JP2020157274A - Pure water production apparatus and pure water production method - Google Patents
Pure water production apparatus and pure water production method Download PDFInfo
- Publication number
- JP2020157274A JP2020157274A JP2019062621A JP2019062621A JP2020157274A JP 2020157274 A JP2020157274 A JP 2020157274A JP 2019062621 A JP2019062621 A JP 2019062621A JP 2019062621 A JP2019062621 A JP 2019062621A JP 2020157274 A JP2020157274 A JP 2020157274A
- Authority
- JP
- Japan
- Prior art keywords
- water
- primary
- reverse osmosis
- osmosis membrane
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 621
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 105
- 239000012528 membrane Substances 0.000 claims abstract description 115
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 103
- 239000000498 cooling water Substances 0.000 claims abstract description 59
- 238000001816 cooling Methods 0.000 claims abstract description 53
- 239000012466 permeate Substances 0.000 claims abstract description 12
- 238000006114 decarboxylation reaction Methods 0.000 claims description 54
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 14
- 238000009296 electrodeionization Methods 0.000 claims description 11
- 230000000911 decarboxylating effect Effects 0.000 claims description 9
- 238000002242 deionisation method Methods 0.000 claims description 5
- 238000005261 decarburization Methods 0.000 claims 1
- 239000012535 impurity Substances 0.000 description 27
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000005262 decarbonization Methods 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 239000008235 industrial water Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 241001474374 Blennius Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
Landscapes
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
本発明は、純水製造装置及び純水製造方法に関する。 The present invention relates to a pure water production apparatus and a pure water production method.
一般に純水製造装置には、不純物の除去を目的として、原水を透過水と濃縮水とに分離するための逆浸透膜が備えられている。逆浸透膜を透過した透過水は、更にイオン交換処理などがなされた後に、純水としてユースポイントに供給される。一方、逆浸透膜を透過しなかった濃縮水は、水の有効利用を図るために、原水に返送されて純水製造に再利用されるか、あるいは、冷却塔(クーリングタワー)等の冷却装置の冷却水として再利用される場合がある。 Generally, a pure water production apparatus is provided with a reverse osmosis membrane for separating raw water into permeated water and concentrated water for the purpose of removing impurities. The permeated water that has permeated the reverse osmosis membrane is further subjected to ion exchange treatment and the like, and then supplied to the point of use as pure water. On the other hand, the concentrated water that has not permeated the reverse osmosis membrane is returned to raw water and reused for pure water production in order to make effective use of water, or it is used in a cooling device such as a cooling tower. It may be reused as cooling water.
純水製造装置における濃縮水の再利用に関する技術として、特許文献1には、第1の逆浸透膜装置から出された濃縮水を、第2の逆浸透膜装置によって処理することで透過水とし、この透過水を原水槽に戻すことが記載されている。また、特許文献2には、中圧逆浸透によって第1の濃縮水を産出し、この第1の濃縮水を高圧逆浸透によって処理することで第2の透過水を産出し、第2の透過水を再利用することが記載されている。更に、特許文献3には、逆浸透膜処理装置によって生成される濃縮水を循環冷却水として使用する濃縮水の利用方法が記載されている。
As a technique for reusing concentrated water in a pure water production apparatus, Patent Document 1 states that concentrated water discharged from a first reverse osmosis membrane apparatus is treated with a second reverse osmosis membrane apparatus to obtain permeable water. , It is described that this permeated water is returned to the raw water tank. Further, in Patent Document 2, a first concentrated water is produced by medium pressure reverse osmosis, and a second permeated water is produced by treating the first concentrated water by high pressure reverse osmosis to produce a second permeated water. It is stated that water will be reused. Further,
逆浸透膜によって生成された濃縮水には不純物が濃化されているため、カルシウムやシリカなどの成分が原水よりも高濃度で含まれる。このような濃縮水が冷却塔に供給されると、冷却塔内の配管においてカルシウムやシリカが析出して目詰まりが発生するおそれがある。そのため、純水製造装置の逆浸透膜によって生成した濃縮水を冷却塔に再利用する場合は、特許文献1〜3に記載のように、1段目の逆浸透膜によって生成された濃縮水を2段目の逆浸透膜によって処理することで不純物濃度を下げるか、あるいは、逆浸透膜における濃縮倍率を調整することで、カルシウムやシリカによる目詰まりを予防する場合がある。 Impurities are concentrated in the concentrated water produced by the reverse osmosis membrane, so that components such as calcium and silica are contained at a higher concentration than the raw water. When such concentrated water is supplied to the cooling tower, calcium and silica may precipitate in the piping inside the cooling tower to cause clogging. Therefore, when the concentrated water generated by the reverse osmosis membrane of the pure water production apparatus is reused for the cooling tower, the concentrated water generated by the first-stage reverse osmosis membrane is used as described in Patent Documents 1 to 3. Treatment with a second-stage reverse osmosis membrane may reduce the impurity concentration, or adjustment of the concentration ratio in the reverse osmosis membrane may prevent clogging due to calcium or silica.
しかし、冷却塔における冷却水の需要量と、逆浸透膜による濃縮水の生成量とは合致しない場合が多く、特に、冷却水の需要量が濃縮水の生成量を下回る場合は、余剰の濃縮水を純水製造装置から排出せざるを得ず、純水製造装置における水の有効利用が図られていなかった。 However, the demand for cooling water in the cooling tower often does not match the amount of concentrated water produced by the reverse osmosis membrane, and especially when the demand for cooling water is less than the amount of concentrated water produced, excess concentration is achieved. Water had to be discharged from the pure water production equipment, and the effective use of water in the pure water production equipment was not achieved.
本発明は上記事情に鑑みてなされたものであり、逆浸透膜によって生成された濃縮水を冷却塔の冷却水として再利用する場合において、水の有効利用を可能とする純水製造装置及び純水製造方法を提供するこことを課題とする。 The present invention has been made in view of the above circumstances, and is a pure water production apparatus and pure water that enable effective use of water when the concentrated water generated by the reverse osmosis membrane is reused as cooling water for a cooling tower. The subject is to provide a water production method.
上記課題を解決するため、本発明は以下の構成を採用する。
[1] 原水を流す原水供給路と、
前記原水供給路から供給された前記原水を、一次透過水と一次濃縮水とに分離する第1の逆浸透膜と、
前記一次濃縮水を、二次透過水と二次濃縮水とに分離する第2の逆浸透膜と、
前記二次透過水を、冷却水として冷却塔に供給する冷却水供給路と、
前記第2の逆浸透膜における前記二次透過水の生産量が、前記冷却塔における前記二次透過水の需要量を超える場合に、前記二次透過水の余剰分を前記原水供給路に返送する返送手段と、が備えられていることを特徴とする純水製造装置。
[2] 前記返送手段は、前記二次透過水を前記原水供給路に返送する返送路と、
前記冷却水供給路に流す前記二次透過水の流量を制御する流量制御手段と、から構成されていることを特徴とする[1]に記載の純水製造装置。
[3] 前記原水供給路の途中に配置されて前記原水を予熱する予熱手段と、
前記原水供給路の途中に配置されて予熱後の前記原水を加熱する加熱手段と、が更に備えられ、
前記予熱手段は、前記冷却水供給路を流れる前記二次透過水を高温側流体とし、前記原水を低温側流体とする熱交換器であることを特徴とする[1]または[2]に記載の純水製造装置。
[4] 前記第1の逆浸透膜を透過した前記一次透過水が流れる一次透過水路と、
前記一次透過水路に設置され、前記一次透過水を脱炭酸処理する第1脱炭酸手段と、
前記一次透過水路の前記第1脱炭酸手段の後段に設置され、前記第1脱炭酸手段を通過後の前記一次透過水を脱イオン処理すると、が更に備えられていることを特徴とする[1]乃至[3]の何れか一項に記載の純水製造装置。
[5] 前記返送路に、前記二次透過水を脱炭酸処理する第2脱炭酸手段が備えられている[2]乃至[4]の何れか一項に記載の純水製造装置。
In order to solve the above problems, the present invention adopts the following configuration.
[1] A raw water supply channel through which raw water flows and
A first reverse osmosis membrane that separates the raw water supplied from the raw water supply channel into primary permeated water and primary concentrated water.
