substrate comprises a composition containing 72.4-93.6 mass% of WC, 4.0-12.0 mass% of Co, 2.4-15.6 mass% of Cr, 1.0 mass% or less of a grain growth inhibitor, and the balance of inevitable impurities. Further, at an interface of the tool substrate and the diamond film, an interface layer is provided containing nitride and/or carbonitride of Cr, and the interface layer covers 50 area% or more of the tool substrate.SELECTED DRAWING: None

Description

本発明は、切削刃先に高負荷が作用するCFRP(炭素繊維強化プラスチック)とAl合金等からなる難削複合材(以下、「CFRP/Al材」という)等の高速高送り切削加工であっても切削時のバリが低減し、工具寿命を改善したダイヤモンド被覆超硬合金製工具に関する。 The present invention is a high-speed, high-feed cutting process for a difficult-to-cut composite material (hereinafter referred to as "CFRP / Al material") composed of CFRP (carbon fiber reinforced plastic) and Al alloy, etc., on which a high load acts on the cutting edge. Also related to diamond-coated cemented carbide tools with reduced burrs during cutting and improved tool life.

従来、WC基超硬合金からなる工具基体に、ダイヤモンド皮膜を被覆したダイヤモンド被覆超硬合金製工具(以下、「ダイヤモンド被覆工具」ということがある)が知られており、工具としての特性を改善するために、種々の提案がなされている。 Conventionally, a diamond-coated cemented carbide tool (hereinafter, sometimes referred to as a "diamond-coated tool") in which a diamond film is coated on a tool substrate made of a WC-based cemented carbide is known, and its characteristics as a tool are improved. Various proposals have been made to do so.

例えば、特許文献1には、Coを3〜6質量%含む炭化タングステン超硬合金製基体を村上試薬にてエッチングした後、硫酸と過酸化水素でエッチングした基体表面にダイヤモンド皮膜を有する多結晶ダイヤモンド被覆工具が記載されている。 For example, Patent Document 1 describes a polycrystalline diamond having a diamond film on the surface of a substrate made of tungsten carbide cemented carbide containing 3 to 6% by mass of Co, etched with Murakami's reagent and then etched with sulfuric acid and hydrogen peroxide. Covering tools are listed.

また、例えば、特許文献2には、WCとCoからなる基材と、その上に適用された中間層と、前記中間層に適用されたCVD法によるダイヤモンド皮膜を備えた切削工具であって、前記中間層は、主に金属を含んだものであり、前記中間層の金属部分は、主にWおよび/またはCrからなり、前記中間層は、0.5μm−3.0μmのRz値によって規定される面粗度を有する、ことを特徴とするダイヤモンド被覆工具が記載されている。 Further, for example, Patent Document 2 describes a cutting tool provided with a base material made of WC and Co, an intermediate layer applied thereto, and a diamond film applied to the intermediate layer by a CVD method. The intermediate layer mainly contains metal, the metal portion of the intermediate layer is mainly composed of W and / or Cr, and the intermediate layer is defined by an Rz value of 0.5 μm to 3.0 μm. A diamond-coated tool is described that has a surface roughness to be formed.

さらに、例えば、特許文献3には、超硬合金の表面から100μmまでの間の結合相量を該超硬合金内部の結合相量に比較して減少させるとともに該超硬合金表面にダイヤモンド皮膜を被覆させたことを特徴とするダイヤモンド被覆工具が記載されている。 Further, for example, in Patent Document 3, the amount of bonded phase between the surface of the cemented carbide up to 100 μm is reduced as compared with the amount of bonded phase inside the cemented carbide, and a diamond film is formed on the surface of the cemented carbide. A diamond-coated tool characterized by being coated is described.

加えて、例えば、特許文献4には、WC粒子と3〜15質量%のCo結合相を含むWC基超硬合金からなる工具基体表面に、平均膜厚3〜30μmのダイヤモンド皮膜が被覆形成されたダイヤモンド被覆工具において、(a)前記WC粒子は、微粒WC粒子と粗粒WC粒子の混粒からなり、かつ、平均粒径は0.5〜2.5μmであり、(b)前記工具の逃げ面に垂直な縦断面観察で逃げ面を1辺とする刃先の先端から50μm四方の縦断面観察において、少なくとも、逃げ面のダイヤモンド皮膜と工具基体の界面から、前記工具基体の内部へ1〜5μmの深さ領域におけるCo結合相の一部が除去され、該Co結合相の一部が除去された領域では、WC粒子間の接合界面長がWC粒子の周囲長の0.20以上0.60以下であることを特徴とするダイヤモンド被覆工具が記載されている。 In addition, for example, in Patent Document 4, a diamond film having an average thickness of 3 to 30 μm is formed on the surface of a tool substrate made of a WC-based cemented carbide containing WC particles and a Co-bonded phase of 3 to 15% by mass. In the diamond-coated tool, (a) the WC particles are a mixture of fine WC particles and coarse WC particles, and the average particle size is 0.5 to 2.5 μm, and (b) the tool. In the vertical cross-sectional observation perpendicular to the flank surface, in the vertical cross-sectional observation 50 μm square from the tip of the cutting edge with the flank surface as one side, at least from the interface between the diamond film on the flank surface and the tool substrate, 1 to the inside of the tool substrate. In the region where a part of the Co-bonded phase was removed in the region having a depth of 5 μm and a part of the Co-bonded phase was removed, the bonding interface length between the WC particles was 0.20 or more of the peripheral length of the WC particles. Described are diamond coated tools characterized by 60 or less.

そして、例えば、特許文献5には、WC粒子を主体とする硬質相と、その硬質相を結合するCoを主体とする結合相と、Cr、Nb、Zr、V及びTiから選択される1種以上の元素とを含有し、前記WC粒子は、フィッシャー法で測定される平均粒子径が0.4μm〜0.6μmの細粒と、フィッシャー法で測定される平均粒子径が1.2μm〜1.4μmの粗粒とから実質的に構成され、前記細粒および前記粗粒は、質量比が前記細粒/前記粗粒=25/75〜15/85であり、前記Coは、含有量が0.7質量%〜2質量%であり、前記元素は、含有量が0.09質量%〜0.9質量%であることを特徴とするダイヤモンド被覆工具が記載されている。 Then, for example, Patent Document 5 describes a hard phase mainly composed of WC particles, a bonded phase mainly composed of Co that bonds the hard phases, and one selected from Cr, Nb, Zr, V, and Ti. The WC particles containing the above elements include fine particles having an average particle size of 0.4 μm to 0.6 μm measured by the Fisher method and 1.2 μm to 1 having an average particle size measured by the Fisher method. It is substantially composed of coarse particles of .4 μm, and the fine particles and the coarse particles have a mass ratio of the fine particles / the coarse particles = 25/75 to 15/85, and the content of Co is A diamond coating tool is described in which the content is 0.7% by mass to 2% by mass and the content of the element is 0.09% by mass to 0.9% by mass.

