JP2020155461A - Bonding sheet and method for bonding electronic component to substrate using bonding sheet - Google Patents

Bonding sheet and method for bonding electronic component to substrate using bonding sheet Download PDF

Info

Publication number
JP2020155461A
JP2020155461A JP2019049903A JP2019049903A JP2020155461A JP 2020155461 A JP2020155461 A JP 2020155461A JP 2019049903 A JP2019049903 A JP 2019049903A JP 2019049903 A JP2019049903 A JP 2019049903A JP 2020155461 A JP2020155461 A JP 2020155461A
Authority
JP
Japan
Prior art keywords
sheet
bonding
fine particles
foil
core sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049903A
Other languages
Japanese (ja)
Other versions
JP7196706B2 (en
Inventor
弘太郎 増山
Kotaro Masuyama
弘太郎 増山
琢磨 片瀬
Takuma Katase
琢磨 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019049903A priority Critical patent/JP7196706B2/en
Publication of JP2020155461A publication Critical patent/JP2020155461A/en
Application granted granted Critical
Publication of JP7196706B2 publication Critical patent/JP7196706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a bonding sheet having a high bonding strength when an electronic component is bonded to a substrate, and a method for bonding an electronic component to a substrate using the bonding sheet.SOLUTION: There is provided a bonding sheet in which Ag fine particles having an average particle size of 10-500 nm are coated and fixed at an average coverage rate of 70% or more, on both sides of a core sheet that is made of a Cu foil. The surface roughness Ra of the Cu foil is preferably 1.0 μm or less, and the average crystallite diameter of Cu constituting the Cu foil is preferably 10 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、半導体チップ素子、LEDチップ素子等の電子部品を接合するために用いられる、接合用シート及びこの接合用シートを用いて電子部品を基板に接合する方法に関する。更に詳しくは電子部品と基板との間に介在させて、電子部品を基板に接合するのに用いられる接合用シート及びこの接合用シートを用いて電子部品を基板に接合する方法に関するものである。 The present invention relates to a bonding sheet used for bonding electronic components such as a semiconductor chip element and an LED chip element, and a method of bonding electronic components to a substrate using the bonding sheet. More specifically, the present invention relates to a joining sheet used for joining an electronic component to a substrate by interposing it between the electronic component and the substrate, and a method of joining the electronic component to the substrate using the joining sheet.

近年、電子機器の高機能化を図るために、電子デバイスの小型化と高密度化が要請されており、電子部品を基板に接合する接合用シートについても、半導体装置の動作安定性を確保するために、接合用シートにも高放熱特性と高い接合強度が求められている。 In recent years, in order to improve the functionality of electronic devices, miniaturization and high density of electronic devices have been required, and the operational stability of semiconductor devices is also ensured for bonding sheets for joining electronic components to substrates. Therefore, the bonding sheet is also required to have high heat dissipation characteristics and high bonding strength.

従来、この種の接合用シートとして、銀の多孔質体である多孔質銀で形成され、緻密度が40〜72体積%の自立膜であって、多孔質銀の銀結晶の平均結晶粒径が1.7〜2.6μmであり、25℃における三点曲げ試験から得られる曲げ弾性率が16〜24GPa、最大曲げ強度が100MPa以上、破断曲げひずみが1.3%以上である多孔質銀製シートが開示されている(例えば、特許文献1(請求項1、段落[0017]、段落[0034])参照)。この多孔質銀製シートはペースト状の組成物をシート状に成形した後、乾燥し加熱して銀粒子を焼結した際あるいは焼結後に、200℃から450℃にさらし、1分以上熱アニール処理することで得られる。 Conventionally, as this kind of bonding sheet, it is a self-supporting film formed of porous silver, which is a porous body of silver, and has a density of 40 to 72% by volume, and the average crystal grain size of silver crystals of porous silver. Is 1.7 to 2.6 μm, the flexural modulus obtained from the three-point bending test at 25 ° C. is 16 to 24 GPa, the maximum bending strength is 100 MPa or more, and the breaking bending strain is 1.3% or more. The sheet is disclosed (see, for example, Patent Document 1 (claim 1, paragraph [0017], paragraph [0034])). This porous silver sheet is obtained by molding a paste-like composition into a sheet, drying and heating to sinter the silver particles, or after sintering, exposing the mixture to 200 ° C. to 450 ° C. for 1 minute or more. Obtained by doing.

また別の接合用シートとして、金属箔の少なくとも一つの表面に、有機保護膜によって被覆された表面を有する粒子径1〜100nmの金属微粒子が固定されている金属微粒子層を有する接合部材が開示されている(例えば、特許文献2(請求項1、請求項5、段落[0039])参照)。この金属微粒子は、減圧した不活性ガス雰囲気下で、金属蒸気と有機保護膜材料の蒸気とを混合することにより、表面部分が有機保護膜で被覆された金属微粒子を含有する微粒子組成物を製造した後、表面が有機保護膜で被覆された金属微粒子を含有する微粒子組成物を、金属箔表面に析出させることにより、製造される。この金属微粒子は、その表面にアミン化合物による有機保護膜が形成されている。 Further, as another bonding sheet, a bonding member having a metal fine particle layer in which metal fine particles having a particle diameter of 1 to 100 nm having a surface coated with an organic protective film are fixed on at least one surface of the metal foil is disclosed. (See, for example, Patent Document 2 (Claim 1, Claim 5, paragraph [0039])). The metal fine particles are produced by mixing the metal vapor and the steam of the organic protective film material under a reduced pressure inert gas atmosphere to produce a fine particle composition containing the metal fine particles whose surface portion is coated with the organic protective film. After that, it is produced by precipitating a fine particle composition containing metal fine particles whose surface is coated with an organic protective film on the surface of a metal foil. An organic protective film made of an amine compound is formed on the surface of the metal fine particles.

更に別の接合用シートとして、金属ナノ粒子を含む第1接合層、Ag、Au又はこれらの合金のいずれかからなる金属箔層、金属ナノ粒子を含む第2接合層がこの順に形成され、前記金属ナノ粒子を含む第1接合層、第2接合層中に含まれる金属分のうち、Ag、Au、Cu、Niの一種以上からなる金属ナノ粒子の合計が10質量%以上である金属接合材料が開示されている(例えば、特許文献3(請求項7、請求項9、段落[0041])参照)。特許文献3には、被接合面上又は金属箔の上に金属ナノ粒子を含む層を形成するに際し、金属ナノ粒子を含有するペーストを準備し、この金属ナノ粒子ペーストを被接合面上に塗布することが行われることが記載され、金属ナノ粒子ペーストとして、有機殻で覆った金属ナノ粒子を準備し、この金属ナノ粒子を所定の溶媒に分散させて、スラリー状、ペースト状、グリース状、又はワックス状等の組成物とすることが記載されている。 As yet another bonding sheet, a first bonding layer containing metal nanoparticles, a metal foil layer made of Ag, Au or an alloy thereof, and a second bonding layer containing metal nanoparticles are formed in this order. A metal bonding material in which the total amount of metal nanoparticles composed of one or more of Ag, Au, Cu, and Ni among the metal components contained in the first bonding layer and the second bonding layer containing metal nanoparticles is 10% by mass or more. Is disclosed (see, for example, Patent Document 3 (claim 7, claim 9, paragraph [0041])). In Patent Document 3, when forming a layer containing metal nanoparticles on a surface to be bonded or on a metal foil, a paste containing metal nanoparticles is prepared, and the metal nanoparticles paste is applied onto the surface to be bonded. As a metal nanoparticle paste, metal nanoparticles covered with an organic shell are prepared, and the metal nanoparticles are dispersed in a predetermined solvent to form a slurry, a paste, a grease, or the like. Alternatively, it is described that the composition is waxy or the like.