A second reverse osmosis membrane that separates the primary concentrated water into secondary permeated water and secondary concentrated water.
A cooling water supply path that supplies the secondary permeated water to the cooling tower as cooling water, and
When the production amount of the secondary permeated water in the second reverse osmosis membrane exceeds the demand amount of the secondary permeated water in the cooling tower, the surplus of the secondary permeated water is returned to the raw water supply channel. A pure water production apparatus characterized in that it is provided with a return means.
[2] The return means includes a return path for returning the secondary permeated water to the raw water supply path and a return path.
The pure water production apparatus according to [1], which comprises a flow rate control means for controlling the flow rate of the secondary permeated water flowing through the cooling water supply path.
[3] A preheating means arranged in the middle of the raw water supply path to preheat the raw water, and
A heating means for heating the raw water after preheating, which is arranged in the middle of the raw water supply path, is further provided.
The preheating means according to [1] or [2], wherein the preheating means is a heat exchanger in which the secondary permeated water flowing through the cooling water supply path is a high temperature side fluid and the raw water is a low temperature side fluid. Pure water production equipment.
[4] A primary permeation channel through which the primary permeate water that has permeated the first reverse osmosis membrane flows.
A first decarboxylation means that is installed in the primary permeation channel and decarboxylates the primary permeate water.
When the primary permeated water is installed after the first decarboxylation means of the primary permeation channel and the primary permeate water after passing through the first decarboxylation means is deionized, the present invention is further provided [1]. ] To [3]. The pure water production apparatus according to any one of the items.
[5] The pure water production apparatus according to any one of [2] to [4], wherein the return path is provided with a second decarboxylation means for decarboxylating the secondary permeated water.
[6] 原水を、第1の逆浸透膜により、一次透過水と一次濃縮水とに分離する第1の逆浸透膜分離工程と、
前記一次濃縮水を、第2の逆浸透膜により、二次透過水と二次濃縮水とに分離する第2の逆浸透膜分離工程と、
前記二次透過水を、冷却水供給路により、冷却水として冷却塔に供給するとともに、前記第2の逆浸透膜における前記二次透過水の生産量が前記冷却塔における前記二次透過水の需要量を超える場合に、前記二次透過水の余剰分を、返送手段により、前記原水として返送する二次透過水供給工程と、
が備えられていることを特徴とする純水製造方法。
[7] 前記返送手段は、前記二次透過水を、前記原水に返送する返送路と、
前記冷却水供給路に流す前記二次透過水の流量を制御する流量制御手段とからなることを特徴とする[6]に記載の純水製造方法。
[8] 前記第1の逆浸透膜への供給前の前記原水を予熱する予熱工程と、
予熱後の前記原水を加熱する加熱工程と、が更に備えられ、
前記予熱工程は、前記冷却水供給路を流れる前記二次透過水を高温側流体とし、前記原水を低温側流体とする熱交換器によって行うことを特徴とする[6]または[7]に記載の純水製造方法。
[9] 前記一次透過水を、第1脱炭酸手段により、脱炭酸処理する第1脱炭酸工程と、
前記第1脱炭酸工程後の前記一次透過水を、電気脱イオン装置により、脱イオン処理する電気脱イオン工程と、が更に備えられていることを特徴とする[6]乃至[8]の何れか一項に記載の純水製造方法。
[10] 前記返送路を流れる前記二次透過水を、第2脱炭酸手段により、脱炭酸処理する第2脱炭酸工程が備えられている[7]乃至[9]の何れか一項に記載の純水製造方法。
[6] A first reverse osmosis membrane separation step of separating raw water into primary permeated water and primary concentrated water by a first reverse osmosis membrane.
A second reverse osmosis membrane separation step of separating the primary concentrated water into secondary permeated water and secondary concentrated water by a second reverse osmosis membrane.
The secondary permeated water is supplied to the cooling tower as cooling water through the cooling water supply path, and the production amount of the secondary permeated water in the second reverse osmosis membrane is the secondary permeated water in the cooling tower. A secondary permeated water supply step in which the surplus of the secondary permeated water is returned as raw water by a return means when the demand amount is exceeded.
A pure water production method characterized by being provided with.
[7] The return means includes a return path for returning the secondary permeated water to the raw water.
The pure water production method according to [6], which comprises a flow rate control means for controlling the flow rate of the secondary permeated water flowing through the cooling water supply path.
[8] A preheating step of preheating the raw water before supply to the first reverse osmosis membrane, and
A heating step of heating the raw water after preheating is further provided.
[6] or [7], wherein the preheating step is performed by a heat exchanger in which the secondary permeated water flowing through the cooling water supply path is a high temperature side fluid and the raw water is a low temperature side fluid. Pure water production method.
[9] In the first decarboxylation step of decarboxylating the primary permeated water by the first decarboxylation means,
Any of [6] to [8], further comprising an electrodeionization step of deionizing the primary permeated water after the first decarboxylation step with an electrodeionizer. The pure water production method according to item 1.
[10] The item according to any one of [7] to [9], which includes a second decarboxylation step of decarboxylating the secondary permeated water flowing through the return path by a second decarboxylation means. Pure water production method.
本発明の純水製造装置によれば、第2の逆浸透膜における二次透過水の生産量が、冷却塔における二次透過水の需要量を超える場合に、二次透過水の余剰分を原水供給路に返送する返送手段が備えられているので、余剰な二次透過水を廃棄することなく有効利用することができる。 According to the pure water production apparatus of the present invention, when the production amount of the secondary permeated water in the second reverse osmosis membrane exceeds the demand amount of the secondary permeated water in the cooling tower, the surplus amount of the secondary permeated water is taken. Since the return means for returning to the raw water supply channel is provided, excess secondary permeated water can be effectively used without being discarded.
また、本発明の純水製造装置によれば、返送手段が、二次透過水を原水供給路に返送する返送路と、冷却水供給路に流す二次透過水の流量を制御する流量制御手段とから構成されているので、冷却塔への二次透過水の供給量と、原水供給路への二次透過水の返送量とを最適な割合に調整することができ、水の有効利用を図ることができる。 Further, according to the pure water production apparatus of the present invention, the return means is a flow control means for controlling the flow rate of the secondary permeated water flowing through the return path for returning the secondary permeated water to the raw water supply path and the cooling water supply path. Since it is composed of, the amount of secondary permeated water supplied to the cooling tower and the amount of secondary permeated water returned to the raw water supply channel can be adjusted to the optimum ratio, and effective use of water can be achieved. Can be planned.
更に、本発明の純水製造装置によれば、原水供給路の途中に原水を予熱する予熱手段及び加熱手段が配置される場合に、予熱手段を熱交換器として利用し、冷却水供給路を流れる二次透過水の熱を予熱手段によって回収することで、加熱手段におけるエネルギー消費を低減できるとともに、冷却塔に送る二次透過水を冷却することができる。 Further, according to the pure water production apparatus of the present invention, when the preheating means and the heating means for preheating the raw water are arranged in the middle of the raw water supply path, the preheating means is used as a heat exchanger to provide the cooling water supply path. By recovering the heat of the flowing secondary permeated water by the preheating means, the energy consumption in the heating means can be reduced and the secondary permeated water sent to the cooling tower can be cooled.
更にまた、本発明の純水製造装置によれば、第1の逆浸透膜を透過した一次透過水が流れる一次透過水路に、第1脱炭酸手段と電気脱イオン装置とが更に備えられているので、一次透過水の不純物量を更に低減することができ、高純度の純水を製造できる。 Furthermore, according to the pure water production apparatus of the present invention, the first decarboxylation means and the electrodeionization apparatus are further provided in the primary permeation channel through which the primary permeation water that has permeated the first reverse osmosis membrane flows. Therefore, the amount of impurities in the primary permeated water can be further reduced, and high-purity pure water can be produced.
