JP2020157346A - Resistance welding method of welding object having insulation coating film - Google Patents

Resistance welding method of welding object having insulation coating film Download PDF

Info

Publication number
JP2020157346A
JP2020157346A JP2019060334A JP2019060334A JP2020157346A JP 2020157346 A JP2020157346 A JP 2020157346A JP 2019060334 A JP2019060334 A JP 2019060334A JP 2019060334 A JP2019060334 A JP 2019060334A JP 2020157346 A JP2020157346 A JP 2020157346A
Authority
JP
Japan
Prior art keywords
assembly
welding
resistance welding
insulating coating
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060334A
Other languages
Japanese (ja)
Other versions
JP7207068B2 (en
Inventor
隼司 山口
Hayaji Yamaguchi
隼司 山口
鈴木 雅人
Masato Suzuki
雅人 鈴木
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2019060334A priority Critical patent/JP7207068B2/en
Publication of JP2020157346A publication Critical patent/JP2020157346A/en
Application granted granted Critical
Publication of JP7207068B2 publication Critical patent/JP7207068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)
  • Laser Beam Processing (AREA)

Abstract

To provide a resistance welding method capable of simply executing work before welding when applying resistance welding to a welding object having an insulation coating film and capable of also applying to a welding object having an insulation coating film on both surfaces.SOLUTION: A resistance welding method includes a first process of forming an assembly by superposing a plurality of welding objects having an insulation coating film on a surface, a second process of imparting damage to the inside insulation coating film of the assembly by heating means via an area for contacting a welding electrode with the assembly and a third process of executing resistance welding by electrically conducting by contacting a pair of welding electrodes with an opposed position by sandwiching the assembly on a surface of the damage-imparted assembly.SELECTED DRAWING: Figure 4

Description

本発明は、母材の表面に絶縁性被膜を有する被溶接物の抵抗溶接方法に関する。 The present invention relates to a resistance welding method for an object to be welded having an insulating film on the surface of a base metal.

金属部材同士を溶接する方法として様々な加熱手段が用いられる。そのうち、抵抗溶接は、重ね合わせた被溶接物を抵抗溶接電極で挟み、抵抗溶接電極から被溶接物の表面を通して溶接電流を付与し、ジュール熱を発生させることにより、被溶接物の接合面付近を加熱して溶融接着させる方法である。抵抗溶接方法は、短時間で効率的に溶接できるので、多くの分野で使用されている。 Various heating means are used as a method of welding metal members to each other. Among them, in resistance welding, the overlapped objects to be welded are sandwiched between resistance weld electrodes, a welding current is applied from the resistance weld electrodes through the surface of the objects to be welded, and Joule heat is generated to generate Joule heat near the joint surface of the objects to be welded. Is a method of heating and welding. The resistance welding method is used in many fields because it can be welded efficiently in a short time.

被溶接物が表面に電気的に絶縁性の被膜(本明細書では、「絶縁性被膜」と記載する。)を有する場合、それに抵抗溶接方法を適用すると、被溶接物に溶接電流を流すために十分な通電経路を確保できない。そのため、被溶接物の接合面を十分に加熱することできず、抵抗溶接を行うのが困難であった。また、必要な抵抗発熱量を得るために通電量を過度に高くすると、スパッタが発生して、外観不良や作業環境の悪化を招く恐れがあった。 When the object to be welded has an electrically insulating film (referred to as "insulating film" in the present specification) on the surface, when the resistance welding method is applied to the film, a welding current is passed through the object to be welded. It is not possible to secure a sufficient energization path. Therefore, the joint surface of the object to be welded cannot be sufficiently heated, and it is difficult to perform resistance welding. Further, if the amount of energization is excessively increased in order to obtain the required amount of heat generation resistance, spatter may occur, resulting in poor appearance and deterioration of the working environment.

上記の問題を解決するため、被溶接物の表面の絶縁性皮膜をレーザ光の照射によって予め除去する方法を提案されている(特許文献1を参照)。特許文献1の図5は、片面に陽極酸化皮膜を有するアルミニウム合金の被溶接物を例にした実施形態3を記載している。絶縁性の陽極酸化皮膜が外側に位置するように2つの被溶接物を重ね合わせた後、被溶接物の表面にレーザ光を照射して陽極酸化皮膜が除去された。次いで、陽極酸化皮膜が除去された部分に抵抗溶接電極を接触させて被溶接物を挟み、被溶接物の接合面で溶接された。 In order to solve the above problem, a method has been proposed in which the insulating film on the surface of the work piece is removed in advance by irradiation with a laser beam (see Patent Document 1). FIG. 5 of Patent Document 1 describes the third embodiment in which an aluminum alloy object to be welded having an anodic oxide film on one side is used as an example. After superimposing the two objects to be welded so that the insulating anodic oxide film was located on the outside, the surface of the objects to be welded was irradiated with a laser beam to remove the anodic oxide film. Next, the resistance welding electrode was brought into contact with the portion from which the anodic oxide film was removed to sandwich the object to be welded, and welding was performed at the joint surface of the object to be welded.

特開平10−225770号公報Japanese Unexamined Patent Publication No. 10-225770

特許文献1の方法は、抵抗溶接電極を接触させる部分において、溶接する前に絶縁性被膜を除去する必要があり、そのための作業に手間が掛かる。また、特許文献1の方法は、両面に絶縁性被膜を有する被溶接物に適用することができない。そのため、絶縁性被膜を有する被溶接物に抵抗溶接を適用する場合、溶接前の作業を簡略に行うことが望まれる。さらに、両面に絶縁性被膜を有する被溶接物に適用することが望まれる。 In the method of Patent Document 1, it is necessary to remove the insulating film before welding at the portion where the resistance welding electrode is brought into contact, and the work for that purpose is troublesome. Further, the method of Patent Document 1 cannot be applied to an object to be welded having an insulating coating on both sides. Therefore, when applying resistance welding to an object to be welded having an insulating coating, it is desirable to simplify the work before welding. Further, it is desired to apply it to an object to be welded having an insulating film on both sides.

