JP2020153346A - Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus - Google Patents

Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus Download PDF

Info

Publication number
JP2020153346A
JP2020153346A JP2019054824A JP2019054824A JP2020153346A JP 2020153346 A JP2020153346 A JP 2020153346A JP 2019054824 A JP2019054824 A JP 2019054824A JP 2019054824 A JP2019054824 A JP 2019054824A JP 2020153346 A JP2020153346 A JP 2020153346A
Authority
JP
Japan
Prior art keywords
hub
water
water turbine
turbine
hydroelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019054824A
Other languages
Japanese (ja)
Inventor
知美 後藤
Tomomi Goto
知美 後藤
近藤 博光
Hiromitsu Kondo
博光 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019054824A priority Critical patent/JP2020153346A/en
Priority to PCT/JP2019/032318 priority patent/WO2020040098A1/en
Priority to CN201980054974.9A priority patent/CN112639282B/en
Priority to KR1020217005806A priority patent/KR20210044798A/en
Publication of JP2020153346A publication Critical patent/JP2020153346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

To provide a water turbine blade fitting structure capable of preventing deterioration of strength caused by creep deformation or fretting wear of a hub of water turbine blades when the water turbine blades made of a fiber-reinforced plastic material receive variable load from flowing water.SOLUTION: A hydraulic generating apparatus includes water turbine blades 1 made of a fiber-reinforced plastic material and an electric generator that generates power by receiving rotation of the water turbine blades. A water turbine shaft 20 is inserted into a through-hole 50 of the water turbine blades 1. A pair of flange members 51 and 52 are disposed on both side faces of a hub 10 of the water turbine blades 1. The hub 10 and the flange member 51 and 52 are fastened together by a bolt 53. The flange members 51 and 52 are fitted to the water turbine shaft 20. The pair of flange members 51 and 52 have the same thickness of the bolt 53 in the length direction, and the same area of contact with the hub 10.SELECTED DRAWING: Figure 3

Description

この発明は、繊維強化プラスチック材からなる水車翼を備え、水路に設置されて水の力で発電する水力発電装置の水車翼取付け構造、および水力発電装置に関する。 The present invention relates to a water turbine wing mounting structure of a hydroelectric power generator which is provided with a water turbine wing made of a fiber reinforced plastic material and is installed in a water channel to generate electricity by the power of water, and a hydroelectric power generation device.

水力発電装置は、水のエネルギーを回転エネルギーに変換する水車翼と、回転エネルギーを電気エネルギーに変換する発電機とを備える。他に、必要に応じて、水車翼の回転を増速して発電機に伝達する増速機、発電機を制御する制御装置等が設けられる。 A hydroelectric power generator includes a turbine blade that converts water energy into rotational energy and a generator that converts rotational energy into electrical energy. In addition, if necessary, a speed increaser that accelerates the rotation of the turbine blades and transmits the rotation to the generator, a control device that controls the generator, and the like are provided.

小出力の水力発電装置の水車翼を繊維強化プラスチック材とし、増速機の入力軸となる水車軸に取り付ける場合、従来、図10に示す水車翼取付け構造が採用されていた。この水車翼取付け構造は、まず、一対のフランジ部材51,52で水車翼1のハブ10の両側面を挟み込み、これら一対のフランジ部材51,52とハブ10とをボルト53で締め付けて固定する。そして、この水車翼1と一対のフランジ部材51,52とからなるアッセンブリを、フランジ部材51,52の部分で水車軸20に軸方向に移動不能かつ回転不能に取り付ける。水車翼1が水の力を受けて回転すると、その回転トルクが摩擦力によりフランジ部材51,52に伝達されて、水車軸20が回転する。 When the turbine blade of a low-power hydroelectric power generator is made of a fiber-reinforced plastic material and attached to the turbine shaft which is the input shaft of the speed increaser, the turbine blade attachment structure shown in FIG. 10 has been conventionally adopted. In this water turbine blade mounting structure, first, both side surfaces of the hub 10 of the water turbine blade 1 are sandwiched between a pair of flange members 51 and 52, and the pair of flange members 51 and 52 and the hub 10 are fastened and fixed with bolts 53. Then, an assembly composed of the turbine blade 1 and the pair of flange members 51 and 52 is attached to the turbine shaft 20 at the flange members 51 and 52 so as not to be movable and non-rotatable in the axial direction. When the turbine blade 1 rotates under the force of water, the rotational torque is transmitted to the flange members 51 and 52 by frictional force, and the turbine shaft 20 rotates.

特許文献1は垂直軸型水力発電装置に関し、垂直回転軸と3枚のブレードとをボルトおよびナットを用いて締結固定することが記載されている。 Patent Document 1 describes a vertical axis type hydroelectric power generation device in which a vertical rotating shaft and three blades are fastened and fixed using bolts and nuts.

特開2017−8927号公報JP-A-2017-8927

水路に設置される水力発電装置では、水車翼が流水から様々な変動荷重を受ける。例えば、流水の流速変化による変動荷重を受ける。また、水車翼が、回転軸心が水流方向と平行なプロペラ水車である場合、水路の水位低下により水車翼の上部が水面より上に出た状態となると、水車翼の回転に伴って、水車翼の放射状に延びる羽根が水に没している状態と水から出ている状態とを繰り返すことにより、大きな交番荷重を受ける。 In hydroelectric power generators installed in waterways, the turbine blades receive various variable loads from running water. For example, it receives a fluctuating load due to a change in the flow velocity of running water. Further, when the turbine blade is a propeller turbine whose rotation axis is parallel to the water flow direction, when the upper part of the turbine blade comes out above the water surface due to a decrease in the water level of the water channel, the turbine blade is rotated. A large alternating load is received by repeating the state in which the radial blades of the wing are submerged in water and the state in which they are out of water.

なお、水路の水位低下は、降水量が少ない場合や、灌漑のために水路の水が使用される場合に起きる。また、梅雨時期、台風等で集中豪雨が予想される場合に、水路からの溢水を避けるために、水路の流量を制限することもある。 The water level of the canal drops when the amount of precipitation is low or when the water in the canal is used for irrigation. In addition, when torrential rain is expected due to the rainy season, typhoons, etc., the flow rate of the canal may be restricted in order to avoid flooding from the canal.

図10に示すように、水車翼1が変動荷重F1を受けると、羽根が荷重方向に撓み、その撓みが羽根の根元部からハブ10に伝わる。すると、両側をフランジ部材51,52に挟まれたハブ10が、両フランジ部材51,52から圧縮力F2を継続的に受ける。これにより、ハブ10がクリープ変形して軸方向幅が狭くなり、水車翼1とフランジ部材51,52とを締結しているボルト53が緩み、その締付力が低下する。 As shown in FIG. 10, when the turbine blade 1 receives the fluctuating load F1, the blades bend in the load direction, and the bending is transmitted from the root portion of the blades to the hub 10. Then, the hub 10 sandwiched between the flange members 51 and 52 on both sides continuously receives the compressive force F2 from both the flange members 51 and 52. As a result, the hub 10 is creep-deformed and the axial width is narrowed, the bolt 53 that fastens the turbine blade 1 and the flange members 51 and 52 is loosened, and the tightening force thereof is reduced.