また、本発明の純水製造装置によれば、二次透過水と原水供給路に返送する返送路に、二次透過水を脱炭酸処理する第2脱炭酸手段が備えられているので、脱炭酸処理された二次透過水を原水供給路に返送することができ、これにより原水の炭酸濃度が減少し、一次透過水路に配置した第1脱炭酸手段の負荷を軽減できる。 Further, according to the pure water production apparatus of the present invention, the secondary permeated water and the return path for returning to the raw water supply channel are provided with a second decarboxylation means for decarboxylating the secondary permeated water. The carbonated secondary permeated water can be returned to the raw water supply channel, thereby reducing the carbonic acid concentration of the raw water and reducing the load on the first decarboxylation means arranged in the primary permeated water channel.
次に、本発明の純水製造方法によれば、第2の逆浸透膜における二次透過水の生産量が、冷却塔における二次透過水の需要量を超える場合に、二次透過水の余剰分を原水供給路に返送する二次透過水供給工程が備えられているので、余剰な二次透過水を廃棄することなく有効利用することができる。 Next, according to the pure water production method of the present invention, when the production amount of the secondary permeated water in the second reverse osmosis membrane exceeds the demand amount of the secondary permeated water in the cooling tower, the secondary permeated water Since the secondary permeated water supply process for returning the surplus to the raw water supply channel is provided, the surplus secondary permeated water can be effectively used without being discarded.
また、本発明の純水製造方法によれば、返送手段が、二次透過水を原水供給路に返送する返送路と、冷却水供給路に流す二次透過水の流量を制御する流量制御手段とから構成されているので、冷却塔への二次透過水の供給量と、原水供給路への二次透過水の返送量とを最適な割合に調整することができ、水の有効利用を図ることができる。 Further, according to the pure water production method of the present invention, the return means is a flow rate control means for controlling the flow rate of the secondary permeated water flowing through the return path for returning the secondary permeated water to the raw water supply path and the cooling water supply path. Since it is composed of, the amount of secondary permeated water supplied to the cooling tower and the amount of secondary permeated water returned to the raw water supply channel can be adjusted to the optimum ratio, and effective use of water can be achieved. Can be planned.
更に、本発明の純水製造方法によれば、原水供給路の途中に原水を予熱する予熱工程及び加熱工程がなされる場合に、冷却水供給路を流れる二次透過水の熱を予熱手段によって回収するので、加熱工程におけるエネルギー消費を低減できるとともに、冷却塔に送る二次透過水を冷却することができる。 Further, according to the pure water production method of the present invention, when a preheating step and a heating step for preheating the raw water are performed in the middle of the raw water supply path, the heat of the secondary permeated water flowing through the cooling water supply path is preheated by the preheating means. Since it is recovered, energy consumption in the heating process can be reduced, and the secondary permeated water sent to the cooling tower can be cooled.
更にまた、本発明の純水製造方法によれば、第1の逆浸透膜を透過した一次透過水に対して、第1脱炭酸工程と電気脱イオン工程とを順次行うことで、一次透過水の不純物量を更に低減することができ、高純度の純水を製造できる。 Furthermore, according to the pure water production method of the present invention, the primary permeated water is subjected to the first decarbonization step and the electrodeionization step in sequence with respect to the primary permeated water that has permeated the first reverse osmosis membrane. The amount of impurities in the above can be further reduced, and high-purity pure water can be produced.
また、本発明の純水製造方法によれば、二次透過水を原水供給路に返送する際に、二次透過水に対して第2脱炭酸工程を行うので、脱炭酸処理された二次透過水を原水供給路に返送することができ、これにより原水の炭酸濃度が減少し、一次透過水路における第1脱炭酸工程の負荷を軽減できる。 Further, according to the pure water production method of the present invention, when the secondary permeated water is returned to the raw water supply channel, the secondary decarboxylation step is performed on the secondary permeated water, so that the decarboxylated secondary water is subjected to. The permeated water can be returned to the raw water supply channel, thereby reducing the carbonation concentration of the raw water and reducing the load of the first decarboxylation step in the primary permeated water channel.
(第1の実施形態)
図1を参照して、本発明の第1の実施形態である純水製造装置及び純水製造方法を説明する。
(First Embodiment)
The pure water production apparatus and the pure water production method according to the first embodiment of the present invention will be described with reference to FIG.
まず、純水製造装置1の全体構成を説明する。本実施形態の純水製造装置1は、原水w1を流す原水供給路2と、原水w1を一次透過水w2と一次濃縮水w3に分離する第1の逆浸透膜3と、一次濃縮水w3を二次透過水w4と二次濃縮水w5に分離する第2の逆浸透膜4と、二次透過水w4を冷却水として冷却塔5に供給する冷却水供給路L8と、二次透過水w4の余剰分を原水供給路2に返送する返送手段6とが備えられている。また、純水製造装置1には、一次透過水w2を流す一次透過水路L3、L4と、第1脱炭酸手段31と、電気脱イオン装置32とが備えられている。更に、第1の逆浸透膜3と第2の逆浸透膜4との間には、一次濃縮水w3を貯留する濃縮水槽8が備えられている。更にまた、濃縮水槽8と第2の逆浸透膜4との間には、一次濃縮水w3の水質を調整する水質調整手段42が備えられている。
First, the overall configuration of the pure water production apparatus 1 will be described. The pure water production apparatus 1 of the present embodiment has a raw water supply path 2 through which the raw water w1 flows, a first back-penetrating
また、図1に示すように、原水供給路2の前段には前処理装置41が備えられている。前処理装置41は、純水製造装置1に含めてもよく、含めなくてもよい。
Further, as shown in FIG. 1, a
原水供給路2は、原水槽2aと、前処理装置41と原水槽2aとを接続する水路L1と、原水槽2aと第1の逆浸透膜3とを接続する水路L2とから構成されている。
The raw water supply channel 2 is composed of a
返送手段6は、二次透過水w4を原水供給路2に返送する返送路L9と、流量制御手段7とから構成されている。流量制御手段7は、流量調整弁7aと制御装置7bとから構成されている。
The return means 6 is composed of a return path L9 for returning the secondary permeated water w4 to the raw water supply path 2 and a flow rate control means 7. The flow rate control means 7 is composed of a flow
また、純水製造装置1には、各装置及び各手段の間に水を流すための水路が備えられている。すなわち、原水供給路2には水路L1及び水路L2がある。また、第1の逆浸透膜3と第1脱炭酸手段31とが一次透過水路L3によって接続され、第1脱炭酸手段31と電気脱イオン装置32とが一次透過水路L4によって接続されている。また、電気脱イオン装置32と原水供給路2の原水槽2aとが水路L10によって接続されている。なお、水路L10は、原水槽2aに限らず、水路L1、L2のいずれかに接続されていてもよい。
Further, the pure water production apparatus 1 is provided with a water channel for flowing water between each apparatus and each means. That is, the raw water supply channel 2 has a water channel L1 and a water channel L2. Further, the first
また、第1の逆浸透膜3と濃縮水槽8とが水路L5によって接続され、濃縮水槽8と第2の逆浸透膜4とが水路L6によって接続され、第2の逆浸透膜4と流量調整弁7aとが水路L7によって接続され、流量調整弁7aと冷却塔5とが冷却水供給路L8によって接続されている。更に、水路L7の途中から返送路L9が分岐している。返送路L9は原水槽2aに接続されている。なお、返送路L9は、原水槽2aに限らず、水路L1、L2のいずれかに接続されていてもよい。
Further, the first
次に、純水製造装置1を構成する各装置及び各手段について説明する。
前処理装置41は、上水道水や工業用水等の原水w1に対して凝集沈降、濾過、イオン交換等を行うことによって、原水w1の不純物量を所定の濃度以下に低減させるものである。前処理装置41によって処理された原水w1は、水路L1によって原水槽2aに送られる。
Next, each device and each means constituting the pure water production device 1 will be described.