特許第3504675号公報Japanese Patent No. 3504675 特表2013−532227号公報Special Table 2013-532227 特許第2539922号公報Japanese Patent No. 2539922 特開2016−87726号公報Japanese Unexamined Patent Publication No. 2016-87726 特開2017−39954号公報Japanese Unexamined Patent Publication No. 2017-39954

近年の切削加工における面品位の要求は高まっており、例えば、CFRP/Al材の穴あけ加工やトリミング加工においてはバリ(アンカットファイバー)の発生は許されないものとなっている。
そのため、従来は、突発欠損の発生を抑制する目的で、切削工具には、ホーニングと呼ばれる刃先に丸みが付与されていたが、最近は、面品位を確保すべく切れ味向上のために、刃先のシャープエッジ化が進められている。
しかし、前記各特許文献に記載されたダイヤモンド被覆工具に対して、刃先のシャープエッジ化を行うと、以下に述べるような問題点があった。
In recent years, there has been an increasing demand for surface quality in cutting, and for example, burrs (uncut fibers) are not allowed in drilling and trimming of CFRP / Al materials.
Therefore, in the past, cutting tools were given a rounded cutting edge called honing for the purpose of suppressing the occurrence of sudden defects, but recently, in order to improve the sharpness to ensure surface quality, the cutting edge Sharpening is being promoted.
However, when the cutting edge of the diamond-coated tool described in each of the patent documents is sharpened, there are problems as described below.

すなわち、特許文献1に記載のダイヤモンド被覆工具は、酸に浸漬することにより工具基体表面のCoが除去されているため、工具基体表面近傍は脆化相となり、刃先の強度不足が発生して、特に、CFRP/Al材の高速高送り切削加工においてはダイヤモンド皮膜の脱落やチッピングが生じてしまう。 That is, in the diamond-coated tool described in Patent Document 1, since Co on the surface of the tool substrate is removed by immersing in acid, the vicinity of the surface of the tool substrate becomes an embrittlement phase, resulting in insufficient strength of the cutting edge. In particular, in high-speed high-feed cutting of CFRP / Al materials, the diamond film may fall off or chipping may occur.

また、特許文献2に記載のダイヤモンド被覆工具は、PVD法により中間層を設けているが、工具基体と中間層との密着性が十分とはいえず、ダイヤモンド皮膜が剥離することがあり、特に、CFRP/Al材の高速高送り切削加工においては十分な工具寿命を有していない。 Further, the diamond-coated tool described in Patent Document 2 is provided with an intermediate layer by the PVD method, but the adhesion between the tool substrate and the intermediate layer is not sufficient, and the diamond film may peel off. , CFRP / Al material does not have a sufficient tool life in high-speed high-feed cutting.

さらに、特許文献3に記載のダイヤモンド被覆工具は、ダイヤモンド皮膜と工具基体との密着強度向上と強度低下抑制をバランスさせることが難しく、CFRP/Al材等の難削材の高速高送り切削加工のように、刃先に短時間に繰り返し衝撃が強く作用する切削に用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、早期に寿命に至ってしまう。また、この被覆工具を製造するに当たり、結合相の液相出現温度を超える1400℃の浸炭性の雰囲気で工具基体の処理を行っているため、この被覆工具は高精度な寸法精度を要求する加工への使用は難しい。 Further, the diamond-coated tool described in Patent Document 3 is difficult to balance the improvement of the adhesion strength between the diamond film and the tool substrate and the suppression of the decrease in strength, and is used for high-speed high-feed cutting of difficult-to-cut materials such as CFRP / Al materials. As described above, when it is used for cutting in which a strong impact is repeatedly applied to the cutting edge in a short period of time, abnormal damage such as chipping, chipping, and peeling is likely to occur, and the life of the cutting edge is reached early. Further, in manufacturing this covering tool, since the tool substrate is processed in a carburizing atmosphere of 1400 ° C., which exceeds the liquid phase appearance temperature of the coupled phase, this covering tool requires high precision dimensional accuracy. Difficult to use for.

加えて、特許文献4に記載されているダイヤモンド被覆工具は、ダイヤモンド皮膜と工具基体との密着性が向上し長寿命を有するが、工具基体表面に存在するCoを珪化物にする処理を必要とし、ダイヤモンド被覆工具を形成する工程が煩雑である。 In addition, the diamond-coated tool described in Patent Document 4 has improved adhesion between the diamond film and the tool substrate and has a long life, but requires a treatment for silicifying Co existing on the surface of the tool substrate. , The process of forming a diamond-coated tool is complicated.

そして、特許文献5に記載されているダイヤモンド被覆工具は、工具基体表面に存在するCoを珪化物にする処理を必要とせず、ダイヤモンド被覆工具を形成する工程を簡素化できるものの、CFRP/Al材等の難削材の高速高送り切削加工のように、刃先に短時間に繰り返し衝撃が強く作用する切削条件に用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、早期に寿命に至るという問題があった。 The diamond-coated tool described in Patent Document 5 does not require a process of silicifying Co existing on the surface of the tool substrate, and can simplify the process of forming the diamond-coated tool, but is a CFRP / Al material. When used under cutting conditions where a strong impact is repeatedly applied to the cutting edge in a short period of time, such as high-speed, high-feed cutting of difficult-to-cut materials such as, abnormal damage such as chipping, chipping, and peeling is likely to occur, and it is early. There was a problem that it reached the end of its life.