また、交番荷重により、ハブ10とフランジ部材51,52との間に隙間ができたり、その隙間が閉じたりすることで、ハブ10におけるフランジ部材51,52との接触面にフレッティング摩耗等を起こすことがある。繊維強化プラスチック材の樹脂材、例えばビニルエステル樹脂は、不飽和ポリエステル樹脂と比較して、耐水性に優れ、水との接触でも強度劣化し難い。一方、繊維強化プラスチック材の繊維材は、水との接触により強度劣化に繋がる。水車翼の外皮は樹脂材であるため、水と接触しても強度低下が促進されないが、ハブ10にフレッティング摩耗等が発生すると、その部分から水車翼の繊維材が水と接触し、水車翼1の強度低下に繋がる。 Further, due to the alternating load, a gap is created between the hub 10 and the flange members 51 and 52, and the gap is closed, so that fretting wear and the like are caused on the contact surface of the hub 10 with the flange members 51 and 52. May wake up. A resin material of a fiber reinforced plastic material, for example, a vinyl ester resin, has excellent water resistance as compared with an unsaturated polyester resin, and its strength is less likely to deteriorate even when in contact with water. On the other hand, the fiber material of the fiber reinforced plastic material leads to the deterioration of strength due to the contact with water. Since the outer skin of the water turbine blade is a resin material, the decrease in strength is not promoted even if it comes into contact with water. However, when fretting wear or the like occurs on the hub 10, the fiber material of the water turbine blade comes into contact with water from that portion, and the water turbine. This leads to a decrease in the strength of the wing 1.

水車翼1を金属材にすれば、上記ハブ10のクリープ変形を防止することができる。しかし、繊維強化プラスチック材を用いた場合と同等の強度を金属材で確保しようとすると、水車翼1の重量が大きくなる。そのため、水車軸20を支持するギヤの剛性を高める必要があり、コスト高となる。 If the water turbine blade 1 is made of a metal material, creep deformation of the hub 10 can be prevented. However, if it is attempted to secure the same strength as the case where the fiber reinforced plastic material is used with the metal material, the weight of the water turbine blade 1 becomes large. Therefore, it is necessary to increase the rigidity of the gear that supports the water axle 20, which increases the cost.

また、水車翼1を比較的軽量なアルミ材とすることも考えられる。しかし、水車軸20や増速機には主に鋼材が使用されているため、水車翼1がアルミ材であると、異種金属であるアルミ材と鋼材とが水に浸かることとなり、電食が発生する可能性がある。このため、アルミ材の適用は難しい。 It is also conceivable that the turbine blade 1 is made of a relatively lightweight aluminum material. However, since steel is mainly used for the water axle 20 and the speed increaser, if the water turbine blade 1 is made of aluminum, the dissimilar metals aluminum and steel will be immersed in water, resulting in electrolytic corrosion. It can occur. Therefore, it is difficult to apply aluminum material.

この発明の目的は、繊維強化プラスチック材で作られた水車翼が流水からの変動荷重を受けることにより、水車翼のハブがクリープ変形やフレッティング摩耗して起きる強度低下を防止することができる水力発電装置の水車翼取付け構造、および水力発電装置を提供することである。 An object of the present invention is a hydraulic force capable of preventing a decrease in strength caused by creep deformation or fretting wear of a hub of a turbine blade due to a variable load from running water of a turbine blade made of a fiber reinforced plastic material. It is to provide a turbine blade mounting structure of a power generation device and a hydroelectric power generation device.

この発明の水力発電装置の水車翼取付け構造は、繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置における、前記水車翼を水車軸に対して一体回転するように取り付ける水車翼取付け構造であって、
前記水車翼は中心部に中実のハブを有し、このハブに設けられた貫通孔に前記水車軸が挿通され、
前記ハブの両側面に一対のフランジ部材が配置され、前記ハブおよび前記一対のフランジ部材に設けられたボルト孔にわたってボルトが挿通され、このボルトにより前記ハブと前記一対のフランジ部材とが締結され、
前記一対のフランジ部材が前記水車軸に取り付けられ、
前記一対のフランジ部材は、前記ボルトの長さ方向の厚さが互いに同じで、かつ前記ハブとの接触面積が互いに同じである。
この場合、ハブが両側のフランジ部材から受ける圧縮力の大きさをほぼ同じにすることができるため、ハブと各フランジ部材との間に均等な摩擦力が作用し、バランスが良い。
The water turbine wing mounting structure of the hydroelectric power generation device of the present invention is a hydroelectric power generation device including a water turbine wing made of a fiber-reinforced plastic material and a generator that generates power by receiving rotation of the water turbine wing. It is a water turbine wing mounting structure that mounts so that it rotates integrally with the axle.
The turbine blade has a solid hub in the center, and the turbine shaft is inserted through a through hole provided in the hub.
A pair of flange members are arranged on both side surfaces of the hub, bolts are inserted through the bolt holes provided in the hub and the pair of flange members, and the hub and the pair of flange members are fastened by the bolts.
The pair of flange members are attached to the water axle and
The pair of flange members have the same thickness of the bolts in the length direction and the same contact area with the hub.
In this case, since the magnitude of the compressive force received by the hub from the flange members on both sides can be made substantially the same, an equal frictional force acts between the hub and each flange member, and the balance is good.

この発明において、前記フランジ部材における前記ハブとの接触面の縁に面取り部が設けられているのが好ましい。
上記面取り部が設けられていると、エッジロードが軽減され、フレッティング摩耗の発生を防止することができる。
In the present invention, it is preferable that a chamfered portion is provided on the edge of the contact surface of the flange member with the hub.
When the chamfered portion is provided, the edge load is reduced and the occurrence of fretting wear can be prevented.

また、前記ハブの前記ボルト孔の内周面と前記ボルトの外周面との間に、前記ハブの軸方向幅よりも長さが短く、前記ボルトの締付けにより両端が前記一対のフランジ部材に当接する締付力保持部材が介在していると良い。 Further, the length between the inner peripheral surface of the bolt hole of the hub and the outer peripheral surface of the bolt is shorter than the axial width of the hub, and both ends hit the pair of flange members by tightening the bolt. It is preferable that a tightening force holding member in contact is interposed.

この構成によると、ハブと一対のフランジ部材とを締結するボルトを締め付けると、ハブが弾性変形してその軸方向幅が狭くなることにより、締付力保持部材の両端が一対のフランジ部材に当接する。この状態では、水車翼が変動荷重を受けて一対のフランジ部材から水車翼の中心部に対して圧縮力が作用した場合、その圧縮力を締付力保持部材が受けてハブには大きな圧縮力がかからないため、ハブがクリープ変形することが防止される。このように、ハブのクリープ変形を防止することで、ボルトの緩みを防いで、ハブとフランジ部材の締付力の低下を回避することができる。 According to this configuration, when the bolt that fastens the hub and the pair of flange members is tightened, the hub is elastically deformed and its axial width is narrowed, so that both ends of the tightening force holding member hit the pair of flange members. Get in touch. In this state, when the turbine blade receives a fluctuating load and a compressive force acts on the center of the turbine blade from a pair of flange members, the tightening force holding member receives the compressive force and a large compressive force is applied to the hub. Since it does not apply, the hub is prevented from creeping and deforming. By preventing the creep deformation of the hub in this way, it is possible to prevent the bolts from loosening and to avoid a decrease in the tightening force between the hub and the flange member.