本発明は、絶縁性被膜を有する被溶接物に抵抗溶接を適用する場合、溶接前の作業を簡略に行うことができ、さらに、両面に絶縁性被膜を有する被溶接物に適用することができる抵抗溶接方法を提供することを目的とする。 When resistance welding is applied to an object to be welded having an insulating film, the present invention can simplify the work before welding and can be further applied to an object to be welded having an insulating film on both sides. It is an object of the present invention to provide a resistance welding method.

本発明者らは、上記の目的を達成するために検討した結果、被溶接物を重ね合わせた接合面側の絶縁性被膜に損傷を与えることにより、抵抗溶接を行うに必要な通電性を確保できることを見出して、本発明を完成するに至った。具体的には、本発明は、以下のものを提供する。 As a result of studies to achieve the above object, the present inventors ensure the electrical conductivity required for resistance welding by damaging the insulating film on the joint surface side on which the objects to be welded are overlapped. We have found what we can do and have completed the present invention. Specifically, the present invention provides the following.

(1)本発明は、表面に絶縁性被膜を有する複数の被溶接物を重ね合わせて組立体を形成する第1工程と、前記組立体に溶接電極を接触させる領域を介して加熱する手段により、前記組立体の内部の絶縁性被膜に損傷を与える第2工程と、前記損傷が与えられた前記組立体の表面において当該組立体を挟んで対向する位置に一対の溶接電極を接触させて通電し、抵抗溶接を行う第3工程と、を含む、抵抗溶接方法である。 (1) The present invention comprises a first step of superimposing a plurality of objects to be welded having an insulating coating on the surface to form an assembly, and means for heating the assembly through a region where the welding electrode is brought into contact with the assembly. A pair of welding electrodes are brought into contact with each other at positions facing each other across the assembled assembly on the surface of the damaged assembly and the second step of damaging the insulating coating inside the assembly. This is a resistance welding method including a third step of performing resistance welding.

(2)本発明は、前記第2工程は、前記組立体の内部の絶縁性被膜に損傷を与える面積が、0.3×4πt(t:板厚)で示される数値以上である、(1)に記載の抵抗溶接方法である。 (2) In the second step of the present invention, the area of damaging the insulating coating inside the assembly is equal to or greater than the value indicated by 0.3 × 4πt (t: plate thickness) (1). ) Is the resistance welding method.

(3)本発明は、前記第2工程における前記加熱する手段は、レーザ光の照射である、(1)または(2)に記載の抵抗溶接方法である。 (3) The present invention is the resistance welding method according to (1) or (2), wherein the heating means in the second step is irradiation with a laser beam.

(4)本発明は、前記絶縁性被膜は、亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)の少なくとも1種を含む酸化被膜である、(1)〜(3)のいずれかに記載の抵抗溶接方法である。 (4) The present invention describes any one of (1) to (3), wherein the insulating coating is an oxide coating containing at least one of zinc (Zn), aluminum (Al), and magnesium (Mg). This is a resistance welding method.

本発明によれば、絶縁性被膜を有する被溶接物に抵抗溶接を適用する場合、溶接前の作業を簡略に行うことができ、さらに、両面に絶縁性被膜を有する被溶接物に適用することができる。 According to the present invention, when resistance welding is applied to an object to be welded having an insulating film, the work before welding can be simplified, and further, it is applied to an object to be welded having an insulating film on both sides. Can be done.

本実施形態の第1工程において両面めっき鋼板による態様を説明するための図である。It is a figure for demonstrating the aspect by the double-sided plated steel sheet in the 1st step of this embodiment. 本実施形態の第2工程においてレーザ光を照射する態様を説明するための図である。It is a figure for demonstrating the aspect which irradiates a laser beam in the 2nd step of this embodiment. 図2のレーザ光の照射により形成された被溶接物の凝固部及び損傷部を説明するための図である。It is a figure for demonstrating the solidified part and the damaged part of the object to be welded formed by the irradiation of the laser beam of FIG. 本実施形態の第3工程において抵抗溶接電極を接触させた態様を説明するための図である。It is a figure for demonstrating the mode in which the resistance welding electrode was brought into contact with each other in the 3rd step of this embodiment. 本実施形態を片面めっき鋼板に適用し、めっき面を対向させた例を示す図である。It is a figure which shows the example which applied this embodiment to a single-sided plated steel sheet, and made the plated surface face each other. 本実施形態を片面めっき鋼板に適用し、めっき面と非めっき面とを対向させた例を示す図である。It is a figure which shows the example which applied this embodiment to a single-sided plated steel sheet, and made the plated surface and the non-plated surface face each other. 本実施形態のレーザ照射で形成された被溶接物の損傷部を示す図である。It is a figure which shows the damaged part of the object to be welded formed by the laser irradiation of this embodiment.

以下、本発明に係る実施形態について説明する。本発明は、以下の説明に限定されるものではない。 Hereinafter, embodiments according to the present invention will be described. The present invention is not limited to the following description.

用途に応じて、絶縁性被膜を有する両面めっき鋼板のような被溶接物を重ね合わせて組立体を形成した後、それを接合するため、一対の溶接電極を挟んでスポット溶接などの抵抗溶接が施される。溶接電極から供給される電流の通電性は、絶縁性被膜によって低下する。そのため、従来技術のように、溶接する前に、溶接電極に接触する領域の縁性被膜を除去することは、抵抗溶接の通電性を向上させる上で効果的である。しかし、溶接電極に接触する領域の絶縁性被膜を除去するだけでは、十分な通電性が得られなかった。 Depending on the application, an assembly is formed by superimposing objects to be welded such as double-sided plated steel plates with an insulating coating, and then resistance welding such as spot welding is performed by sandwiching a pair of welding electrodes to join them. Be given. The electrical conductivity of the current supplied from the weld electrode is reduced by the insulating coating. Therefore, as in the prior art, removing the edge coating in the region in contact with the welding electrode before welding is effective in improving the electrical conductivity of resistance welding. However, sufficient electrical conductivity could not be obtained only by removing the insulating film in the region in contact with the weld electrode.