The
原水槽2aは、原水w1を一時的に貯留する。また、原水槽2aには、水路L10及び返送路L9が接続されており、これらの水路L9、L10から返送された水も原水w1として貯留する。貯留された原水w1は水路L2によって第1の逆浸透膜3に送られる。
The
第1の逆浸透膜3は、原水供給路2から供給された原水w1を、一次透過水w2と一次濃縮水w3に分離させる。原水w1は、第1の逆浸透膜3に通水されることによって、不純物が除去されて一次透過水w2とされる。除去された不純物は一次濃縮水w3に含有される。第1の逆浸透膜3は、浸透膜(メンブレン)を何層にも重ねて海苔巻き状に巻き、容器に収めたスパイラル型モジュールを好適に使用できるが、これに限定されるものではない。
The first
第1の逆浸透膜3には、一次透過水w2を流す一次透過水路L3と、一次濃縮水w3を流す水路L5とが接続されている。
The first
また、第1の逆浸透膜3は2つ以上直列に設けられていてもよい。第1の逆浸透膜3が2つ以上直列に設けられる場合、前段の逆浸透膜の透過水が後段の逆浸透膜の供給水となるように設けられる。
Further, two or more first
第1脱炭酸手段31は、一次透過水w2を脱炭酸処理するものである。第1脱炭酸手段31としては、第1の逆浸透膜3を透過した一次透過水w2に溶存している二酸化炭素を主に除去できるものであれば、特に限定されない。第1脱炭酸手段31としては、例えば、中空糸膜等の脱気膜から構成される膜脱気装置や、脱炭酸塔等を用いることができる。第1脱炭酸手段31には、一次透過水w2を電気脱イオン装置32に送る一次透過水路L4が接続されている。
The first decarboxylation means 31 decarboxylates the primary permeated water w2. The first decarboxylation means 31 is not particularly limited as long as it can mainly remove carbon dioxide dissolved in the primary permeated water w2 that has permeated the first
電気脱イオン装置32は、第1脱炭酸手段31の後段に設置されている。電気脱イオン装置32は、一次透過水w2を脱イオン処理することにより、一次透過水w2に残存するイオン性物質を更に除去するためのものである。除去されたイオン性物質は濃縮水w6に濃縮される。電気脱イオン装置32は、例えば、陽極と陰極との間がアニオン交換膜とカチオン交換膜とで区画され、陽極室、陰極室、脱塩室および濃縮室が形成されてなるものが用いられる。
The
また、電気脱イオン装置32には水路L10が接続されている。水路L10は、濃縮水w6を原水槽2aに返送させる。更に、電気脱イオン装置32には水路L11が接続されている。水路L11は、ユースポイントに接続されており、脱イオン処理された一次透過水w2を純水としてユースポイントに供給させる。
Further, a water channel L10 is connected to the
第1の逆浸透膜3に接続された水路L5の先には、濃縮水槽8が設置されている。濃縮水槽8は、一次濃縮水w3を一時的に貯留する。また、濃縮水槽8には一次濃縮水w3を第2の逆浸透膜4に送るための水路L6が接続されている。
A
水路L6の途中には、一次濃縮水w3の水質調整をするための水質調整手段42が接続されている。一次濃縮水w3の水質調整の主な目的は、第2の逆浸透膜4におけるスケールの析出を予防して、膜の閉塞を予防することである。そのため、水質調整手段42では、一次濃縮水w3の水質を酸性に、例えばpH5.5以下に調整するとともに、スケール分散剤を添加する。pHの調整は、硫酸等の添加によって行うことが好ましい。なお、水質調整手段42は水路L6の途中に設置することに限定されず、濃縮水槽8に設置してもよい。
A water quality adjusting means 42 for adjusting the water quality of the primary concentrated water w3 is connected in the middle of the water channel L6. The main purpose of adjusting the water quality of the primary concentrated water w3 is to prevent scale precipitation in the second
第2の逆浸透膜4は、水質調整手段42によって水質調整された一次濃縮水w3を、二次透過水w4と二次濃縮水w5に分離させる。一次濃縮水w3は、第2の逆浸透膜4に通水されることによって、不純物が除去されて二次透過水w4とされる。除去された不純物は二次濃縮水w5に含有される。第2の逆浸透膜4は、浸透膜(メンブレン)を何層にも重ねて海苔巻き状に巻き、容器に収めたスパイラル型モジュールを好適に使用できるが、これに限定されるものではない。
The second
第2の逆浸透膜4には、二次透過水w4を流す水路L7と、二次濃縮水w5を流す水路L12とが接続されている。
A water channel L7 through which the secondary permeated water w4 flows and a water channel L12 through which the secondary concentrated water w5 flows are connected to the second
また、第2の逆浸透膜4は2つ以上直列に設けられていてもよい。第2の逆浸透膜4が2つ以上直列に設けられる場合、前段の逆浸透膜の透過水が後段の逆浸透膜の供給水となるように設けられる。
Further, two or more second
返送手段6は、水路L7の途中から分岐する返送路L9と、流量制御手段7とから構成されている。流量制御手段7は、流量調整弁7aと制御装置7bとから構成されている。流量調整弁7aは、水路L7と冷却水供給路L8との間に配置されている。冷却水供給路L8は冷却塔5に接続されており、二次透過水w4を冷却塔5に供給させる。冷却塔5では、二次透過水w4を冷却水として利用する。
The return means 6 is composed of a return path L9 that branches from the middle of the water channel L7 and a flow rate control means 7. The flow rate control means 7 is composed of a flow
流量調整弁7aは、制御装置7bの指令を受けて、冷却水供給路L8における二次透過水w4の流量を調整する。また、制御装置7bは、冷却塔5における冷却水(二次透過水w4)の使用量を監視しており、二次透過水w4の供給量が不足する場合は流量調整弁7aを制御して冷却水供給路L8における二次透過水w4の流量を増加させ、逆に二次透過水w4の供給量が過剰な場合は流量調整弁7aを制御して冷却水供給路L8における二次透過水w4の流量を減少させる。
The flow
流量調整弁7a及び制御装置7bによる二次透過水w4に対する流量制御の結果、二次透過水w4に余剰が生じると、余剰分の二次透過水w4は返送路L9に流され、原水供給路2の原水槽2aに送られる。
As a result of the flow rate control for the secondary permeated water w4 by the flow
次に図1を参照しつつ、本実施形態の純水製造方法について説明する。本実施形態の純水製造方法は、原水w1を、第1の逆浸透膜3により、一次透過水w2と一次濃縮水w3とに分離する第1の逆浸透膜分離工程と、一次濃縮水w3を、第2の逆浸透膜4により、二次透過水w4と二次濃縮水w5とに分離する第2の逆浸透膜分離工程と、二次透過水w4を、冷却水として冷却塔5に供給するとともに、二次透過水w4の余剰分を第1の逆浸透膜3の前段に返送する二次透過水供給工程と、を行う。また、本実施形態の純水製造方法では、一次透過水w2を、第1脱炭酸手段31により脱炭酸処理する第1脱炭酸工程と、第1脱炭酸工程後の一次透過水w2を、電気脱イオン装置32により、脱イオン処理する電気脱イオン工程とを行う。
以下、各工程について説明する。
Next, the pure water production method of the present embodiment will be described with reference to FIG. The pure water production method of the present embodiment includes a first back-penetrating film separation step of separating raw water w1 into primary permeated water w2 and primary concentrated water w3 by a first back-penetrating
Hereinafter, each step will be described.