特開2016−169411号公報Japanese Unexamined Patent Publication No. 2016-169411 特開2006−073550号公報Japanese Unexamined Patent Publication No. 2006-073550 特開2015−093295号公報Japanese Unexamined Patent Publication No. 2015-093295

特許文献1に記載された多孔質銀製シートは、銀粒子を含むペースト状の組成物をシート状に成形した後、乾燥し加熱することにより、銀粒子を焼結し、これを熱アニール処理して得られる。しかしながら、特許文献1に記載された多孔質銀製シートは、銀結晶の平均結晶粒径が1.7〜2.6μmと比較的大きいため、例えば、200℃の低温度の加熱では、銀粒子が焼結しにくく、緻密で接合強度が高い接合層を形成するのが困難となる場合があった。 The porous silver sheet described in Patent Document 1 is obtained by forming a paste-like composition containing silver particles into a sheet, then drying and heating to sinter the silver particles, and heat-annealing the silver particles. Can be obtained. However, in the porous silver sheet described in Patent Document 1, the average crystal grain size of silver crystals is relatively large, 1.7 to 2.6 μm. Therefore, for example, when heated at a low temperature of 200 ° C., silver particles are formed. In some cases, it is difficult to sinter, and it is difficult to form a dense and high bonding layer.

また特許文献2に記載された接合部材は、金属微粒子がアミン化合物による有機保護膜で被覆される。また特許文献3に記載された金属接合材料では、有機殻で覆った金属ナノ粒子を含有するペーストを準備し、この金属ナノ粒子ペーストを被接合面上に塗布することにより、被接合面上又は金属箔の上に金属ナノ粒子を含む層が形成される。このため、特許文献2又は特許文献3に記載された接合部材又は金属接合材料を用いて、電子部品と基板とを接合する場合、接合時に有機物によるガスが発生し易く、接合層にボイドが発生し易く、高い接合強度を得ることが困難である課題があった。 Further, in the bonding member described in Patent Document 2, metal fine particles are coated with an organic protective film made of an amine compound. Further, in the metal bonding material described in Patent Document 3, a paste containing metal nanoparticles covered with an organic shell is prepared, and the metal nanoparticle paste is applied onto the surface to be bonded to be formed on the surface to be bonded or. A layer containing metal nanoparticles is formed on the metal foil. For this reason, when an electronic component and a substrate are bonded using the bonding member or metal bonding material described in Patent Document 2 or Patent Document 3, gas due to an organic substance is likely to be generated at the time of bonding, and voids are generated in the bonding layer. There is a problem that it is easy to perform and it is difficult to obtain high bonding strength.

本発明の目的は、上記課題を解決し、電子部品を基板に接合したときの接合強度が高い接合用シート及びこの接合用シートを用いて電子部品を基板に接合する方法を提供することにある。 An object of the present invention is to solve the above problems and to provide a bonding sheet having high bonding strength when an electronic component is bonded to a substrate and a method for bonding an electronic component to a substrate using the bonding sheet. ..

本発明の第1の観点の接合用シートは、Cu箔からなるコアシートの両面に平均粒径10nm〜500nmのAg微粒子が平均被覆率70%以上の割合で被覆され固着される。 In the bonding sheet according to the first aspect of the present invention, Ag fine particles having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of a core sheet made of Cu foil at an average coverage rate of 70% or more.

本発明の第2の観点の接合用シートは、第1の観点に基づく発明であって、 前記Cu箔の表面粗さRaが1.0μm以下であり、前記Cu箔を構成するCuの平均結晶子径が10μm以下である。 The bonding sheet according to the second aspect of the present invention is an invention based on the first aspect, wherein the surface roughness Ra of the Cu foil is 1.0 μm or less, and the average crystal of Cu constituting the Cu foil is formed. The child diameter is 10 μm or less.

本発明の第3の観点は、第1又は第2の観点の接合用シートを用いて電子部品を基板に接合する方法である。 A third aspect of the present invention is a method of joining electronic components to a substrate using the joining sheet of the first or second aspect.

本発明の第1の観点の接合用シートは、Cu箔からなるコアシートの両面に平均粒径10nm〜500nmのAg微粒子が平均被覆率70%以上の割合で被覆され固着されるため、有機成分を含まない。このため、電子部品と基板とを接合する場合、接合時に有機物によるガスの発生がなく、接合層にボイドが発生せずに、高い接合強度が得られる。 The bonding sheet according to the first aspect of the present invention is an organic component because Ag fine particles having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of a core sheet made of Cu foil at an average coverage rate of 70% or more. Does not include. Therefore, when the electronic component and the substrate are bonded, high bonding strength can be obtained without generating gas due to organic substances at the time of bonding and without generating voids in the bonding layer.

本発明の第2の観点の接合用シートは、Cu箔の表面粗さRaが1.0μm以下であり、Cu箔を構成するCuの平均結晶子径が10μm以下であるため、Ag微粒子がより確実にコアシートの表面に固着する。 In the bonding sheet according to the second aspect of the present invention, the surface roughness Ra of the Cu foil is 1.0 μm or less, and the average crystallite diameter of Cu constituting the Cu foil is 10 μm or less. It firmly adheres to the surface of the core sheet.

本発明の第3の観点の方法では、第1又は第2の観点の接合用シートを用いて電子部品を基板に接合するため、電子部品と基板とを高い強度で接合することができる。 In the method of the third aspect of the present invention, since the electronic component is bonded to the substrate by using the bonding sheet of the first or second aspect, the electronic component and the substrate can be bonded with high strength.

本発明の実施形態の接合用シートの構成図である。It is a block diagram of the bonding sheet of embodiment of this invention. 本発明の実施形態の半導体チップ素子を基板に接合した状態を示す図である。It is a figure which shows the state which bonded the semiconductor chip element of embodiment of this invention to a substrate. 本発明の実施形態の接触めっき法により、銅箔のコアシートの両面にAg微粒子を被覆する状況を示す図である。It is a figure which shows the situation which Ag fine particles are coated on both sides of the core sheet of a copper foil by the contact plating method of embodiment of this invention.

次に本発明を実施するための形態を図面に基づいて説明する。 Next, a mode for carrying out the present invention will be described with reference to the drawings.

〔接合用シート〕
図1に示すように、本実施形態の接合用シート10は、Cu箔からなるコアシート11の両面にAg微粒子12が被覆されて構成される。図2に示すように、この接合用シート10は電子部品である半導体チップ素子16と基板17との間に介在させて、半導体チップ素子16等の電子部品を基板17に接合するのに用いられる。図1に示すコアシート11は、厚さが50μm〜200μmであることが好ましく、100μm〜150μmであることが更に好ましい。厚さが下限値の50μm未満であると、接合用シートの製造時にコアシートが取扱いにくく、厚さが上限値の200μmを超えると、コアシートの熱抵抗が増大するため、本実施形態の接合用シート10を用いて得られる電子部品の放熱性が低下し、電子部品の寿命の低下を招くおそれがある。コアシート11の厚さは、次の方法により求める。先ず、Cu箔であるコアシート11をエポキシ樹脂で完全に被包した後、Cu箔の箔表面方向に対し垂直に切断し、その切断面をアルゴンイオンビームにより研磨加工する。次いで研磨加工した加工面をSEM(走査型電子顕微鏡)にて観察し、無作為に100箇所以上の銅箔の厚さを測定し、その平均値をCu箔(コアシート11)の厚さとする。
[Joining sheet]
As shown in FIG. 1, the bonding sheet 10 of the present embodiment is configured by coating both sides of a core sheet 11 made of Cu foil with Ag fine particles 12. As shown in FIG. 2, the bonding sheet 10 is interposed between the semiconductor chip element 16 which is an electronic component and the substrate 17, and is used to bond an electronic component such as the semiconductor chip element 16 to the substrate 17. .. The core sheet 11 shown in FIG. 1 preferably has a thickness of 50 μm to 200 μm, and more preferably 100 μm to 150 μm. If the thickness is less than the lower limit of 50 μm, the core sheet is difficult to handle when manufacturing the joining sheet, and if the thickness exceeds the upper limit of 200 μm, the thermal resistance of the core sheet increases. Therefore, the joining of the present embodiment is performed. The heat dissipation of the electronic component obtained by using the sheet 10 is lowered, which may shorten the life of the electronic component. The thickness of the core sheet 11 is determined by the following method. First, the core sheet 11 which is a Cu foil is completely covered with an epoxy resin, then cut perpendicular to the foil surface direction of the Cu foil, and the cut surface is polished by an argon ion beam. Next, the polished surface is observed with an SEM (scanning electron microscope), the thickness of 100 or more copper foils is randomly measured, and the average value is taken as the thickness of the Cu foil (core sheet 11). ..

