JP2020153875A - Method and system for monitoring state of bearing - Google Patents

Method and system for monitoring state of bearing Download PDF

Info

Publication number
JP2020153875A
JP2020153875A JP2019053780A JP2019053780A JP2020153875A JP 2020153875 A JP2020153875 A JP 2020153875A JP 2019053780 A JP2019053780 A JP 2019053780A JP 2019053780 A JP2019053780 A JP 2019053780A JP 2020153875 A JP2020153875 A JP 2020153875A
Authority
JP
Japan
Prior art keywords
acceleration
bearing
frequency output
rolling bearing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019053780A
Other languages
Japanese (ja)
Other versions
JP7275714B2 (en
Inventor
一弘 吉田
Kazuhiro Yoshida
一弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72558676&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020153875(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019053780A priority Critical patent/JP7275714B2/en
Publication of JP2020153875A publication Critical patent/JP2020153875A/en
Application granted granted Critical
Publication of JP7275714B2 publication Critical patent/JP7275714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide a method and a system for monitoring the state of a bearing which can increase the reliability of the result of monitoring the state of a bearing during an operation.SOLUTION: The present invention includes: an acceleration sensor 30 for detecting an acceleration of a rolling bearing 20; a diagnosing device 50 for calculating the detected acceleration of the rolling bearing 20 and the characteristic frequency output based on the acceleration, and diagnosing the presence or the absence of an abnormality. The acceleration and the characteristics frequency output are compared with their respective diagnosis threshold values so that the state of the rolling bearing 20 is monitored.SELECTED DRAWING: Figure 1

Description

本発明は、軸受状態監視方法及び軸受状態監視システムに関し、より詳細には、運転中における軸受状態の監視結果の信頼性を向上することができる軸受状態監視方法及び軸受状態監視システムに関する。 The present invention relates to a bearing condition monitoring method and a bearing condition monitoring system, and more particularly to a bearing condition monitoring method and a bearing condition monitoring system that can improve the reliability of the bearing condition monitoring result during operation.

従来の軸受診断においては、軸受近傍に設置されたセンサから得られる加速度及び温度のどちらか一方、またはその両方が、設定された基準値を超えた場合に異常アラームを出力する方法が知られている。例えば、特許文献1では、稼働中の荷重レベルを荷重センサで、アコースティックエミッション値をAEセンサで、加速度を加速度センサで、温度上昇分を温度センサで測定し、これらの結果を前もって求めておいた各荷重レベルでのこれらの損傷プロセス中でのアコースティックエミッション値、加速度、温度上昇分の変化のマスターカーブとの比較からパソコンを用いて余寿命を予測している。 In conventional bearing diagnosis, a method of outputting an abnormality alarm when either one or both of acceleration and temperature obtained from a sensor installed near the bearing exceeds a set reference value is known. There is. For example, in Patent Document 1, the load level during operation is measured by a load sensor, the acoustic emission value is measured by an AE sensor, the acceleration is measured by an acceleration sensor, and the temperature rise is measured by a temperature sensor, and these results are obtained in advance. The remaining life is predicted using a personal computer by comparing with the master curve of changes in acoustic emission value, acceleration, and temperature rise during these damage processes at each load level.

また、特許文献2では、鉄道車両の実走行時に測定された、軸受の損傷に係るパラメータを含む情報に基づいて、軸受の異常に係る予兆診断を行い、軸受の異常状態を検知している。 Further, in Patent Document 2, based on the information including the parameter related to the damage of the bearing measured during the actual running of the railroad vehicle, the predictive diagnosis of the abnormality of the bearing is performed and the abnormal state of the bearing is detected.

特開平8−159151号公報Japanese Unexamined Patent Publication No. 8-159151 特開2015−111113号公報Japanese Unexamined Patent Publication No. 2015-111113

ところで、鉄道車両の台車などに用いられる軸受の異常については、走行中なるべく早い段階で把握しておく必要がある。また、特許文献1に記載の軸受診断方法のように、軸受近傍に設置されたセンサから得られる加速度や温度を、設定された基準値と比較して異常診断する場合、走行中の鉄道車両などにおいては、路盤振動や天候等の外乱要因が多いため、加速度や温度の測定値に思わぬ影響を及ぼす場合がある。このため、車両走行時の条件によっては診断結果が影響を受けることもあり、より一層の信頼性の向上が要望されていた。 By the way, it is necessary to grasp the abnormality of the bearing used for the bogie of the railway vehicle at the earliest possible stage during traveling. Further, as in the bearing diagnosis method described in Patent Document 1, when the acceleration or temperature obtained from the sensor installed near the bearing is compared with the set reference value to perform an abnormality diagnosis, a running railroad vehicle or the like In, there are many disturbance factors such as roadbed vibration and weather, which may unexpectedly affect the measured values of acceleration and temperature. Therefore, the diagnosis result may be affected depending on the conditions when the vehicle is running, and further improvement in reliability has been requested.