本発明者らは、溶接による接合箇所が被溶接物の絶縁性被膜が対向する領域であることから、この対向領域における通電性に着目した。2枚の両面めっき鋼板を重ね合わせた組立体の場合、各めっき鋼板の絶縁性被膜が対向し、接合部には二重の絶縁性被膜が配置しているので、通電性が大きく阻害される。そこで、この対向領域における絶縁性被膜の一部を除去して通電経路を形成することを試みた。その結果、溶接電極と接触する表面に絶縁性被膜が残存したとしても、鋼板間の通電性を確保することにより、良好な溶接性が得られるという知見を見出した。 Since the joint portion by welding is a region where the insulating coating of the object to be welded faces, the present inventors paid attention to the electrical conductivity in this facing region. In the case of an assembly in which two double-sided plated steel sheets are laminated, the insulating coatings of the respective plated steel plates face each other, and the double insulating coatings are arranged at the joints, so that the electrical conductivity is greatly impaired. .. Therefore, we tried to form an energization path by removing a part of the insulating film in this facing region. As a result, they have found that even if an insulating film remains on the surface in contact with the welding electrode, good weldability can be obtained by ensuring the electrical conductivity between the steel plates.

本実施形態に係る抵抗溶接方法は、表面に絶縁性被膜を有する複数の被溶接物を重ね合わせて組立体を形成する第1工程と、前記組立体に溶接電極を接触させる領域を介して加熱する手段により、前記組立体の内部の絶縁性被膜に損傷を与える第2工程と、前記損傷が与えられた前記組立体の表面において当該組立体を挟んで対向する位置に一対の溶接電極を接触させて通電し、抵抗溶接を行う第3工程と、を含むものである。 The resistance welding method according to the present embodiment heats through a first step of superimposing a plurality of objects to be welded having an insulating coating on the surface to form an assembly and a region where the welding electrode is brought into contact with the assembly. The second step of damaging the insulating coating inside the assembly and the pair of welding electrodes are brought into contact with each other at positions facing each other across the assembled assembly on the surface of the damaged assembly. It includes a third step of performing resistance welding by energizing and energizing.

(第1工程)
被溶接物は、母材の表面に絶縁性被膜を有する。本実施形態の第1工程では、複数の被溶接物を重ね合わせて組立体を形成する。組立体を治具(図示を省略する。)によって固定することが好ましい。被溶接物は、板材、形材、管材など、その表面に電気的な絶縁性の被膜を有する物品であれば、特に限定されない。めっき層を鋼板の表面に有する両面めっき鋼板や片面めっき鋼板の被溶接物が好ましい。板厚が0.4〜2.3mmの鋼板に適用してもよい。
(First step)
The work piece has an insulating coating on the surface of the base metal. In the first step of the present embodiment, a plurality of objects to be welded are superposed to form an assembly. It is preferable to fix the assembly with a jig (not shown). The object to be welded is not particularly limited as long as it is an article having an electrically insulating coating on its surface, such as a plate material, a profile material, and a pipe material. A double-sided plated steel sheet or a single-sided plated steel sheet having a plated layer on the surface of the steel sheet is preferable. It may be applied to a steel plate having a plate thickness of 0.4 to 2.3 mm.

本実施形態に係る絶縁性被膜は、被膜全体が絶縁性を有するものに限られない。表面側部分が絶縁性を有し、内側部分が導電性を有する被膜である場合も含まれる。 The insulating coating according to the present embodiment is not limited to the one in which the entire coating has an insulating property. The case where the front surface side portion has an insulating property and the inner surface portion has a conductive film is also included.

図1は、本実施形態の第1工程を模式的に示した図である。被溶接物として、絶縁性被膜2を鋼板1の両面に有する両面めっき鋼板3を用いた例である。2枚の両面めっき鋼板3を重ね合わせて組立体4が形成される。当該組立体4の内部では、めっき鋼板3の絶縁性被膜2が対向するように接している。当該組立体4の外表面にも絶縁性被膜2を有している。 FIG. 1 is a diagram schematically showing the first step of the present embodiment. This is an example in which a double-sided plated steel sheet 3 having an insulating coating 2 on both sides of the steel sheet 1 is used as the object to be welded. The assembly 4 is formed by superimposing two double-sided plated steel plates 3. Inside the assembly 4, the insulating coatings 2 of the plated steel sheets 3 are in contact with each other so as to face each other. The outer surface of the assembly 4 also has an insulating coating 2.

被溶接物として、鋼板の片面に絶縁性被膜を有する片面めっき鋼板を用いる例を、図5と図6に示す。図5に示す例は、各片面めっき鋼板5のめっき面が対向し、組立体4の内部に絶縁性被膜2が配置された形態である。図6は、めっき面と非めっき面とが対向し、一方の片面めっき鋼板5の絶縁性被膜2が組立体4の内部に配置され、他方の片面めっき鋼板5の絶縁性被膜2が該組立体4の外表面に配置されている形態である。 Examples of using a single-sided plated steel sheet having an insulating coating on one side of the steel sheet as the object to be welded are shown in FIGS. 5 and 6. In the example shown in FIG. 5, the plated surfaces of the single-sided plated steel sheets 5 face each other, and the insulating coating 2 is arranged inside the assembly 4. In FIG. 6, the plated surface and the non-plated surface face each other, the insulating coating 2 of one single-sided plated steel sheet 5 is arranged inside the assembly 4, and the insulating coating 2 of the other single-sided plated steel sheet 5 is the assembly. It is a form arranged on the outer surface of the solid body 4.

本実施形態の抵抗溶接方法は、表面が絶縁性である絶縁性めっき被膜を母材の両面または片面に含む物品に適用することができる。絶縁性めっき被膜の付着量が両面当たりまたは片面当たり、30〜350g/mの範囲である、めっき鋼板に適用してもよい。 The resistance welding method of the present embodiment can be applied to an article containing an insulating plating film having an insulating surface on both sides or one side of the base material. It may be applied to a plated steel sheet in which the amount of the insulating plating film adhered is in the range of 30 to 350 g / m 2 per both sides or one side.