コアシート11を構成するCu箔は圧延箔であることが圧延筋にAg微粒子が固着され易く好ましい。Cu箔の表面粗さRaは1.0μm以下であることが好ましい。表面粗さRaが1.0μmを超えるとAg微粒子12がコアシート11の表面に均一に固着しなくなるおそれがある。好ましい表面粗さRaは0.5μm以下である。またCu箔を構成するCuの平均結晶子径は、10μm以下であることが好ましく、5μm以下であることが更に好ましい。。Cu箔の表面粗さRaはレーザー顕微鏡を用いて測定し、Cu箔の平均結晶子径はX線回折法により測定される。 It is preferable that the Cu foil constituting the core sheet 11 is a rolled foil because Ag fine particles are likely to adhere to the rolled streaks. The surface roughness Ra of the Cu foil is preferably 1.0 μm or less. If the surface roughness Ra exceeds 1.0 μm, the Ag fine particles 12 may not be uniformly adhered to the surface of the core sheet 11. The preferable surface roughness Ra is 0.5 μm or less. The average crystallite diameter of Cu constituting the Cu foil is preferably 10 μm or less, and more preferably 5 μm or less. .. The surface roughness Ra of the Cu foil is measured using a laser microscope, and the average crystallite diameter of the Cu foil is measured by an X-ray diffraction method.

コアシート11を構成するCu箔としては、純銅又は銅合金を用いることができる。例えば、無酸素銅、タフピッチ銅やリン脱酸銅などを用いることができる。 Pure copper or a copper alloy can be used as the Cu foil constituting the core sheet 11. For example, oxygen-free copper, tough pitch copper, phosphorus deoxidized copper and the like can be used.

接合用シート10の両面に被覆されるAg微粒子12の平均粒径は10nm〜500nmである。平均粒径が10nm未満では、Ag微粒子の安定性が低下するので高い接合強度が得られない。500nmを超えると、Ag微粒子の焼結性が低下するので高い接合強度が得られない。好ましいAg微粒子の平均粒径は50nm〜300nmである。またAg微粒子12の平均被覆率は70%以上である。平均被覆率が70%未満では、接合時にAg微粒子が焼結したときに高い接合強度が得られない。Ag微粒子12は、図1に示すように、Ag微粒子が均一に単一層であるAg微粒子層13をなすように被覆されることが好ましい。好ましい平均被覆率は80%以上である。Ag微粒子12の平均粒径は、SEM観察によって測定される。具体的には、接合用シート10表面に被覆されたAgの直径を無作為に100箇所以上測定し、その平均値を平均粒径とする。平均被覆率はSEM観察によって算出される。具体的には、無作為に選択した接合用シート10表面のSEM像(10mm×10mm)からAg微粒子の個数と、Ag微粒子の平均粒径から真円換算して求めた面積を乗算したものを被覆率と定義し、無作為に10箇所以上測定した平均値を平均被覆率とする。なお、境界上に存在するAg粒子は、境界内部のAg粒子として計算する。 The average particle size of the Ag fine particles 12 coated on both sides of the bonding sheet 10 is 10 nm to 500 nm. If the average particle size is less than 10 nm, the stability of the Ag fine particles is lowered, so that high bonding strength cannot be obtained. If it exceeds 500 nm, the sinterability of Ag fine particles is lowered, so that high bonding strength cannot be obtained. The average particle size of the preferred Ag fine particles is 50 nm to 300 nm. The average coverage of the Ag fine particles 12 is 70% or more. If the average coverage is less than 70%, high bonding strength cannot be obtained when Ag fine particles are sintered during bonding. As shown in FIG. 1, the Ag fine particles 12 are preferably coated so that the Ag fine particles uniformly form a single Ag fine particle layer 13. The preferable average coverage is 80% or more. The average particle size of the Ag fine particles 12 is measured by SEM observation. Specifically, the diameter of Ag coated on the surface of the bonding sheet 10 is randomly measured at 100 or more points, and the average value thereof is taken as the average particle size. The average coverage is calculated by SEM observation. Specifically, the SEM image (10 mm × 10 mm) on the surface of the joining sheet 10 randomly selected is multiplied by the number of Ag fine particles and the area obtained by converting the average particle size of the Ag fine particles into a perfect circle. It is defined as the coverage, and the average value measured at 10 or more points at random is defined as the average coverage. The Ag particles existing on the boundary are calculated as Ag particles inside the boundary.

接合用シートの全厚は、薄くとも50μmである。即ち50μm以上である。好ましい全厚は100μm〜150μmである。全厚が下限値の50μm未満では、電子部品を接合する基板に反りがある場合、その反りを吸収できないおそれがある。全厚が200μmを超えると、コアシート11の熱抵抗が増大してしまい、接合用シート10を用いて作製されたモジュールの寿命低下を招くおそれがある。接合用シートの全厚はコアシート11の厚さと同一の方法で測定される。 The total thickness of the bonding sheet is at least 50 μm. That is, it is 50 μm or more. The preferred total thickness is 100 μm to 150 μm. If the total thickness is less than the lower limit of 50 μm, if the substrate to which the electronic components are bonded has a warp, the warp may not be absorbed. If the total thickness exceeds 200 μm, the thermal resistance of the core sheet 11 increases, which may shorten the life of the module manufactured by using the bonding sheet 10. The total thickness of the joining sheet is measured by the same method as the thickness of the core sheet 11.

〔接合用シートの製造方法〕
続いて、本実施形態の接合用シートの製造方法について説明する。この製造方法には、接触めっき法、Agめっき液浸漬法、塗布加熱法がある。
[Manufacturing method of joining sheet]
Subsequently, a method for manufacturing the joining sheet of the present embodiment will be described. This manufacturing method includes a contact plating method, an Ag plating solution dipping method, and a coating heating method.