また、特許文献2に記載の軸受状態検知装置は、振動解析による振動特徴から、軸受が破損に至る前段階での損傷の可能性を異常予兆として検知できるが、軸受が破損に至る前段階も併せて検知できるような改善が求められていた。 Further, the bearing state detection device described in Patent Document 2 can detect the possibility of damage in the stage before the bearing is damaged from the vibration characteristics by vibration analysis as a sign of abnormality, but the stage before the bearing is damaged is also At the same time, improvements that could be detected were required.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、運転中における軸受状態の監視結果の信頼性を向上することができる軸受状態監視方法及び軸受状態監視システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a bearing condition monitoring method and a bearing condition monitoring system capable of improving the reliability of bearing condition monitoring results during operation. It is in.

本発明の上記目的は、下記の構成により達成される。
(1) 転がり軸受の運転状態を監視する軸受状態監視方法であって、
加速度センサにより前記転がり軸受から発生する加速度を加速度信号として検出する工程と、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得する工程と、
前記加速度及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較する工程と、
前記加速度及び前記特徴周波数出力が、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する工程と、
前記診断の結果を出力する工程と、
を備える軸受状態監視方法。
(2) 転がり軸受の運転状態を監視する軸受状態監視システムであって、
前記転がり軸受から発生する加速度を加速度信号として検出する加速度センサと、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得し、前記加速度、及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較して、前記加速度及び前記特徴周波数出力が、それぞれの前記診断閾値より大きいとき、前記転がり軸受の異常として診断する診断装置と、
を備える軸受状態監視システム。
The above object of the present invention is achieved by the following configuration.
(1) A bearing condition monitoring method for monitoring the operating condition of rolling bearings.
A process of detecting the acceleration generated from the rolling bearing by an acceleration sensor as an acceleration signal, and
A step of performing envelope analysis of the acceleration signal to obtain a characteristic frequency output due to damage to the rolling bearing, and
A step of comparing the acceleration and the characteristic frequency output with each preset diagnostic threshold, and
When the acceleration and the characteristic frequency output are larger than the respective diagnostic thresholds, the step of diagnosing as an abnormality of the rolling bearing and
The process of outputting the result of the diagnosis and
Bearing condition monitoring method.
(2) A bearing condition monitoring system that monitors the operating condition of rolling bearings.
An acceleration sensor that detects the acceleration generated from the rolling bearing as an acceleration signal, and
The acceleration signal is envelope-analyzed to obtain the feature frequency output due to the damage of the rolling bearing, and the acceleration and the feature frequency output are compared with the respective preset diagnostic thresholds to obtain the acceleration and the feature frequency output. When the characteristic frequency output is larger than the respective diagnostic thresholds, a diagnostic device that diagnoses as an abnormality of the rolling bearing, and
Bearing condition monitoring system.

本発明の軸受状態監視方法及び軸受状態監視システムによれば、軸受の加速度による軸受診断に加え、軸受の損傷に起因する特徴周波数のレベル判定を加味することで、軸受状態監視結果の信頼性を向上させることができる。 According to the bearing condition monitoring method and the bearing condition monitoring system of the present invention, the reliability of the bearing condition monitoring result can be improved by adding the level determination of the characteristic frequency caused by the damage of the bearing in addition to the bearing diagnosis based on the acceleration of the bearing. Can be improved.

本発明の実施形態に係る軸受状態監視システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the bearing condition monitoring system which concerns on embodiment of this invention. 本発明の実施形態に係る軸受状態を監視する手順を示すフローチャートである。It is a flowchart which shows the procedure of monitoring the bearing state which concerns on embodiment of this invention. 本発明の実施形態に係る転がり軸受の傷の部位と、傷に起因して発生する振動周波数の関係を示す表である。It is a table which shows the relationship between the scratched part of the rolling bearing which concerns on embodiment of this invention, and the vibration frequency generated by the scratch.

以下、本発明に係る軸受状態監視システムの一実施形態を図面に基づいて詳細に説明する。図1に示すように、軸受状態監視システム10は、転がり軸受20と、加速度センサ30と、温度センサ40と、診断装置50と、出力装置60と、を備える。 Hereinafter, an embodiment of the bearing condition monitoring system according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the bearing condition monitoring system 10 includes a rolling bearing 20, an acceleration sensor 30, a temperature sensor 40, a diagnostic device 50, and an output device 60.

転がり軸受20は、不図示のハウジングに内嵌される外輪21と、不図示の回転軸が内嵌する内輪22と、外輪21と内輪22との間で転動可能に配置された複数の転動体23と、転動体23を回転可能に保持する保持器24と、を有する。 The rolling bearing 20 has an outer ring 21 fitted in a housing (not shown), an inner ring 22 in which a rotating shaft (not shown) is fitted inside, and a plurality of rolls rotatably arranged between the outer ring 21 and the inner ring 22. It has a moving body 23 and a cage 24 that rotatably holds the rolling body 23.

加速度センサ30は、転がり軸受20又は不図示のハウジングに取り付けられ、ラジアル方向の加速度を加速度信号として検出する。加速度センサ30で検出された加速度信号は、増幅器31で増幅されて診断装置50に出力される。加速度センサ30は、加速度を検出して電気信号に変換することができるものを適宜使用することができる。加速度センサ30の固定方法には、ボルト固定、接着、ボルト固定と接着の併用、及び樹脂材による埋め込み等がある。 The acceleration sensor 30 is attached to a rolling bearing 20 or a housing (not shown) and detects acceleration in the radial direction as an acceleration signal. The acceleration signal detected by the acceleration sensor 30 is amplified by the amplifier 31 and output to the diagnostic device 50. As the acceleration sensor 30, a sensor capable of detecting acceleration and converting it into an electric signal can be appropriately used. Methods for fixing the acceleration sensor 30 include bolt fixing, adhesion, combined use of bolt fixing and adhesion, and embedding with a resin material.