また、ハブとフランジ部材の締付力が確保されているため、水車翼に交番荷重が作用しても、ハブとフランジ部材との間に隙間ができたり、その隙間が閉じたりすることがなく、ハブにおけるフランジ部材との接触面にフレッティング摩耗が起きない。そのため、水車翼の繊維強化プラスチック材の内部への水の浸透が抑制され、繊維強化プラスチック材の材料劣化による水車翼の強度低下を防止することができる。 In addition, since the tightening force between the hub and the flange member is secured, even if an alternating load is applied to the turbine blades, there is no gap between the hub and the flange member, and the gap does not close. , Fretting wear does not occur on the contact surface of the hub with the flange member. Therefore, the permeation of water into the fiber-reinforced plastic material of the water turbine blade is suppressed, and the strength of the water turbine blade can be prevented from being lowered due to the deterioration of the material of the fiber-reinforced plastic material.

この発明の水力発電装置の水車翼取付け構造は、前記水車翼が複数の羽根を有するプロペラ水車である場合に適する。特に、前記プロペラ水車である水車翼が、回転軸心が水流方向と平行である場合に適する。いずれの場合も、水車翼が大きな変動荷重を受けるため、この発明の水車翼取付け構造を採用することによる効果が大きい。 The turbine blade mounting structure of the hydroelectric power generation device of the present invention is suitable when the turbine blade is a propeller turbine having a plurality of blades. In particular, the turbine blade, which is the propeller turbine, is suitable when the center of rotation is parallel to the water flow direction. In either case, since the turbine blades receive a large fluctuating load, the effect of adopting the turbine blade mounting structure of the present invention is great.

この発明の水力発電装置は、繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置であって、請求項1ないし請求項5のいずれか1項に記載の水車翼取付け構造によって、前記水車翼が水車軸に対して一体回転するように取り付けられている。
この構成の水力発電装置によると、繊維強化プラスチック材で作られた水車翼が流水からの変動荷重を受けることにより、水車翼のハブがクリープ変形やフレッティング摩耗して起きる強度低下を防止することができて、水力発電装置の耐久性に優れ、保守の為に運転休止する時間が短縮でき、稼働率が向上する。
The hydroelectric power generation device of the present invention is a hydroelectric power generation device including a water turbine wing made of a fiber-reinforced plastic material and a generator that generates power in response to the rotation of the water turbine wing, according to claims 1 to 5. According to the water turbine blade mounting structure according to any one of the items, the water turbine blade is mounted so as to rotate integrally with the water turbine shaft.
According to the hydroelectric power generator with this configuration, the turbine blades made of fiber reinforced plastic material receive a fluctuating load from running water, which prevents the hub of the turbine blades from creep deformation and fretting wear, resulting in a decrease in strength. The durability of the hydroelectric power generation device is excellent, the time to suspend operation for maintenance can be shortened, and the operating rate is improved.

この発明の水力発電装置の水車翼取付け構造は、繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置における、前記水車翼を水車軸に対して一体回転するように取り付ける水車翼取付け構造であって、前記水車翼は中心部に中実のハブを有し、このハブに設けられた貫通孔に前記水車軸が挿通され、前記ハブの両側面に一対のフランジ部材が配置され、前記ハブおよび前記一対のフランジ部材に設けられたボルト孔にわたってボルトが挿通され、このボルトにより前記ハブと前記一対のフランジ部材とが締結され、前記一対のフランジ部材が前記水車軸に取り付けられ、前記一対のフランジ部材は、前記ボルトの長さ方向の厚さが互いに同じで、かつ前記ハブとの接触面積が互いに同じであるため、水車翼が流水からの変動荷重を受けることにより、水車翼のハブがクリープ変形やフレッティング摩耗して起きる強度低下を防止することができる。 The water turbine wing mounting structure of the hydroelectric power generation device of the present invention is in a hydroelectric power generation device including a water turbine wing made of a fiber-reinforced plastic material and a generator that generates power by receiving rotation of the water turbine wing. It is a turbine blade mounting structure that is mounted so as to rotate integrally with the axle. The turbine blade has a solid hub in the center, and the turbine shaft is inserted through a through hole provided in the hub. A pair of flange members are arranged on both side surfaces of the hub, bolts are inserted through the hub and bolt holes provided in the pair of flange members, and the hub and the pair of flange members are fastened by the bolts. Since the pair of flange members are attached to the turbine shaft, and the pair of flange members have the same thickness of the bolts in the length direction and the same contact area with the hub, the turbine blades have the same thickness. By receiving a fluctuating load from running water, it is possible to prevent a decrease in strength caused by creep deformation or fletting wear of the hub of the turbine blade.

この発明の水力発電装置は、繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置であって、この発明の車翼取付け構造によって、前記水車翼が水車軸に対して一体回転するように取り付けられているため、繊維強化プラスチック材で作られた水車翼が流水からの変動荷重を受けることにより、水車翼のハブがクリープ変形やフレッティング摩耗して起きる強度低下を防止することができて、水力発電装置の耐久性に優れ、保守の為に運転休止する時間が短縮でき、稼働率が向上する。 The hydroelectric power generator of the present invention is a hydroelectric power generator including a water turbine wing made of a fiber-reinforced plastic material and a generator that generates power by receiving the rotation of the water turbine wing, and is based on the wheel wing mounting structure of the present invention. Since the turbine wing is attached so as to rotate integrally with the turbine shaft, the hub of the turbine wing is creep-deformed due to the variable load from running water of the turbine wing made of fiber-reinforced plastic material. It is possible to prevent a decrease in strength caused by fretting wear, excellent durability of the hydroelectric power generator, shortening the time for suspension of operation for maintenance, and improving the operating rate.

この発明の第1の実施形態に係る水車翼取付け構造が適用された水力発電装置の正面図である。It is a front view of the hydroelectric power generation apparatus to which the water turbine blade mounting structure which concerns on 1st Embodiment of this invention is applied. 同水力発電装置の側面図である。It is a side view of the hydroelectric power generation device. 図2の主要部を示す側面図であり、一部を断面で表している。It is a side view which shows the main part of FIG. 2, and a part is shown in the cross section. 図3の部分拡大図である。It is a partially enlarged view of FIG. (A)は図4のVIIA部拡大図、(B)は図4のVIIB部拡大図である。(A) is an enlarged view of the VIA part of FIG. 4, and (B) is an enlarged view of the VVII part of FIG. この発明の第2の実施形態に係る水車翼取付け構造を示す断面図である。It is sectional drawing which shows the water turbine blade mounting structure which concerns on 2nd Embodiment of this invention. 水車翼のハブと締付力保持部材の断面図である。It is sectional drawing of the hub of a water turbine blade and a tightening force holding member. この発明の第3の実施形態に係る水車翼取付け構造を示す断面図である。It is sectional drawing which shows the water turbine blade mounting structure which concerns on 3rd Embodiment of this invention. この発明の第4の実施形態に係る水車翼取付け構造を示す断面図である。It is sectional drawing which shows the water turbine blade mounting structure which concerns on 4th Embodiment of this invention. 従来の水車翼取付け構造を示す断面図である。It is sectional drawing which shows the conventional water turbine blade mounting structure.