本発明は、刃先に高負荷が作用するCFRP/Al材等の難削材の高速高送り切削加工であっても、チッピング、欠損、剥離等を抑制し、優れた耐摩耗性を長期の使用にわって発揮することができるダイヤモンド被覆超硬合金製工具を提供することを目的とする。 The present invention suppresses chipping, chipping, peeling, etc. even in high-speed high-feed cutting of difficult-to-cut materials such as CFRP / Al materials in which a high load acts on the cutting edge, and provides excellent wear resistance for a long period of time. It is an object of the present invention to provide a diamond-coated cemented carbide tool that can be exhibited in the future.

本発明者は、CFRP/Al材等の難削材の高速高送り切削加工のように、切刃に高負荷が作用する切削条件に供した場合であっても、チッピング、欠損、剥離等を抑制し、耐摩耗性を発揮するダイヤモンド被覆超硬合金製工具を提供すべく、工具基体(WC超硬合金)の組成と工具基体とダイヤモンド皮膜との界面にある工具基体の界面の組織について検討を行った。その結果、WC超硬合金に含まれているCrの含有割合を従来の割合よりも大きくし、Crの窒化物および/または炭窒化物を含む層を前記界面に所定量形成すると、ダイヤモンド皮膜と工具基体との密着性が向上し、CFRP/Al材等の難削材の高速高送り切削加工のように切刃に高負荷が作用する切削条件に供した場合であっても、チッピング、欠損、剥離等を抑制し、優れた耐摩耗性を発揮するという新規な知見を得た。 The present inventor causes chipping, chipping, peeling, etc. even when subjected to cutting conditions in which a high load acts on the cutting edge, such as high-speed high-feed cutting of difficult-to-cut materials such as CFRP / Al materials. In order to provide a diamond-coated cemented carbide tool that suppresses and exhibits abrasion resistance, the composition of the tool substrate (WC cemented carbide) and the structure of the interface of the tool substrate at the interface between the tool substrate and the diamond film are examined. Was done. As a result, when the content ratio of Cr contained in the WC cemented carbide is made larger than the conventional ratio and a predetermined amount of a layer containing a nitride and / or carbonitride of Cr is formed at the interface, a diamond film is formed. Adhesion to the tool substrate is improved, and even when subjected to cutting conditions where a high load acts on the cutting edge, such as high-speed high-feed cutting of difficult-to-cut materials such as CFRP / Al materials, chipping and chipping We have obtained a new finding that it suppresses peeling and exhibits excellent wear resistance.

本発明は、前記知見に基づいてなされたものであって、
「(1)工具基体表面にダイヤモンド皮膜が被覆されたダイヤモンド被覆超硬合金製工具であって、
前記工具基体は、WC:72.4〜93.6質量%、Co:4.0〜12.0質量%、Cr:2.4〜15.6質量%、粒成長抑制剤:1.0質量%以下を含有し、残部が不可避的不純物である組成を有し、
前記工具基体は、前記ダイヤモンド皮膜との界面に、Crの窒化物および/または炭窒化物を含む界面層を有し、
前記界面層は、工具基体を50面積%以上覆っている、
ことを特徴とするダイヤモンド被覆超硬合金製工具。
(2)前記工具基体にCoがMCo質量%、CrがMCr質量%、それぞれ、含有されるとき、0.6≦MCr/MCo≦1.3であることを特徴とする前記(1)に記載されたダイヤモンド被覆超硬合金製工具。
(3)前記界面層が、0.5〜3.0μmの平均厚さであって、柱状結晶粒を有し、その柱状結晶粒の平均粒子幅が500nm以上であることを特徴とする前記(1)または(2)に記載のダイヤモンド被覆超硬合金製工具。
(4)工具刃先の任意の逃げ面に垂直な断面にて工具基体のすくい面と逃げ面とが交差する稜線の曲率半径が5μm以下であることを特徴とする前記(1)〜(3)のいずれかに記載されたダイヤモンド被覆超硬合金製工具。」
である。
The present invention has been made based on the above findings.
"(1) A diamond-coated cemented carbide tool in which the surface of the tool substrate is coated with a diamond film.
The tool substrate contains WC: 72.4 to 93.6% by mass, Co: 4.0 to 12.0% by mass, Cr: 2.4 to 15.6% by mass, and a grain growth inhibitor: 1.0% by mass. Has a composition containing less than% and the balance is an unavoidable impurity.
The tool substrate has an interface layer containing Cr nitride and / or carbonitride at the interface with the diamond film.
The interface layer covers 50 area% or more of the tool substrate.
A diamond-coated cemented carbide tool characterized by this.
(2) The tool substrate is characterized in that Co is MCo mass% and Cr is MCr mass%, respectively, and when they are contained, 0.6 ≦ M Cr / M Co ≦ 1.3. Diamond-coated cemented carbide tools described in.
(3) The above-mentioned (3), wherein the interface layer has an average thickness of 0.5 to 3.0 μm, has columnar crystal grains, and the average particle width of the columnar crystal grains is 500 nm or more. The diamond-coated cemented carbide tool according to 1) or (2).
(4) The radius of curvature of the ridge line where the rake face and the flank surface of the tool substrate intersect with each other in a cross section perpendicular to an arbitrary flank surface of the tool cutting edge is 5 μm or less. A diamond-coated cemented carbide tool described in any of. "
Is.

本発明のダイヤモンド被覆超硬合金製工具は、CFRP/Al材等の難削材の高速高送り切削加工においても、ダイヤモンド皮膜の剥離を抑制し、工具の寿命が向上する。 The diamond-coated cemented carbide tool of the present invention suppresses peeling of the diamond film even in high-speed, high-feed cutting of difficult-to-cut materials such as CFRP / Al materials, and improves the life of the tool.

以下、本発明を詳細に説明する。なお、本明細書および特許請求の範囲において、数値範囲を「X〜Y」のように表現する場合、その範囲は上限および下限の数値を含む(すなわち、X以上Y以下)ものとし、Xに単位の記載がなくYにのみ単位の記載がなされているときは、Xの単位はYの単位と同じである。 Hereinafter, the present invention will be described in detail. In addition, in this specification and claims, when a numerical range is expressed as "X to Y", the range shall include upper and lower numerical values (that is, X or more and Y or less), and X shall be used. When there is no description of the unit and the unit is described only in Y, the unit of X is the same as the unit of Y.

1.工具基体
本発明において、工具基体はWCを含む硬質相とCoを含む結合相を含む組成を有しており、その組成について説明する。
1. 1. Tool Base In the present invention, the tool base has a composition including a hard phase containing WC and a bonded phase containing Co, and the composition thereof will be described.