温度センサ40は、転がり軸受20又は不図示のハウジングに取り付けられ、転がり軸受20の温度を検出し、診断装置50に出力する。 The temperature sensor 40 is attached to the rolling bearing 20 or a housing (not shown), detects the temperature of the rolling bearing 20, and outputs the temperature to the diagnostic device 50.

診断装置50は特徴周波数評価部51と、加速度評価部55と、温度評価部56とを備える。 The diagnostic device 50 includes a feature frequency evaluation unit 51, an acceleration evaluation unit 55, and a temperature evaluation unit 56.

特徴周波数評価部51は、エンベロープ処理回路52、周波数分析部53、及び比較判定部54を備える。特徴周波数評価部51は、検出された加速度信号に対して、不図示のハイパスフィルタ、ローパスフィルタでフィルタ処理した後、A/D変換回路でアナログ信号をデジタル信号に変換する。なお、これらの処理は、加速度センサ30内で行われてもよい。 The feature frequency evaluation unit 51 includes an envelope processing circuit 52, a frequency analysis unit 53, and a comparison determination unit 54. The feature frequency evaluation unit 51 filters the detected acceleration signal with a high-pass filter and a low-pass filter (not shown), and then converts an analog signal into a digital signal with an A / D conversion circuit. Note that these processes may be performed in the acceleration sensor 30.

さらに、エンベロープ処理回路52でのエンベロープ解析により抽出された加速度波形の外形に対して、周波数分析部53でFFT解析してスペクトルデータを生成し、軸受の損傷に起因する特徴周波数出力を算出する。そして、比較判定部54が、得られた特徴周波数出力と、予め設定された特徴周波数出力診断閾値と比較する。 Further, the frequency analysis unit 53 performs FFT analysis on the outer shape of the acceleration waveform extracted by the envelope analysis in the envelope processing circuit 52 to generate spectral data, and calculates the characteristic frequency output due to the damage of the bearing. Then, the comparison determination unit 54 compares the obtained feature frequency output with the preset feature frequency output diagnostic threshold.

具体的には、得られた特徴周波数出力と、転がり軸受20の回転速度及び諸元とに基づいて算出される、図3に示す、転がり軸受20の部位ごとの損傷に起因する軸受損傷周波数(Zfi,Zfc,2fb,fc)とを比較することで、傷などの異常が発生した転がり軸受20の損傷部位を特定する。 Specifically, the bearing damage frequency due to the damage of each part of the rolling bearing 20 shown in FIG. 3 calculated based on the obtained characteristic frequency output and the rotation speed and specifications of the rolling bearing 20 By comparing with Zfi, Zfc, 2fb, fc), the damaged portion of the rolling bearing 20 in which an abnormality such as a scratch has occurred is identified.

加速度評価部55は、加速度センサ30で検出した加速度信号に対して、単位時間ごとの二乗平均平方根により実効値(RMS値)を求め、該RMS値を予め設定された加速度診断閾値と比較する。加速度信号をRMS値とすることで、急峻なノイズの影響を抑制することができ、診断精度が向上する。 The acceleration evaluation unit 55 obtains an effective value (RMS value) from the root mean square for each unit time with respect to the acceleration signal detected by the acceleration sensor 30, and compares the RMS value with a preset acceleration diagnosis threshold value. By using the acceleration signal as the RMS value, the influence of steep noise can be suppressed and the diagnostic accuracy is improved.

温度評価部56は、温度センサ40で検出した温度の単位時間当たりの平均値を求め、予め設定された温度診断閾値と比較する。 The temperature evaluation unit 56 obtains an average value of the temperatures detected by the temperature sensor 40 per unit time and compares them with a preset temperature diagnosis threshold value.

出力装置60は、特徴周波数評価部51における特徴周波数出力と特徴周波数出力診断閾値との比較結果、加速度評価部55における加速度の単位時間ごとのRMS値と加速度診断閾値との比較結果、及び温度評価部56における温度の単位時間当たりの平均値と温度診断閾値との比較結果を表示する。結果の出力方式は、接点信号やデジタル信号の伝送など、任意の方式での出力が選択可能である。 The output device 60 includes a comparison result between the feature frequency output and the feature frequency output diagnosis threshold value in the feature frequency evaluation unit 51, a comparison result between the RMS value for each unit time of acceleration in the acceleration evaluation unit 55 and the acceleration diagnosis threshold value, and a temperature evaluation. The comparison result between the average value of the temperature per unit time in the part 56 and the temperature diagnosis threshold value is displayed. As the output method of the result, the output by any method such as transmission of a contact signal or a digital signal can be selected.

次に、軸受状態監視システム10による転がり軸受20の監視手順について図2を参照して説明する。 Next, the monitoring procedure of the rolling bearing 20 by the bearing condition monitoring system 10 will be described with reference to FIG.

図2に示すように、まず、ステップS1で、加速度センサ30により転がり軸受20の加速度を検出すると共に、温度センサ40で転がり軸受20の温度を検出し、それぞれの検出信号を診断装置50に送出する。 As shown in FIG. 2, first, in step S1, the acceleration sensor 30 detects the acceleration of the rolling bearing 20, the temperature sensor 40 detects the temperature of the rolling bearing 20, and each detection signal is sent to the diagnostic device 50. To do.