(第2工程)
図2及び図3は、本実施形態の第2工程を模式的に示した図である。本実施形態の第2工程では、前記組立体4に溶接電極9を接触させる領域を介して加熱する手段6により、前記組立体4の内部の絶縁性被膜2に損傷を与える処理が行われる。第3工程において組立体の表面に溶接電極を接触させて抵抗溶接を行うので、第2工程は、その前処理として、溶接電極が接触する領域を介して試験体内部が加熱される。組立体を局所的に加熱することにより、組立体の内部に含まれる絶縁性被膜の一部が除去され、それによって組立体内部に通電経路を形成することができる。
(Second step)
2 and 3 are diagrams schematically showing the second step of the present embodiment. In the second step of the present embodiment, the means 6 for heating the assembly 4 through the region where the welding electrode 9 is brought into contact with the assembly 4 is used to damage the insulating coating 2 inside the assembly 4. In the third step, the welding electrode is brought into contact with the surface of the assembly to perform resistance welding. Therefore, in the second step, as a pretreatment thereof, the inside of the test piece is heated through the region where the welding electrode is in contact. By locally heating the assembly, a portion of the insulating coating contained inside the assembly can be removed, thereby forming an energizing path inside the assembly.

本実施形態の第2工程は、前記組立体の内部の絶縁性被膜に損傷を与える面積が、0.3×4πt(t:板厚)で示される数値以上であることが好ましい。溶接により接合部に生じる溶融・凝固した部分であるナゲットについては、一般に、その直径(ナゲット径)が4√t(t:板厚)で表され、ナゲット面積が4πtで表される。上記の「0.3×4πt」は、ナゲット面積に対する損傷面積の比率を示しており、ナゲットにおける損傷部が通電経路を提供することから、損傷部分の面積は、ナゲット面積(4πt)に対して30%以上であると、十分な通電性が得られる。他方、損傷部分の面積比率が30%より小さいと、過大な電流密度が必要になり、ナゲット径や接合強度に影響を与える恐れがある。 In the second step of the present embodiment, it is preferable that the area of damaging the insulating coating inside the assembly is equal to or larger than the value indicated by 0.3 × 4πt (t: plate thickness). The diameter (nugget diameter) of a nugget, which is a melted / solidified portion generated at a joint by welding, is generally represented by 4√t (t: plate thickness), and the nugget area is represented by 4πt. The above "0.3 x 4πt" indicates the ratio of the damaged area to the nugget area, and since the damaged part in the nugget provides an energizing path, the area of the damaged part is the nugget area (4πt). When it is 30% or more, sufficient electrical conductivity can be obtained. On the other hand, if the area ratio of the damaged portion is smaller than 30%, an excessive current density is required, which may affect the nugget diameter and the joint strength.

当該加熱する手段としては、レーザ光の照射による方法が好ましい。図2に示すように、組立体4の一方の表面に向けて、第3工程で溶接電極9を接触させる領域にレーザ光6が照射される。レーザ光6が所定時間で照射されると、図3に示すように、組立体4のレーザ光6が照射されて通過する表面の絶縁性被膜2が局所的に加熱されることにより、その一部が溶融し凝固して、絶縁性被膜が除去された領域7が形成される。本明細書では、この領域7を「凝固部」という。当該凝固部7は、組立体4の表面から溶接電流を付与するための通電経路を形成する。 As the heating means, a method of irradiating a laser beam is preferable. As shown in FIG. 2, the laser beam 6 is irradiated to the region where the welding electrode 9 is brought into contact in the third step toward one surface of the assembly 4. When the laser beam 6 is irradiated for a predetermined time, as shown in FIG. 3, the insulating coating 2 on the surface to which the laser beam 6 of the assembly 4 is irradiated and passes is locally heated. The portion melts and solidifies to form a region 7 from which the insulating film has been removed. In the present specification, this region 7 is referred to as a “coagulation portion”. The solidifying portion 7 forms an energizing path for applying a welding current from the surface of the assembly 4.

さらに、レーザ光の焦点を組立体4の内部の絶縁性被膜2の付近に設定するなど適正な条件でレーザ光の照射を行うと、当該絶縁性被膜2が局所的に加熱される。その加熱により、当該絶縁性被膜2が溶融または蒸発して、当該絶縁性被膜2の一部が除去されて損傷が与えられる。このように、本実施形態の第2工程における当該「損傷」なる記載は、絶縁性被膜の一部が除去された状態を意味する。組立体4の内部の絶縁性被膜2において損傷した部分8を「損傷部」という。当該損傷部8の形成により、絶縁性被膜2が2層で重なる板間において通電経路を確保することができる。 Further, when the laser beam is irradiated under appropriate conditions such as setting the focus of the laser beam near the insulating coating 2 inside the assembly 4, the insulating coating 2 is locally heated. By the heating, the insulating coating 2 is melted or evaporated, and a part of the insulating coating 2 is removed and damaged. As described above, the description of "damage" in the second step of the present embodiment means a state in which a part of the insulating coating is removed. The damaged portion 8 in the insulating coating 2 inside the assembly 4 is referred to as a “damaged portion”. By forming the damaged portion 8, it is possible to secure an energization path between the plates in which the insulating coating 2 is overlapped in two layers.

レーザ光を照射する条件としては、例えば、照射出力を600W、照射時間を500msで行うことができる。 As conditions for irradiating the laser beam, for example, the irradiation output can be 600 W and the irradiation time can be 500 ms.

第2工程における加熱手段は、レーザ光照射のほかに、誘導加熱、渦電流などの局所的な入熱を可能とする手段を使用してもよい。 As the heating means in the second step, in addition to laser light irradiation, means that enable local heat input such as induction heating and eddy current may be used.

(第3工程)
図4は、本実施形態の第3工程を模式的に示した図である。図4に示すように、本実施形態の第3工程では、前記損傷を与えられた前記組立体4の表面において当該組立体4を挟んで対向する位置に一対の溶接電極8を接触させて通電して、スポット溶接などの抵抗溶接が行われる。第2工程の加熱処理によって、組立体4の表面に凝固部7が形成されることに加えて、組立体4の内部に絶縁性被膜2の損傷部8が形成されることにより、十分な通電経路が形成される、そのため、溶接電極9を組立体4の表面に接触させて通電すると、電圧を過大に印加することなく、適度な条件で抵抗溶接を施すことが可能となる。
(Third step)
FIG. 4 is a diagram schematically showing the third step of the present embodiment. As shown in FIG. 4, in the third step of the present embodiment, a pair of welding electrodes 8 are brought into contact with each other at positions facing each other across the assembly 4 on the surface of the damaged assembly 4 to energize. Then, resistance welding such as spot welding is performed. By the heat treatment in the second step, in addition to forming the solidified portion 7 on the surface of the assembly 4, the damaged portion 8 of the insulating coating 2 is formed inside the assembly 4, so that sufficient energization is performed. A path is formed. Therefore, when the welding electrode 9 is brought into contact with the surface of the assembly 4 and energized, resistance welding can be performed under appropriate conditions without applying an excessive voltage.