硬質相:
硬質相を構成するWCの含有割合は、72.4〜93.6質量%とする。この範囲とする理由は、WC含有量が72.4質量%未満となると、工具基体としての硬さが不足し、一方、93.6質量%を超えると、工具基体の靭性が低下し切削加工時にチッピングや欠損が発生するためである。WCの含有割合は、79.3〜92.0質量%がより好ましい。
Hard phase:
The content ratio of WC constituting the hard phase is 72.4 to 93.6% by mass. The reason for setting this range is that when the WC content is less than 72.4% by mass, the hardness of the tool base is insufficient, while when it exceeds 93.6% by mass, the toughness of the tool base is lowered and cutting is performed. This is because chipping and defects sometimes occur. The content ratio of WC is more preferably 79.3 to 92.0% by mass.

結合相:
結合相を構成するCoの含有割合は、4.0〜12.0質量%とする。この範囲とする理由は、4.0質量%未満であると、工具基体の靭性が低下し切削加工時にチッピングや欠損が発生し、一方、12.0質量%を超えると工具基体の硬さが不足して脆弱になるためである。Coの含有割合は、5.0〜9.0質量%がより好ましい。
Bonding phase:
The content ratio of Co constituting the bonded phase is 4.0 to 12.0% by mass. The reason for setting this range is that if it is less than 4.0% by mass, the toughness of the tool base is lowered and chipping or chipping occurs during cutting, while if it exceeds 12.0% by mass, the hardness of the tool base becomes low. This is because it is insufficient and vulnerable. The content ratio of Co is more preferably 5.0 to 9.0% by mass.

Crの含有割合:
従来のCrの含有目的は、硬質粒子(硬質相)の成長の抑制であって、工具基体には少量含有されているが、本発明では、工具基体とダイヤモンド皮膜との密着性を向上させる目的のために、従来の少量含有ではなく、2.4〜15.6質量%と多量に含有させる。この多量の含有により工具基体とダイヤモンド皮膜との密着性が飛躍的に向上し、CFRP/Al材等の難削材の高速高送り切削加工においても、ダイヤモンド皮膜の剥離を抑制し、工具寿命が向上する。なお、Crの含有割合は4.5〜15質量%がより好ましい。
Cr content:
The conventional purpose of containing Cr is to suppress the growth of hard particles (hard phase), and a small amount of Cr is contained in the tool base. However, in the present invention, the purpose is to improve the adhesion between the tool base and the diamond film. Therefore, it is contained in a large amount of 2.4 to 15.6% by mass instead of the conventional small amount. By containing this large amount, the adhesion between the tool substrate and the diamond film is dramatically improved, and even in high-speed high-feed cutting of difficult-to-cut materials such as CFRP / Al material, the peeling of the diamond film is suppressed and the tool life is extended. improves. The Cr content is more preferably 4.5 to 15% by mass.

ここで、Crは、工具基体形成後のガス窒化処理により、窒化物および/または炭窒化物として、工具基体表面近傍(例えば、工具基体表面から3μmの範囲内)に層状に界面層として存在することが好ましい。界面層が存在することにより、工具基体とダイヤモンド皮膜との密着性が向上する。 Here, Cr exists as a nitride and / or carbonitride as a layered interface layer in the vicinity of the surface of the tool substrate (for example, within a range of 3 μm from the surface of the tool substrate) by the gas nitriding treatment after the formation of the tool substrate. Is preferable. The presence of the interface layer improves the adhesion between the tool substrate and the diamond film.

この界面層は、工具基体の50面積%以上を覆うことが好ましい。その理由は、50面積%未満であると工具基体とダイヤモンド皮膜との密着性が十分ではないためである。ここで、工具基体の50面積%以上を覆うとは、以下のとおりのことである。刃先近傍の任意の逃げ面に垂直な方向の断面(膜厚方向の断面である縦断面)をCross−sectional Polisher(CP)にて加工し、加工した断面を走査電子顕微鏡により適切な倍率(例、倍率1000倍)にて工具基体表面近傍(ダイヤモンド皮膜と工具基体の界面を含んだ領域)を反射電子像にて撮影し、画像処理ソフト(例えば、ImageJ)にて工具基体表面のプロファイルをXY座標として出力し、その値を1次式(Y=aX+b)としてフィッティングしたときにその直線の傾きが±1°以下となるように、走査電子顕微鏡の走査領域を修正することで走査領域の水平方向(X方向)が工具基体表面と平行となるように修正する。そして、この領域で100μmの工具基体表面に生じている界面層の幅を測定したとき、その界面層の幅が工具基体表面の幅に対して50%以上であることをいう。 The interface layer preferably covers 50 area% or more of the tool substrate. The reason is that if it is less than 50 area%, the adhesion between the tool substrate and the diamond film is not sufficient. Here, covering 50 area% or more of the tool substrate is as follows. A cross section in the direction perpendicular to an arbitrary flank surface near the cutting edge (a vertical cross section in the film thickness direction) is processed by a Cross-sector Polisher (CP), and the processed cross section is processed by a scanning electron microscope at an appropriate magnification (eg,). (Magnification 1000 times), the vicinity of the tool substrate surface (the region including the cross section between the diamond film and the tool substrate) is photographed with a backscattered electron image, and the profile of the tool substrate surface is XY with image processing software (for example, ImageJ). The scanning area is horizontal by modifying the scanning area of the scanning electron microscope so that the slope of the straight line becomes ± 1 ° or less when it is output as coordinates and the value is fitted as a linear equation (Y = aX + b). Correct so that the direction (X direction) is parallel to the surface of the tool substrate. When the width of the interface layer formed on the surface of the tool substrate of 100 μm is measured in this region, it means that the width of the interface layer is 50% or more with respect to the width of the surface of the tool substrate.