次いで、ステップS2で、特徴周波数評価部51において、加速度センサ30で検出された加速度信号に対して、フィルタ処理した後、デジタル変換し、さらに、エンベロープ処理回路52でエンベロープ解析して抽出された加速度波形の外形に対して、周波数分析部53でFFT解析して得られた、軸受の損傷に起因する特徴周波数出力を算出する。そして、周波数分析部53で得られた特徴周波数出力と、予め設定された特徴周波数出力診断閾値とを比較する。 Next, in step S2, the feature frequency evaluation unit 51 filters the acceleration signal detected by the acceleration sensor 30, then digitally converts the acceleration signal, and further performs an envelope analysis by the envelope processing circuit 52 to extract the acceleration. The characteristic frequency output due to the damage of the bearing obtained by FFT analysis by the frequency analysis unit 53 is calculated for the outer shape of the waveform. Then, the feature frequency output obtained by the frequency analysis unit 53 is compared with the preset feature frequency output diagnostic threshold value.

ステップS2で、特徴周波数出力が特徴周波数出力診断閾値以下(NO)と判断されると、転がり軸受20は正常状態にあると判断してステップS3で出力装置60が軸受正常と表示する。ステップS2で、特徴周波数出力が特徴周波数出力診断閾値より大きい(YES)と判断されると、ステップS4に進み、加速度評価部55が、加速度センサ30で検出した加速度信号に対して、単位時間ごとの二乗平均平方根によりRMS値を求め、予め設定された加速度診断閾値と比較する。 If it is determined in step S2 that the feature frequency output is equal to or less than the feature frequency output diagnostic threshold (NO), it is determined that the rolling bearing 20 is in a normal state, and the output device 60 displays that the bearing is normal in step S3. If it is determined in step S2 that the feature frequency output is larger than the feature frequency output diagnosis threshold value (YES), the process proceeds to step S4, and the acceleration evaluation unit 55 refers to the acceleration signal detected by the acceleration sensor 30 every unit time. The RMS value is obtained from the root mean square of, and compared with a preset acceleration diagnostic threshold.

そして、ステップS4で加速度信号のRMS値が加速度診断閾値以下(NO)と判断される場合は、軸受に異常の予兆があると判断し、ステップS5で出力装置60が異常予兆を表示する。ステップS4で加速度信号のRMS値が加速度診断閾値より大きい(YES)と判断されると、さらにステップS6に進み、温度評価部56が、温度センサ40で検出した転がり軸受20の温度の単位時間当たりの平均値を求め、予め設定された温度診断閾値と比較する。 If the RMS value of the acceleration signal is determined to be equal to or less than the acceleration diagnosis threshold value (NO) in step S4, it is determined that the bearing has a sign of abnormality, and the output device 60 displays the sign of abnormality in step S5. If it is determined in step S4 that the RMS value of the acceleration signal is larger than the acceleration diagnosis threshold value (YES), the process further proceeds to step S6, and the temperature evaluation unit 56 per unit time of the temperature of the rolling bearing 20 detected by the temperature sensor 40. The average value of is calculated and compared with a preset temperature diagnostic threshold.

ステップS6で、温度の平均値が、予め設定された温度診断閾値以下(NO)と判断されると、ステップS5で、出力装置60が異常予兆を表示する。 If it is determined in step S6 that the average temperature value is equal to or less than the preset temperature diagnosis threshold value (NO), the output device 60 displays an abnormality sign in step S5.

ステップS5で、出力装置60に異常予兆が表示される場合は、現状では特別な異常はないものの、いずれかの時期に転がり軸受20に異常が発生する可能性がある軽度異常と考えられる。即ち、加速度信号のRMS値、及び温度の平均値がそれぞれの閾値以下でも、特徴周波数出力が特徴周波数出力診断閾値より大きい場合には、転がり軸受20に異常の予兆があると判断することで、軸受異常予兆と、軸受異常との2段階で診断する。 If an abnormality sign is displayed on the output device 60 in step S5, it is considered that there is no special abnormality at present, but there is a possibility that an abnormality may occur in the rolling bearing 20 at any time. That is, even if the RMS value of the acceleration signal and the average value of the temperature are equal to or less than the respective threshold values, if the characteristic frequency output is larger than the characteristic frequency output diagnosis threshold value, it is determined that the rolling bearing 20 has a sign of abnormality. Diagnosis is made in two stages: bearing abnormality sign and bearing abnormality.

異常予兆と診断された場合には、交換部品の在庫状況、納入可能時期などを調べ、納入に長期間を要する場合には、必要に応じて予備発注などの対策を行う。これにより、時間的なロスがなく高効率及び低コストでのメンテナンスが可能となる。また、転がり軸受20が破損に至る前段階で損傷の可能性を検知できるため、定期メンテナンス前の早い段階での処置が可能となり、転がり軸受20の安全性及び信頼性が大きく向上する。 If it is diagnosed as a sign of abnormality, check the inventory status of replacement parts, delivery time, etc., and if it takes a long time to deliver, take measures such as pre-ordering as necessary. As a result, maintenance can be performed with high efficiency and low cost without time loss. Further, since the possibility of damage can be detected before the rolling bearing 20 is damaged, it is possible to take measures at an early stage before the regular maintenance, and the safety and reliability of the rolling bearing 20 are greatly improved.