(接触めっき法)
図3に示すように、この接触めっき法は、容器20にAgめっき液21を入れ、この液中にAg箔からなる導電性シート22とCu箔からなるコアシート11を間隔をあけて配置し、この導電性シート22とコアシート11とをリード線23により電気的に接続し、Agめっき液中のAgイオンを還元することにより、図1に示すように、コアシート11の両面にAg微粒子12を被覆させる方法である。接触めっきでは、溶液中で次に述べるAg塩が溶解してAgイオンになったときに発生する電子によってAgイオンを還元して、コアシート11の両面にAgが微粒子となって析出する。Ag微粒子12はコアシート11に単にくっつくだけではなく、Ag微粒子12のコアシート11に接触する部分がコアシート11中に拡散し、Ag微粒子12はコアシート11に固着する。
(Contact plating method)
As shown in FIG. 3, in this contact plating method, an Ag plating solution 21 is placed in a container 20, and a conductive sheet 22 made of Ag foil and a core sheet 11 made of Cu foil are arranged in the solution at intervals. As shown in FIG. 1, Ag fine particles are formed on both sides of the core sheet 11 by electrically connecting the conductive sheet 22 and the core sheet 11 with a lead wire 23 and reducing Ag ions in the Ag plating solution. 12 is a method of coating. In catalytic plating, Ag ions are reduced by electrons generated when the Ag salt described below is dissolved into Ag ions in a solution, and Ag is precipitated as fine particles on both surfaces of the core sheet 11. The Ag fine particles 12 not only stick to the core sheet 11, but the portion of the Ag fine particles 12 in contact with the core sheet 11 diffuses into the core sheet 11, and the Ag fine particles 12 adhere to the core sheet 11.

上記導電性シート22は、コアシート11表面への固着に伴い減少するAgめっき液中のAgイオンを補うためにAg箔であることが好ましい。 The conductive sheet 22 is preferably an Ag foil in order to supplement Ag ions in the Ag plating solution, which decreases as the core sheet 11 adheres to the surface.

Agめっき液21は、Ag塩、錯体化剤及び溶媒を含む。Ag塩としては、酢酸銀、クエン酸銀、オレイン酸銀等の脂肪酸銀の他に、硝酸銀、酸化銀、硫酸銀、炭酸銀等が例示される。錯体化剤は、Agイオンと錯体を形成させるものであり、代表的なものとしては、アミノデカン、エチレンジアミン、エチレンジアミン四酢酸、エチレンジアミン、グリシン、ヒダントイン、ピロリドン、コハク酸イミド等の脂肪族アミン、クエン酸、酒石酸、ニトリロ三酢酸等のカルボン酸塩、ヒドロキシエチリデン二ホスホン酸、アミノトリメチレンホスホン酸、メルカプトプロピオン酸、チオグリコール、チオセミカルバジド等を利用できる。溶媒としては、ブチルカルビトールアセテート(BCA)、ブチルカルビトール(BC)、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、テルピネオール等が例示される。Agめっき液21には、Ag微粒子12をより均一にコアシート11に被覆させるために、必要に応じて界面活性剤、光沢剤、結晶調整剤、pH調整剤、沈殿防止剤、安定剤等を添加してもよい。 The Ag plating solution 21 contains an Ag salt, a complexing agent and a solvent. Examples of the Ag salt include silver nitrate, silver oxide, silver sulfate, silver carbonate and the like, in addition to fatty acid silver such as silver acetate, silver citrate and silver oleate. The complexing agent forms a complex with Ag ions, and typical examples thereof include aliphatic amines such as aminodecane, ethylenediamine, ethylenediaminetetraacetic acid, ethylenediamine, glycine, hydantine, pyrrolidone, and succinateimide, and citric acid. , Citric acid, carboxylates such as nitrilotriacetic acid, hydroxyethylidenediphosphonic acid, aminotrimethylenephosphonic acid, mercaptopropionic acid, thioglycol, thiosemicarbazide and the like can be used. Examples of the solvent include butyl carbitol acetate (BCA), butyl carbitol (BC), ethylene glycol, diethylene glycol, triethylene glycol, glycerin, terpineol and the like. In the Ag plating solution 21, in order to more uniformly coat the core sheet 11 with the Ag fine particles 12, a surfactant, a brightener, a crystal regulator, a pH adjuster, a precipitation inhibitor, a stabilizer and the like are added as necessary. It may be added.

Agめっき液21中のAgイオン濃度は0.1モル/L〜2モル/Lであることが好ましい。0.1モル/L未満では、析出するAg微粒子の平均粒径が10nm未満となり易い。また2モル/Lを超えると、析出するAg微粒子のうち、著しく一次粒径の大きなものが混入する異常析出を生じ易く目的の平均粒径のAg微粒子を得られないおそれがある。好ましいAgイオン濃度は0.5モル/L〜1.5モル/Lである。またAgめっき液21中の錯体化剤の濃度は、10g/L〜1000g/Lであることが好ましい。 The Ag ion concentration in the Ag plating solution 21 is preferably 0.1 mol / L to 2 mol / L. If it is less than 0.1 mol / L, the average particle size of the precipitated Ag fine particles tends to be less than 10 nm. On the other hand, if it exceeds 2 mol / L, among the precipitated Ag fine particles, abnormal precipitation in which a significantly large primary particle size is mixed is likely to occur, and there is a possibility that the desired average particle size Ag fine particles cannot be obtained. The preferred Ag ion concentration is 0.5 mol / L to 1.5 mol / L. The concentration of the complexing agent in the Ag plating solution 21 is preferably 10 g / L to 1000 g / L.

図3に示すように、Agめっき液を容器20に入れ、ホットプレート等により加熱する。Agめっき液21は、好ましくは30℃〜70℃の温度に保持し液を撹拌する。この状態でCu箔からなるコアシート11とAg箔からなる導電性シート22を液中に浸漬する。その後、リード線23等で両シート11、22を電気的に接続する。Agめっき液の温度が30℃未満では、Agイオンのコアシート11上での析出量が十分でなく、所望の平均粒径のAg微粒子12を所望の平均被覆率で得ることが困難になり易い。70℃を超えると、析出するAg微粒子のうち、著しく一次粒径の大きなものが混入する異常析出を生じ易く所望の平均粒径のAg微粒子を得られないおそれがある。特に好ましいAgめっき液の温度は40℃〜60℃である。またコアシート11と導電性シート22をAgめっき液中に浸漬している時間は1時間〜4時間であることが好ましい。浸漬時間が1時間未満では、Agイオンのコアシート11上での析出量が十分でなく、所望の平均粒径のAg微粒子12を所望の平均被覆率で得ることが困難になり易い。4時間を超えると、Ag微粒子12の析出量が多くなり過ぎ、Ag微粒子が粒成長して、二次粒子となり、接合時に焼結しにくくなる。好ましいAgめっき液の浸漬時間は2時間〜3時間である。 As shown in FIG. 3, the Ag plating solution is placed in the container 20 and heated by a hot plate or the like. The Ag plating solution 21 is preferably maintained at a temperature of 30 ° C. to 70 ° C. and the solution is stirred. In this state, the core sheet 11 made of Cu foil and the conductive sheet 22 made of Ag foil are immersed in the liquid. After that, both sheets 11 and 22 are electrically connected by a lead wire 23 or the like. If the temperature of the Ag plating solution is less than 30 ° C., the amount of Ag ions deposited on the core sheet 11 is not sufficient, and it tends to be difficult to obtain Ag fine particles 12 having a desired average particle size with a desired average coverage. .. If the temperature exceeds 70 ° C., among the precipitated Ag fine particles, abnormal precipitation in which a significantly large primary particle size is mixed is likely to occur, and there is a possibility that Ag fine particles having a desired average particle size cannot be obtained. A particularly preferable temperature of the Ag plating solution is 40 ° C to 60 ° C. Further, the time for immersing the core sheet 11 and the conductive sheet 22 in the Ag plating solution is preferably 1 hour to 4 hours. If the immersion time is less than 1 hour, the amount of Ag ions deposited on the core sheet 11 is not sufficient, and it tends to be difficult to obtain Ag fine particles 12 having a desired average particle size with a desired average coverage. If it exceeds 4 hours, the amount of the Ag fine particles 12 deposited becomes too large, and the Ag fine particles grow into secondary particles, which makes it difficult to sinter at the time of bonding. The preferred immersion time of the Ag plating solution is 2 hours to 3 hours.