[第1の実施形態]
<水力発電装置>
図1、図2は第1の実施形態に係る水車翼取付け構造が適用された水力発電装置の正面図および側面図である。この水力発電装置は、水路に設置されて水の力で発電を行うものであり、水車翼1、増速機2、発電機3、および支持装置4を備える。他に、発電機3を制御する制御装置(図示せず)等が設けられる。
[First Embodiment]
<Hydroelectric power generator>
1 and 2 are a front view and a side view of a hydroelectric power generation device to which the water turbine blade mounting structure according to the first embodiment is applied. This hydroelectric power generation device is installed in a water channel to generate power by the power of water, and includes a water turbine blade 1, a speed increaser 2, a generator 3, and a support device 4. In addition, a control device (not shown) for controlling the generator 3 and the like are provided.

水車翼1は、中心部に位置するハブ10の外周から複数(例えば5つ)の羽根11が放射状に延びるプロペラ水車であって、回転軸心Oが水路の水流の方向Aと平行になるように設けられる。各羽根11の先端部は、上流側に向けて傾斜している。ハブ10と羽根11とは一体に形成されている。上流側となるハブ10の前面には、スピナ12が取り付けられている。これらハブ10、羽根11、およびスピナ12は、繊維強化プラスチック材で作られている。 The turbine blade 1 is a propeller turbine in which a plurality of (for example, five) blades 11 extend radially from the outer periphery of the hub 10 located at the center, so that the rotation axis O is parallel to the direction A of the water flow in the channel. It is provided in. The tip of each blade 11 is inclined toward the upstream side. The hub 10 and the blade 11 are integrally formed. A spinner 12 is attached to the front surface of the hub 10 on the upstream side. These hubs 10, blades 11, and spinners 12 are made of fiber reinforced plastic material.

増速機2は、水車翼1の回転を増速するものである。増速機2の入力軸となる水車軸20が増速機2から上流側に突出しており、この水車軸20に水車翼1が一体回転するように固定される。 The speed increaser 2 accelerates the rotation of the turbine blade 1. The water wheel shaft 20 serving as the input shaft of the speed increaser 2 projects upstream from the speed increaser 2, and the water wheel blade 1 is fixed to the water wheel shaft 20 so as to rotate integrally with the water wheel shaft 20.

図3に示すように、増速機2の増速機構21は、互いに噛み合う一対の傘歯車22,23からなる。入力側の傘歯車22は水車軸20に取り付けられ、出力側の傘歯車23は鉛直方向に延びる回転伝達軸24に取り付けられている。回転伝達軸24は、増速機21で増速された回転力を発電機3に伝達する軸であり、支柱25の内部に設けられている。図2に示すように、支柱25は、上端が支持装置4に固定され、下端に増速機2が支持されている。 As shown in FIG. 3, the speed increasing mechanism 21 of the speed increasing machine 2 includes a pair of bevel gears 22 and 23 that mesh with each other. The bevel gear 22 on the input side is attached to the water wheel shaft 20, and the bevel gear 23 on the output side is attached to the rotation transmission shaft 24 extending in the vertical direction. The rotation transmission shaft 24 is a shaft that transmits the rotational force accelerated by the speed increaser 21 to the generator 3, and is provided inside the support column 25. As shown in FIG. 2, the upper end of the support column 25 is fixed to the support device 4, and the speed increaser 2 is supported at the lower end.

図2において、発電機3は下方に延びる発電機軸30を有し、この発電機軸30が回転連結具31を介して前記回転伝達軸24と連結されている。これにより、水車翼1の回転が増速機2により増速して発電機3に伝達されて、発電機3が発電する。発電機3は、例えば3相交流発電機である。 In FIG. 2, the generator 3 has a generator shaft 30 extending downward, and the generator shaft 30 is connected to the rotation transmission shaft 24 via a rotation connector 31. As a result, the rotation of the turbine blade 1 is accelerated by the speed increaser 2 and transmitted to the generator 3, and the generator 3 generates electricity. The generator 3 is, for example, a three-phase alternating current generator.

図1、図2に示すように、支持装置4は、水路の両側の側壁5の間に架け渡して設けられた2本の梁40と、これら梁40の上に載置された架台41と、この架台41に設置された2本の発電機スタンド42と、これら2本の発電機スタンド42の上部を繋ぐように設けられたベース板43とを有する。発電機3は、架台41とベース板43との間に配置され、ベース板43に固定される。 As shown in FIGS. 1 and 2, the support device 4 includes two beams 40 provided so as to be bridged between the side walls 5 on both sides of the water channel, and a stand 41 mounted on the beams 40. It has two generator stands 42 installed on the gantry 41 and a base plate 43 provided so as to connect the upper portions of these two generator stands 42. The generator 3 is arranged between the gantry 41 and the base plate 43, and is fixed to the base plate 43.

<水車翼取付け構造>
前記水車軸20への前記水車翼1の取付け構造について説明する。
図3に示すように、水車軸20は、増速機2よりも上流側(図3の左側)に突出した大径部20aと、この大径部20aの先端から上流側に延びる小径部20bとを有し、小径部20bの基端を除く外周面に雄ねじ20cが形成されている。
<Water turbine wing mounting structure>
The attachment structure of the water turbine blade 1 to the water turbine shaft 20 will be described.
As shown in FIG. 3, the water axle 20 has a large diameter portion 20a protruding upstream (left side in FIG. 3) from the speed increaser 2 and a small diameter portion 20b extending upstream from the tip of the large diameter portion 20a. A male screw 20c is formed on the outer peripheral surface of the small diameter portion 20b excluding the base end.

水車翼1は、ハブ10の上流側および下流側の両側面に、一対の環状のフランジ部材51,52がボルト53により締付け固定されている。ハブ10は、中央部に貫通孔50を有する筒状で、中実に成形されている。
上流側のフランジ部材51は、ハブ10の貫通孔50よりも内径が小さく、水車軸20の小径部20bに嵌合可能である。下流側のフランジ部材52は、内周面が水車軸20の大径部20aに嵌合可能で、かつ外周面がハブ10の貫通孔50に嵌合可能な筒状部54を有する。
In the turbine blade 1, a pair of annular flange members 51 and 52 are tightened and fixed by bolts 53 on both upstream and downstream sides of the hub 10. The hub 10 has a tubular shape having a through hole 50 in the central portion, and is solidly molded.
The flange member 51 on the upstream side has an inner diameter smaller than that of the through hole 50 of the hub 10, and can be fitted into the small diameter portion 20b of the water axle 20. The flange member 52 on the downstream side has a tubular portion 54 whose inner peripheral surface can be fitted into the large diameter portion 20a of the water axle 20 and whose outer peripheral surface can be fitted into the through hole 50 of the hub 10.