まず、上水道水や工業用水等の原水w1に対して前処理装置41によって凝集沈降、濾過、イオン交換等を行うことで、原水w1の不純物量を所定の濃度以下に低減させる。前処理装置41によって処理された原水w1は、水路L1によって原水槽2aに送る。
First, the amount of impurities in the raw water w1 is reduced to a predetermined concentration or less by performing coagulation sedimentation, filtration, ion exchange, etc. on the raw water w1 such as tap water and industrial water by the
次に、第1の逆浸透膜分離工程では、原水供給路2の原水槽2aから供給された原水w1を、一次透過水w2と一次濃縮水w3に分離する。原水w1は、第1の逆浸透膜3によって不純物が除去されて一次透過水w2とされる。また、除去された不純物は一次濃縮水w3に含有される。そして、一次透過水w2は一次透過水路L3を介して第1脱炭酸手段31に送られる。また、一次濃縮水w3は水路L5を介して濃縮水槽8に送られる。
Next, in the first reverse osmosis membrane separation step, the raw water w1 supplied from the
濃縮水槽8に送られた一次濃縮水w3は、更に水路L6を介して第2の逆浸透膜4に送られるが、その前に、水質調整手段42によって一次濃縮水w3の水質を調整する。一次濃縮水w3は、第1の逆浸透膜分離工程において不純物が濃縮された水であるため、カルシウム、シリカ、炭酸イオンといった不純物が比較的高い濃度で含まれており、スケールが生成しやすい水質になっている。特に、第2の逆浸透膜分離工程においてスケールが生成すると、スケールによって膜の閉塞が起きてしまう。このため、予め、一次濃縮水w3の水質調整を行う。具体的には、一次濃縮水w3を酸性に、例えばpH5.5以下に調整するとともに、スケール分散剤を添加する。一次濃縮水w3のpHを下げることでスケールの析出が抑制される。また、スケール分散剤を添加しておくことで、仮にスケールが生成してしまった場合でもスケールを凝集させずに膜の閉塞が防止される。なお、一次濃縮水w3中でのスケール生成の可能性が低いと見込まれる場合は、一次濃縮水w3の水質調整は省略してもよい。
The primary concentrated water w3 sent to the
次に、第2の逆浸透膜分離工程では、一次濃縮水w3を、二次透過水w4と二次濃縮水w5に分離する。一次濃縮水w3は、第2の逆浸透膜4によって不純物が除去されて二次透過水w4とされる。また、除去された不純物は二次濃縮水w5に含有される。そして、二次透過水w4は水路L7に送られる。一方、二次濃縮水w5は水路L12を介して純水製造装置1から排出される。
Next, in the second reverse osmosis membrane separation step, the primary concentrated water w3 is separated into the secondary permeated water w4 and the secondary concentrated water w5. Impurities are removed from the primary concentrated water w3 by the second
第2の逆浸透膜分離工程によって一次濃縮水w3から二次透過水w4を分離することで、一次濃縮水w3よりも不純物量が低減された二次透過水w4が得られる。この二次透過水w4は、不純物濃度が低くスケールが析出しにくいため、冷却塔5において冷却水として利用されたとしても、冷却塔5の配管内においてスケールを生成させることがなく、目詰まりを起こすおそれが少ない。
By separating the secondary permeated water w4 from the primary concentrated water w3 by the second reverse osmosis membrane separation step, the secondary permeated water w4 having a smaller amount of impurities than the primary concentrated water w3 can be obtained. Since the secondary permeated water w4 has a low impurity concentration and scale is difficult to precipitate, even if it is used as cooling water in the
次に、二次透過水供給工程では、二次透過水w4を冷却水として冷却塔5に供給するとともに、二次透過水w4の余剰分を返送手段6によって原水として原水槽2aに返送する。冷却塔5における冷却水の需要量は季節変動があり、気温や水温が比較的高くなる夏期では冷却塔5における冷却水の需要量が増大し、一方、気温や水温が比較的低くなる冬期では冷却塔5における冷却水の需要量が減少する。また、二次透過水w4の生産量も、様々な要因で変動し得る。このような要因として例えば、水不足による原水w1の取水制限、コスト削減のための原水w1の使用量の減少、環境負荷軽減のための原水w1の使用量の減少などが挙げられる。そこで、第2の逆浸透膜4における二次透過水w4の生産量が冷却塔5における二次透過水w4の需要量を超える場合には、二次透過水w4の余剰分を、返送手段6によって原水として返送することとする。
Next, in the secondary permeated water supply step, the secondary permeated water w4 is supplied to the
具体的には、制御装置7bが、冷却塔5における冷却水(二次透過水w4)の使用量を監視する。二次透過水w4の供給量が不足する場合は、制御装置7bが流量調整弁7aを制御して冷却水供給路L8における二次透過水w4の流量を増加させる。一方、二次透過水w4の供給量が過剰な場合は、制御装置7bが流量調整弁7aを制御して冷却水供給路L8における二次透過水w4の流量を減少させる。
Specifically, the
二次透過水w4の流量を減少させると、余剰の二次透過水w4が発生する。この余剰の二次透過水w4は、水路L7から分岐する返送路L9に流入し、原水槽2aに送られる。返送路L9は、流量調整弁7aよりも上流側にあるため、流量調整弁7aが二次透過水w4の流量を減少させると、二次透過水w4が返送路L9にも流入するようになる。
When the flow rate of the secondary permeated water w4 is reduced, excess secondary permeated water w4 is generated. The surplus secondary permeated water w4 flows into the return channel L9 branching from the channel L7 and is sent to the
原水槽2aに戻された二次透過水w4は、原水w1として再び第1の逆浸透膜3に送られ、第1の逆浸透膜分離工程によって処理され、一次透過水w2及び一次濃縮水w3が生成される。
The secondary permeated water w4 returned to the
次に、第1の逆浸透膜分離工程において分離された一次透過水w2は、一次透過水路L3を介して第1脱炭酸手段31に送られる。第1脱炭酸手段31では、第1脱炭酸工程を行う。第1脱炭酸工程では、一次透過水w2を脱炭酸処理することで、一次透過水w2中に溶存する二酸化炭素を一次透過水w2から除去する。 Next, the primary permeated water w2 separated in the first reverse osmosis membrane separation step is sent to the first decarboxylation means 31 via the primary permeated water channel L3. In the first decarboxylation means 31, the first decarboxylation step is performed. In the first decarboxylation step, carbon dioxide dissolved in the primary permeated water w2 is removed from the primary permeated water w2 by decarboxylating the primary permeated water w2.
次いで、電気脱イオン工程では、第1脱炭酸工程後の一次透過水w2に対して脱イオン処理することにより、残存する不純物を更に除去する。電気脱イオン工程では、一次透過水w2に対して脱イオン処理することによって、不純物が濃縮された濃縮水w6が生成する。この濃縮水w6は、水路L10を介して原水槽2aに戻され、原水w1として再び第1の逆浸透膜3に送られ、第1の逆浸透膜分離工程によって処理される。一方、脱イオン処理された一次透過水w2は、水路L11を介してユースポイントに送られ、純水として利用される。
Next, in the electrodeionization step, the remaining impurities are further removed by deionizing the primary permeated water w2 after the first decarboxylation step. In the electrodeionization step, the primary permeated water w2 is deionized to produce concentrated water w6 in which impurities are concentrated. The concentrated water w6 is returned to the
以上説明したように、本実施形態の純水製造装置1によれば、第2の逆浸透膜4における二次透過水w4の生産量が、冷却塔5における二次透過水w4の需要量を超える場合に、二次透過水w4の余剰分を原水槽2aに返送する返送手段6が備えられているので、余剰の二次透過水w4を廃棄することなく有効利用することができる。
As described above, according to the pure water production apparatus 1 of the present embodiment, the production amount of the secondary permeated water w4 in the second
また、本実施形態の純水製造装置1によれば、返送手段6が、二次透過水w4を原水槽2aに返送する返送路L9と、冷却水供給路L8に流す二次透過水w4の流量を制御する流量制御手段7とから構成されているので、冷却塔5への二次透過水w4の供給量と、原水槽2aへの二次透過水w4の返送量とを最適な割合に調整することができ、水の有効利用を図ることができる。
Further, according to the pure water production apparatus 1 of the present embodiment, the return means 6 has a return path L9 for returning the secondary permeated water w4 to the
更にまた、本実施形態の純水製造装置1によれば、第1の逆浸透膜3を透過した一次透過水w2が流れる一次透過水路L3、L4に、第1脱炭酸手段31と電気脱イオン装置32とが更に備えられているので、一次透過水w2の不純物量を更に低減することができ、高純度の純水を製造できる。
Furthermore, according to the pure water production apparatus 1 of the present embodiment, the first decarboxylation means 31 and electrodeionization are carried out in the primary permeation channels L3 and L4 through which the primary permeation water w2 that has permeated the first
次に、本実施形態純水製造方法によれば、第2の逆浸透膜4における二次透過水w4の生産量が、冷却塔5における二次透過水w4の需要量を超える場合に、二次透過水w4の余剰分を原水槽2aに返送する二次透過水供給工程が備えられているので、余剰の二次透過水w4を廃棄することなく有効利用することができる。
Next, according to the pure water production method of the present embodiment, when the production amount of the secondary permeated water w4 in the second