Agめっき液中にコアシート11と導電性シート22を上記所定の時間浸漬した後、リード線23をシート11、22から外してAgめっき液21からコアシート11を引上げ、エタノール、水、アセトン等の洗浄用溶媒で洗浄し、大気中で20℃〜50℃の温度で乾燥する。これによりCu箔からなるコアシート11の両面に平均粒径10nm〜500nmのAg微粒子12が平均被覆率70%以上の割合で被覆され固着された接合用シート10が得られる。 After immersing the core sheet 11 and the conductive sheet 22 in the Ag plating solution for the predetermined time, the lead wires 23 are removed from the sheets 11 and 22 and the core sheet 11 is pulled up from the Ag plating solution 21, and ethanol, water, acetone, etc. Wash with the cleaning solvent of No. 1 and dry in the air at a temperature of 20 ° C. to 50 ° C. As a result, a bonding sheet 10 is obtained in which Ag fine particles 12 having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of a core sheet 11 made of Cu foil at an average coverage rate of 70% or more.

(Agめっき液浸漬法)
Agめっき液浸漬法は、図示しないが、接触めっき法で用いたAgめっき液中に接触めっき法で用いたCu箔からなるコアシート11と同じシートをAgめっき液に浸漬する方法である。この方法では、加熱したAgめっき液中にCu箔からなるコアシート11を配置すると、Agめっき液で還元析出したAg微粒子12の一部が分子間力により、このCu箔からなるコアシート11の両面にAg微粒子の形態で固着する。接触めっき法と同様に、Ag微粒子12はコアシート11に単にくっつくだけではなく、Ag微粒子12のコアシート11に接触する部分がコアシート中に拡散し、Ag微粒子12はコアシート11に固着する。
(Ag plating solution immersion method)
Although not shown, the Ag plating solution dipping method is a method of immersing the same sheet as the core sheet 11 made of Cu foil used in the contact plating method in the Ag plating solution used in the contact plating method. In this method, when the core sheet 11 made of Cu foil is placed in the heated Ag plating solution, a part of the Ag fine particles 12 reduced and precipitated by the Ag plating solution is formed by the intermolecular force of the core sheet 11 made of Cu foil. It adheres to both sides in the form of Ag fine particles. Similar to the contact plating method, the Ag fine particles 12 not only stick to the core sheet 11, but also the portion of the Ag fine particles 12 in contact with the core sheet 11 diffuses into the core sheet, and the Ag fine particles 12 adhere to the core sheet 11. ..

Agめっき液は好ましくは70℃〜150℃の温度に保持し液を撹拌する。この状態でCu箔からなるコアシート11を液中に浸漬する。Agめっき液21の温度が70℃未満では、Agイオンのコアシート11上での析出量が十分でなく、所望の平均粒径のAg微粒子12を所望の平均被覆率で得ることが困難になり易い。150℃を超えると、析出するAg微粒子のうち、著しく一次粒径の大きなものが混入する異常析出を生じ易く所望の平均粒径のAg微粒子を得られないおそれがある。好ましいAgめっき液の温度は90℃〜120℃である。またコアシートをAgめっき液中に浸漬している時間は1時間〜8時間であることが好ましい。浸漬時間が1時間未満では、Agイオンのコアシート11上での析出量が十分でなく、所望の平均粒径のAg微粒子12を所望の平均被覆率で得ることが困難になり易い。8時間を超えると、Ag微粒子の析出量が多くなり過ぎ、Ag微粒子が粒成長して、二次粒子となり、接合時に焼結しにくくなる。好ましいAgめっき液の浸漬時間は4時間〜6時間である。 The Ag plating solution is preferably maintained at a temperature of 70 ° C. to 150 ° C. and the solution is stirred. In this state, the core sheet 11 made of Cu foil is immersed in the liquid. If the temperature of the Ag plating solution 21 is less than 70 ° C., the amount of Ag ions deposited on the core sheet 11 is not sufficient, and it becomes difficult to obtain Ag fine particles 12 having a desired average particle size with a desired average coverage. easy. If the temperature exceeds 150 ° C., among the precipitated Ag fine particles, abnormal precipitation in which a significantly large primary particle size is mixed is likely to occur, and there is a possibility that Ag fine particles having a desired average particle size cannot be obtained. The preferred temperature of the Ag plating solution is 90 ° C to 120 ° C. The time for immersing the core sheet in the Ag plating solution is preferably 1 hour to 8 hours. If the immersion time is less than 1 hour, the amount of Ag ions deposited on the core sheet 11 is not sufficient, and it tends to be difficult to obtain Ag fine particles 12 having a desired average particle size with a desired average coverage. If it exceeds 8 hours, the amount of the Ag fine particles precipitated becomes too large, and the Ag fine particles grow into secondary particles, which makes it difficult to sinter at the time of bonding. The preferred immersion time of the Ag plating solution is 4 to 6 hours.

上記所定の時間Agめっき液中にコアシート11を浸漬した後、接触めっき法と同様に、Agめっき液からコアシート11を引上げ、エタノール、アセトン等の洗浄用溶媒で洗浄し、大気中で20℃〜50℃で乾燥する。これによりCu箔からなるコアシート11の両面に平均粒径10nm〜500nmのAg微粒子12が平均被覆率70%以上の割合で被覆され固着された接合用シートが得られる。 After immersing the core sheet 11 in the Ag plating solution for the above predetermined time, the core sheet 11 is pulled up from the Ag plating solution, washed with a cleaning solvent such as ethanol or acetone, and 20 in the air, as in the catalytic plating method. Dry at ° C to 50 ° C. As a result, a bonding sheet is obtained in which Ag fine particles 12 having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of the core sheet 11 made of Cu foil at an average coverage rate of 70% or more.

(塗布加熱法)
塗布加熱法は上述したAgめっき液21をコアシート11の表面に塗布した後、乾燥させることによりAg微粒子12を析出させる方法である。
具体的には、コアシート11を例えば、Agめっき液21に浸漬させる、もしくは、刷毛等でAgめっき液21をコアシート11に塗布し、大気雰囲気下、150℃〜200℃の範囲内で乾燥させることでAgを還元及び析出させAg微粒子12をコアシート表面に析出させ、エタノール、水、アセトン等の洗浄用溶媒で洗浄し、大気中で20℃〜50℃で乾燥することにより、Cu箔からなるコアシート11の両面に平均粒径10nm〜500nmのAg微粒子12が平均被覆率70%以上の割合で被覆され固着された接合用シート10が得られる。
また、接触めっき法と同様に、Ag微粒子12はコアシート11に単にくっつくだけではなく、Ag微粒子12のコアシート11に接触する部分がコアシート11中に拡散し、Ag微粒子12はコアシート11に固着する。
(Applying heating method)
The coating heating method is a method in which the Ag plating solution 21 described above is applied to the surface of the core sheet 11 and then dried to precipitate Ag fine particles 12.
Specifically, the core sheet 11 is immersed in, for example, the Ag plating solution 21, or the Ag plating solution 21 is applied to the core sheet 11 with a brush or the like and dried in an air atmosphere in the range of 150 ° C. to 200 ° C. Ag is reduced and precipitated, and Ag fine particles 12 are precipitated on the surface of the core sheet, washed with a cleaning solvent such as ethanol, water, and acetone, and dried in the air at 20 ° C. to 50 ° C. to form a Cu foil. A bonding sheet 10 is obtained in which Ag fine particles 12 having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of a core sheet 11 made of the same material at an average coverage rate of 70% or more.
Further, as in the contact plating method, the Ag fine particles 12 not only stick to the core sheet 11, but the portion of the Ag fine particles 12 in contact with the core sheet 11 diffuses into the core sheet 11, and the Ag fine particles 12 are the core sheet 11. Stick to.