図4に示すように、前記ボルト53は、水車翼1のハブ10および一対のフランジ部材51,52に軸方向にそれぞれ設けられたボルト孔10a,51a,52aにわたって挿通される。この実施形態の場合、下流側のフランジ部材52のボルト孔52aがねじ孔となっており、上流側からボルト孔51a,10aに挿入したボルト53のねじ部53aをねじ孔であるボルト孔52aに螺合させることで、水車翼1と一対のフランジ部材51,52とが締結される。別の例として、下流側のフランジ部材52のボルト孔52aねじ孔ではなく、ボルト孔52aを貫通させたボルト53のねじ部53aにナット(図示せず)を螺着することで、水車翼1と一対のフランジ部材51,52とを締結してもよい。 As shown in FIG. 4, the bolt 53 is inserted through the bolt holes 10a, 51a, 52a provided in the hub 10 and the pair of flange members 51, 52 of the water turbine blade 1 in the axial direction, respectively. In the case of this embodiment, the bolt hole 52a of the flange member 52 on the downstream side is a screw hole, and the screw portion 53a of the bolt 53 inserted into the bolt holes 51a and 10a from the upstream side is made into the bolt hole 52a which is a screw hole. By screwing, the water wheel blade 1 and the pair of flange members 51 and 52 are fastened. As another example, the water turbine blade 1 is formed by screwing a nut (not shown) into the threaded portion 53a of the bolt 53 that penetrates the bolt hole 52a instead of the bolt hole 52a screw hole of the flange member 52 on the downstream side. And the pair of flange members 51 and 52 may be fastened to each other.

この水車翼取付け構造は、水車翼1のハブ10に締結される一対のフランジ部材51,52が、前記ボルト53の長さ方向の厚さ、つまり水車翼1の軸方向の厚さが互いに同じで、かつハブ10との接触面積が互いに同じとされている。前記両フランジ部材51,52は、下流側のフランジ部材52に設けられた筒状部54よりも外径側の部分の全体が均一な厚さの平板状とされている。図示の例では、上流側のフランジ部材51は、外径側端から内径側端の全体に渡って均一な厚さとされている。ただし、図5(A),(B)に示すように、各フランジ部材51,52におけるハブ10との接触面の縁に、断面円弧状の面取り部61,62が設けられている。面取り部61,62は、他の断面形状であってもよい。例えば、2次曲線等の曲線形状であってもよい。場合によっては、直線状に切り欠いた形状であってもよい。 In this turbine blade mounting structure, the pair of flange members 51, 52 fastened to the hub 10 of the turbine blade 1 have the same thickness in the length direction of the bolt 53, that is, the thickness in the axial direction of the turbine blade 1. And the contact area with the hub 10 is the same as each other. Both flange members 51 and 52 have a flat plate shape having a uniform thickness as a whole of a portion on the outer diameter side of the tubular portion 54 provided on the flange member 52 on the downstream side. In the illustrated example, the flange member 51 on the upstream side has a uniform thickness from the outer diameter side end to the entire inner diameter side end. However, as shown in FIGS. 5A and 5B, chamfered portions 61 and 62 having an arcuate cross section are provided on the edges of the contact surfaces of the flange members 51 and 52 with the hub 10. The chamfered portions 61 and 62 may have other cross-sectional shapes. For example, it may have a curved shape such as a quadratic curve. In some cases, the shape may be a linear cutout.

水車軸20への水車翼1の取付方法について説明する。
まず、図4のようにハブ10のボルト孔10aにハブ10の両側面にフランジ部材51,52をボルト53により締結してアッセンブリとする。このアッセンブリを、図3に示すように、ハブ10の貫通孔50に水車軸20を挿通した状態で、水車軸20に取り付ける。
A method of attaching the water turbine blade 1 to the water turbine shaft 20 will be described.
First, as shown in FIG. 4, flange members 51 and 52 are fastened to the bolt holes 10a of the hub 10 on both side surfaces of the hub 10 with bolts 53 to form an assembly. As shown in FIG. 3, this assembly is attached to the water axle 20 with the water axle 20 inserted through the through hole 50 of the hub 10.

具体的には、上流側のフランジ部材51を水車軸20の小径部20bの基端に嵌合させ、かつ下流側のフランジ部材52の筒状部54を水車軸20の大径部20aに嵌合させる。そして、上流側のフランジ部材51を大径部20aと小径部20bとの段面20dに当接させ、小径部20bの雄ねじ20cに螺着したナット56により、上流側のフランジ部材51を水車軸20に対し軸方向に移動不能に取り付ける。また、水車軸20の大径部20aおよび下流側のフランジ部材52の筒状部54に設けられたキー溝にキー57を係合させることで、下流側のフランジ部材52を水車軸20に回転不能に取り付ける。 Specifically, the flange member 51 on the upstream side is fitted to the base end of the small diameter portion 20b of the water axle 20, and the tubular portion 54 of the flange member 52 on the downstream side is fitted to the large diameter portion 20a of the water axle 20. Match. Then, the flange member 51 on the upstream side is brought into contact with the stepped surface 20d of the large diameter portion 20a and the small diameter portion 20b, and the flange member 51 on the upstream side is brought into contact with the male screw 20c of the small diameter portion 20b by the nut 56. It is attached so that it cannot move in the axial direction with respect to 20. Further, by engaging the key 57 with the key groove provided in the large diameter portion 20a of the water axle 20 and the tubular portion 54 of the flange member 52 on the downstream side, the flange member 52 on the downstream side is rotated to the water axle 20. Install impossible.

<水車翼取付け構造の作用>
このように、一対のフランジ部材51,52の軸方向厚さが互いに同じで、かつハブ10との接触面積が互いに同じであると、ハブ10が両側のフランジ部材51,52から受ける圧縮力の大きさをほぼ同じにすることができ、そのためハブ10と各フランジ部材51,52との間に均等な摩擦力が作用し、バランスが良い。結果、変動荷重に対しても、フランジ部材51,52の片側が過大な圧縮力を受けることが無く、そのためクリープ変形し難い。また、フランジ部材51,52におけるハブ10との接触面の縁に面取り部61,62が設けられていると、エッジロードが軽減され、フレッティング摩耗の発生を防止することができる。
<Action of turbine wing mounting structure>
As described above, when the pair of flange members 51 and 52 have the same axial thickness and the contact area with the hub 10 are the same, the compressive force received by the hub 10 from the flange members 51 and 52 on both sides is applied. The sizes can be made substantially the same, so that an even frictional force acts between the hub 10 and the flange members 51 and 52, resulting in a good balance. As a result, even with a fluctuating load, one side of the flange members 51 and 52 is not subjected to an excessive compressive force, and therefore creep deformation is difficult. Further, when the chamfered portions 61 and 62 are provided on the edge of the contact surface of the flange members 51 and 52 with the hub 10, the edge load can be reduced and the occurrence of fretting wear can be prevented.

[第2の実施形態]
図6は水車翼取付け構造の第2の実施形態を示す。ハブ10のボルト孔10aはフランジ部材51,52のボルト孔51a,52aよりも内径が大きく、ハブ10のボルト孔10aの内周面とボルト53の外周面との間に締付力保持部材55が介在している。締付力保持部材55は、水車翼1の繊維強化プラスチック材よりも硬度が高く、かつ水中で錆び難い材料、例えばステンレス(SUS304)等の金属材からなる。この実施形態の締付力保持部材55は、ボルト孔10aの内周に嵌合する円筒状である。
[Second Embodiment]
FIG. 6 shows a second embodiment of the turbine blade mounting structure. The bolt hole 10a of the hub 10 has a larger inner diameter than the bolt holes 51a and 52a of the flange members 51 and 52, and the tightening force holding member 55 is between the inner peripheral surface of the bolt hole 10a of the hub 10 and the outer peripheral surface of the bolt 53. Is intervening. The tightening force holding member 55 is made of a material having a higher hardness than the fiber-reinforced plastic material of the water turbine blade 1 and less likely to rust in water, for example, a metal material such as stainless steel (SUS304). The tightening force holding member 55 of this embodiment has a cylindrical shape that fits into the inner circumference of the bolt hole 10a.