なお、界面層の厚さは、0.5〜3.0μmが好ましい。その理由は、0.5μm未満であると工具基体とダイヤモンド皮膜の密着性が十分確保できず、3.0μmを超えて界面層が厚くなりすぎると切削時に界面層への応力が集中し界面層の破壊が生じる為である。
ここで、界面層の厚さは、前記と同様に刃先近傍の任意の逃げ面に垂直な方向の断面(膜厚方向の断面である縦断面)を、前記面積%を求めたときと同様の処理を行い、界面層が生成されている領域を適切な倍率(例、倍率5000倍)にて工具基体表面近傍(ダイヤモンド皮膜と工具基体の界面を含んだ領域)を反射電子像にて撮影し、WCのプロファイルおよび界面層のプロファイルをXY座標として出力し、その差から算出する。
The thickness of the interface layer is preferably 0.5 to 3.0 μm. The reason is that if it is less than 0.5 μm, the adhesion between the tool substrate and the diamond film cannot be sufficiently ensured, and if it exceeds 3.0 μm and the interface layer becomes too thick, stress is concentrated on the interface layer during cutting and the interface layer. This is because the destruction of
Here, the thickness of the interface layer is the same as when the area% is obtained for the cross section in the direction perpendicular to the arbitrary flank surface near the cutting edge (longitudinal cross section in the film thickness direction) as described above. After processing, the area where the interface layer is formed is photographed with a backscattered electron image near the surface of the tool substrate (the area including the interface between the diamond film and the tool substrate) at an appropriate magnification (eg, magnification 5000 times). , WC profile and interface layer profile are output as XY coordinates, and calculated from the difference.

また、走査電子顕微鏡により適切な倍率(例、倍率5000倍)にて界面層を2次電子像にて観察することで、界面層の粒界をみることができ、該界面層が柱状結晶粒を有し、その平均粒子幅が500nm以上であることが好ましい。その理由は、平均粒子幅が500nm未満であると該界面層の粒界が多量に存在することとなり、ダイヤモンド皮膜の成膜中に前記結合層が粒界を通して該界面層の表面に拡散し、ダイヤモンド皮膜の密着性が大きく低下するためである。なお、平均粒子幅の上限は、好ましくは10000nmである。その理由は、平均粒子幅が10000nmを超えると、切削時に該界面層の粒子への応力集中により界面層の破壊が生じる為である。 Further, by observing the interface layer with a secondary electron image at an appropriate magnification (eg, magnification of 5000 times) with a scanning electron microscope, the grain boundaries of the interface layer can be seen, and the interface layer is a columnar crystal grain. The average particle width thereof is preferably 500 nm or more. The reason is that when the average particle width is less than 500 nm, a large amount of grain boundaries of the interface layer are present, and the bonding layer diffuses to the surface of the interface layer through the grain boundaries during the formation of the diamond film. This is because the adhesion of the diamond film is greatly reduced. The upper limit of the average particle width is preferably 10000 nm. The reason is that when the average particle width exceeds 10000 nm, the interface layer is destroyed due to stress concentration of the interface layer on the particles during cutting.

加えて、前記密着性の向上は、Crの含有量がCoの含有量に対して所定の割合にあるとき、すなわち、CoがMco質量%、CrがMcr質量%、それぞれ、工具基体に含有され、0.6≦Mcr/Mco≦1.3を満足するときより一層確実に達成される。 In addition, the improvement in adhesion is achieved when the Cr content is in a predetermined ratio with respect to the Co content, that is, Co is contained in Mco mass% and Cr is contained in Mcr mass%, respectively. , 0.6 ≦ Mcr / Mco ≦ 1.3 is more reliably achieved.

粒成長抑制剤の含有割合:
粒成長抑制剤とは、硬質粒子(硬質相)の成長を抑制する働きを有するものであって、Nb、Zr、Ti、Taの1種または2種以上、あるいは、これら元素の1または2以上の炭化物、窒化物、炭窒化物の1種または複数種、例えば、NbC、TaC、(Ta、Nb)C、TiCNの1種または複数種である。粒成長抑制剤は含有しなくても(すなわち、0質量%であっても)よいが、含有するときは、1質量%以下とすることにより、粒の成長を抑制できる。含有割合は、0.05〜0.90質量%がより好ましい。
Content ratio of grain growth inhibitor:
The grain growth inhibitor has a function of suppressing the growth of hard particles (hard phase), and is one or more of Nb, Zr, Ti, and Ta, or one or more of these elements. One or more of the carbides, nitrides and carbonitrides of the above, for example, one or more of NbC, TaC, (Ta, Nb) C and TiCN. The grain growth inhibitor may not be contained (that is, it may be 0% by mass), but when it is contained, the grain growth can be suppressed by setting it to 1% by mass or less. The content ratio is more preferably 0.05 to 0.90% by mass.

不可避的不純物:
製造工程で不可避的に混入する不純物があり、これを不可避的不純物という。この不可避的不純物は少ない方が好ましいが、含まれていたとしてもWC、Co、Crおよび粒成長抑制剤の含有割合が前記の範囲を満足し、前記した界面層が所定の面積%で存在していれば、本発明が解決すべき課題は解決される。
Inevitable impurities:
There are impurities that are inevitably mixed in the manufacturing process, and these are called unavoidable impurities. It is preferable that the amount of this unavoidable impurity is small, but even if it is contained, the content ratios of WC, Co, Cr and the grain growth inhibitor satisfy the above range, and the above-mentioned interface layer is present in a predetermined area%. If so, the problem to be solved by the present invention is solved.

工具基体の刃先曲率:
この曲率は5μm以下のものが好ましい。その理由は、10μmを超えると、ダイヤモンド皮膜成膜後の刃先の曲率が大きくなりすぎ、加工面の品位が低下するためであり、本発明では加工品位を確実なものとするために5μm以下とする。
ダイヤモンド皮膜を成膜した工具の工具基体の刃先の曲率は次のように測定する。すなわち、すくい面と逃げ面とが交差する稜線を含む刃先近傍の任意の逃げ面に垂直な方向の断面(膜厚方向の断面である縦断面)をCPにて加工し、加工した断面を走査電子顕微鏡により適切な倍率(例、倍率5000倍)にてすくい面と逃げ面とが交差する稜線を含む刃先近傍を反射電子像にて観察し、すくい面と逃げ面とが交差する稜線の曲率を画像解析により測定する。
ダイヤモンド被覆工具を製造する工程中に測定する場合は、後述するダイヤモンド皮膜成膜前に実施する前処理後の刃先に対して、すくい面と逃げ面とが交差する稜線を含む刃先近傍をレーザー顕微鏡で観察し、すくい面と逃げ面とが交差する稜線に対して垂直な線分を分析する。
Curvature of the cutting edge of the tool substrate:
This curvature is preferably 5 μm or less. The reason is that if it exceeds 10 μm, the curvature of the cutting edge after the diamond film is formed becomes too large and the quality of the machined surface deteriorates. In the present invention, it is set to 5 μm or less in order to ensure the work quality. To do.
The curvature of the cutting edge of the tool base of the tool on which the diamond film is formed is measured as follows. That is, a cross section in the direction perpendicular to an arbitrary flank surface (longitudinal cross section in the film thickness direction) in the vicinity of the cutting edge including the ridge line where the rake face and the flank surface intersect is processed by CP, and the processed cross section is scanned. Observe the vicinity of the cutting edge including the ridge line where the rake face and the flank intersect with an electron microscope at an appropriate magnification (eg, 5000 times) with a reflected electron image, and the curvature of the ridge where the rake face and the flank intersect. Is measured by image analysis.
When measuring during the process of manufacturing a diamond coating tool, a laser microscope is used to measure the vicinity of the cutting edge including the ridge line where the rake face and the flank surface intersect with respect to the cutting edge after the pretreatment performed before the formation of the diamond film, which will be described later. Observe with and analyze the line segment perpendicular to the ridgeline where the rake face and the flank face intersect.