ステップS6で、温度の平均値が、予め設定された温度診断閾値より大きい(YES)と判断されると、軸受異常として出力装置60に表示する。即ち、特徴周波数出力、加速度のRMS値、及び温度の単位時間当たりの平均値のいずれもが、それぞれの診断閾値より大きい場合(AND条件が成立した場合)に、転がり軸受20の異常と診断する。この場合には、異常と診断された転がり軸受20を、直ちに交換することが望ましい。
したがって、出力装置60は、軸受異常と軸受予兆とで2段階の警告を出力することができる。
If it is determined in step S6 that the average temperature value is larger than the preset temperature diagnosis threshold value (YES), it is displayed on the output device 60 as a bearing abnormality. That is, when all of the characteristic frequency output, the RMS value of the acceleration, and the average value per unit time of the temperature are larger than the respective diagnostic threshold values (when the AND condition is satisfied), it is diagnosed that the rolling bearing 20 is abnormal. .. In this case, it is desirable to immediately replace the rolling bearing 20 diagnosed as abnormal.
Therefore, the output device 60 can output a two-stage warning based on the bearing abnormality and the bearing sign.

なお、加速度のサンプリング周波数、加速度のRMS値、及び温度の単位時間当たりの平均値は、診断条件として設定するものであり、診断の目的によってそれぞれ最適な条件に変更可能である。また、特徴周波数出力、加速度、温度の算出方法は、上記に記載のものに限定されず、ある範囲での最大値などを用いることもできる。さらに、温度については、環境に左右され易いため、場合によっては、温度センサ40で検出した転がり軸受20の温度を軸受以外から検出される温度と比較することで、監視条件から除外することもできる。 The sampling frequency of acceleration, the RMS value of acceleration, and the average value of temperature per unit time are set as diagnostic conditions, and can be changed to the optimum conditions depending on the purpose of diagnosis. Further, the method for calculating the feature frequency output, acceleration, and temperature is not limited to the one described above, and a maximum value in a certain range or the like can be used. Further, since the temperature is easily affected by the environment, in some cases, the temperature of the rolling bearing 20 detected by the temperature sensor 40 can be excluded from the monitoring conditions by comparing it with the temperature detected from other than the bearing. ..

以上説明したように、本実施形態の軸受状態監視方法及び軸受状態監視システムによれば、加速度判定、及び温度判定に、軸受の損傷に起因する特徴周波数出力判定を加えることで、加速度増加、温度上昇が起きた際の軸受異常監視の信頼性を向上させることができる。 As described above, according to the bearing condition monitoring method and the bearing condition monitoring system of the present embodiment, the acceleration is increased and the temperature is increased by adding the characteristic frequency output determination due to the damage of the bearing to the acceleration determination and the temperature determination. It is possible to improve the reliability of bearing abnormality monitoring when a rise occurs.

尚、本発明は、前述した実施形態及び実施例に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、転がり軸受は、軸受形式に限定されず、図1に示す玉軸受を含む全ての形式の転がり軸受に適用することができる。また、転がり軸受が搭載される全ての回転機械装置を対象とすることができ、同様の効果を奏する。
The present invention is not limited to the above-described embodiments and examples, and can be appropriately modified, improved, and the like.
For example, the rolling bearing is not limited to the bearing type, and can be applied to all types of rolling bearings including the ball bearing shown in FIG. Further, all rotating mechanical devices equipped with rolling bearings can be targeted, and the same effect can be obtained.

以上の通り、本明細書には次の事項が開示されている。
(1) 転がり軸受の運転状態を監視する軸受状態監視方法であって、
加速度センサにより前記転がり軸受から発生する加速度を加速度信号として検出する工程と、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得する工程と、
前記加速度及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較する工程と、
前記加速度及び前記特徴周波数出力が、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する工程と、
前記診断の結果を出力する工程と、
を備える軸受状態監視方法。
この構成によれば、軸受の加速度及び特徴周波数により軸受異常の有無を監視するので、軸受状態監視結果の信頼性が向上する。
As described above, the following matters are disclosed in this specification.
(1) A bearing condition monitoring method for monitoring the operating condition of rolling bearings.
A process of detecting the acceleration generated from the rolling bearing by an acceleration sensor as an acceleration signal, and
A step of performing envelope analysis of the acceleration signal to obtain a characteristic frequency output due to damage to the rolling bearing, and
A step of comparing the acceleration and the characteristic frequency output with each preset diagnostic threshold, and
When the acceleration and the characteristic frequency output are larger than the respective diagnostic thresholds, the step of diagnosing as an abnormality of the rolling bearing and
The process of outputting the result of the diagnosis and
Bearing condition monitoring method.
According to this configuration, the presence or absence of bearing abnormality is monitored by the acceleration and characteristic frequency of the bearing, so that the reliability of the bearing condition monitoring result is improved.