また、本実施形態の純水製造方法によれば、返送手段6が、二次透過水w4を原水槽2aに返送する返送路L9と、冷却水供給路L8に流す二次透過水w4の流量を制御する流量制御手段7とから構成されているので、冷却塔5への二次透過水w4の供給量と、原水槽2aへの二次透過水w4の返送量とを最適な割合に調整することができ、水の有効利用を図ることができる。
Further, according to the pure water production method of the present embodiment, the return means 6 returns the secondary permeated water w4 to the
更にまた、本実施形態の純水製造方法によれば、第1の逆浸透膜3を透過した一次透過水w2に対して、第1脱炭酸工程と電気脱イオン工程とを順次行うことで、一次透過水w2の不純物量を更に低減することができ、高純度の純水を製造できる。
Furthermore, according to the pure water production method of the present embodiment, the first decarboxylation step and the electrodeionization step are sequentially performed on the primary permeated water w2 that has permeated the first
特に、冷却塔5における冷却水の需要量は上述したような季節変動があり、また、二次透過水w4の生産量も上述したような様々な要因で変動し得る。本実施形態の純水製造装置1及び純水製造方法では、返送手段6または二次透過水供給工程によって水の有効利用を図ることで、様々な外的要因の変動があったとしても、安定して純水を製造でき、かつ、冷却塔にも冷却水を供給できる。
In particular, the demand for cooling water in the
また、二次透過水w4は、上水や工業用水あるいは一次濃縮水w3に比べると純度が高く、一次透過水w2に比べると不純物量が多いため純度が低い。例えば、前処理後の原水w1の電気伝導率は100μS/cm程度であり、逆浸透膜透過後の一次透過水w2は1〜10μS/cm程度であり、一次濃縮水w3は200〜600μS/cm程度であり、二次透過水w4は10〜40μS/cm程度である。このため、冷却塔5の配管等を構成する鉄や銅等の金属に対する腐食性は、一次透過水w2よりも二次透過水w4の方が低くなり、二次透過水w4は配管等を腐食しにくい。また、上水や工業用水は、配管等においてスケールを生成する可能性があり、一方、二次透過水w4はスケール生成の可能性が低い。このため、本実施形態における二次透過水w4は、冷却塔5において冷却水として好適に用いることができる。
Further, the secondary permeated water w4 has a higher purity than the clean water, industrial water or the primary concentrated water w3, and has a lower purity than the primary permeated water w2 because it has a larger amount of impurities. For example, the electric conductivity of the raw water w1 after the pretreatment is about 100 μS / cm, the primary permeated water w2 after the reverse osmosis membrane permeation is about 1 to 10 μS / cm, and the primary concentrated water w3 is 200 to 600 μS / cm. The secondary permeated water w4 is about 10 to 40 μS / cm. Therefore, the corrosiveness to metals such as iron and copper constituting the pipes of the
また、本実施形態では、原水w1よりも純度高い二次透過水w4を原水槽2aに返送するので、原水槽2aに貯留されている原水w1の不純物量を低減することが出来、これにより、純水製造装置1の負担を低減させることができる。
Further, in the present embodiment, since the secondary permeated water w4 having a purity higher than that of the raw water w1 is returned to the
(第2の実施形態)
図2を参照して、本発明の第2の実施形態である純水製造装置及び純水製造方法を説明する。本実施形態の純水製造装置10と第1の実施形態の純水製造装置1との相違点は、本実施形態の純水製造装置10では予熱手段と加熱手段を有する点である。以下、この相違点を中心に説明する。また、図2において、図1に示す構成要素と同一の構成要素には、図1と同一の符号を付して、その説明を省略若しくは簡素化する。
(Second Embodiment)
The pure water production apparatus and the pure water production method according to the second embodiment of the present invention will be described with reference to FIG. The difference between the pure
本実施形態の純水製造装置10には、原水槽2aと第1の逆浸透膜3との間の水路L2(原水供給路2)に、予熱手段11と加熱手段12とが備えられている。予熱手段11は原水w1を予熱して原水w1の水温を上昇させ、加熱手段12は予熱後の原水w1を更に加熱して原水の水温を更に上昇させる。
The pure
予熱手段11には、二次透過水w4を流す冷却水供給路L18が引き込まれている。予熱手段11では、原水w1と二次透過水w4との間で熱交換が可能とされている。これにより予熱手段11は、冷却水供給路L18を流れる二次透過水w4を高温側流体とし、原水w1を低温側流体とする熱交換器となっている。 A cooling water supply path L18 through which the secondary permeated water w4 flows is drawn into the preheating means 11. In the preheating means 11, heat exchange is possible between the raw water w1 and the secondary permeated water w4. As a result, the preheating means 11 is a heat exchanger in which the secondary permeated water w4 flowing through the cooling water supply path L18 is used as the high temperature side fluid and the raw water w1 is used as the low temperature side fluid.
加熱手段12は、原水w1を加熱するものであり、具体的には、電気ヒータまたは各種の熱交換器を用いることができる。熱交換器としては、二次透過水w4以外の高温流体、例えば燃焼ガス、加熱空気、高温の油、高温水等の流体を高温流体とし、原水w1を低温流体とする熱交換器を例示できる。 The heating means 12 heats the raw water w1, and specifically, an electric heater or various heat exchangers can be used. Examples of the heat exchanger include heat exchangers in which a high-temperature fluid other than the secondary permeated water w4, for example, a fluid such as combustion gas, heated air, high-temperature oil, or high-temperature water is used as the high-temperature fluid, and raw water w1 is used as the low-temperature fluid. ..
本実施形態の純水製造方法は、第1の実施形態の場合と同様に、第1の逆浸透膜分離工程、第2の逆浸透膜分離工程及び二次透過水供給工程、第1脱炭酸工程及び電気脱イオン工程を行うことで、一次透過水w2を製造してこれを純水としてユースポイントに送り、また、二次透過水w4を冷却塔5に送る。
The pure water production method of the present embodiment is the same as that of the first embodiment, that is, the first reverse osmosis membrane separation step, the second reverse osmosis membrane separation step, the secondary permeated water supply step, and the first decarbonation. By performing the step and the electrodeionization step, the primary permeated water w2 is produced and sent as pure water to the use point, and the secondary permeated water w4 is sent to the
ここで、本実施形態の純水製造方法では、第2の逆浸透膜分離工程によって生成した二次透過水w4を、冷却水供給路L18によって予熱手段11に送り、予熱手段11において原水と熱交換した後に、再び冷却水供給路L18によって冷却塔5に送る。これにより、原水w1は予熱手段11によって予熱される。
Here, in the pure water production method of the present embodiment, the secondary permeated water w4 generated by the second reverse osmosis membrane separation step is sent to the preheating means 11 by the cooling water supply path L18, and the raw water and heat are sent in the preheating means 11. After the replacement, the water is sent to the
また、予熱後の原水w1は、加熱手段12によって所定の温度まで加熱される。加熱されて原水w1は、第1の逆浸透膜3に供給される。
Further, the raw water w1 after preheating is heated to a predetermined temperature by the heating means 12. After being heated, the raw water w1 is supplied to the first
このように、予熱手段11及び加熱手段12によって原水w1を加熱することで、原水w1の水温調整を行うことができる。例えば、原水w1の水温が比較的低くなると、原水w1の粘度が低下することで逆浸透膜における有効圧力が低下し、不純物の阻止率が低下するおそれがある。そこで、原水w1を予熱及び加熱することで、有効圧力の低下を防止して不純物の阻止率を高く維持することができる。 In this way, the water temperature of the raw water w1 can be adjusted by heating the raw water w1 by the preheating means 11 and the heating means 12. For example, when the water temperature of the raw water w1 becomes relatively low, the viscosity of the raw water w1 decreases, so that the effective pressure in the reverse osmosis membrane decreases, and the inhibition rate of impurities may decrease. Therefore, by preheating and heating the raw water w1, it is possible to prevent a decrease in the effective pressure and maintain a high blocking rate of impurities.