〔接合用シートによる電子部品と基板との接合方法〕
上記方法で製造された接合用シートを用いてシリコンチップ素子、LEDチップ素子等の電子部品を各種放熱基板、FR4(Flame Retardant Type 4)基板、コバール等の基板に接合するには、基板上の所定の位置に接合用シートを配置して、その上に電子部品、例えばチップ素子を搭載する。この状態で、加熱炉にて窒素雰囲気中、250℃〜350℃の温度で、5分〜20分間保持して、接合用シートを加熱する。場合によっては、チップと基板とを1MPa〜20MPaの圧力を加えながら接合してもよい。これにより、図2に示すように、接合用シート10(図1)は接合層15となって、チップ素子16と基板17とを接合させて接合体18を作製して、電子部品であるチップ素子16を基板17に接合する。
[How to join electronic components and substrates using a joining sheet]
To join electronic components such as silicon chip elements and LED chip elements to various heat dissipation substrates, FR4 (Flame Retardant Type 4) substrates, Koval and other substrates using the bonding sheet manufactured by the above method, on the substrate A bonding sheet is arranged at a predetermined position, and an electronic component, for example, a chip element is mounted on the sheet. In this state, the bonding sheet is heated by holding it in a heating furnace at a temperature of 250 ° C. to 350 ° C. for 5 minutes to 20 minutes in a nitrogen atmosphere. In some cases, the chip and the substrate may be joined while applying a pressure of 1 MPa to 20 MPa. As a result, as shown in FIG. 2, the bonding sheet 10 (FIG. 1) becomes a bonding layer 15, and the chip element 16 and the substrate 17 are bonded to form a bonded body 18, which is an electronic component. The element 16 is joined to the substrate 17.

次に本発明の実施例を比較例とともに詳しく説明する。以下に示す、実施例1〜7及び比較例1〜4では、接触めっき法により接合用シートを製造した。また実施例8、9及び比較例5、6では、Agめっき液浸漬法により接合用シートを製造した。更に実施例10、11及び比較例7、8では、塗布加熱法により接合用シートを製造した。 Next, examples of the present invention will be described in detail together with comparative examples. In Examples 1 to 7 and Comparative Examples 1 to 4 shown below, a bonding sheet was produced by a catalytic plating method. Further, in Examples 8 and 9 and Comparative Examples 5 and 6, a bonding sheet was produced by the Ag plating solution immersion method. Further, in Examples 10 and 11 and Comparative Examples 7 and 8, a bonding sheet was produced by a coating heating method.

<実施例1>
(接触めっき法による接合用シートの製造例)
先ず、Ag塩としての酢酸銀(脂肪酸銀)、アミノデカン(脂肪族アミン)及びブチルカルビトールアセテート(溶媒)を用意し、脂肪酸銀、脂肪族アミン及び溶媒の合計量を100質量%としたとき、酢酸銀(脂肪酸銀)22質量%、アミノデカン(脂肪族アミン)41.3質量%、ブチルカルビトールアセテート(溶媒)36.7質量%の割合で取り分け、これらをスターラーの撹拌子とともにガラス製のビーカーセルの容器に入れた。そして、50℃に加熱したホットプレートに上記容器を載せ、スターラーの撹拌子を300rpmの回転速度で回転させながら、1時間撹拌して混合液を調製した。次いで、この混合液が貯留された容器をホットプレートから降ろして混合液の温度を室温まで下げた。これによりAgめっき液を調製した。このAgめっき液のAgイオン濃度は1.4g/Lであった。
<Example 1>
(Example of manufacturing a bonding sheet by contact plating)
First, when silver acetate (silver fatty acid), aminodecane (aliphatic amine) and butyl carbitol acetate (solvent) are prepared as Ag salts, and the total amount of silver fatty acid, aliphatic amine and solvent is 100% by mass, 22% by mass of silver acetate (silver fatty acid), 41.3% by mass of aminodecane (aliphatic amine), and 36.7% by mass of butyl carbitol acetate (solvent), which are separated by a glass beaker together with a stirrer of Stirrer. Placed in a cell container. Then, the container was placed on a hot plate heated to 50 ° C., and the stirrer was stirred for 1 hour while rotating at a rotation speed of 300 rpm to prepare a mixed solution. Then, the container in which the mixed solution was stored was removed from the hot plate to lower the temperature of the mixed solution to room temperature. As a result, an Ag plating solution was prepared. The Ag ion concentration of this Ag plating solution was 1.4 g / L.

次に、厚さ100μm、幅10mm、長さ10mmの四角形状のCu箔からなるコアシートと、厚さ100μm、幅10mm、長さ10mmの四角形状のAg箔からなる導電性シートを用意した。コアシートの表面粗さRaは0.5μmであり、Cu箔を構成するCuの平均結晶子径は5μmであった。図2に示すように、調製したAgめっき液21を容器20に入れ、ホットプレートにより50℃の温度に加熱し、100rpmの回転速度で撹拌しながら、Cu箔からなるコアシート11とAg箔からなる導電性シート22を液中に浸漬し、リード線23で両シート11、22を電気的に接続した。電気的接続を開始してから3時間後に、リード線23をシート11、22から外してAgめっき液21からコアシート11を引上げ、エタノールで洗浄し、大気中で50℃の温度で乾燥した。これによりCu箔からなるコアシート11の両面にAg微粒子が被覆され固着された接合用シートを作製した。また前述した方法で測定した接合用シートのAg微粒子の平均粒径は100nmであり、Ag微粒子の平均被覆率は70%であった。 Next, a core sheet made of a square Cu foil having a thickness of 100 μm, a width of 10 mm and a length of 10 mm and a conductive sheet made of a square Ag foil having a thickness of 100 μm, a width of 10 mm and a length of 10 mm were prepared. The surface roughness Ra of the core sheet was 0.5 μm, and the average crystallite diameter of Cu constituting the Cu foil was 5 μm. As shown in FIG. 2, the prepared Ag plating solution 21 is placed in a container 20, heated to a temperature of 50 ° C. by a hot plate, and stirred at a rotation speed of 100 rpm from the core sheet 11 made of Cu foil and the Ag foil. The conductive sheet 22 was immersed in a liquid, and both sheets 11 and 22 were electrically connected by a lead wire 23. Three hours after the start of the electrical connection, the lead wire 23 was removed from the sheets 11 and 22, the core sheet 11 was pulled up from the Ag plating solution 21, washed with ethanol, and dried in the air at a temperature of 50 ° C. As a result, a bonding sheet was prepared in which Ag fine particles were coated and fixed on both sides of the core sheet 11 made of Cu foil. The average particle size of the Ag fine particles of the bonding sheet measured by the above method was 100 nm, and the average coverage of the Ag fine particles was 70%.

この結果を上記接合用シートの製造条件とともに、以下の表1に示す。表1には、以下に述べる実施例2〜11及び比較例1〜8の製造条件、接合用シートのAg微粒子の平均粒径及びAg微粒子の平均被覆率も示す。 The results are shown in Table 1 below together with the manufacturing conditions of the bonding sheet. Table 1 also shows the production conditions of Examples 2 to 11 and Comparative Examples 1 to 8 described below, the average particle size of the Ag fine particles of the bonding sheet, and the average coverage of the Ag fine particles.