抵抗溶接は、スポット溶接など公知の溶接手段を使用することができる。組立体を溶接電極で挟み、所定の加圧力を加えて、所定の電流を印加することにより局部的に加熱し、点状の溶接部(ナゲット)を形成する。溶接条件は、例えば、通電時間:12/60秒、電流:8.0kA、加圧力:2.0kNを使用することができる。 For resistance welding, known welding means such as spot welding can be used. The assembly is sandwiched between welding electrodes, a predetermined pressing force is applied, and a predetermined current is applied to locally heat the assembly to form a point-shaped welded portion (nugget). As the welding conditions, for example, energization time: 12/60 seconds, current: 8.0 kA, and pressing force: 2.0 kN can be used.

本実施形態に係る抵抗溶接方法は、亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)の少なくとも1種を含む酸化被膜である絶縁性被膜を有する被溶接物に適用できる。例えば、黒色溶融めっき鋼板を挙げることができる。この鋼板は、原板として、Al:1.0〜22.0質量%、Mg:1.3〜10.0質量%を含む溶融Znめっき層を有するめっき鋼板を用いて、当該めっき鋼板を密封容器中で水蒸気と接触させる処理を施して得られた黒色めっき鋼板である。この水蒸気と接触させる処理により、めっき層の表面からZn、AlやMgの酸化反応が起こり、その結果、めっき層中に黒色酸化物が形成され、黒色溶融亜鉛めっき鋼板が得られる。黒色酸化物が絶縁性物質であるため、黒色溶融亜鉛めっき層は、その表面側部分が絶縁性を示し、内側部分が導電性を有する。この黒色溶融亜鉛めっき層は、鋼板の両面または片面に形成されており、絶縁性被膜に相当する。 The resistance welding method according to the present embodiment can be applied to an object to be welded having an insulating film which is an oxide film containing at least one of zinc (Zn), aluminum (Al), and magnesium (Mg). For example, a black hot-dip galvanized steel sheet can be mentioned. This steel sheet uses a plated steel sheet having a molten Zn plating layer containing Al: 1.0 to 22.0% by mass and Mg: 1.3 to 10.0% by mass as the original plate, and seals the plated steel sheet in a sealed container. It is a black-plated steel sheet obtained by subjecting it to contact with water vapor. By the treatment of contacting with water vapor, an oxidation reaction of Zn, Al and Mg occurs from the surface of the plating layer, and as a result, a black oxide is formed in the plating layer to obtain a black hot-dip galvanized steel sheet. Since the black oxide is an insulating substance, the surface side portion of the black hot-dip galvanized layer exhibits insulating properties, and the inner portion thereof has conductivity. This black hot-dip galvanized layer is formed on both sides or one side of a steel sheet and corresponds to an insulating film.

以下、本発明の実施例について説明する。本発明は、以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to the following examples.

<実施例>
(1)板間被膜損傷面積率の測定
板厚が0.8mmの黒色溶融亜鉛めっき鋼板の2枚を重ね合わせて、上板及び下板からなる試験体を作製した。使用した当該めっき鋼板は、質量%でZn−6%Al−3%Mg組成のめっき層を有する両面めっき鋼板であり、寸法が100mm×30mm、めっき付着量が60〜80g/mであった。当該めっき鋼板のめっき層は、その表面側部分が絶縁性を示し、内側部分が導電性を有する。試験体の上板の外側表面へ向けて1kWレーザ溶接機でレーザ光を照射し、上板及び下板の双方が対向する側の絶縁性被膜を部分的に損傷させた。
<Example>
(1) Measurement of Inter-plate Coating Damage Area Ratio A test piece composed of an upper plate and a lower plate was prepared by superimposing two black hot-dip galvanized steel plates having a plate thickness of 0.8 mm. The plated steel sheet used was a double-sided plated steel sheet having a plating layer having a Zn-6% Al-3% Mg composition in mass%, and had dimensions of 100 mm × 30 mm and a plating adhesion amount of 60 to 80 g / m 2 . .. The surface side portion of the plated layer of the plated steel sheet exhibits insulating properties, and the inner portion thereof has conductivity. A laser beam was irradiated to the outer surface of the upper plate of the test piece with a 1 kW laser welder to partially damage the insulating coating on the side where both the upper plate and the lower plate face each other.

レーザ光の照射は、レーザ溶接機のフォーカスを245mm(ジャストフォーカス225mm+20mm)で固定し、照射出力を200W〜800W、照射時間を200ms〜1000msの範囲内で、レーザ光を照射した。 For the irradiation of the laser beam, the focus of the laser welder was fixed at 245 mm (just focus 225 mm + 20 mm), the irradiation output was 200 W to 800 W, and the irradiation time was within the range of 200 ms to 1000 ms.

次いで、試験体の上板と下板における絶縁性被膜の損傷部における損傷面積を測定した。重ね合わせた上板及び下板にレーザ光が照射されるので、上板及び下板の両方で同程度の損傷が生じると考えられる。そこで、上板の損傷面積を測定した。ただし、基準とするナゲット面積が板厚に依存するので、2枚の板厚が同じでない場合は、板厚の薄い方の板における損傷面積を測定した。 Next, the damaged area of the damaged portion of the insulating coating on the upper plate and the lower plate of the test piece was measured. Since the laser beam is applied to the upper and lower plates that are overlapped with each other, it is considered that the same degree of damage is caused to both the upper plate and the lower plate. Therefore, the damaged area of the upper plate was measured. However, since the reference nugget area depends on the plate thickness, when the two plate thicknesses are not the same, the damaged area of the thinner plate is measured.

上板と下板とを分離した後、下板に対向する上板表面の絶縁性被膜について損傷面積を測定した。マイクロスコープで観察した画像を用いて、めっき残存部分とめっき除去部分とが異なる色で判別できる。その一例を図7に示す。図7では、めっき残存部分が黒色で表示され、めっき除去部分が銀白色で表示されている。 After separating the upper plate and the lower plate, the damaged area of the insulating coating on the surface of the upper plate facing the lower plate was measured. Using the image observed with the microscope, the remaining plating portion and the removing plating portion can be distinguished by different colors. An example thereof is shown in FIG. In FIG. 7, the remaining plating portion is displayed in black, and the plating removal portion is displayed in silver white.