本実施形態の純水製造方法によって、加熱手段12によって加熱された原水w1から二次透過水w4が得られるが、二次透過水w4は、原水w1が加熱された影響により、その水温が高くなっている。そこで、比較的高水温になっている二次透過水w4を予熱手段11において原水w1との間で熱交換を行うことで、熱回収が行われる。また、熱回収後の二次透過水w4は、水温が比較的低くなるので、冷却塔5の冷却水として好適である。
According to the pure water production method of the present embodiment, the secondary permeated water w4 can be obtained from the raw water w1 heated by the heating means 12, but the water temperature of the secondary permeated water w4 is high due to the influence of the heating of the raw water w1. It has become. Therefore, heat recovery is performed by exchanging heat between the secondary permeated water w4, which has a relatively high water temperature, and the raw water w1 in the preheating means 11. Further, since the water temperature of the secondary permeated water w4 after heat recovery is relatively low, it is suitable as the cooling water for the
以上のように、本実施形態の純水製造装置10及び純水製造方法によれば、予熱手段11を熱交換器として利用し、冷却水供給路L18を流れる二次透過水の熱を回収することで、加熱手段12におけるエネルギー消費を低減できるとともに、冷却塔5に送る二次透過水w4を冷却することができる。
As described above, according to the pure
(第3の実施形態)
図3を参照して、本発明の第3の実施形態である純水製造装置及び純水製造方法を説明する。本実施形態の純水製造装置20と第1または第2の実施形態の純水製造装置1、10との相違点は、本実施形態の純水製造装置20では返送路L9に第2脱炭酸手段を有する点である。以下、この相違点を中心に説明する。また、図3において、図1及び図2に示す構成要素と同一の構成要素には、図1及び図2と同一の符号を付して、その説明を省略若しくは簡素化する。
(Third Embodiment)
The pure water production apparatus and the pure water production method according to the third embodiment of the present invention will be described with reference to FIG. The difference between the pure
本実施形態の純水製造装置20には、返送路L9の途中に、第2脱炭酸手段21を配置する。第2脱炭酸手段21は、返送中の二次透過水w4を脱炭酸処理するものである。第2脱炭酸手段21としては、二次透過水w4に溶存している二酸化炭素を主に除去できるものであれば、特に限定されない。第2脱炭酸手段21としては、例えば、中空糸膜等の脱気膜から構成される膜脱気装置や、脱炭酸塔等を用いることができる。
In the pure
本実施形態の純水製造方法は、第1または第2の実施形態の場合と同様に、第1の逆浸透膜分離工程、第2の逆浸透膜分離工程及び二次透過水供給工程、第1脱炭酸工程及び電気脱イオン工程を行うことで、一次透過水w2を製造してこれを純水としてユースポイントに送り、また、二次透過水w4を冷却塔5に送る。
The pure water production method of the present embodiment is the same as in the case of the first or second embodiment, that is, the first reverse osmosis membrane separation step, the second reverse osmosis membrane separation step, and the secondary permeated water supply step. 1 By performing the decarbonization step and the electrodeionization step, the primary permeated water w2 is produced and sent as pure water to the use point, and the secondary permeated water w4 is sent to the
ここで、本実施形態の純水製造方法では、第2の逆浸透膜分離工程によって生成した二次透過水w4の余剰分を、返送路L9によって原水槽2aに返送する際に、第2脱炭酸工程として、第2脱炭酸手段21によって二次透過水w4の脱炭酸処理を行う。脱炭酸処理された二次透過水w4を原水槽2aに返送することで、原水槽2aに貯留されている原水w1の炭酸濃度を低減される。
Here, in the pure water production method of the present embodiment, when the surplus of the secondary permeated water w4 generated by the second reverse osmosis membrane separation step is returned to the
このように、本実施形態の純水製造装置20及び純水製造方法によれば、二次透過水w4を原水槽2aに返送する際に、二次透過水w4に対して第2脱炭酸工程を行うので、脱炭酸処理された二次透過水w4を原水槽2aに返送することができ、これにより原水w1の炭酸濃度が減少し、第1脱炭酸手段31における第1脱炭酸工程の負荷を軽減できる。
As described above, according to the pure
なお、本発明の純水製造装置は図1〜図3に示されたものに限定されるものではなく、例えば、第2脱炭酸手段21を図1の純水製造装置1に適用してもよい。 The pure water production apparatus of the present invention is not limited to that shown in FIGS. 1 to 3, and for example, even if the second decarboxylation means 21 is applied to the pure water production apparatus 1 of FIG. Good.
1、10、20…純水製造装置、2…原水供給路、2a…原水槽、3…第1の逆浸透膜、4…第2の逆浸透膜、5…冷却塔、6…返送手段、7…流量制御手段、7a…流量調整弁、7b…制御装置、11…熱交換器(予熱手段)、12…加熱手段、21…第2脱炭酸手段、31…第1脱炭酸手段、32…電気脱イオン装置、41…前処理装置、L3、L4…一次透過水路、L8、L18…冷却水供給路、L9…返送路、w1…原水、w2…一次透過水、w3…一次濃縮水、w4…二次透過水、w5…二次濃縮水。 1, 10, 20 ... Pure water production equipment, 2 ... Raw water supply path, 2a ... Raw water tank, 3 ... First reverse osmosis membrane, 4 ... Second reverse osmosis membrane, 5 ... Cooling tower, 6 ... Return means, 7 ... Flow control means, 7a ... Flow control valve, 7b ... Control device, 11 ... Heat exchanger (preheating means), 12 ... Heating means, 21 ... Second decarbonization means, 31 ... First decarbonization means, 32 ... Electrodeionizer, 41 ... Pretreatment device, L3, L4 ... Primary permeated water channel, L8, L18 ... Cooling water supply channel, L9 ... Return channel, w1 ... Raw water, w2 ... Primary permeated water, w3 ... Primary concentrated water, w4 ... secondary permeated water, w5 ... secondary concentrated water.
Claims (10)
前記原水供給路から供給された前記原水を、一次透過水と一次濃縮水とに分離する第1の逆浸透膜と、
前記一次濃縮水を、二次透過水と二次濃縮水とに分離する第2の逆浸透膜と、
前記二次透過水を、冷却水として冷却塔に供給する冷却水供給路と、
前記第2の逆浸透膜における前記二次透過水の生産量が、前記冷却塔における前記二次透過水の需要量を超える場合に、前記二次透過水の余剰分を前記原水供給路に返送する返送手段と、が備えられていることを特徴とする純水製造装置。 The raw water supply channel through which raw water flows and
A first reverse osmosis membrane that separates the raw water supplied from the raw water supply channel into primary permeated water and primary concentrated water.
A second reverse osmosis membrane that separates the primary concentrated water into secondary permeated water and secondary concentrated water.
A cooling water supply path that supplies the secondary permeated water to the cooling tower as cooling water, and
When the production amount of the secondary permeated water in the second reverse osmosis membrane exceeds the demand amount of the secondary permeated water in the cooling tower, the surplus of the secondary permeated water is returned to the raw water supply channel. A pure water production apparatus characterized in that it is provided with a return means.
前記冷却水供給路に流す前記二次透過水の流量を制御する流量制御手段と、から構成されていることを特徴とする請求項1に記載の純水製造装置。 The return means includes a return path for returning the secondary permeated water to the raw water supply path, and a return path.
The pure water production apparatus according to claim 1, further comprising a flow rate control means for controlling the flow rate of the secondary permeated water flowing through the cooling water supply path.
前記原水供給路の途中に配置されて予熱後の前記原水を加熱する加熱手段と、が更に備えられ、
前記予熱手段は、前記冷却水供給路を流れる前記二次透過水を高温側流体とし、前記原水を低温側流体とする熱交換器であることを特徴とする請求項1または請求項2に記載の純水製造装置。 A preheating means that is arranged in the middle of the raw water supply channel to preheat the raw water,
A heating means for heating the raw water after preheating, which is arranged in the middle of the raw water supply path, is further provided.
The first or second aspect of the present invention, wherein the preheating means is a heat exchanger in which the secondary permeated water flowing through the cooling water supply path is a high temperature side fluid and the raw water is a low temperature side fluid. Pure water production equipment.
前記一次透過水路に設置され、前記一次透過水を脱炭酸処理する第1脱炭酸手段と、
前記一次透過水路の前記第1脱炭酸手段の後段に設置され、前記第1脱炭酸手段を通過後の前記一次透過水を脱イオン処理する電気脱イオン装置と、が更に備えられていることを特徴とする請求項1乃至請求項3の何れか一項に記載の純水製造装置。 A primary permeation channel through which the primary permeate water that has permeated the first reverse osmosis membrane flows,
A first decarboxylation means that is installed in the primary permeation channel and decarboxylates the primary permeate water.