Figure 2020155461
Figure 2020155461

<実施例2〜7及び比較例1〜4>
(接触めっき法による接合用シートの製造例)
実施例1で調製したAgめっき液と同じAgめっき液を用意した。Cu箔からなるコアシートの各特性と接合用シートの製造条件を表1に示す内容に変えた以外は実施例1と同じ接触めっき法により実施例2〜7及び比較例1〜4の接合用シートを作製した。
<Examples 2 to 7 and Comparative Examples 1 to 4>
(Example of manufacturing a bonding sheet by contact plating)
The same Ag plating solution as the Ag plating solution prepared in Example 1 was prepared. For joining Examples 2 to 7 and Comparative Examples 1 to 4 by the same contact plating method as in Example 1 except that the characteristics of the core sheet made of Cu foil and the manufacturing conditions of the joining sheet were changed to the contents shown in Table 1. A sheet was prepared.

<実施例8>
(Agめっき液浸漬法による接合用シートの製造例)
実施例1で調製したAgめっき液と同じAgめっき液を用意した。このAgめっき液を100℃の温度に加熱保持し、撹拌しながら、実施例1と同じCu箔からなるコアシートを液中に浸漬した。5時間浸漬した後、実施例1と同様にコアシートを液から引上げ、エタノールで洗浄し、大気中で50℃の温度で乾燥した。これによりCu箔からなるコアシートの両面にAg微粒子が被覆され固着された実施例8の接合用シートを作製した。
<Example 8>
(Example of manufacturing a bonding sheet by the Ag plating solution immersion method)
The same Ag plating solution as the Ag plating solution prepared in Example 1 was prepared. The Ag plating solution was heated and held at a temperature of 100 ° C., and the core sheet made of the same Cu foil as in Example 1 was immersed in the solution while stirring. After soaking for 5 hours, the core sheet was pulled out of the liquid in the same manner as in Example 1, washed with ethanol, and dried in the air at a temperature of 50 ° C. As a result, the bonding sheet of Example 8 was prepared in which Ag fine particles were coated and fixed on both sides of the core sheet made of Cu foil.

<実施例9及び比較例5、6>
(Agめっき液浸漬法による接合用シートの製造例)
実施例1で調製したAgめっき液と同じAgめっき液を用意した。Agめっき液の温度とコアシートの浸漬時間を表1に示すように変えた以外、実施例8と同様にして、実施例9及び比較例5、6の接合用シートを作製した。
<Example 9 and Comparative Examples 5 and 6>
(Example of manufacturing a bonding sheet by the Ag plating solution immersion method)
The same Ag plating solution as the Ag plating solution prepared in Example 1 was prepared. The bonding sheets of Example 9 and Comparative Examples 5 and 6 were prepared in the same manner as in Example 8 except that the temperature of the Ag plating solution and the immersion time of the core sheet were changed as shown in Table 1.

<実施例10>
(塗布加熱法による接合用シートの製造例)
実施例1で調製したAgめっき液と同じAgめっき液を用意した。このAgめっき液を50℃の温度に加熱保持し、撹拌しながら、実施例1と同じCu箔からなるコアシートを液中に浸漬した。1時間浸漬後、コアシートを取り出すことにより、Agめっき液をコアシート両面に塗布した。このコアシートを大気中170℃の温度で1時間保持した。これによりCu箔からなるコアシートの両面にAg微粒子が被覆され固着された実施例10の接合用シートを作製した。
<Example 10>
(Example of manufacturing a bonding sheet by the coating heating method)
The same Ag plating solution as the Ag plating solution prepared in Example 1 was prepared. The Ag plating solution was heated and held at a temperature of 50 ° C., and the core sheet made of the same Cu foil as in Example 1 was immersed in the solution while stirring. After immersion for 1 hour, the core sheet was taken out to apply the Ag plating solution on both sides of the core sheet. The core sheet was held in the air at a temperature of 170 ° C. for 1 hour. As a result, a bonding sheet of Example 10 was prepared in which Ag fine particles were coated and fixed on both sides of a core sheet made of Cu foil.

<実施例11及び比較例7、8>
(塗布加熱法による接合用シートの製造例)
実施例1で調製したAgめっき液と同じAgめっき液を用意した。Agめっき液の温度とコアシートの浸漬時間と浸漬後のコアシートの加熱時間を表1に示すように変えた以外、実施例10と同様にして、実施例11及び比較例7、8の接合用シートを作製した。
<Example 11 and Comparative Examples 7 and 8>
(Example of manufacturing a bonding sheet by the coating heating method)
The same Ag plating solution as the Ag plating solution prepared in Example 1 was prepared. Joining Examples 11 and Comparative Examples 7 and 8 in the same manner as in Example 10 except that the temperature of the Ag plating solution, the immersion time of the core sheet, and the heating time of the core sheet after immersion were changed as shown in Table 1. Sheet was prepared.

<比較評価>
実施例1〜11及び比較例1〜8で得られた19種類の接合用シートを用いて形成した接合層のシェア強度を以下の手順で評価した。先ず、図2に示す接合体20を作製した。具体的には、電子部品の代わりに第1部材として、最表面に金メッキを施した2.5mm角のSiウェーハ(厚さ:200μm)を用意した。また基板の代わりに第2部材として、最表面に銀メッキを施した20mm角のCu板(厚さ:1mm)を用意した。次いで、第1部材と第2部材の間に、上記接合用シートを挟んで積層体を作製した。更に、この積層体を加圧ダイボンダで焼成することにより、即ち積層体を10MPaの荷重を加えた状態で250℃の温度(加熱温度)に15分間(加熱時間)保持することにより、第1部材と第2部材とを接合層15を介して接合した。19種類の接合体のシェア強度を次のように測定した。
<Comparative evaluation>
The shear strength of the bonding layer formed by using the 19 types of bonding sheets obtained in Examples 1 to 11 and Comparative Examples 1 to 8 was evaluated by the following procedure. First, the bonded body 20 shown in FIG. 2 was produced. Specifically, a 2.5 mm square Si wafer (thickness: 200 μm) having a gold-plated outermost surface was prepared as the first member instead of the electronic component. Further, as a second member instead of the substrate, a 20 mm square Cu plate (thickness: 1 mm) having a silver plating on the outermost surface was prepared. Next, the bonding sheet was sandwiched between the first member and the second member to prepare a laminated body. Further, by firing this laminate with a pressurized die bonder, that is, by holding the laminate at a temperature (heating temperature) of 250 ° C. (heating temperature) for 15 minutes (heating time) with a load of 10 MPa applied, the first member And the second member were joined via the joining layer 15. The shear strength of 19 types of joints was measured as follows.

<接合体のシェア強度の測定方法>
接合体のシェア強度は、せん断強度評価試験機を用いて測定した。具体的には、シェア強度の測定は、接合体の第1部材(Cu板)を水平に固定し、接合層の表面(上面)から50μm上方の位置でシェアツールにより、第2部材(Siウェーハ)を横から水平方向に押して、第2部材が破断されたときの強度を測定することによって行った。なお、シェアツールの移動速度は0.1mm/秒とした。1条件に付き3回強度試験を行い、それらの算術平均値を接合強度の測定値とした。19種類の接合体のシェア強度を上述した表1に示す。
<Measurement method of shear strength of joint>
The shear strength of the joint was measured using a shear strength evaluation tester. Specifically, the shear strength is measured by fixing the first member (Cu plate) of the bonded body horizontally and using the shear tool at a position 50 μm above the surface (upper surface) of the bonded layer to measure the second member (Si wafer). ) Was pushed from the side to the horizontal direction, and the strength when the second member was broken was measured. The moving speed of the share tool was 0.1 mm / sec. The strength test was performed three times under one condition, and the arithmetic mean value was used as the measured value of the joint strength. The share strengths of the 19 types of bonded bodies are shown in Table 1 described above.