2.ダイヤモンド被覆層
ダイヤモンド被覆層の厚さは特に制約がないが、平均層厚が3〜30μmのものが好ましい。その理由は、3μm未満では、長期の使用にわたって十分な耐摩耗性を発揮できず、一方、30μmを超えると、チッピング、欠損、剥離を生じやすくなり、刃先が丸みを帯びて加工精度が低下するためである。
ここで、ダイヤモンド皮膜の平均膜厚の測定は、工具基体に垂直な方向の断面(膜厚方向の断面である縦断面)をCPにて加工し、加工した断面を走査電子顕微鏡により適切な倍率(例:倍率5000倍)で膜厚を測定し、例えば、観察視野内の5点の膜厚を測定して平均して求めることができる。
2. 2. Diamond-coated layer The thickness of the diamond-coated layer is not particularly limited, but an average layer thickness of 3 to 30 μm is preferable. The reason is that if it is less than 3 μm, sufficient wear resistance cannot be exhibited over a long period of use, while if it exceeds 30 μm, chipping, chipping, and peeling are likely to occur, the cutting edge is rounded, and the processing accuracy is lowered. Because.
Here, in the measurement of the average film thickness of the diamond film, a cross section in the direction perpendicular to the tool substrate (longitudinal cross section in the film thickness direction) is processed by CP, and the processed cross section is subjected to an appropriate magnification by a scanning electron microscope. The film thickness can be measured at (example: magnification 5000 times), and for example, the film thickness at 5 points in the observation field can be measured and averaged.

3.製造方法
本発明のダイヤモンド被覆超硬合金製工具は、例えば、以下のようにして製造することができる。
(1)原料粉末の準備
原料粉末として、平均粒径が1μm以下のWC粉末、平均粒径が1〜3μmのCo粉末、Cr粉末、および、必要に応じて粒成長抑制剤を準備する。
(2)粉砕・混合
本発明で規定する組成となるように、前記原料粉末をボールミルにより粉砕・混合し、焼結体原料粉末を得る。
(3)成形、焼結、切削加工
得られた焼結体原料粉末を、所定圧力で成形して成形体を作製し、これを真空下で仮焼結し、その後、本焼結により焼結体を得る。その後、この焼結体を切削加工して所定形状の工具基体を製作する。
(4)ガス窒化処理
このようにして得られた、所定形状の工具基体を1150〜1250℃でガス窒化処理を行う。ここで、窒化処理温度がCoの液相出現温度に達しないため、所定の寸法精度を得ることができる。また、十分な高温で窒化処理を行うことで、Crの窒化物および/または炭窒化物が工具表面に生成される。
(5)ダイヤモンド被覆層の形成
前記工具基体にダイヤモンド皮膜を形成する。
3. 3. Manufacturing Method The diamond-coated cemented carbide tool of the present invention can be manufactured, for example, as follows.
(1) Preparation of raw material powder As raw material powder, WC powder having an average particle size of 1 μm or less, Co powder having an average particle size of 1 to 3 μm, Cr powder, and, if necessary, a grain growth inhibitor are prepared.
(2) Crushing / Mixing The raw material powder is crushed / mixed with a ball mill so as to have the composition specified in the present invention to obtain a sintered raw material powder.
(3) Molding, Sintering, Cutting Processing The obtained sintered body raw material powder is molded at a predetermined pressure to prepare a molded body, which is temporarily sintered under vacuum, and then sintered by main sintering. Get the body. Then, this sintered body is cut to produce a tool base having a predetermined shape.
(4) Gas Nitriding Treatment The tool substrate having a predetermined shape thus obtained is subjected to gas nitriding treatment at 1150 to 1250 ° C. Here, since the nitriding treatment temperature does not reach the liquid phase appearance temperature of Co, a predetermined dimensional accuracy can be obtained. Further, by performing the nitriding treatment at a sufficiently high temperature, Cr nitride and / or carbonitride is generated on the tool surface.
(5) Formation of diamond coating layer A diamond coating is formed on the tool substrate.

次に、実施例について説明する。
ここでは、本発明に係るダイヤモンド被覆工具の実施例としてダイヤモンド被覆ドリルについて述べるが、本発明はこれに限られるものではなく、ダイヤモンド被覆合金インサート、ダイヤモンド被覆エンドミルなどの各種のダイヤモンド被覆工具に適用できることは云うまでもない。
Next, an embodiment will be described.
Here, a diamond-coated drill will be described as an example of the diamond-coated tool according to the present invention, but the present invention is not limited to this, and can be applied to various diamond-coated tools such as a diamond-coated alloy insert and a diamond-coated end mill. Needless to say.