図7に示すように、締付力保持部材55の長さはハブ10の軸方向幅よりも若干短くしてある。詳しくは、以下のように締付力保持部材55の長さが定められている。すなわち、締付力保持部材55の長さをl、ハブ10の軸方向幅をLとした場合、
l=L−dl・・・(式1)
の関係が成り立つ。ここで、dlは、ハブ10の弾性変形上限の変位量である。なお、図7ではdlの寸法を誇張して表示しているが、実際のdlの寸法は視認が困難な程度に微小である。
As shown in FIG. 7, the length of the tightening force holding member 55 is slightly shorter than the axial width of the hub 10. Specifically, the length of the tightening force holding member 55 is defined as follows. That is, when the length of the tightening force holding member 55 is l and the axial width of the hub 10 is L,
l = L-dl ... (Equation 1)
The relationship holds. Here, dl is the displacement amount of the upper limit of elastic deformation of the hub 10. Although the dl size is exaggerated in FIG. 7, the actual dl size is so small that it is difficult to visually recognize it.

締付力保持部材55は、ハブ10のボルト孔10aの内周面に単に嵌合させただけでもよいが、接着剤により固定してもよい。締付力保持部材55を接着剤により固定する場合、図7のように、ボルト孔10aの中央部に締付力保持部材55が位置するように固定するとよい。 The tightening force holding member 55 may be simply fitted to the inner peripheral surface of the bolt hole 10a of the hub 10, or may be fixed by an adhesive. When the tightening force holding member 55 is fixed with an adhesive, it is preferable to fix the tightening force holding member 55 so that the tightening force holding member 55 is located at the center of the bolt hole 10a as shown in FIG.

ハブ10と一対のフランジ部材51,52とを締結するボルト53を締め付けると、ハブ10が弾性変形してその軸方向幅が狭くなることにより、締付力保持部材55の両端が一対のフランジ部材51,52に当接する。この状態では、水車翼1が変動荷重を受けて一対のフランジ部材51,52から水車翼1の中心部に対して圧縮力が作用した場合、その圧縮力を締付力保持部材55が受けてハブ10には大きな圧縮力がかからないため、ハブ10のクリープ変形が抑制される。このように、ハブ10のクリープ変形を抑制することで、ボルト53の緩みを防いで、ハブ10とフランジ部材51,52の締付力の低下を回避することができる。 When the bolt 53 that fastens the hub 10 and the pair of flange members 51 and 52 is tightened, the hub 10 is elastically deformed and its axial width is narrowed, so that both ends of the tightening force holding member 55 are paired flange members. It abuts on 51 and 52. In this state, when the turbine blade 1 receives a fluctuating load and a compressive force acts from the pair of flange members 51 and 52 on the central portion of the turbine blade 1, the tightening force holding member 55 receives the compressive force. Since a large compressive force is not applied to the hub 10, creep deformation of the hub 10 is suppressed. By suppressing the creep deformation of the hub 10 in this way, it is possible to prevent the bolt 53 from loosening and to avoid a decrease in the tightening force between the hub 10 and the flange members 51 and 52.

締付力保持部材55の長さlを、式1を満たす長さとした場合、ボルト53を締め付けた状態で、ハブ10が弾性変形の上限まで変形する。このため、ボルト53の締付けが強固となり、ボルト53がより一層緩み難くなる。 When the length l of the tightening force holding member 55 is a length satisfying Equation 1, the hub 10 is deformed to the upper limit of elastic deformation while the bolt 53 is tightened. Therefore, the tightening of the bolt 53 becomes strong, and the bolt 53 becomes more difficult to loosen.

なお、締付力保持部材55は、式1の寸法関係とすることでボルト53の締付力を強化できる形状、寸法であればよく、必ずしも円筒状でなくてもよい。例えば、断面形状がU字形や溝形の部材であってもよい。 The tightening force holding member 55 may have a shape and size that can strengthen the tightening force of the bolt 53 by the dimensional relationship of the formula 1, and does not necessarily have to be cylindrical. For example, the member may have a U-shaped cross section or a groove shape.

また、ハブ10とフランジ部材51,52の締付力が確保されているため、水車翼1に交番荷重が作用しても、ハブ10とフランジ部材51,52との間に隙間ができたり、その隙間が閉じたりすることがなく、ハブ10におけるフランジ部材51,52との接触面にフレッティング摩耗が起きない。そのため、水車翼1の繊維強化プラスチック材の内部への水の浸透が抑制され、水車翼1の材料劣化による強度低下を防止することができる。 Further, since the tightening force between the hub 10 and the flange members 51 and 52 is secured, even if an alternating load acts on the turbine blade 1, a gap may be formed between the hub 10 and the flange members 51 and 52. The gap is not closed, and fretting wear does not occur on the contact surfaces of the hub 10 with the flange members 51 and 52. Therefore, the permeation of water into the fiber-reinforced plastic material of the water turbine blade 1 is suppressed, and the strength reduction due to the material deterioration of the water turbine blade 1 can be prevented.

締付力保持部材55がハブ10のボルト孔10aの内周面に接着剤により固定されていると、締付力保持部材55がボルト孔10aの中で動くことによるボルト孔10aの内周面の損傷を抑制される。それにより、ボルト孔10aの内周面からの繊維強化プラスチック材の内部への水の浸透も抑制される。
締付力保持部材55を接着剤により固定する場合、図7に示すように、ボルト孔10aの中央部に締付力保持部材55を固定すると、ボルト53の締付けによるハブ10の弾性変形が軸方向の両側で均等に行われるので好ましい。
When the tightening force holding member 55 is fixed to the inner peripheral surface of the bolt hole 10a of the hub 10 with an adhesive, the tightening force holding member 55 moves in the bolt hole 10a to cause the inner peripheral surface of the bolt hole 10a. Damage is suppressed. As a result, the permeation of water from the inner peripheral surface of the bolt hole 10a into the inside of the fiber reinforced plastic material is also suppressed.
When the tightening force holding member 55 is fixed with an adhesive, as shown in FIG. 7, when the tightening force holding member 55 is fixed to the central portion of the bolt hole 10a, the elastic deformation of the hub 10 due to the tightening of the bolt 53 is the axis. It is preferable because it is performed evenly on both sides of the direction.

上記のように水車翼1の繊維強化プラスチック材への水の浸透が抑制されるため、耐水性の高い高価な繊維強化プラスチック材を使用しなくて済む。また、締付力保持部材55が円筒状であるため、締付力保持部材55自体の加工が容易であるだけでなく、ボルト孔10aの加工も容易である。このため、低コストで水車翼1の強度低下防止を実現できる。 Since the permeation of water into the fiber-reinforced plastic material of the water turbine blade 1 is suppressed as described above, it is not necessary to use an expensive fiber-reinforced plastic material having high water resistance. Further, since the tightening force holding member 55 has a cylindrical shape, not only the tightening force holding member 55 itself can be easily machined, but also the bolt hole 10a can be easily machined. Therefore, it is possible to prevent the strength of the turbine blade 1 from being lowered at low cost.