表1から実施例1〜11及び比較例1〜8とを比較すると次のことが分かった。比較例1〜8ではシェア強度(接合強度)が20MPaを下回り、十分な強度で第2部材であるSiウェーハを接合できなかった。その理由として、次の点が挙げられる。
比較例1では、Ag微粒子の平均粒径が下限値を下回ったため、Ag微粒子の安定性が低下するので、接合性が不安定になったと考えられる。
比較例2、比較例6及び比較例8では、Ag微粒子の平均粒径が上限値を上回ったため、Ag微粒子の焼結性が不十分になり、接合層内部や部材との界面における強度が不十分であったと考えられる。
比較例3、比較例4、比較例5及び比較例7では、Ag微粒子の平均被覆率がが下限値を下回ったため、第2部材であるSiウェーハに対して十分な接合面積を確保できず、接合性が低下したと考えられる。
Comparing Examples 1 to 11 and Comparative Examples 1 to 8 from Table 1, the following was found. In Comparative Examples 1 to 8, the shear strength (bonding strength) was less than 20 MPa, and the Si wafer as the second member could not be bonded with sufficient strength. The reasons for this are as follows.
In Comparative Example 1, since the average particle size of the Ag fine particles was less than the lower limit, the stability of the Ag fine particles was lowered, and it is considered that the bondability became unstable.
In Comparative Example 2, Comparative Example 6 and Comparative Example 8, since the average particle size of the Ag fine particles exceeded the upper limit, the sinterability of the Ag fine particles became insufficient, and the strength inside the bonding layer and at the interface with the member was insufficient. It is believed that it was sufficient.
In Comparative Example 3, Comparative Example 4, Comparative Example 5, and Comparative Example 7, since the average coverage of Ag fine particles was below the lower limit, a sufficient bonding area could not be secured for the Si wafer as the second member. It is considered that the bondability was reduced.

これに対して、実施例1〜11では、本発明の第1の観点の要件を満たすため、シェア強度(接合強度)は20MPa〜40MPaの範囲にあり、すべて「良好」であった。 On the other hand, in Examples 1 to 11, in order to satisfy the requirements of the first aspect of the present invention, the shear strength (bonding strength) was in the range of 20 MPa to 40 MPa, and all were "good".

本発明の接合用シートは、電子部品と基板との間に介在させて、電子部品を基板に接合するのに利用できる。 The bonding sheet of the present invention can be used to bond an electronic component to a substrate by interposing it between the electronic component and the substrate.

10 接合用シート
11 Cu箔からなるコアシート
12 Ag微粒子
13 Ag微粒子層
15 接合層
16 チップ素子
17 基板
18 接合体
10 Bonding sheet 11 Core sheet made of Cu foil 12 Ag fine particles 13 Ag fine particle layer 15 Bonding layer 16 Chip element 17 Substrate 18 Bonded body

Claims (3)

Cu箔からなるコアシートの両面に平均粒径10nm〜500nmのAg微粒子が平均被覆率70%以上の割合で被覆され固着される接合用シート。 A bonding sheet in which Ag fine particles having an average particle size of 10 nm to 500 nm are coated and fixed on both sides of a core sheet made of Cu foil at an average coverage rate of 70% or more. 前記Cu箔の表面粗さRaが1.0μm以下であり、前記Cu箔を構成するCuの平均結晶子径が10μm以下である請求項1記載の接合用シート。 The bonding sheet according to claim 1, wherein the surface roughness Ra of the Cu foil is 1.0 μm or less, and the average crystallite diameter of Cu constituting the Cu foil is 10 μm or less. 請求項1又は2記載の接合用シートを用いて電子部品を基板に接合する方法。 A method of joining an electronic component to a substrate using the joining sheet according to claim 1 or 2.
JP2019049903A 2019-03-18 2019-03-18 Bonding sheet and method of bonding electronic component to substrate using bonding sheet Active JP7196706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049903A JP7196706B2 (en) 2019-03-18 2019-03-18 Bonding sheet and method of bonding electronic component to substrate using bonding sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049903A JP7196706B2 (en) 2019-03-18 2019-03-18 Bonding sheet and method of bonding electronic component to substrate using bonding sheet

Publications (2)

Publication Number Publication Date
JP2020155461A true JP2020155461A (en) 2020-09-24
JP7196706B2 JP7196706B2 (en) 2022-12-27

Family

ID=72559614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049903A Active JP7196706B2 (en) 2019-03-18 2019-03-18 Bonding sheet and method of bonding electronic component to substrate using bonding sheet

Country Status (1)

Country Link
JP (1) JP7196706B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059904A (en) * 2004-08-18 2006-03-02 Toshiba Corp Semiconductor device and its manufacturing method
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007214340A (en) * 2006-02-09 2007-08-23 Hitachi Ltd Metallic ultra-fine particle using bonding material and semiconductor device using the same
JP2016072605A (en) * 2014-09-30 2016-05-09 イサハヤ電子株式会社 Joint material for semiconductor device and method for producing the same
JP2018103189A (en) * 2016-12-22 2018-07-05 古河電気工業株式会社 Heat bonding material and manufacturing method of electric and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059904A (en) * 2004-08-18 2006-03-02 Toshiba Corp Semiconductor device and its manufacturing method
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007214340A (en) * 2006-02-09 2007-08-23 Hitachi Ltd Metallic ultra-fine particle using bonding material and semiconductor device using the same
JP2016072605A (en) * 2014-09-30 2016-05-09 イサハヤ電子株式会社 Joint material for semiconductor device and method for producing the same
JP2018103189A (en) * 2016-12-22 2018-07-05 古河電気工業株式会社 Heat bonding material and manufacturing method of electric and electronic equipment

Also Published As

Publication number Publication date
JP7196706B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP5156658B2 (en) Electronic components for LSI
JP6262968B2 (en) Electronic component mounting substrate and manufacturing method thereof
KR100688833B1 (en) Method for plating on printed circuit board and printed circuit board produced therefrom
TWI666656B (en) Sintering powder
JP6337909B2 (en) Manufacturing method of electronic component module
TWI636842B (en) Bonding material and bonding method using same
TW201611198A (en) Low pressure sintering powder
JP5075222B2 (en) Electronic component and manufacturing method thereof
WO2019088285A1 (en) Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
US20240109157A1 (en) Solder joint
JP2010282832A (en) Bonding material, its manufacturing method, and mounting method using the same
WO2015029152A1 (en) Semiconductor device
WO2017150096A1 (en) Semiconductor device
JP2020155461A (en) Bonding sheet and method for bonding electronic component to substrate using bonding sheet
JP6780398B2 (en) Manufacturing method of resin-sealed power module
JP2011097049A (en) Silicon nitride circuit substrate, and method of manufacturing the same
JP6442688B2 (en) Metal joining method
JP2004059375A (en) Ceramic-metal member junction body
WO2022186262A1 (en) Bonding sheet with preform layer, method for manufacturing bonded body, and to-be-bonded member with preform layer
Jiang et al. Cu-Cu bonding with cu nanowire arrays for electronics integration
JP5331929B2 (en) Electronic member, electronic component and method for manufacturing the same
JP2024041251A (en) Electronic component joining method
CN113597674A (en) Ceramic copper circuit board and semiconductor device using the same
JP2004127953A (en) Wiring board
JP2023034546A (en) High-strength high-ductility high-reliability solder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150