ナゲット面積(4πt)に相当する領域において、めっき除去部分の面積を測定し、その合計値を損傷面積とした。ナゲット面積(4πt)に対する損傷面積の割合(%)を算出した。その割合を「板間被膜損傷面積率」という。実施例1で用いた試験体は、めっき鋼板の板厚が0.8mmであるから、基準ナゲット径(4√t)に基づくナゲット面積(4πt)は、約10.1mmに相当する。 The area of the plating-removed portion was measured in the region corresponding to the nugget area (4πt), and the total value was taken as the damaged area. The ratio (%) of the damaged area to the nugget area (4πt) was calculated. The ratio is called the "inter-plate coating damage area ratio". Since the test piece used in Example 1 has a plated steel plate thickness of 0.8 mm, the nugget area (4πt) based on the reference nugget diameter (4√t) corresponds to about 10.1 mm 2 .

(2)溶接性の評価
上記(1)の板間被膜損傷面積率の測定に用いた試験体と同様の手順により、試験体No.1〜No.9を作製し、当該試験体に対してレーザ光を照射した。次いで、得られた試験体は、レーザ光が照射された箇所において単相交流式溶接機(交流周波数60Hz)を用いて、スポット溶接による抵抗溶接が行われた。
(2) Evaluation of weldability According to the same procedure as the test piece used for measuring the area ratio of the coating film damaged between the plates in (1) above, the test piece No. 1-No. No. 9 was prepared, and the test piece was irradiated with a laser beam. Next, the obtained test piece was subjected to resistance welding by spot welding using a single-phase AC welding machine (AC frequency 60 Hz) at a location irradiated with laser light.

スポット溶接は、初期加圧時間を35cycle、通電時間を12cycle、電流値を7.0kA、加圧力を2.0kN、冷却水量を3L/minで行った。溶接電極は、クロム銅製の6DR形(ドームラジアス形 JIS C9304)電極を用いた。なお、初期加圧時間及び通電時間は、そのcycle値を周波数の60Hzで除した時間に相当する。例えば、12cycleは、0.2s(=12/60)に相当する。 Spot welding was performed at an initial pressurizing time of 35 cycles, an energizing time of 12 cycles, a current value of 7.0 kA, a pressing force of 2.0 kN, and a cooling water amount of 3 L / min. As the welding electrode, a 6DR type (dome radius type JIS C9304) electrode made of chrome copper was used. The initial pressurization time and energization time correspond to the time obtained by dividing the cycle value by the frequency of 60 Hz. For example, 12 cycles correspond to 0.2 s (= 12/60).

従来例として、レーザ光の照射処理を行わなかった両面めっき鋼板からなる試験体No.10を準備し、他の試験体と同様の条件でスポット溶接を施した。試験体No.10の両面めっき鋼板は、試験体No.1〜No.9と同様の両面めっき鋼板を使用した。 As a conventional example, a test piece No. made of a double-sided plated steel sheet that has not been irradiated with a laser beam. 10 was prepared and spot welded under the same conditions as other test pieces. Specimen No. The double-sided plated steel sheet of No. 10 has a test piece No. 1-No. The same double-sided galvanized steel sheet as in No. 9 was used.

接合部の溶接性を評価するため、スポット溶接を施した試験体を用いて、JIS Z3140に準拠する引張せん断試験を行い、引張せん断強さ(kN)を測定した。その測定結果を表1に示す。表1に「−」で表示された試験体は、引張せん断試験機に取り付ける前に接合部が分離したため、引張せん断強さを測定することができなかった。 In order to evaluate the weldability of the joint, a tensile shear test conforming to JIS Z3140 was performed using a test piece subjected to spot welding, and the tensile shear strength (kN) was measured. The measurement results are shown in Table 1. In the test specimens indicated by "-" in Table 1, the tensile shear strength could not be measured because the joints were separated before being attached to the tensile shear tester.

JIS Z3140によると、鋼におけるJIS A級の引張せん断強さは、板厚0.8mmの場合は、3.62kNに相当する。そこで、試験体の引張せん断強さが3.62kNを超えた場合は、その試験体を溶接性が良好である(〇)と判定した。3.62kN以下であった場合や接合されなかった場合は、その試験体を溶接性が不良である(×)と判定した。その評価結果を表1に示す。 According to JIS Z3140, the tensile shear strength of JIS A class in steel corresponds to 3.62 kN when the plate thickness is 0.8 mm. Therefore, when the tensile shear strength of the test piece exceeds 3.62 kN, the test piece is judged to have good weldability (◯). When it was 3.62 kN or less or when it was not joined, the test piece was judged to have poor weldability (x). The evaluation results are shown in Table 1.

表1における板間被膜損傷面積率(%)は、スポット溶接を行う前の試験体について測定して算出した数値を記載している。スポット溶接を行った試験体No.1〜No.9においても、それらの測定結果と同程度の板間被膜損傷面積率を有すると推定できる。 The inter-plate coating damage area ratio (%) in Table 1 is a numerical value calculated by measuring the test piece before spot welding. Specimen No. that was spot welded. 1-No. It can be estimated that even in No. 9, it has the same level of inter-plate coating damage area ratio as those measurement results.

表1に示すように、試験体No.1〜No.5は、絶縁性被膜の板間損傷面積率が30%以上であるため、いずれも良好な溶接性が得られた。それに対し、試験体No.7〜No.9は、板間被膜損傷面積率が30%未満であるため、溶接性が不良であった。 As shown in Table 1, Specimen No. 1-No. In No. 5, since the damage area ratio between the plates of the insulating coating was 30% or more, good weldability was obtained in each case. On the other hand, the test piece No. 7 to No. In No. 9, the weldability was poor because the area ratio of the coating between the plates was less than 30%.