工具基体の製造:
原料粉末として、1μm以下の平均粒径を有するWC粉末、1〜3μmの平均粒径を有するCo粉末、Cr粉末、および粒成長抑制剤を用意し、これらの原料粉末を表1に示される焼結後組成(SEM−EDS分析値)となるように配合し、ボールミルで96時間湿式混合して乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を仮焼結後、6Paの真空中、温度:1400〜1500℃に1時間保持の条件で本焼結し、直径が10mmの工具基体形成用丸棒焼結体を形成し、さらに、前記丸棒焼結体から、研削加工にて、直径7mmのドリル形状の超硬合金製の工具基体(本発明工具基体)A〜Fを製作した。なお、表1において、各成分の組成の和が100質量%とならないものがある理由は、不可避的不純物が存在するためである。
Manufacture of tool substrates:
As raw material powders, WC powder having an average particle size of 1 μm or less, Co powder having an average particle size of 1 to 3 μm, Cr powder, and a grain growth inhibitor are prepared, and these raw material powders are fired as shown in Table 1. After compounding so as to have a post-condensation composition (SEM-EDS analysis value), wet mixing with a ball mill for 96 hours, drying, press molding into a green compact at a pressure of 100 MPa, and pre-sintering this green compact , 6 Pa vacuum, temperature: 1400 to 1500 ° C. for 1 hour, main sintering to form a round bar sintered body for forming a tool substrate with a diameter of 10 mm, and further from the round bar sintered body. , A drill-shaped tool base made of superhard alloy (tool base of the present invention) A to F having a diameter of 7 mm was produced by grinding. In Table 1, the reason why the sum of the compositions of each component is not 100% by mass is that unavoidable impurities are present.

ガス窒化処理:
引き続いて、この工具基体A〜Fの表面をエタノール中で超音波洗浄し、乾燥した後、工具基体をガス処理室に載置して、以下の条件で窒化処理を行った。
ガス分圧:70〜200Torr
炉内温度:1150〜1250℃
処理時間:1.5〜5.0時間
Gas nitriding:
Subsequently, the surfaces of the tool substrates A to F were ultrasonically cleaned in ethanol and dried, and then the tool substrates were placed in a gas treatment chamber and subjected to nitriding treatment under the following conditions.
N 2 gas partial pressure: 70-200 Torr
Temperature in the furnace: 1150 to 1250 ° C
Processing time: 1.5-5.0 hours

刃先曲率の測定:
前記のとおり、工具基体A〜Fに対して、刃先曲率をレーザー顕微鏡にて測定し、5μm以下であることを確認した。
Cutting edge curvature measurement:
As described above, the curvature of the cutting edge of the tool substrates A to F was measured with a laser microscope, and it was confirmed that the curvature was 5 μm or less.

前処理:
引き続いて、この工具基体A〜Fの表面をエタノール中で超音波洗浄し、乾燥した後、粒径1〜2μmのダイヤモンド粉末を含むイソプロピルアルコール液中で10分間の超音波処理を行なった。
Preprocessing:
Subsequently, the surfaces of the tool substrates A to F were ultrasonically cleaned in ethanol, dried, and then ultrasonically treated in an isopropyl alcohol solution containing diamond powder having a particle size of 1 to 2 μm for 10 minutes.

ダイヤモンド被覆層の形成:
前記前処理を施した工具基体A〜Fを熱フィラメントCVD装置に装入した。そして、フィラメント温度を2000〜2200℃、ガス圧2〜6Torr(266.6〜800.0Pa)の下で、水素ガスとメタンガスとの流量比を調整し、基体温度を750〜900℃に所定の時間維持しダイヤモンド皮膜を成膜して、それぞれ、本発明のダイヤモンド被覆ドリル(以下、「本発明被覆工具」という)A1〜F1を作製した。
Formation of diamond coating layer:
The pretreated tool bases A to F were charged into the thermal filament CVD apparatus. Then, the flow rate ratio of hydrogen gas and methane gas is adjusted under a filament temperature of 2000 to 2200 ° C. and a gas pressure of 2 to 6 Torr (266.6 to 800.0 Pa), and the substrate temperature is set to 750 to 900 ° C. A diamond coating film was formed over a period of time to prepare diamond-coated drills of the present invention (hereinafter, referred to as “coating tools of the present invention”) A1 to F1, respectively.

比較のために、1μm以下の平均粒径を有するWC粉末を含む原料粉を表1に示される焼結後の組成になるように配合し、工具基体(比較工具基体)a〜fを前記工具基体A〜Fと同様に製作して、前記本発明ドリルを製造した工程と同様の工程により、ぞれぞれ、比較例のダイヤモンド被覆ドリル(以下、「比較被覆工具」という)a1〜f1を作製した。ここで、工具基体a〜fに対して、刃先曲率をレーザー顕微鏡にて測定し、5μm以下であることを確認した。なお、ダイヤモンド皮膜の平均厚さが12〜14μmとなるようにダイヤモンド皮膜の成膜時間を調整した。 For comparison, the raw material powder containing the WC powder having an average particle size of 1 μm or less is blended so as to have the composition after sintering shown in Table 1, and the tool substrates (comparative tool substrates) a to f are added to the tool. The diamond-coated drills (hereinafter referred to as "comparative coating tools") a1 to f1 of the comparative example are respectively manufactured in the same manner as the substrates A to F and by the same process as the process for manufacturing the drill of the present invention. Made. Here, the curvature of the cutting edge of the tool bases a to f was measured with a laser microscope, and it was confirmed that the curvature was 5 μm or less. The film formation time of the diamond film was adjusted so that the average thickness of the diamond film was 12 to 14 μm.

続いて、前記本発明被覆工具A1〜F1および比較被覆工具a1〜f1について、下記条件で穴開け回数の評価試験を行い、工具寿命を調べた。
被削材:CFRP(厚さ20mm)と
Al合金(A7075:厚さ7mm)からなる複合材
切削速度:VC=100m/分
送り量:fr=0.05mm/rev
Subsequently, the covering tools A1 to F1 of the present invention and the comparative covering tools a1 to f1 were subjected to an evaluation test of the number of drilling times under the following conditions to check the tool life.
Work material: CFRP (thickness 20 mm) and
Composite material made of Al alloy (A7075: thickness 7 mm) Cutting speed: VC = 100 m / min Feed amount: fr = 0.05 mm / rev

工具寿命の判定方法:加工穴数50毎に、ドリルの刃先とワーク(被削材)を観察し、刃先に基体の露出、欠損、チッピングが生じた時点でドリルの寿命とした。また、加工精度を保つ基準として、被削材の加工面のバリ高さが0.3mmを超えない、層間剥離が加工面から1mm以内に抑えられた加工状態を合格判定とし、合格判定を満足しない加工穴数となった時点の穴数を表2に示す。 Tool life determination method: The drill bit and the work (work material) were observed for every 50 holes to be machined, and the life of the drill was determined when the substrate was exposed, chipped, or chipped at the tip. In addition, as a standard for maintaining processing accuracy, a processing state in which the burr height of the processed surface of the work material does not exceed 0.3 mm and delamination is suppressed within 1 mm from the processed surface is regarded as a pass judgment, and the pass judgment is satisfied. Table 2 shows the number of holes when the number of holes to be machined is not reached.