また、ハブ10のボルト孔10aの内周面とボルト53の外周面との間に締付力保持部材55を介在させたことにより、ボルト53がボルト孔10aの内周面に接触しなくなる。そのため、水車翼1が水から受けるスラスト方向の変動荷重が発生しても、ボルト孔10aの内周面表層部の摩耗を防止できる。その結果、水車翼1の材料である繊維強化プラスチック材の内部への水の浸透が抑制され、水車翼1の材料劣化による強度低下を防止することができる。 Further, by interposing the tightening force holding member 55 between the inner peripheral surface of the bolt hole 10a of the hub 10 and the outer peripheral surface of the bolt 53, the bolt 53 does not come into contact with the inner peripheral surface of the bolt hole 10a. Therefore, even if a variable load in the thrust direction that the turbine blade 1 receives from water is generated, it is possible to prevent wear of the inner peripheral surface surface layer portion of the bolt hole 10a. As a result, the permeation of water into the fiber-reinforced plastic material which is the material of the water turbine blade 1 is suppressed, and the strength decrease due to the material deterioration of the water turbine blade 1 can be prevented.

[第3の実施形態]
第1の実施形態(図4)および第2の実施形態(図6)では、ボルト53のねじ部53aがハブ10のボルト孔10aと軸方向に重なっていないが、図8に示す第3の実施形態のように、ボルト53のねじ部53aの一部がハブ10のボルト孔10aと軸方向に重なっていてもよい。この場合、ねじ孔であるボルト孔52aの軸方向全域にボルト53のねじ部53aが螺合するため、大きな締結力が得られる。
[Third Embodiment]
In the first embodiment (FIG. 4) and the second embodiment (FIG. 6), the threaded portion 53a of the bolt 53 does not vertically overlap the bolt hole 10a of the hub 10, but the third embodiment shown in FIG. As in the embodiment, a part of the screw portion 53a of the bolt 53 may overlap with the bolt hole 10a of the hub 10 in the axial direction. In this case, since the screw portion 53a of the bolt 53 is screwed over the entire axial direction of the bolt hole 52a which is the screw hole, a large fastening force can be obtained.

[第4の実施形態]
しかし、図8のようにボルト53のねじ部53aの一部がハブ10のボルト孔10aと軸方向に重なっていると、ねじ部53aが締付力保持部材55と接触して締付力保持部材55が摩耗する懸念がある。このような締付力保持部材55の摩耗を防止するために、図9のように構成するとよい。図9に示す第4の実施形態は、下流側のフランジ部材52の軸方向内側面に、ボルト孔52aの外周に拡がる断面円形の凹部58が設けられ、この凹部58に締付力保持部材55の上流側端が嵌まり込んでいる。ボルト53のねじ部53aは、ねじ孔であるボルト孔52aに螺合している。ねじ部53aの基端位置は、凹部58またはボルト孔52aの軸方向範囲内にある。つまり、ボルト53のねじ部53aは、水車翼1よりも軸方向の外側に位置している。これにより、ボルト53のねじ部53の一部が締付力保持部材55と接触することがなく、締付力保持部材55の摩耗が軽減される。
[Fourth Embodiment]
However, when a part of the screw portion 53a of the bolt 53 overlaps the bolt hole 10a of the hub 10 in the axial direction as shown in FIG. 8, the screw portion 53a comes into contact with the tightening force holding member 55 to hold the tightening force. There is a concern that the member 55 may be worn. In order to prevent such wear of the tightening force holding member 55, it is preferable to configure as shown in FIG. In the fourth embodiment shown in FIG. 9, a recess 58 having a circular cross section extending to the outer periphery of the bolt hole 52a is provided on the inner side surface of the flange member 52 on the downstream side in the axial direction, and the tightening force holding member 55 is provided in the recess 58. The upstream end of is fitted. The threaded portion 53a of the bolt 53 is screwed into the bolt hole 52a, which is a screw hole. The base end position of the threaded portion 53a is within the axial range of the recess 58 or the bolt hole 52a. That is, the screw portion 53a of the bolt 53 is located outside the water turbine blade 1 in the axial direction. As a result, a part of the screw portion 53 of the bolt 53 does not come into contact with the tightening force holding member 55, and the wear of the tightening force holding member 55 is reduced.

第2ないし第4の各実施形態において、特に説明した事項の他は、第1の実施形態と同様である。
上記各実施形態は、ハブ10の両フランジ51,52の軸方向の厚さをそれぞれ均等としたが、両フランジ51,52は、軸方向に対向する部分の厚さが互いに同じであれば、必ずしも均等な厚さでなくてもよい。
上記各実施形態は、水車翼1がプロペラ水車であり、かつその回転軸心Oが水流方向と平行である水力発電装置に適用された水車翼取付け構造を示すが、この発明は、水車翼1の回転軸心Oが水流方向と平行でない場合にも適用できる。また、水車翼1がプロペラ水車でない水力発電装置にも適用できる。
In each of the second to fourth embodiments, except for the matters described in particular, the same as in the first embodiment.
In each of the above embodiments, the thicknesses of the flanges 51 and 52 of the hub 10 in the axial direction are equal to each other, but if the thicknesses of the portions of the flanges 51 and 52 facing each other in the axial direction are the same, the thicknesses of the flanges 51 and 52 are equal. It does not necessarily have to be a uniform thickness.
Each of the above embodiments shows a turbine blade mounting structure applied to a hydroelectric power generation device in which the turbine blade 1 is a propeller turbine and its rotation axis O is parallel to the water flow direction. However, the present invention shows the turbine blade 1 It can also be applied when the rotation axis O of is not parallel to the water flow direction. Further, it can be applied to a hydroelectric power generation device in which the turbine blade 1 is not a propeller turbine.

以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments for carrying out the present invention have been described above based on the examples, the embodiments disclosed here are examples in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1…水車翼
3…発電機
10…ハブ
10a,51a,52a…ボルト孔
11…羽根
20…水車軸
50…貫通孔
51,52…フランジ部材
53…ボルト
55…締付力保持部材
61,62…面取り部
O…回転軸心
1 ... Water wheel blade 3 ... Generator 10 ... Hub 10a, 51a, 52a ... Bolt hole 11 ... Blade 20 ... Water wheel shaft 50 ... Through hole 51, 52 ... Flange member 53 ... Bolt 55 ... Tightening force holding member 61, 62 ... Chamfering part O ... Rotation axis

Claims (6)

繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置における、前記水車翼を水車軸に対して一体回転するように取り付ける水車翼取付け構造であって、
前記水車翼は中心部に中実のハブを有し、このハブに設けられた貫通孔に前記水車軸が挿通され、
前記ハブの両側面に一対のフランジ部材が配置され、前記ハブおよび前記一対のフランジ部材に設けられたボルト孔にわたってボルトが挿通され、このボルトにより前記ハブと前記一対のフランジ部材とが締結され、
前記一対のフランジ部材が前記水車軸に取り付けられ、
前記一対のフランジ部材は、前記ボルトの長さ方向の厚さが互いに同じで、かつ前記ハブとの接触面積が互いに同じである水力発電装置の水車翼取付け構造。
In a hydroelectric power generator equipped with a turbine wing made of a fiber-reinforced plastic material and a generator that generates electricity in response to the rotation of the turbine wing, the turbine wing is attached so as to rotate integrally with the turbine shaft. It's a structure
The turbine blade has a solid hub in the center, and the turbine shaft is inserted through a through hole provided in the hub.
A pair of flange members are arranged on both side surfaces of the hub, bolts are inserted through the bolt holes provided in the hub and the pair of flange members, and the hub and the pair of flange members are fastened by the bolts.
The pair of flange members are attached to the water axle and
The pair of flange members have a water wheel blade mounting structure of a hydroelectric power generator having the same thickness of the bolts in the length direction and the same contact area with the hub.
請求項1に記載の水力発電装置の水車翼取付け構造において、前記フランジ部材における前記ハブとの接触面の縁に面取り部が設けられている水力発電装置の水車翼取付け構造。 The water turbine blade mounting structure of the hydroelectric power generation device according to claim 1, wherein a chamfered portion is provided on the edge of the contact surface of the flange member with the hub. 請求項1に記載の水力発電装置の水車翼取付け構造において、前記ハブの前記ボルト孔の内周面と前記ボルトの外周面との間に、前記ハブの軸方向幅よりも長さが短く、前記ボルトの締付けにより両端が前記一対のフランジ部材に当接する締付力保持部材が介在することを特徴とする水力発電装置の水車翼取付け構造。 In the water turbine blade mounting structure of the hydroelectric power generation device according to claim 1, the length between the inner peripheral surface of the bolt hole of the hub and the outer peripheral surface of the bolt is shorter than the axial width of the hub. A water turbine blade mounting structure of a hydroelectric power generation device, characterized in that a tightening force holding member whose both ends abut against the pair of flange members is interposed by tightening the bolt. 請求項1ないし請求項3のいずれか1項に記載の水力発電装置の水車翼取付け構造において、前記水車翼は、複数の羽根を有するプロペラ水車である水力発電装置の水車翼取付け構造。 In the water turbine blade mounting structure of the hydroelectric power generation device according to any one of claims 1 to 3, the water wheel blade is a water wheel blade mounting structure of a hydroelectric power generation device which is a propeller water turbine having a plurality of blades. 請求項4に記載の水力発電装置の水車翼取付け構造において、前記プロペラ水車である水車翼は、回転軸心が水流方向と平行である水力発電装置の水車翼取付け構造。 In the water turbine blade mounting structure of the hydroelectric power generation device according to claim 4, the water turbine wing, which is the propeller water wheel, has a water wheel wing mounting structure of the hydroelectric power generation device whose rotation axis is parallel to the water flow direction. 繊維強化プラスチック材からなる水車翼と、この水車翼の回転を受けて発電を行う発電機とを備えた水力発電装置であって、請求項1ないし請求項5のいずれか1項に記載の水車翼取付け構造によって、前記水車翼が水車軸に対して一体回転するように取り付けられた水力発電装置。 The water turbine according to any one of claims 1 to 5, which is a hydroelectric power generator including a water turbine wing made of a fiber-reinforced plastic material and a generator that generates electricity by receiving the rotation of the water turbine wing. A hydroelectric power generator mounted so that the turbine blades rotate integrally with the turbine shaft by a blade mounting structure.
JP2019054824A 2018-08-20 2019-03-22 Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus Pending JP2020153346A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019054824A JP2020153346A (en) 2019-03-22 2019-03-22 Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus
PCT/JP2019/032318 WO2020040098A1 (en) 2018-08-20 2019-08-19 Water turbine mounting structure for hydroelectric power generation device, and hydroelectric power generation device
CN201980054974.9A CN112639282B (en) 2018-08-20 2019-08-19 Hydroelectric generation device's turbine wing mounting structure and hydroelectric generation device
KR1020217005806A KR20210044798A (en) 2018-08-20 2019-08-19 Water Turbine Mounting Structure and Hydroelectric Power Plant of Hydroelectric Power Plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054824A JP2020153346A (en) 2019-03-22 2019-03-22 Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus

Publications (1)

Publication Number Publication Date
JP2020153346A true JP2020153346A (en) 2020-09-24

Family

ID=72558233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054824A Pending JP2020153346A (en) 2018-08-20 2019-03-22 Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus

Country Status (1)

Country Link
JP (1) JP2020153346A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555119U (en) * 1991-12-27 1993-07-23 コパル電子株式会社 Light deflector
US20090092495A1 (en) * 2007-10-05 2009-04-09 Benoit Des Roches Axial flow hydraulic turbine with fixed blades bolted-on
WO2012130978A1 (en) * 2011-03-30 2012-10-04 Gurit (Uk) Ltd Water-turbine blade and an elongate spar therefor
JP2016176413A (en) * 2015-03-20 2016-10-06 株式会社ベルシオン Propeller rotor
US20170122335A1 (en) * 2014-06-24 2017-05-04 Tlt-Turbo Gmbh Impeller for axial fans
US20170241396A1 (en) * 2016-02-18 2017-08-24 Andritz Hydro Gmbh Pelton runner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555119U (en) * 1991-12-27 1993-07-23 コパル電子株式会社 Light deflector
US20090092495A1 (en) * 2007-10-05 2009-04-09 Benoit Des Roches Axial flow hydraulic turbine with fixed blades bolted-on
WO2012130978A1 (en) * 2011-03-30 2012-10-04 Gurit (Uk) Ltd Water-turbine blade and an elongate spar therefor
US20170122335A1 (en) * 2014-06-24 2017-05-04 Tlt-Turbo Gmbh Impeller for axial fans
JP2016176413A (en) * 2015-03-20 2016-10-06 株式会社ベルシオン Propeller rotor
US20170241396A1 (en) * 2016-02-18 2017-08-24 Andritz Hydro Gmbh Pelton runner

Similar Documents

Publication Publication Date Title
US20130302169A1 (en) Rotor assembly for an axial turbine
US20110142657A1 (en) Wind turbine blade attachment configuration with flattened bolts
US20100171317A1 (en) Connection assembly for components of a wind turbine
EP2853733B1 (en) Rotor blade assembly with shim plate for mitigating pitch bearing loads
EP2474735B1 (en) Mounting arrangement for pitch gear
CA2526729C (en) Rotor blade connection
US20150016998A1 (en) Wind turbine rotor
GB2486407A (en) Wind turbine pitch system having segmented pitch gear
US20120121419A1 (en) Wind Turbine
JP6954739B2 (en) Rotor for generator
EP2935870A1 (en) Turbine blade
EP3112669B1 (en) Pitch assembly for a wind turbine rotor blade
JP6748480B2 (en) Vertical axis type hydroelectric power generation unit, Vertical axis type hydroelectric power generation unit
JP2020153346A (en) Water turbine blade fitting structure of hydraulic generating apparatus and hydraulic generating apparatus
JP4875770B2 (en) Windmill semi-flexible mount
WO2020040098A1 (en) Water turbine mounting structure for hydroelectric power generation device, and hydroelectric power generation device
JP2020029775A (en) Water turbine blade attaching structure of hydraulic generating apparatus
CN102477938A (en) Wind kinetic energy receiving conversion device
WO2020040097A1 (en) Water turbine mounting structure for hydroelectric power generation device
EP2942518B1 (en) Double-regulated turbine, installation for converting hydraulic energy and process for the rehabilitation of a double-regulated turbine
CN207660769U (en) Pitch-controlled system, pitch variable bearings and the wind power generating set of wind power generating set
GB2413367A (en) Wind turbine
JP2019173597A (en) Water turbine and small hydroelectric generator
CA2943678A1 (en) Turbine
CN212556732U (en) Propeller convenient to disassemble

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221115

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205