<実施例2>
めっき付着量が異なる両面めっき鋼板を用いて、実施例1と同様の手順で、試験体No.21〜No.25を作製し、レーザ光照射及びスポット溶接を行い、板間被膜損傷面積率及び引張せん断強さを測定し、溶接性を評価した。鋼板のめっき付着量を30〜350g/mの範囲で変化させて試験体を作製した。レーザ光照射及びスポット溶接は、実施例1と同様の条件で行なった。スポット溶接を施した試験体の引張せん断強さを測定し、実施例1と同様の基準で溶接性を評価した。その結果を表2に示す。
<Example 2>
Using double-sided plated steel sheets having different plating adhesion amounts, the test piece No. was used in the same procedure as in Example 1. 21-No. 25 was produced, laser light irradiation and spot welding were performed, the inter-plate film damage area ratio and tensile shear strength were measured, and the weldability was evaluated. Specimens were prepared by changing the amount of plating on the steel sheet in the range of 30 to 350 g / m 2 . Laser irradiation and spot welding were performed under the same conditions as in Example 1. The tensile shear strength of the test piece subjected to spot welding was measured, and the weldability was evaluated according to the same criteria as in Example 1. The results are shown in Table 2.

表2に示すように、30〜350g/mの付着量のサンプルについて、板間被膜損傷面積率が30%以上である試験体が得られ、いずれも良好な溶接が得られ、実用上のスポット溶接を適用することが可能であった。 As shown in Table 2, for samples with an adhesion amount of 30 to 350 g / m 2 , test specimens having an inter-plate coating damage area ratio of 30% or more were obtained, and good welding was obtained in all cases, which was practical. It was possible to apply spot welding.

<実施例3>
板厚の異なる両面めっき鋼板を用いて、実施例1と同様の手順で、試験体No.31〜No.35を作製し、レーザ光照射及びスポット溶接を行い、板間被膜損傷面積率及び引張せん断強さを測定し、溶接性を評価した。両面めっき鋼板の板厚を0.4〜2.3mmの範囲で変化させて試験体を作製した。両面めっき鋼板の寸法、めっき付着量は、実施例1と同様である。
<Example 3>
Using double-sided plated steel sheets having different plate thicknesses, the test piece No. was used in the same procedure as in Example 1. 31-No. 35 was produced, laser light irradiation and spot welding were performed, the inter-plate film damage area ratio and tensile shear strength were measured, and the weldability was evaluated. Specimens were prepared by changing the thickness of the double-sided plated steel sheet in the range of 0.4 to 2.3 mm. The dimensions and the amount of plating adhesion of the double-sided plated steel sheet are the same as in Example 1.

レーザ光の照射は、出力を200〜1000W、照射時間を200〜2000msとし、その他の条件を実施例1と同様とした。 The laser beam irradiation had an output of 200 to 1000 W and an irradiation time of 200 to 2000 ms, and other conditions were the same as in Example 1.

スポット溶接は、通電時間を6〜30cycle、電流値を6.0〜13.0kA、加圧力を1.5〜5.0kNとし、その他の条件を実施例1と同様とした。スポット溶接を施した試験体の引張せん断強さを測定し、実施例1と同様の手順で溶接性を評価した。その結果を表3に示す。 In spot welding, the energizing time was 6 to 30 cycles, the current value was 6.0 to 13.0 kA, the pressing force was 1.5 to 5.0 kN, and other conditions were the same as in Example 1. The tensile shear strength of the test piece subjected to spot welding was measured, and the weldability was evaluated by the same procedure as in Example 1. The results are shown in Table 3.

表3に示すように、0.4〜2.3mmの板厚の試験体について、板間被膜損傷面積率が30%以上である試験体が得られ、いずれも良好な溶接が得られ、実用上のスポット溶接を行うことが可能であった。 As shown in Table 3, for a test piece having a plate thickness of 0.4 to 2.3 mm, a test piece having an inter-plate coating damage area ratio of 30% or more was obtained, and good welding was obtained in each case, which was practically used. It was possible to perform the above spot welding.

実施例1〜3は、両面めっき鋼板による試験結果を示したものである。片面めっき鋼板を重ね合わせた組立体の内部には、図5に示すように、両面めっき鋼板の組立体と同様に2層の絶縁性被膜が重なって配される形態と、図6に示すように、1層の絶縁性被膜が配される形態とがあり、組立体内部の絶縁性被膜の厚みが実施例1〜3の試験体と同程度あるいは薄いといえる。そのため、これらの片面めっき鋼板の組立体を用いて、実施例1〜3と同様の手順で、レーザ光の照射処理とスポット溶接を行えば、実施例1〜3と同様に、板間被膜損傷率が30%以上であるときは、良好な溶接性が得られる。 Examples 1 to 3 show the test results using the double-sided plated steel sheet. As shown in FIG. 5, two layers of insulating coatings are overlapped and arranged inside the assembly in which the single-sided plated steel plates are laminated, and as shown in FIG. In addition, there is a form in which one layer of an insulating film is arranged, and it can be said that the thickness of the insulating film inside the assembly is about the same as or thinner than that of the test pieces of Examples 1 to 3. Therefore, if the laser beam irradiation treatment and spot welding are performed by using these single-sided plated steel sheet assemblies in the same procedure as in Examples 1 to 3, the inter-plate coating damage is performed as in Examples 1 to 3. When the ratio is 30% or more, good weldability can be obtained.

1 鋼板
2 めっき層(絶縁性被膜)
3 両面めっき鋼板(被溶接物)
4 組立体
5 片面めっき鋼板(被溶接物)
6 レーザ光
7 凝固部
8 損傷部
9 溶接電極
1 Steel plate 2 Plating layer (insulating film)
3 Double-sided galvanized steel sheet (workpiece)
4 Assembly 5 Single-sided galvanized steel sheet (workpiece)
6 Laser beam 7 Solidified part 8 Damaged part 9 Welded electrode

Claims (4)