表3に示される結果から、本発明被覆工具A1〜F1は、本発明で規定する事項を満足する工具基体を用いているため長期にわたり安定した加工穴を得ることができた。
これに対して、本発明の規定する事項を一つでも満足しない工具基体を用いている比較被覆工具a1〜f1においては、いずれも、欠損・チッピングが発生するばかりか、切削長が短い(加工穴の数が少ない)、または短時間で使用寿命に至っている。
From the results shown in Table 3, since the covering tools A1 to F1 of the present invention use a tool base that satisfies the matters specified in the present invention, stable drilled holes can be obtained for a long period of time.
On the other hand, in the comparative covering tools a1 to f1 using a tool base that does not satisfy even one of the matters specified in the present invention, not only chipping and chipping occur but also the cutting length is short (machining). The number of holes is small), or it has reached the end of its useful life in a short time.

前述のとおり、本発明のダイヤモンド被覆超硬合金製工具は、難削材であるCFRP/Al材等の切削において、長期の使用にわたり優れた耐溶着性、耐摩耗性を発揮するものであるから、切削加工装置のFA化、ならびに、切削加工の省力化および省エネ化、さらには、低コスト化に十分に満足できる対応ができるものである。 As described above, the diamond-coated cemented carbide tool of the present invention exhibits excellent welding resistance and abrasion resistance over a long period of time in cutting CFRP / Al materials, which are difficult-to-cut materials. , FA of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction can be fully satisfied.

Claims (4)

工具基体表面にダイヤモンド皮膜が被覆されたダイヤモンド被覆超硬合金製工具であって、
前記工具基体は、WC:72.4〜93.6質量%、Co:4.0〜12.0質量%、Cr:2.4〜15.6質量%、粒成長抑制剤:1.0質量%以下を含有し、残部が不可避的不純物である組成を有し、
前記工具基体は、前記ダイヤモンド皮膜との界面に、Crの窒化物および/または炭窒化物を含む界面層を有し、
前記界面層は、工具基体を50面積%以上覆っている、
ことを特徴とするダイヤモンド被覆超硬合金製工具。
A diamond-coated cemented carbide tool in which the surface of the tool substrate is coated with a diamond film.
The tool substrate contains WC: 72.4 to 93.6% by mass, Co: 4.0 to 12.0% by mass, Cr: 2.4 to 15.6% by mass, and a grain growth inhibitor: 1.0% by mass. Has a composition containing less than% and the balance is an unavoidable impurity.
The tool substrate has an interface layer containing Cr nitride and / or carbonitride at the interface with the diamond film.
The interface layer covers 50 area% or more of the tool substrate.
A diamond-coated cemented carbide tool characterized by this.
前記工具基体にCoがMCo質量%、CrがMCr質量%、それぞれ、含有されるとき、0.6≦MCr/MCo≦1.3であることを特徴とする請求項1に記載されたダイヤモンド被覆超硬合金製工具。 According to claim 1, when Co is contained in MCo mass% and Cr is contained in MCr mass%, respectively, 0.6 ≦ M Cr / M Co ≦ 1.3. Diamond-coated cemented carbide tool. 前記界面層が、0.5〜3.0μmの平均厚さであって、柱状結晶粒を有し、その柱状結晶粒の平均粒子幅が500nm以上であることを特徴とする請求項1または2に記載のダイヤモンド被覆超硬合金製工具。 Claim 1 or 2 characterized in that the interface layer has an average thickness of 0.5 to 3.0 μm, has columnar crystal grains, and the average particle width of the columnar crystal grains is 500 nm or more. Diamond-coated cemented carbide tool described in. 工具刃先の任意の逃げ面に垂直な断面にて工具基体のすくい面と逃げ面とが交差する稜線の曲率半径が5μm以下であることを特徴とする請求項1〜3のいずれかに記載されたダイヤモンド被覆超硬合金製工具。 The invention according to any one of claims 1 to 3, wherein the radius of curvature of the ridge line where the rake face and the flank surface of the tool substrate intersect with each other in a cross section perpendicular to an arbitrary flank surface of the tool cutting edge is 5 μm or less. Diamond-coated cemented carbide tool.
JP2019062302A 2019-03-28 2019-03-28 Diamond-coated cemented carbide tool Pending JP2020157455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062302A JP2020157455A (en) 2019-03-28 2019-03-28 Diamond-coated cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062302A JP2020157455A (en) 2019-03-28 2019-03-28 Diamond-coated cemented carbide tool

Publications (1)

Publication Number Publication Date
JP2020157455A true JP2020157455A (en) 2020-10-01

Family

ID=72641130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062302A Pending JP2020157455A (en) 2019-03-28 2019-03-28 Diamond-coated cemented carbide tool

Country Status (1)

Country Link
JP (1) JP2020157455A (en)

Similar Documents

Publication Publication Date Title
KR101386856B1 (en) Surface-coated cutting tool
EP2474634B1 (en) Super hard alloy and cutting tool using same
JP5124790B2 (en) Diamond coated cutting tool
KR20070085526A (en) Surface-covered cutting tool
JP2011038174A (en) Composite sintered compact
JPWO2021010473A1 (en) Cubic boron nitride sintered body and its manufacturing method
JP2017013146A (en) Diamond-coated hard metal cutting tool for improving edge strength
JP2008238392A (en) Cutting tool
JP2008264988A (en) Manufacturing method of cutting tool
US7897272B2 (en) Wear-resistant structure
JP2019119045A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7216916B2 (en) Diamond-coated cemented carbide tools
EP4049776A1 (en) Diamond tool
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2020157455A (en) Diamond-coated cemented carbide tool
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP2019166584A (en) Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP4284153B2 (en) Cutting method
JP2019119000A (en) Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and peeling resistance
JP6459106B1 (en) Cemented carbide and cutting tools
EP4180155A1 (en) Diamond-coated tool
JP5111133B2 (en) Cutting tools