(2) 前記加速度が前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、(1)に記載の軸受状態監視方法。
この構成によれば、軸受に異常が発生する可能性がある異常予兆を出力することができ、異常に至る前に軸受在庫の確認などを促すことができる。
(2) The bearing condition monitoring method according to (1), wherein when the acceleration is equal to or less than the diagnostic threshold value and the characteristic frequency output is larger than the diagnostic threshold value, it is diagnosed as an abnormality sign of the rolling bearing.
According to this configuration, it is possible to output a sign of abnormality in which an abnormality may occur in the bearing, and it is possible to prompt confirmation of the bearing inventory before the abnormality occurs.

(3) 温度センサにより前記転がり軸受の温度を検出する工程を、さらに備え、
前記比較工程は、前記温度を予め設定された診断閾値と比較し、
前記診断工程は、前記温度、前記加速度及び前記特徴周波数出力のすべてが、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する、(1)に記載の軸受状態監視方法。
この構成によれば、転がり軸受の温度、加速度及び特徴周波数出力により軸受異常の有無を監視するので、軸受状態監視結果の信頼性が向上する。
(3) Further provided with a step of detecting the temperature of the rolling bearing by a temperature sensor.
The comparison step compares the temperature with a preset diagnostic threshold and
The bearing condition monitoring method according to (1), wherein the diagnostic step diagnoses as an abnormality of the rolling bearing when all of the temperature, the acceleration, and the characteristic frequency output are larger than the respective diagnostic thresholds.
According to this configuration, the presence or absence of bearing abnormality is monitored by the temperature, acceleration, and characteristic frequency output of the rolling bearing, so that the reliability of the bearing condition monitoring result is improved.

(4) 前記温度、及び前記加速度の少なくとも一方が、それぞれの前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、(3)に記載の軸受状態監視方法。
この構成によれば、軸受に異常が発生する可能性がある異常予兆を出力することができ、異常に至る前に軸受在庫の確認などを促すことができる。
(4) When at least one of the temperature and the acceleration is equal to or lower than the respective diagnostic thresholds and the characteristic frequency output is larger than the diagnostic threshold, it is diagnosed as an abnormality sign of the rolling bearing, according to (3). The described bearing condition monitoring method.
According to this configuration, it is possible to output a sign of abnormality in which an abnormality may occur in the bearing, and it is possible to prompt confirmation of the bearing inventory before the abnormality occurs.

(5) 転がり軸受の運転状態を監視する軸受状態監視システムであって、
前記転がり軸受から発生する加速度を加速度信号として検出する加速度センサと、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得し、前記加速度、及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較して、前記加速度及び前記特徴周波数出力が、それぞれの前記診断閾値より大きいとき、前記転がり軸受の異常として診断する診断装置と、
を備える軸受状態監視システム。
この構成によれば、軸受の加速度及び特徴周波数により軸受異常の有無を監視するので、軸受状態監視結果の信頼性を向上させることができる。
(5) A bearing condition monitoring system that monitors the operating condition of rolling bearings.
An acceleration sensor that detects the acceleration generated from the rolling bearing as an acceleration signal, and
The acceleration signal is envelope-analyzed to obtain the feature frequency output due to the damage of the rolling bearing, and the acceleration and the feature frequency output are compared with the respective preset diagnostic thresholds to obtain the acceleration and the feature frequency output. When the characteristic frequency output is larger than the respective diagnostic thresholds, a diagnostic device that diagnoses as an abnormality of the rolling bearing, and
Bearing condition monitoring system.
According to this configuration, the presence or absence of bearing abnormality is monitored by the acceleration of the bearing and the characteristic frequency, so that the reliability of the bearing condition monitoring result can be improved.

(6) 前記加速度が前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、(5)に記載の軸受状態監視システム。
この構成によれば、軸受に異常が発生する可能性がある異常予兆を出力することができ、異常に至る前に軸受在庫の確認などを促すことができる。
(6) The bearing condition monitoring system according to (5), wherein when the acceleration is equal to or lower than the diagnostic threshold value and the characteristic frequency output is larger than the diagnostic threshold value, it is diagnosed as an abnormality sign of the rolling bearing.
According to this configuration, it is possible to output a sign of abnormality in which an abnormality may occur in the bearing, and it is possible to prompt confirmation of the bearing inventory before the abnormality occurs.

(7) 温度センサにより前記転がり軸受の温度を検出する温度センサを、さらに備え、
前記診断装置は、前記温度を予め設定された診断閾値と比較し、前記温度、前記加速度及び前記特徴周波数出力のすべてが、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する、(5)に記載の軸受状態監視システム。
この構成によれば、転がり軸受の温度、加速度及び特徴周波数出力により軸受異常の有無を監視するので、軸受状態監視結果の信頼性が向上する。
(7) A temperature sensor for detecting the temperature of the rolling bearing by a temperature sensor is further provided.
The diagnostic device compares the temperature with a preset diagnostic threshold, and when all of the temperature, the acceleration, and the characteristic frequency output are larger than the respective diagnostic thresholds, diagnoses as an abnormality of the rolling bearing. The bearing condition monitoring system according to 5).
According to this configuration, the presence or absence of bearing abnormality is monitored by the temperature, acceleration, and characteristic frequency output of the rolling bearing, so that the reliability of the bearing condition monitoring result is improved.

(8) 前記温度、及び前記加速度の少なくとも一方が、それぞれの前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、(7)に記載の軸受状態監視システム。
この構成によれば、軸受に異常が発生する可能性がある異常予兆を出力することができ、異常に至る前に軸受在庫の確認などを促すことができる。
(8) When at least one of the temperature and the acceleration is equal to or lower than the respective diagnostic thresholds and the characteristic frequency output is larger than the diagnostic threshold, it is diagnosed as an abnormality sign of the rolling bearing, according to (7). The described bearing condition monitoring system.
According to this configuration, it is possible to output a sign of abnormality in which an abnormality may occur in the bearing, and it is possible to prompt confirmation of the bearing inventory before the abnormality occurs.

10 軸受状態監視システム
20 転がり軸受
30 加速度センサ
40 温度センサ
50 診断装置
51 特徴周波数評価部
55 加速度評価部
56 温度評価部
60 出力装置
10 Bearing condition monitoring system 20 Rolling bearing 30 Acceleration sensor 40 Temperature sensor 50 Diagnostic device 51 Features Frequency evaluation unit 55 Acceleration evaluation unit 56 Temperature evaluation unit 60 Output device

Claims (8)

転がり軸受の運転状態を監視する軸受状態監視方法であって、
加速度センサにより前記転がり軸受から発生する加速度を加速度信号として検出する工程と、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得する工程と、
前記加速度及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較する工程と、
前記加速度及び前記特徴周波数出力が、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する工程と、
前記診断の結果を出力する工程と、
を備える軸受状態監視方法。
A bearing condition monitoring method that monitors the operating condition of rolling bearings.
A process of detecting the acceleration generated from the rolling bearing by an acceleration sensor as an acceleration signal, and
A step of performing envelope analysis of the acceleration signal to obtain a characteristic frequency output due to damage to the rolling bearing, and
A step of comparing the acceleration and the characteristic frequency output with each preset diagnostic threshold, and
When the acceleration and the characteristic frequency output are larger than the respective diagnostic thresholds, the step of diagnosing as an abnormality of the rolling bearing and
The process of outputting the result of the diagnosis and
Bearing condition monitoring method.
前記加速度が前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、請求項1に記載の軸受状態監視方法。 The bearing state monitoring method according to claim 1, wherein when the acceleration is equal to or lower than the diagnostic threshold value and the characteristic frequency output is larger than the diagnostic threshold value, it is diagnosed as an abnormality sign of the rolling bearing. 温度センサにより前記転がり軸受の温度を検出する工程を、さらに備え、
前記比較工程は、前記温度を予め設定された診断閾値と比較し、
前記診断工程は、前記温度、前記加速度及び前記特徴周波数出力のすべてが、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する、請求項1に記載の軸受状態監視方法。
A step of detecting the temperature of the rolling bearing by a temperature sensor is further provided.
The comparison step compares the temperature with a preset diagnostic threshold and
The bearing condition monitoring method according to claim 1, wherein the diagnostic step diagnoses as an abnormality of the rolling bearing when all of the temperature, the acceleration, and the characteristic frequency output are larger than the respective diagnostic thresholds.
前記温度、及び前記加速度の少なくとも一方が、それぞれの前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、請求項3に記載の軸受状態監視方法。 The bearing according to claim 3, wherein when at least one of the temperature and the acceleration is equal to or lower than the respective diagnostic thresholds and the characteristic frequency output is larger than the diagnostic threshold, it is diagnosed as an abnormality sign of the rolling bearing. Status monitoring method. 転がり軸受の運転状態を監視する軸受状態監視システムであって、
前記転がり軸受から発生する加速度を加速度信号として検出する加速度センサと、
前記加速度信号をエンベロープ解析して、前記転がり軸受の損傷に起因する特徴周波数出力を取得し、前記加速度、及び前記特徴周波数出力を、予め設定されたそれぞれの診断閾値と比較して、前記加速度及び前記特徴周波数出力が、それぞれの前記診断閾値より大きいとき、前記転がり軸受の異常として診断する診断装置と、
を備える軸受状態監視システム。
A bearing condition monitoring system that monitors the operating condition of rolling bearings.
An acceleration sensor that detects the acceleration generated from the rolling bearing as an acceleration signal, and
The acceleration signal is envelope-analyzed to obtain the feature frequency output due to the damage of the rolling bearing, and the acceleration and the feature frequency output are compared with the respective preset diagnostic thresholds to obtain the acceleration and the feature frequency output. When the characteristic frequency output is larger than the respective diagnostic thresholds, a diagnostic device that diagnoses as an abnormality of the rolling bearing, and
Bearing condition monitoring system.
前記加速度が前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、請求項5に記載の軸受状態監視システム。 The bearing condition monitoring system according to claim 5, wherein when the acceleration is equal to or less than the diagnostic threshold value and the characteristic frequency output is larger than the diagnostic threshold value, it is diagnosed as an abnormality sign of the rolling bearing. 温度センサにより前記転がり軸受の温度を検出する温度センサを、さらに備え、
前記診断装置は、前記温度を予め設定された診断閾値と比較し、前記温度、前記加速度及び前記特徴周波数出力のすべてが、それぞれの診断閾値より大きいとき、前記転がり軸受の異常として診断する、請求項5に記載の軸受状態監視システム。
A temperature sensor for detecting the temperature of the rolling bearing by a temperature sensor is further provided.
The diagnostic device compares the temperature with a preset diagnostic threshold and diagnoses as an abnormality of the rolling bearing when all of the temperature, the acceleration and the characteristic frequency output are larger than the respective diagnostic thresholds. Item 5. The bearing condition monitoring system according to Item 5.
前記温度、及び前記加速度の少なくとも一方が、それぞれの前記診断閾値以下であり、且つ前記特徴周波数出力が前記診断閾値より大きいとき、前記転がり軸受の異常予兆と診断する、請求項7に記載の軸受状態監視システム。 The bearing according to claim 7, wherein when at least one of the temperature and the acceleration is equal to or lower than the respective diagnostic thresholds and the characteristic frequency output is larger than the diagnostic threshold, it is diagnosed as an abnormality sign of the rolling bearing. Condition monitoring system.
JP2019053780A 2019-03-20 2019-03-20 BEARING CONDITION MONITORING METHOD AND BEARING CONDITION MONITORING SYSTEM Active JP7275714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019053780A JP7275714B2 (en) 2019-03-20 2019-03-20 BEARING CONDITION MONITORING METHOD AND BEARING CONDITION MONITORING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053780A JP7275714B2 (en) 2019-03-20 2019-03-20 BEARING CONDITION MONITORING METHOD AND BEARING CONDITION MONITORING SYSTEM

Publications (2)

Publication Number Publication Date
JP2020153875A true JP2020153875A (en) 2020-09-24
JP7275714B2 JP7275714B2 (en) 2023-05-18

Family

ID=72558676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053780A Active JP7275714B2 (en) 2019-03-20 2019-03-20 BEARING CONDITION MONITORING METHOD AND BEARING CONDITION MONITORING SYSTEM

Country Status (1)

Country Link
JP (1) JP7275714B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292311A (en) * 1996-04-30 1997-11-11 Kawasaki Steel Corp Remaining-life estimating method for rolling bearing
JPH10160638A (en) * 1996-11-28 1998-06-19 Kawasaki Steel Corp Method for diagnosing anomaly in bearing-built-in type wheel and low-speed rotary bearing
US20020139191A1 (en) * 2001-03-29 2002-10-03 Hedeen Robert A. System and method for conditioned-based monitoring of a bearing assembly
JP2005062154A (en) * 2003-07-29 2005-03-10 Nsk Ltd Abnormality diagnostic device and roller bearing device comprising the same
JP2007304031A (en) * 2006-05-15 2007-11-22 Nsk Ltd Abnormality diagnostic apparatus
JP2016170085A (en) * 2015-03-13 2016-09-23 日本精工株式会社 Abnormality diagnostic device and abnormality diagnostic method
JP2017032520A (en) * 2015-08-06 2017-02-09 日本精工株式会社 State monitoring device and state monitoring method
JP2018155494A (en) * 2017-03-15 2018-10-04 日本精工株式会社 Bearing abnormality diagnosis system and bearing abnormality diagnosis method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292311A (en) * 1996-04-30 1997-11-11 Kawasaki Steel Corp Remaining-life estimating method for rolling bearing
JPH10160638A (en) * 1996-11-28 1998-06-19 Kawasaki Steel Corp Method for diagnosing anomaly in bearing-built-in type wheel and low-speed rotary bearing
US20020139191A1 (en) * 2001-03-29 2002-10-03 Hedeen Robert A. System and method for conditioned-based monitoring of a bearing assembly
JP2005062154A (en) * 2003-07-29 2005-03-10 Nsk Ltd Abnormality diagnostic device and roller bearing device comprising the same
JP2007304031A (en) * 2006-05-15 2007-11-22 Nsk Ltd Abnormality diagnostic apparatus
JP2016170085A (en) * 2015-03-13 2016-09-23 日本精工株式会社 Abnormality diagnostic device and abnormality diagnostic method
JP2017032520A (en) * 2015-08-06 2017-02-09 日本精工株式会社 State monitoring device and state monitoring method
JP2018155494A (en) * 2017-03-15 2018-10-04 日本精工株式会社 Bearing abnormality diagnosis system and bearing abnormality diagnosis method

Also Published As

Publication number Publication date
JP7275714B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP4003088B2 (en) Rotating body abnormality diagnosis method and apparatus
JP5725833B2 (en) Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
JP4935157B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6508017B2 (en) Evaluation method of machinery and equipment
CN107843426B (en) Method and device for monitoring residual life of bearing
JP4527585B2 (en) Bearing monitoring system and bearing monitoring program
JP2006077938A (en) Abnormality diagnosing device
CN109318716B (en) Traction motor shaft temperature monitoring alarm control method, system and related device
JP6714806B2 (en) Status monitoring device and status monitoring method
WO2006030786A1 (en) Abnormality diagnosis device and abnormality diagnosis method
CN104990709A (en) Method for detecting locomotive bearing fault
WO2004027370A1 (en) Method and device for monitoring status of mechanical equipment and abnormality diagnosing device
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP2012058171A (en) Moving object abnormality detection system and moving object
KR20110131411A (en) Hub bearing test method
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP2006234786A (en) Abnormality diagnostic device and abnormality diagnostic method for mechanical facility
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP2007278895A (en) Device and method for diagnosing abnormality
JP6714844B2 (en) Abnormality diagnosis method
JPH07218334A (en) Method and device for diagnosing bearing
JP4997936B2 (en) Rolling bearing abnormality diagnosis device and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7275714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150