表面に絶縁性被膜を有する複数の被溶接物を重ね合わせて組立体を形成する第1工程と、
前記組立体に溶接電極を接触させる領域を介して加熱する手段により、前記組立体の内部の絶縁性被膜に損傷を与える第2工程と、
前記損傷が与えられた前記組立体の表面において当該組立体を挟んで対向する位置に一対の溶接電極を接触させて通電し、抵抗溶接を行う第3工程と、を含む、抵抗溶接方法。
The first step of superimposing a plurality of objects to be welded having an insulating coating on the surface to form an assembly, and
A second step of damaging the insulating coating inside the assembly by means of heating through a region that contacts the weld electrode with the assembly.
A resistance welding method comprising a third step of performing resistance welding by bringing a pair of welding electrodes into contact with each other at positions facing each other on the surface of the damaged assembly so as to sandwich the assembly.
前記第2工程は、前記組立体の内部の絶縁性被膜に損傷を与える面積が、0.3×4πt(t:板厚)で示される数値以上である、請求項1に記載の抵抗溶接方法。 The resistance welding method according to claim 1, wherein in the second step, the area that damages the insulating coating inside the assembly is equal to or larger than a numerical value indicated by 0.3 × 4πt (t: plate thickness). .. 前記第2工程における前記加熱する手段は、レーザ光の照射である、請求項1または2に記載の抵抗溶接方法。 The resistance welding method according to claim 1 or 2, wherein the heating means in the second step is irradiation of a laser beam. 前記絶縁性被膜は、亜鉛(Zn)、アルミニウム(Al)、マグネシウム(Mg)の少なくとも1種を含む酸化被膜である、請求項1〜3のいずれかに記載の抵抗溶接方法。 The resistance welding method according to any one of claims 1 to 3, wherein the insulating coating is an oxide coating containing at least one of zinc (Zn), aluminum (Al), and magnesium (Mg).
JP2019060334A 2019-03-27 2019-03-27 Resistance welding method for work to be welded having insulating coating Active JP7207068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060334A JP7207068B2 (en) 2019-03-27 2019-03-27 Resistance welding method for work to be welded having insulating coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060334A JP7207068B2 (en) 2019-03-27 2019-03-27 Resistance welding method for work to be welded having insulating coating

Publications (2)

Publication Number Publication Date
JP2020157346A true JP2020157346A (en) 2020-10-01
JP7207068B2 JP7207068B2 (en) 2023-01-18

Family

ID=72641049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060334A Active JP7207068B2 (en) 2019-03-27 2019-03-27 Resistance welding method for work to be welded having insulating coating

Country Status (1)

Country Link
JP (1) JP7207068B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337821B2 (en) * 1974-01-25 1978-10-12
JPS5536051A (en) * 1978-09-05 1980-03-13 Kobe Steel Ltd Resistance welding method of surface treated material
JPS5760113B2 (en) * 1973-04-25 1982-12-17 Tokyo Shibaura Electric Co
JPS59104279A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Resistance welding method of composite metallic material having resin film
JPS59125283A (en) * 1982-12-29 1984-07-19 Ryoji Terada Method and device for spot welding
JPS6343775A (en) * 1986-08-07 1988-02-24 Toyota Motor Corp Spot welding method for galvanized steel sheet
JPH04309473A (en) * 1991-04-04 1992-11-02 Ryoda Sato Resistance welding device
JPH07116861A (en) * 1993-10-26 1995-05-09 Ryoda Sato Spot welding machine for metal material having insulating film
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008840A1 (en) 2008-02-13 2009-09-24 Up Management Gmbh Method and device for the non-invasive measurement of dynamic heart-lung interaction parameters
JP6343775B2 (en) 2013-09-11 2018-06-20 ゼネラルパッカー株式会社 Printing and packaging equipment
JP5760113B2 (en) 2014-03-28 2015-08-05 株式会社ユニバーサルエンターテインメント Game machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760113B2 (en) * 1973-04-25 1982-12-17 Tokyo Shibaura Electric Co
JPS5337821B2 (en) * 1974-01-25 1978-10-12
JPS5536051A (en) * 1978-09-05 1980-03-13 Kobe Steel Ltd Resistance welding method of surface treated material
JPS59104279A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Resistance welding method of composite metallic material having resin film
JPS59125283A (en) * 1982-12-29 1984-07-19 Ryoji Terada Method and device for spot welding
JPS6343775A (en) * 1986-08-07 1988-02-24 Toyota Motor Corp Spot welding method for galvanized steel sheet
JPH04309473A (en) * 1991-04-04 1992-11-02 Ryoda Sato Resistance welding device
JPH07116861A (en) * 1993-10-26 1995-05-09 Ryoda Sato Spot welding machine for metal material having insulating film
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment

Also Published As

Publication number Publication date
JP7207068B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
Xia et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint
JP6006805B2 (en) Method for joining dissimilar materials
JP5293227B2 (en) Resistance spot welding method for high strength thin steel sheet
Liedl et al. Joining of aluminum and steel in car body manufacturing
JP5793495B2 (en) Resistance spot welding method and system using DC micropulse
CN107335921B (en) Add titanium alloy-stainless steel dissimilar metal laser welding method of vanadium middle layer
Pardal et al. Dissimilar metal laser spot joining of steel to aluminium in conduction mode
JP2013501628A5 (en)
KR20010110152A (en) Method for the projection welding of high-carbon steels and high-tension low-alloy steels
JPH0455066A (en) Lap resistance welding method of aluminum material and steel material
JPH07328774A (en) Dissimilar material joining method of aluminum and steel
JP2007307591A (en) Method for manufacturing building member
JP7207068B2 (en) Resistance welding method for work to be welded having insulating coating
JP5473171B2 (en) Manufacturing method for building components
JPS63183781A (en) Resistance welding equipment for metallic materials having plating film
Kumamoto et al. Effect of microstructure on joint strength of Fe/Al resistance spot welding for multi-material components
Pieters et al. Laser welding of zinc coated steel in overlap configuration with zero gap
JP2009072812A (en) Joining method for ferrous material and aluminum material, and iron-aluminum joined member
KR101482390B1 (en) Apparatus and method of resistance welding
JP2021074748A (en) Resistance welding method of welded object having insulative coat
EP1507624B1 (en) Method of welding aluminium alloy strip products
Tawade et al. Robust Schedules for Spot Welding Zinc Coated Advanced High Strength Automotive Steels
JP2022141468A (en) Resistance spot-welding method, welded member manufacturing method, and resistance spot-welding device
JPS5970481A (en) Spot welding method
Harara Evaluation of the 6082-T6 Aluminum Thick Plates Welded Joints Performance for High Stress Industrial Application According to European Standards

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151