An electric deionization device that is installed after the first decarboxylation means of the primary permeation water channel and deionizes the primary permeation water after passing through the first decarboxylation means is further provided. The pure water production apparatus according to any one of claims 1 to 3, which is characterized.
前記一次濃縮水を、第2の逆浸透膜により、二次透過水と二次濃縮水とに分離する第2の逆浸透膜分離工程と、
前記二次透過水を、冷却水供給路により、冷却水として冷却塔に供給するとともに、前記第2の逆浸透膜における前記二次透過水の生産量が前記冷却塔における前記二次透過水の需要量を超える場合に、前記二次透過水の余剰分を、返送手段により、前記原水として返送する二次透過水供給工程と、
が備えられていることを特徴とする純水製造方法。 A first reverse osmosis membrane separation step of separating raw water into primary permeated water and primary concentrated water by a first reverse osmosis membrane.
A second reverse osmosis membrane separation step of separating the primary concentrated water into secondary permeated water and secondary concentrated water by a second reverse osmosis membrane.
The secondary permeated water is supplied to the cooling tower as cooling water through the cooling water supply path, and the production amount of the secondary permeated water in the second reverse osmosis membrane is the secondary permeated water in the cooling tower. A secondary permeated water supply step in which the surplus of the secondary permeated water is returned as raw water by a return means when the demand amount is exceeded.
A pure water production method characterized by being provided with.
前記冷却水供給路に流す前記二次透過水の流量を制御する流量制御手段とからなることを特徴とする請求項6に記載の純水製造方法。 The return means includes a return path for returning the secondary permeated water to the raw water.
The pure water production method according to claim 6, further comprising a flow rate control means for controlling the flow rate of the secondary permeated water flowing through the cooling water supply path.
予熱後の前記原水を加熱する加熱工程と、が更に備えられ、
前記予熱工程は、前記冷却水供給路を流れる前記二次透過水を高温側流体とし、前記原水を低温側流体とする熱交換器によって行うことを特徴とする請求項6または請求項7に記載の純水製造方法。 A preheating step of preheating the raw water before supply to the first reverse osmosis membrane, and
A heating step of heating the raw water after preheating is further provided.
The sixth or seventh aspect of the present invention, wherein the preheating step is performed by a heat exchanger in which the secondary permeated water flowing through the cooling water supply path is used as a high temperature side fluid and the raw water is used as a low temperature side fluid. Pure water production method.
前記第1脱炭工程後の前記一次透過水を、電気脱イオン装置により、脱イオン処理する電気脱イオン工程と、が更に備えられていることを特徴とする請求項6乃至請求項8の何れか一項に記載の純水製造方法。 In the first decarboxylation step of decarboxylating the primary permeated water by the first decarboxylation means,
Any of claims 6 to 8, further comprising an electrodeionization step of deionizing the primary permeated water after the first decarburization step with an electrodeionizer. The pure water production method according to item 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019062621A JP6801731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production equipment and pure water production method |
PCT/JP2020/010814 WO2020195893A1 (en) | 2019-03-28 | 2020-03-12 | Pure water preparing device and pure water preparing method |
TW109108294A TWI830883B (en) | 2019-03-28 | 2020-03-13 | Pure water production device and pure water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019062621A JP6801731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production equipment and pure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020157274A true JP2020157274A (en) | 2020-10-01 |
JP6801731B2 JP6801731B2 (en) | 2020-12-16 |
Family
ID=72609268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019062621A Active JP6801731B2 (en) | 2019-03-28 | 2019-03-28 | Pure water production equipment and pure water production method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6801731B2 (en) |
TW (1) | TWI830883B (en) |
WO (1) | WO2020195893A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023161371A (en) * | 2022-04-25 | 2023-11-07 | 栗田工業株式会社 | Pure water production device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09206749A (en) * | 1996-02-02 | 1997-08-12 | Japan Organo Co Ltd | Fresh water production device and method thereof |
JP2010089071A (en) * | 2008-09-11 | 2010-04-22 | Kobelco Eco-Solutions Co Ltd | Wastewater treatment method and wastewater treatment facility |
JP2010201313A (en) * | 2009-03-02 | 2010-09-16 | Kurita Water Ind Ltd | Reverse osmosis membrane separation method |
JP2016013529A (en) * | 2014-07-03 | 2016-01-28 | 栗田工業株式会社 | Apparatus and method for producing pure water |
JP2017104787A (en) * | 2015-12-08 | 2017-06-15 | 三浦工業株式会社 | Method of using concentrated water as circulating cooling water |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103209928B (en) * | 2010-10-27 | 2015-08-05 | 奥加诺株式会社 | Water treatment system and water treatment method |
JP5773013B1 (en) * | 2014-03-14 | 2015-09-02 | 栗田工業株式会社 | Cooling discharge water recovery method and recovery device |
JP6807219B2 (en) * | 2016-11-18 | 2021-01-06 | オルガノ株式会社 | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
-
2019
- 2019-03-28 JP JP2019062621A patent/JP6801731B2/en active Active
-
2020
- 2020-03-12 WO PCT/JP2020/010814 patent/WO2020195893A1/en active Application Filing
- 2020-03-13 TW TW109108294A patent/TWI830883B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09206749A (en) * | 1996-02-02 | 1997-08-12 | Japan Organo Co Ltd | Fresh water production device and method thereof |
JP2010089071A (en) * | 2008-09-11 | 2010-04-22 | Kobelco Eco-Solutions Co Ltd | Wastewater treatment method and wastewater treatment facility |
JP2010201313A (en) * | 2009-03-02 | 2010-09-16 | Kurita Water Ind Ltd | Reverse osmosis membrane separation method |
JP2016013529A (en) * | 2014-07-03 | 2016-01-28 | 栗田工業株式会社 | Apparatus and method for producing pure water |
JP2017104787A (en) * | 2015-12-08 | 2017-06-15 | 三浦工業株式会社 | Method of using concentrated water as circulating cooling water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023161371A (en) * | 2022-04-25 | 2023-11-07 | 栗田工業株式会社 | Pure water production device |
Also Published As
Publication number | Publication date |
---|---|
TW202035303A (en) | 2020-10-01 |
WO2020195893A1 (en) | 2020-10-01 |
TWI830883B (en) | 2024-02-01 |
JP6801731B2 (en) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nassrullah et al. | Energy for desalination: A state-of-the-art review | |
US10189733B2 (en) | Heating system for desalination | |
US6783682B1 (en) | Salt water desalination process using ion selective membranes | |
JP5575015B2 (en) | Fresh water production system | |
EP1206414B1 (en) | A salt water desalination process using ion selective membranes | |
US8679347B2 (en) | Multi-use high water recovery process | |
JP5082661B2 (en) | Water treatment system | |
JP2008100219A (en) | Desalination method and desalination apparatus | |
JP6149993B1 (en) | Ultrapure water production equipment | |
KR102423788B1 (en) | Complex desalination system using pressure-retarded osmosis for sea water desalination | |
US20210002148A1 (en) | Water treatment apparatus, water treatment method, and method of starting water treatment apparatus | |
JP6801731B2 (en) | Pure water production equipment and pure water production method | |
JP6799657B1 (en) | Water treatment system, ultrapure water production system and water treatment method | |
JP2011147894A (en) | Seawater desalination apparatus | |
JP2013188684A (en) | Water treatment system | |
JP2009162514A (en) | System for purifying system water in secondary system of nuclear power plant with pressurized water reactor | |
JP5039569B2 (en) | Makeup water supply facility for pressurized water nuclear power plant | |
JP6350718B2 (en) | Ultrapure water production equipment | |
WO2014057892A1 (en) | Method for generating fresh water | |
EP1354855A2 (en) | A salt water desalination process using ion selective membranes | |
JP6638543B2 (en) | Heated water production system | |
CN216513257U (en) | Efficient energy-saving environment-friendly water treatment equipment and boiler water supply system | |
TW201901084A (en) | Boiler water treatment apparatus and treatment method | |
CN108059282A (en) | Purify water production device and production method | |
US20240342657A1 (en) | Water treatment system and water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6801731 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |