JP2020152930A - Magnetic refrigerant - Google Patents

Magnetic refrigerant Download PDF

Info

Publication number
JP2020152930A
JP2020152930A JP2019049525A JP2019049525A JP2020152930A JP 2020152930 A JP2020152930 A JP 2020152930A JP 2019049525 A JP2019049525 A JP 2019049525A JP 2019049525 A JP2019049525 A JP 2019049525A JP 2020152930 A JP2020152930 A JP 2020152930A
Authority
JP
Japan
Prior art keywords
magnetic
temperature
examples
freezing
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049525A
Other languages
Japanese (ja)
Other versions
JP7134906B2 (en
Inventor
慧 副島
Satoshi Soejima
慧 副島
健佑 大坪
Kensuke Otsubo
健佑 大坪
孝之 大西
Takayuki Onishi
孝之 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2019049525A priority Critical patent/JP7134906B2/en
Publication of JP2020152930A publication Critical patent/JP2020152930A/en
Application granted granted Critical
Publication of JP7134906B2 publication Critical patent/JP7134906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

To provide a magnetic refrigerant operable in a high temperature range (for example, approximately room temperature or above) which has a wide operable temperature range and a small hysteresis, and which offers a giant magnetocaloric effect and has a large adiabatic temperature change value.SOLUTION: A magnetic refrigerant is composed of Mn, Fe, Ru, P, Si and Ge. A sum of blending mole fractions of Si and Ge is 0.40-0.65, and a blending mole fraction of P is 0.35-0.60.SELECTED DRAWING: Figure 1

Description

本発明は、磁性体材料から構成される磁気冷凍材料のうち、特に従来よりも高温域の温度域(例えば、室温域以上)において、大きな磁気熱量効果および断熱温度変化を示す磁気冷凍材料に関する。 The present invention relates to a magnetic freezing material composed of a magnetic material, which exhibits a large magnetic heat effect and adiabatic temperature change, particularly in a temperature range higher than the conventional one (for example, a room temperature range or higher).

近年、地球温暖化、オゾン層の破壊などの環境問題を引き起こすフロン系ガスを冷媒として用いる従来の気体冷凍方式に代わる新しい磁気冷凍方式が提案されている。この磁気冷凍方式では、ある種の磁性体材料を冷媒とし、その磁気熱量効果つまり等温状態で磁性体の磁気秩序を磁場で変化させた際に生じる磁気エントロピー変化量及び断熱状態で磁性体の磁気秩序を磁場で変化させた際に生じる断熱温度変化を利用する。 In recent years, a new magnetic freezing method has been proposed in place of the conventional gas freezing method that uses a fluorocarbon gas as a refrigerant, which causes environmental problems such as global warming and ozone layer depletion. In this magnetic refrigeration method, a certain kind of magnetic material is used as a refrigerant, and the magnetic heat effect, that is, the magnetic entropy change amount generated when the magnetic order of the magnetic material is changed by a magnetic field in an isothermal state, and the magnetism of the magnetic material in an adiabatic state. Utilizes the adiabatic temperature change that occurs when the order is changed by a magnetic field.

このような磁気熱量効果を有する磁性体材料を冷媒に用いた磁気冷凍装置ならびに磁気ヒートポンプ装置が広く研究されている。この磁気冷凍方式に従えば、フロンガスを使用することなく磁気冷凍装置ならびに磁気ヒートポンプ装置を作製することが可能になり、これまでの気体方式に比べて効率が高いという利点がある。 A magnetic refrigeration device and a magnetic heat pump device using a magnetic material having such a magnetic calorific value effect as a refrigerant have been widely studied. According to this magnetic freezing method, it becomes possible to manufacture a magnetic freezing device and a magnetic heat pump device without using chlorofluorocarbon gas, and there is an advantage that the efficiency is higher than that of the conventional gas method.

このような磁気熱量効果を有する磁性体材料は、特に、磁気冷凍材料(磁気冷凍作業物質)と呼ばれている。 A magnetic material having such a magnetic calorific value effect is particularly called a magnetic freezing material (magnetic freezing work substance).

斯かる磁気冷凍方式に用いられる磁気冷凍材料としては、低い磁場で大きな磁気熱量効果を示す効率の良い材料として、LaFeSi系やMnFePSi系など化合物系の磁気冷凍材料が知られており、数種類の元素を混合し焼結または溶融によりバルク(ブロック状)として製造される。 As the magnetic refrigeration material used in such a magnetic refrigeration method, compound-based magnetic refrigeration materials such as LaFeSi-based and MnFePSi-based are known as efficient materials showing a large magnetic calorific value effect in a low magnetic field, and several kinds of elements. Is mixed and sintered or melted to produce a bulk (block shape).

このような磁気冷凍材料は、キュリー温度(Tc)(各物質の磁性が、強磁性から常磁性に転移する温度)をまたぐことによって、相転移が発生し、大きな磁気熱量効果が得られ、その結果、磁気冷凍材料に温度変化が生じる。 In such a magnetic refrigeration material, a phase transition occurs by crossing the Curie temperature (Tc) (the temperature at which the magnetism of each substance changes from ferromagnetism to paramagnetism), and a large magnetic calorific value effect is obtained. As a result, the temperature of the magnetic refrigeration material changes.

なお、キュリー温度に関連して、磁気冷凍材料に熱を加えながら温度を上げたときのキュリー温度と冷却しながら温度を下げていったときのキュリー温度の差をヒステリシスという。このヒステリシスが大きくなると断熱温度変化が小さくなるという欠点がある。 In relation to the Curie temperature, the difference between the Curie temperature when the temperature is raised while applying heat to the magnetic refrigerating material and the Curie temperature when the temperature is lowered while cooling is called hysteresis. When this hysteresis becomes large, there is a drawback that the change in adiabatic temperature becomes small.

これまでに知られている磁気熱量効果を示す物質(例えば、LaFeSi系やMnFePSi系などの化合物)は、冷凍域から室温域までの比較的広い温度範囲で磁気熱量効果を有するが、より高温域、例えば、室温域以上、特に60℃以上の領域では磁気熱量効果が小さく、磁気ヒートポンプ装置として実用的な能力を実現するためには、超電導磁石などでしか実現できない非常に大きな強磁界を印加する必要がある。 Substances exhibiting a magnetic calorific value effect known so far (for example, compounds such as LaFeSi type and MnFePSi type) have a magnetic calorific value effect in a relatively wide temperature range from a freezing range to a room temperature range, but a higher temperature range. For example, the magnetic heat effect is small in the room temperature range or higher, especially in the range of 60 ° C. or higher, and in order to realize the practical ability as a magnetic heat pump device, a very large strong magnetic field that can be realized only by a superconducting magnet or the like is applied. There is a need.

このような状況において、磁気熱量効果を向上させるために、これまでの磁気熱量効果を示す物質に元素添加を行った磁気冷凍材料が提案されている。 In such a situation, in order to improve the magnetic calorific value effect, a magnetic freezing material in which an element is added to a substance exhibiting a magnetic calorific value effect has been proposed.

例えば、従来の磁気冷凍材料としては、MnFeRuPSi系やMnFePSiB系の磁気冷凍材料が提案されている。例えば、従来の磁気冷凍材料としては、次の一般式(1)で表される化合物よりなることを特徴とする磁気冷凍材料がある。
(Mn2−xFex−zRu1+σ(P1−y)・・・(1)
ここで、AはGe(ゲルマニウム)またはSi(ケイ素)を表わし、−0.1≦σ≦+0.1、0.6≦x≦1.2、0.03≦y≦0.7、0<z≦0.7である(特許文献1)。
For example, as a conventional magnetic freezing material, MnFeRuPSi-based and MnFePSiB-based magnetic freezing materials have been proposed. For example, as a conventional magnetic freezing material, there is a magnetic freezing material characterized by being composed of a compound represented by the following general formula (1).
(Mn 2-x Fe x- z Ru z) 1 + σ (P 1-y A y) ··· (1)
Here, A represents Ge (germanium) or Si (silicon), −0.1 ≦ σ ≦ + 0.1, 0.6 ≦ x ≦ 1.2, 0.03 ≦ y ≦ 0.7, 0 <. z ≦ 0.7 (Patent Document 1).

また、例えば、マンガンを含有するマンガン系化合物を、当該マンガン系化合物固有のキュリー温度以下に冷却する冷却工程を含むことを特徴とする磁気冷凍材料の製造方法もある。(特許文献2)。 Further, for example, there is also a method for producing a magnetic refrigeration material, which comprises a cooling step of cooling a manganese-based compound containing manganese to a Curie temperature or lower peculiar to the manganese-based compound. (Patent Document 2).

特開2014−15678号公報Japanese Unexamined Patent Publication No. 2014-15678 国際公開WO2016/104739号公報International Publication WO2016 / 104739

しかし、従来の磁気冷凍材料は、例えば、MnFeRuPSi系の磁気冷凍材料では、室温域以上、特に60℃以上にキュリー温度を有する材料は上述したヒステリシスが大きくなり、その結果、断熱温度変化が小さくなり、実用的な能力を実現できないという問題があった。 However, as for the conventional magnetic freezing material, for example, in the MnFeRuPSi-based magnetic freezing material, the material having a Curie temperature in the room temperature range or higher, particularly 60 ° C. or higher, has a large hysteresis described above, and as a result, the adiabatic temperature change becomes small. However, there was a problem that practical ability could not be realized.

このように、室温付近以上、特に60℃以上で動作できるような磁気冷凍材料であって、小さいヒステリシスを併せ持つと共に、巨大磁気熱量効果を示し、大きな断熱温度変化値を有するというような磁気冷凍材料が切望されているものの、そのような磁気冷凍材料は、現在のところ見当たらない。 As described above, a magnetic freezing material that can operate at around room temperature or higher, particularly at 60 ° C. or higher, has a small hysteresis, exhibits a huge magnetic heat effect, and has a large adiabatic temperature change value. Although coveted, no such magnetic freezing material is currently found.

本発明は前記課題を解決するためになされたものであり、高温域(例えば、室温付近以上)で動作可能な磁気冷凍材料であって、小さいヒステリシスを併せ持つと共に、巨大磁気熱量効果を示し、大きな断熱温度変化値を有する磁気冷凍材料を提供することを目的とする。 The present invention has been made to solve the above problems, and is a magnetic freezing material that can operate in a high temperature range (for example, near room temperature or higher), has a small hysteresis, and exhibits a huge magnetic heat effect, and is large. It is an object of the present invention to provide a magnetic freezing material having an adiabatic temperature change value.

本発明者は、鋭意研究の結果、FeP型構造を有し、SiとGeを共に含む従来には知られていない組成で示される材料を用いたところ、室温域以上、特に330K(約60℃)以上の温度領域での、永久磁石等での磁界の印加によって実質的な構造変態を伴わずに、常磁性相から強磁性相に一次磁気相転移するという新しいタイプの磁気冷凍材料を見出した。 The present inventors, as a result of intensive studies, have Fe 2 P structure, where a material represented by a composition not known in the prior containing both Si and Ge, a room temperature range above, particularly 330K (about A new type of magnetic refrigeration material that undergoes a primary magnetic phase transition from a paramagnetic phase to a ferromagnetic phase without substantial structural transformation by applying a magnetic field with a permanent magnet or the like in a temperature range of 60 ° C.) or higher. I found it.

MnFePSi系、MnFeRuPSi系の磁気冷凍材料はMnとFeの比率を小さくしていくと、つまりはFeの比率を大きくしていくことで60℃以上にキュリー温度(Tc)を有する磁気冷凍材料を作製しようとした場合には、一般に、ヒステリシスが非常に大きくなり、結果として断熱温度変化が小さくなるものであるが、本発明者が特定の比率でGe置換(Si存在下)して得られた磁気冷凍材料では、キュリー温度(Tc)を増大させると共にヒステリシスの増大も抑えることが可能となり、大きな断熱温度変化を示すことを見出した。 MnFePSi-based and MnFeRuPSi-based magnetic refrigeration materials produce magnetic refrigeration materials having a Curie temperature (Tc) of 60 ° C. or higher by decreasing the ratio of Mn and Fe, that is, increasing the ratio of Fe. In general, when attempted to do so, the hysteresis becomes very large, and as a result, the adiabatic temperature change becomes small. However, the magnetism obtained by the present inventor by Ge substitution (in the presence of Si) at a specific ratio. It has been found that the frozen material can increase the Curie temperature (Tc) and suppress the increase in hysteresis, and exhibits a large change in adiabatic temperature.

さらに、MnとFeの比率、PとSiの比率ならびにGeの置換量を調節することにより、キュリー温度(Tc)を300K以上447K未満の範囲内で制御することができる。従って、キュリー温度(Tc)の異なる複数の磁気冷凍材料を調製し、これらを組み合わせることによって、室温付近を含む広い温度範囲で動作可能な磁気冷凍装置および磁気ヒートポンプ装置を実現することが可能となる。 Further, the Curie temperature (Tc) can be controlled in the range of 300K or more and less than 447K by adjusting the ratio of Mn and Fe, the ratio of P and Si, and the substitution amount of Ge. Therefore, by preparing a plurality of magnetic refrigeration materials having different Curie temperatures (Tc) and combining them, it is possible to realize a magnetic refrigeration device and a magnetic heat pump device that can operate in a wide temperature range including near room temperature. ..

本発明に係る磁気冷凍材料のX線回折(XRD)測定結果を示す。The X-ray diffraction (XRD) measurement result of the magnetic refrigerating material which concerns on this invention is shown. 比較例に係る磁気冷凍材料のX線回折(XRD)測定結果を示す。The X-ray diffraction (XRD) measurement result of the magnetic refrigerating material which concerns on a comparative example is shown. 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例1〜10)。The measurement result by the differential scanning calorimeter (DSC) of the magnetic refrigerating material which concerns on this invention is shown (Examples 1-10). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果(走査速度2℃/分の結果(a)および10℃/分の結果(b))を示す(実施例11〜14、比較例4、5)。The measurement results (results of scanning speed 2 ° C./min (a) and 10 ° C./min (b)) of the magnetic frozen material according to the present invention with a differential scanning calorimeter (DSC) are shown (Examples 11 to 14). , Comparative Examples 4, 5). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例17〜19)。The measurement results of the magnetic freezing material according to the present invention with a differential scanning calorimeter (DSC) are shown (Examples 17 to 19). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例6、20〜22)。The measurement result by the differential scanning calorimeter (DSC) of the magnetic refrigerating material which concerns on this invention is shown (Example 6, 20-22).

かくして、本発明の実施形態に係る磁気冷凍材料は、Mn、Fe、Ru、P、Si、およびGeから構成される磁気冷凍材料であって、SiおよびGeの配合モル比率の和が、0.40以上0.65以下であり、Pの配合モル比率が、0.35以上0.60以下であるものである。 Thus, the magnetic refrigeration material according to the embodiment of the present invention is a magnetic refrigeration material composed of Mn, Fe, Ru, P, Si, and Ge, and the sum of the blending molar ratios of Si and Ge is 0. It is 40 or more and 0.65 or less, and the compounding molar ratio of P is 0.35 or more and 0.60 or less.

本実施形態に係る磁気冷凍材料は、Mn、Fe、Ru、P、Si、およびGeの各元素から構成されていれば、上記条件を満たしていれば、各々の構成元素の配合モル比率は特に限定されないが、FeP型構造が構成される化学量論比近傍であることがより好ましいことから、MnFeおよびRuの配合モル比率の和が、PSiおよびGeの配合モル比率の和に対して、1.9以上2.1以下であることが好ましく、次の一般式(I)で表される化合物よりなる磁気冷凍材料を用いることができる。
(MnFeRu)(PSiGe) (I)
(上記式中、1.9≦A≦2.1である)
If the magnetic refrigeration material according to the present embodiment is composed of each element of Mn, Fe, Ru, P, Si, and Ge, and if the above conditions are satisfied, the compounding molar ratio of each constituent element is particularly high. Although not limited, it is more preferable that the Fe 2 P type structure is in the vicinity of the chemical quantitative ratio. Therefore, the sum of the mixed molar ratios of Mn , Fe and Ru is the mixed molar ratio of P , Si , and Ge. It is preferable that the sum is 1.9 or more and 2.1 or less, and a magnetic refrigerating material composed of a compound represented by the following general formula (I) can be used.
(Mn , Fe , Ru) A (P , Si , Ge) (I)
(In the above formula, 1.9 ≤ A ≤ 2.1)

このうち、構成元素であるMnFeおよびRuの各々の配合モル比率や、PSiおよびGeの各々の配合モル比率は、特に限定されないが、より良好な磁気熱量効果を発揮するという点から、より好ましくは、次の一般式(I−1)で表される化合物よりなる磁気冷凍材料を用いることである。
MnA−x−yFeRu1−z−wSiGe (I−1)
(上記式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)
Of these, the compounding molar ratios of the constituent elements Mn , Fe and Ru, and the compounding molar ratios of P , Si , and Ge are not particularly limited, but a better magnetic calorific value effect is exhibited. Therefore, it is more preferable to use a magnetic refrigerating material composed of a compound represented by the following general formula (I-1).
Mn A-x-y Fe x Ru y P 1-z-w Si z Ge w (I-1)
(In the above formula, 1.9 ≦ A ≦ 2.1, 0 <x <A, 0 <y <1, 0.40 ≦ w + z ≦ 0.65, 0 <w, 0 <z)

また、Mnの配合モル比率については、Feの配合モル比率より大きいことが好ましく、温度の上昇時と下降時の強磁性と常磁性が変わる時点の温度差、すなわちヒステリシスの値が大きくなることに起因する特性低下を抑制することができ、安定的に磁気熱量効果を発揮させることが可能となる。 Further, the compounding molar ratio of Mn is preferably larger than the compounding molar ratio of Fe, and the temperature difference at the time when ferromagnetism and paramagnetism change when the temperature rises and falls, that is, the value of hysteresis becomes large. It is possible to suppress the deterioration of the characteristics caused by it, and it is possible to stably exert the magnetic calorific value effect.

また、上述したように、MnFeおよびRuの配合モル比率の和は、PSiおよびGeの配合モル比率の和に対して、1.9以上2.1以下であることが好ましいが、より好ましくは、化学量論比以下であり、すなわち、MnFeおよびRuの配合モル比率が、PSiおよびGeの配合モル比率の和に対して、1.9以上2.0以下であることがより好ましい。この構成によって、結晶に一部欠損が生じて歪みのある結晶状態が形成されることとなり、この歪みのある結晶状態によって大きな磁気熱量効果を奏することが可能となる。 As described above, Mn, the sum of the blending molar ratio of Fe and Ru is, P, Si, and with respect to the sum of the blending molar ratio of Ge, which is preferably at least 1.9 less than 2.1 , more preferably, not more than the stoichiometric ratio, i.e., Mn, blending molar ratio of Fe and Ru is, P, Si, and with respect to the sum of the blending molar ratio of Ge, 1.9 to 2.0 Is more preferable. With this configuration, a partial defect occurs in the crystal to form a distorted crystal state, and the distorted crystal state makes it possible to exert a large magnetic calorific value effect.

また、本磁気冷凍材料は、結晶構造が六方晶であることが好ましく、さらに室温での格子定数aが6.20Å≦a≦6.32Å、および格子定数cが3.26Å≦c≦3.34Åであることが好ましい。このような結晶構造によって、大きな磁気熱量効果を安定的に奏することが可能となる。 Further, this magnetic freezing material preferably has a hexagonal crystal structure, and further, the lattice constant a at room temperature is 6.20Å≤a≤6.32Å, and the lattice constant c is 3.26Å≤c≤3. It is preferably 34Å. With such a crystal structure, it is possible to stably exert a large magnetic calorific value effect.

本発明の特徴を更に明らかにするために、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。 In order to further clarify the features of the present invention, examples are shown below, but the present invention is not limited to these examples.

(実施例)
本発明に係る各実施例の試料は以下の手順で作製した。すなわち、それぞれの原料を秤量し、それらの試料とボールをグローブボックス内で専用の容器に入れ遊星ボールミルで6時間混合した。容器内は窒素雰囲気とした。
(Example)
The samples of each example according to the present invention were prepared by the following procedure. That is, each raw material was weighed, and the sample and the ball were placed in a special container in a glove box and mixed with a planetary ball mill for 6 hours. The inside of the container had a nitrogen atmosphere.

混合した試料の60gをカーボン製の容器に入れて焼成した。 60 g of the mixed sample was placed in a carbon container and fired.

封入した試料を室温から6時間かけて1100℃程度まで昇温し、温度を維持したまま5時間保持した後、室温まで自然冷却した。得られた焼結体を53ミクロン以下になるまで粉砕して試料を得た。 The sealed sample was heated from room temperature to about 1100 ° C. over 6 hours, held for 5 hours while maintaining the temperature, and then naturally cooled to room temperature. The obtained sintered body was pulverized to 53 microns or less to obtain a sample.

上述した混合および焼成方法に従って、目的組成が、上記一般式(I−1)で示されたMnA−x−yFeRu1−z−wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される化合物のうち、表1で示される実施例1〜16、および比較例1〜8の磁気冷凍材料を作製した。Geで置換していない磁気冷凍材料を比較例1〜3とした。また、SiとGeの配合モル比率の和が、0.65を超えている磁気冷凍材料を比較例4、6、8とした。また、Siを含まない磁気冷凍材料を比較例5、7とした。 Accordance mixing and firing method described above, the target composition is, in the formula Mn indicated by (I-1) A-x -y Fe x Ru y P 1-z-w Si z Ge w ( Formula 1. Among the compounds represented by 9 ≦ A ≦ 2.1, 0 <x <A, 0 <y <1, 0.40 ≦ w + z ≦ 0.65, 0 <w, 0 <z), Table 1 The magnetic refrigeration materials of Examples 1 to 16 and Comparative Examples 1 to 8 shown in the above were prepared. The magnetic freezing materials not substituted with Ge were designated as Comparative Examples 1 to 3. Further, the magnetic freezing materials in which the sum of the compounding molar ratios of Si and Ge exceeds 0.65 were designated as Comparative Examples 4, 6 and 8. Further, the magnetic freezing materials containing no Si were designated as Comparative Examples 5 and 7.

Figure 2020152930
Figure 2020152930

各実施例に係る磁気冷凍材料の結晶相の構造を同定するために、X線回折(XRD)測定を行った。それぞれの磁気冷凍材料を53μm以下に粉砕した粉末をXRD用試料とした。ターゲットにはCuを用いた。比較例についても同様にX線回折(XRD)測定を行った。 X-ray diffraction (XRD) measurements were performed to identify the crystal phase structure of the magnetically frozen material according to each example. A powder obtained by pulverizing each magnetic freezing material to 53 μm or less was used as a sample for XRD. Cu was used as the target. X-ray diffraction (XRD) measurement was also performed in the comparative example.

得られたX線回折(XRD)測定の結果のうち、図1(a)にA=2、x=0.75、y=0.01、z=0.55、w=0.01(実施例1)、図1(b)にA=2、x=0.77、y=0.01、z=0.55、w=0.015(実施例5)、図1(c)にA=2、x=0.79、y=0.01、z=0.55、w=0.023(実施例9)、図1(d)にA=2、x=0.79、y=0.01、z=0.25、w=0.30(実施例14)の測定結果を示す。また、比較例としては、図2(a)にA=2、x=0.79、y=0.01、z=0.70、w=0.20(比較例6)、図2(b)にA=2、x=0.79、y=0.01、z=0.60、w=0.30(比較例8)の測定結果を示す。 Among the obtained X-ray diffraction (XRD) measurement results, FIG. 1A shows A = 2, x = 0.75, y = 0.01, z = 0.55, w = 0.01 (implementation). Example 1), FIG. 1 (b) shows A = 2, x = 0.77, y = 0.01, z = 0.55, w = 0.015 (Example 5), FIG. 1 (c) shows A. = 2, x = 0.79, y = 0.01, z = 0.55, w = 0.023 (Example 9), A = 2, x = 0.79, y = in FIG. 1 (d). The measurement results of 0.01, z = 0.25, and w = 0.30 (Example 14) are shown. Further, as comparative examples, A = 2, x = 0.79, y = 0.01, z = 0.70, w = 0.20 (Comparative Example 6), FIG. 2 (b) in FIG. 2 (a). ) Shows the measurement results of A = 2, x = 0.79, y = 0.01, z = 0.60, w = 0.30 (Comparative Example 8).

いずれの組成においても、各実施例に係る磁気冷凍材料は、室温で強磁性相(FM−phase)であり、FeP型構造の材料が得られた。これに対して、各比較例に係る磁気冷凍材料は、図2の結果から明らかなように、異相が多く存在し、FeP型構造の材料として得られなかった。 In any of the compositions, magnetic refrigeration materials according to each embodiment is a ferromagnetic phase at room temperature (FM-phase), the material of the Fe 2 P structure is obtained. In contrast, magnetic refrigeration materials according to the comparative example, as is clear from the results of FIG. 2, it heterophase many exist, could not be obtained as a material of Fe 2 P structure.

図3は本発明に係る実施例1〜10、図4は本発明に係る実施例11〜14および比較例4〜5の示差走査熱量計(DSC)での測定結果を示したグラフである。測定試料の重量は約30mgとし、標準試料としてアルミナを用いた。試料のキュリー温度では極小値を示す。以下の表に実施例1〜14ならびに比較例1〜5のキュリー温度を示す。 FIG. 3 is a graph showing the measurement results of Examples 1 to 10 according to the present invention, and FIG. 4 shows the measurement results of Examples 11 to 14 and Comparative Examples 4 to 5 according to the present invention using a differential scanning calorimeter (DSC). The weight of the measurement sample was about 30 mg, and alumina was used as the standard sample. The Curie temperature of the sample shows a minimum value. The following table shows the Curie temperatures of Examples 1 to 14 and Comparative Examples 1 to 5.

また、実施例1〜10ならびに比較例1〜3の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。以下の表に各実施例の断熱温度変化値ならびにヒステリシス(△Thys)を示す。 Moreover, the adiabatic temperature change (ΔT ad ) of Examples 1 to 10 and Comparative Examples 1 to 3 was measured by the adiabatic temperature measuring device. The applied magnetic field was 1 T, and the temperature before the magnetic field was applied and the temperature after the magnetic field was applied were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. The following table shows the adiabatic temperature change value and the hysteresis ( ΔThys ) of each example.

Figure 2020152930
Figure 2020152930

なお、実施例11〜14の断熱温度変化(K)は、使用した測定装置の測定限界を超えた高温域のキュリー温度のために実測できなかった領域であるが、測定されたヒステリシス値に拠れば、実施例1〜10と同様の非常に小さいヒステリシスを有することが確認されたため、結果として実施例1〜10と同様に優れた断熱温度変化を発揮するものと考えられる。 The adiabatic temperature change (K) in Examples 11 to 14 is a region that could not be actually measured due to the Curie temperature in a high temperature range exceeding the measurement limit of the measuring device used, but it depends on the measured hysteresis value. For example, it was confirmed that it had a very small hysteresis similar to that of Examples 1 to 10, and as a result, it is considered that an excellent adiabatic temperature change is exhibited as in Examples 1 to 10.

得られた結果から、実施例1〜10においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は最も大きいもので1.8K(A=2、x=0.77、y=0.01、z=0.55、w=0.023)であり、小さいものでも1.7Kである。これは比較例1〜3の1.5倍以上の値である(なお、比較例4および5は、特に図4(b)の結果から明らかなように、図4における走査速度基準ではDSCスペクトルのピークが検出されていないというレベルであり、当該ピークが検出されなかったことから、良好な磁気熱量効果を奏しないものと考えられる)。また室温域(40℃以下)にキュリー温度を有するGe置換(Si存在下)していない材料と比較しても同等以上の大きな断熱温度変化が確認できた。 From the obtained results, a large change in adiabatic temperature was observed near the Curie temperature in Examples 1 to 10, and the adiabatic temperature change value in a magnetic field of 1 T was the largest at 1.8 K (A = 2, x = 0.77). , Y = 0.01, z = 0.55, w = 0.023), and even a small one is 1.7K. This is a value 1.5 times or more that of Comparative Examples 1 to 3 (Note that Comparative Examples 4 and 5 have DSC spectra based on the scanning speed in FIG. 4, as is particularly clear from the results of FIG. 4 (b). The peak is not detected, and since the peak was not detected, it is considered that a good magnetic calorie effect is not exhibited). In addition, a large change in adiabatic temperature equal to or greater than that of a non-Ge-substituted material (in the presence of Si) having a Curie temperature in the room temperature range (40 ° C. or lower) was confirmed.

次に室温付近にキュリー温度を有する磁気冷凍材料のGe置換(Si存在下)による効果を確認するために、上述した混合および焼成方法に従って、目的組成が、上記一般式(I−1)で示されたMnA−x−yFeRu1−z−wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される化合物のうち、以下の表で示される実施例17〜19、および比較例9〜11の磁気冷凍材料を作製した。比較例9〜11は、Geを含まない磁気冷凍材料である。 Next, in order to confirm the effect of Ge substitution (in the presence of Si) of the magnetic refrigerating material having a Curie temperature near room temperature, the target composition is represented by the above general formula (I-1) according to the above-mentioned mixing and firing method. been Mn A-x-y Fe x Ru y P 1-z-w Si z Ge w ( where, 1.9 ≦ A ≦ 2.1,0 <x <A, 0 <y <1,0. Among the compounds represented by 40 ≦ w + z ≦ 0.65, 0 <w, 0 <z), the magnetic refrigerated materials of Examples 17 to 19 and Comparative Examples 9 to 11 shown in the following table were prepared. did. Comparative Examples 9 to 11 are Ge-free magnetic freezing materials.

Figure 2020152930
Figure 2020152930

図5は本発明に係る実施例17〜19の示差走査熱量計(DSC)での測定結果を示したグラフである。測定試料の重量は約30mgとし、標準試料としてアルミナを用いた。試料のキュリー温度では極小値を示す。 FIG. 5 is a graph showing the measurement results of the differential scanning calorimetry (DSC) of Examples 17 to 19 according to the present invention. The weight of the measurement sample was about 30 mg, and alumina was used as the standard sample. The Curie temperature of the sample shows a minimum value.

以下の表に、実施例17〜19ならびに比較例9〜11のキュリー温度を示す。さらに、実施例17〜19ならびに比較例9〜11の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。各断熱温度変化値ならびにヒステリシス(△Thys)も併せて、以下の表に示す。 The table below shows the Curie temperatures of Examples 17-19 and Comparative Examples 9-11. Further, the adiabatic temperature change (ΔT ad ) of Examples 17 to 19 and Comparative Examples 9 to 11 was measured by an adiabatic temperature measuring device. The applied magnetic field was 1 T, and the temperature before the magnetic field was applied and the temperature after the magnetic field was applied were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. Each adiabatic temperature change value and hysteresis ( ΔThys ) are also shown in the table below.

Figure 2020152930
Figure 2020152930

得られた結果から、実施例17〜19においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は最も大きいもので1.9K(A=2、x=0.68、y=0.08、z=0.54、w=0.01)であり、小さいものでも1.8Kである。これは比較例の約1.2倍程度の値であり、室温域から50℃程度にキュリー温度を有する磁気冷凍材料においてもGe置換(Si存在下)により断熱温度変化値が向上することを確認した。 From the obtained results, a large change in adiabatic temperature was observed near the Curie temperature in Examples 17 to 19, and the adiabatic temperature change value in a magnetic field of 1 T was the largest at 1.9 K (A = 2, x = 0.68). , Y = 0.08, z = 0.54, w = 0.01), and even a small one is 1.8K. This is about 1.2 times the value of the comparative example, and it was confirmed that the adiabatic temperature change value is improved by Ge substitution (in the presence of Si) even in the magnetic freezing material having a Curie temperature of about 50 ° C. from the room temperature range. did.

また、上記各実施例のうちGeの配合モル比率が0.30という一定条件でP、Siを増減させたケースとなる比較例8、実施例14、実施例16について、上記と同様の手法により、キュリー温度、ヒステリシス、DSCピーク、及びXRDによる構造解析結果を得て、以下の表に整理した(以下の表ではPの配合モル比率が昇順となる順番で記載した)。

Figure 2020152930
Further, in Comparative Example 8, Example 14, and Example 16, in which P and Si were increased or decreased under a constant condition that the compounding molar ratio of Ge was 0.30 among the above Examples, the same method as described above was applied. , Curie temperature, hysteresis, DSC peak, and XRD structural analysis results were obtained and organized in the table below (in the table below, the molar ratios of P are listed in ascending order).
Figure 2020152930

得られた結果から、GeとSiの配合モル比率の和が0.90となる比較例8では目的化合物が合成できないことが確認された。これに対して、GeとSiの配合モル比率の和が0.55となる実施例14では目的化合物が合成された。また、実施例16の結果から、Pの配合モル比率については、実施例14の値である0.45から増加させても0.60までは確実に良好な特性が得られることが確認された。 From the obtained results, it was confirmed that the target compound could not be synthesized in Comparative Example 8 in which the sum of the compounding molar ratios of Ge and Si was 0.90. On the other hand, in Example 14 in which the sum of the compounding molar ratios of Ge and Si was 0.55, the target compound was synthesized. Further, from the results of Example 16, it was confirmed that even if the compounding molar ratio of P was increased from the value of Example 14 of 0.45, good characteristics were surely obtained up to 0.60. ..

次に、上記各実施例のうちGeの配合モル比率が0.20という一定条件でP、Siの配合モル比率を増減させたケースとなる比較例4、比較例6、比較例7、実施例15について、上記と同様の手法により、キュリー温度、ヒステリシス、DSCピーク、およびXRDによる構造解析結果を得て、以下の表に整理した(以下の表ではPの配合モル比率が昇順となる順番で記載した)。 Next, in each of the above examples, Comparative Example 4, Comparative Example 6, Comparative Example 7, and Examples, in which the compounding molar ratio of P and Si was increased or decreased under a constant condition that the compounding molar ratio of Ge was 0.20. Regarding No. 15, structural analysis results by Curie temperature, hysteresis, DSC peak, and XRD were obtained by the same method as above, and arranged in the following table (in the table below, the compounding molar ratio of P is in ascending order). Described).

Figure 2020152930
Figure 2020152930

得られた結果から、GeとSiの配合モル比率の和が0.80となる比較例6では目的化合物が合成できないことが確認された。また、GeとSiの配合モル比率の和が0.75となる比較例4でも目的化合物が合成できないことが確認された。これに対して、GeとSiの配合モル比率の和が0.50となる(すなわち0.40以上0.65以下である)実施例15では目的化合物が合成された。
また、比較例7の結果から、Pの配合モル比率については、実施例15の値である0.5から増加させても、上述したように0.60までは確実に良好な特性が得られることが確認されたが、0.80まで増加させると、キュリー温度が著しく低下することが確認された。
From the obtained results, it was confirmed that the target compound could not be synthesized in Comparative Example 6 in which the sum of the compounding molar ratios of Ge and Si was 0.80. It was also confirmed that the target compound could not be synthesized even in Comparative Example 4 in which the sum of the compounding molar ratios of Ge and Si was 0.75. On the other hand, in Example 15 in which the sum of the compounding molar ratios of Ge and Si was 0.50 (that is, 0.40 or more and 0.65 or less), the target compound was synthesized.
Further, from the results of Comparative Example 7, even if the compounding molar ratio of P is increased from 0.5, which is the value of Example 15, good characteristics are surely obtained up to 0.60 as described above. However, it was confirmed that when the temperature was increased to 0.80, the Curie temperature decreased significantly.

次に、各実施例に係る磁気冷凍材料の結晶構造について、格子定数aおよび格子定数cを測定した結果を以下に示す。なお、比較例6と比較例8では、結晶が生成されなかったためにデータは無い。また、比較例7は、キュリー温度が低温過ぎるため対象外としてデータを取得していない。 Next, the results of measuring the lattice constant a and the lattice constant c for the crystal structure of the magnetic freezing material according to each example are shown below. In Comparative Example 6 and Comparative Example 8, there is no data because no crystals were generated. Further, in Comparative Example 7, since the Curie temperature is too low, the data is not acquired because it is excluded from the target.

Figure 2020152930
Figure 2020152930

上記の結果から、各実施例に係る磁気冷凍材料の結晶構造について、本実施磁気冷凍材料は、結晶構造が六方晶であることが好ましく、さらに室温での格子定数aが6.20Å≦a≦6.32Åであり、格子定数cが3.26Å≦c≦3.34Åであることが好ましいことが確認された。このような特徴を有する結晶構造によって、大きな磁気熱量効果を安定的に奏することが可能となる。 From the above results, regarding the crystal structure of the magnetic refrigeration material according to each example, it is preferable that the magnetic refrigeration material in this embodiment has a hexagonal crystal structure, and the lattice constant a at room temperature is 6.20Å≤a≤a≤. It was confirmed that it was 6.32Å and that the lattice constant c was preferably 3.26Å≤c≤3.34Å. The crystal structure having such characteristics makes it possible to stably exert a large magnetic calorific value effect.

次に、実施例6の磁気冷凍材料の配合モル比率をベースに、Feの配合モル比率を減少させた以下の配合モル比率で実施例20〜22の磁気冷凍材料を得た。すなわち、実施例20〜22では、一般式(I−1)としてMnA−x−yFeRu1−z−wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される磁気冷凍材料のうち、特に、1.9≦A≦2.0となるものである。 Next, based on the compounding molar ratio of the magnetic freezing material of Example 6, the magnetic refrigerating materials of Examples 20 to 22 were obtained with the following compounding molar ratio in which the compounding molar ratio of Fe was reduced. That is, embodiments in 20-22, in the general formula (I-1) as the Mn A-x-y Fe x Ru y P 1-z-w Si z Ge w ( Formula, 1.9 ≦ A ≦ 2.1 , 0 <x <A, 0 <y <1, 0.40 ≦ w + z ≦ 0.65, 0 <w, 0 <z), especially 1.9 ≦ A ≦ 2.0.

Figure 2020152930
Figure 2020152930

得られたDSCスペクトルの結果を、図6に示す。得られた結果から、Mn、Fe、およびRuの配合モル比率の和が、特に1.9以上2.0以下である場合には、より急峻なDSCスペクトルのピークが得られたことが確認されたことから、優れた磁気熱量効果を有することが確認された。 The result of the obtained DSC spectrum is shown in FIG. From the obtained results, it was confirmed that a steeper DSC spectrum peak was obtained when the sum of the blended molar ratios of Mn, Fe, and Ru was 1.9 or more and 2.0 or less. Therefore, it was confirmed that it has an excellent magnetic calorific value effect.

以下の表に、実施例20〜22のキュリー温度を示す。さらに、実施例20〜22の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。各断熱温度変化値ならびにヒステリシス(△Thys)も併せて、以下の表に示す。 The table below shows the Curie temperatures of Examples 20-22. Further, the adiabatic temperature change (ΔT ad ) of Examples 20 to 22 was measured by the adiabatic temperature measuring device. The applied magnetic field was 1 T, and the temperature before the magnetic field was applied and the temperature after the magnetic field was applied were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. Each adiabatic temperature change value and hysteresis ( ΔThys ) are also shown in the table below.

Figure 2020152930
Figure 2020152930

得られた結果から、実施例20〜22においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は1.7Kである。Mn、Fe、およびRuの配合モル比率の和が1.9以上2.0以下である磁気冷凍材料においても、Ge置換(Si存在下)により断熱温度変化値が向上することを確認した。 From the obtained results, a large adiabatic temperature change was observed in the vicinity of the Curie temperature in Examples 20 to 22, and the adiabatic temperature change value in the magnetic field 1T was 1.7K. It was confirmed that the adiabatic temperature change value was improved by Ge substitution (in the presence of Si) even in the magnetic refrigerated material in which the sum of the mixed molar ratios of Mn, Fe, and Ru was 1.9 or more and 2.0 or less.

以上の結果から、本実施例に係る磁気冷凍材料は、キュリー温度が室温付近だけでなく、特に高い温度領域(60℃以上)においても大きな磁気熱量効果を示し、大きな断熱温度変化値が得られることが確認された。
From the above results, the magnetic freezing material according to the present embodiment shows a large magnetic calorific value effect not only in the Curie temperature near room temperature but also in a particularly high temperature region (60 ° C. or higher), and a large adiabatic temperature change value can be obtained. It was confirmed that.

Claims (5)

Mn、Fe、Ru、P、Si、およびGeから構成される磁気冷凍材料であって、SiおよびGeの配合モル比率の和が、0.40以上0.65以下であり、Pの配合モル比率が、0.35以上0.60以下であることを特徴とする磁気冷凍材料。 A magnetic refrigeration material composed of Mn, Fe, Ru, P, Si, and Ge, wherein the sum of the compounding molar ratios of Si and Ge is 0.40 or more and 0.65 or less, and the compounding molar ratio of P is However, the magnetic refrigerating material is characterized by having a value of 0.35 or more and 0.60 or less. 次の一般式(I)で表される化合物よりなることを特徴とする請求項1に記載の磁気冷凍材料。
(MnFeRu)(PSiGe) (I)
(上記式中、1.9≦A≦2.1である)
The magnetic freezing material according to claim 1, which comprises a compound represented by the following general formula (I).
(Mn , Fe , Ru) A (P , Si , Ge) (I)
(In the above formula, 1.9 ≤ A ≤ 2.1)
次の一般式(I−1)で表される化合物よりなることを特徴とする請求項1または請求項2に記載の磁気冷凍材料。
MnA−x−yFeRu1−z−wSiGe (I−1)
(上記式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)
The magnetic freezing material according to claim 1 or 2, characterized in that it comprises a compound represented by the following general formula (I-1).
Mn A-x-y Fe x Ru y P 1-z-w Si z Ge w (I-1)
(In the above formula, 1.9 ≦ A ≦ 2.1, 0 <x <A, 0 <y <1, 0.40 ≦ w + z ≦ 0.65, 0 <w, 0 <z)
Mnの配合モル比率が、Feの配合モル比率より大きいことを特徴とする請求項1〜3のいずれかに記載の磁気冷凍材料。 The magnetic freezing material according to any one of claims 1 to 3, wherein the compounding molar ratio of Mn is larger than the compounding molar ratio of Fe. Mn、Fe、およびRuの配合モル比率の和が、1.9以上2.0以下であることを特徴とする請求項1〜4のいずれかに記載の磁気冷凍材料。 The magnetic freezing material according to any one of claims 1 to 4, wherein the sum of the blending molar ratios of Mn, Fe, and Ru is 1.9 or more and 2.0 or less.
JP2019049525A 2019-03-18 2019-03-18 magnetic refrigeration material Active JP7134906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049525A JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049525A JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Publications (2)

Publication Number Publication Date
JP2020152930A true JP2020152930A (en) 2020-09-24
JP7134906B2 JP7134906B2 (en) 2022-09-12

Family

ID=72558056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049525A Active JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Country Status (1)

Country Link
JP (1) JP7134906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892054A (en) * 2022-05-16 2022-08-12 上海电力大学 Magnetic storage semi-metal material with exchange bias effect and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514158A (en) * 2003-01-29 2006-04-27 スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン Magnetic material having cooling capacity, method for producing the material, and method for using the material
JP2011523771A (en) * 2008-04-28 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Open-cell porous moldings for heat exchangers
JP2014015678A (en) * 2012-06-12 2014-01-30 Kyushu Univ Magnetic refrigerant
WO2016104739A1 (en) * 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
WO2018083819A1 (en) * 2016-11-02 2018-05-11 日本碍子株式会社 Method for manufacturing magnetic material
JP2018107203A (en) * 2016-12-22 2018-07-05 大電株式会社 Magnetic refrigerating material and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514158A (en) * 2003-01-29 2006-04-27 スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン Magnetic material having cooling capacity, method for producing the material, and method for using the material
JP2011523771A (en) * 2008-04-28 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Open-cell porous moldings for heat exchangers
JP2014015678A (en) * 2012-06-12 2014-01-30 Kyushu Univ Magnetic refrigerant
WO2016104739A1 (en) * 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
WO2018083819A1 (en) * 2016-11-02 2018-05-11 日本碍子株式会社 Method for manufacturing magnetic material
JP2018107203A (en) * 2016-12-22 2018-07-05 大電株式会社 Magnetic refrigerating material and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892054A (en) * 2022-05-16 2022-08-12 上海电力大学 Magnetic storage semi-metal material with exchange bias effect and preparation method thereof
CN114892054B (en) * 2022-05-16 2023-09-26 上海电力大学 Magnetic storage semi-metal material with exchange bias effect and preparation method thereof

Also Published As

Publication number Publication date
JP7134906B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
Fries et al. Microstructural and magnetic properties of Mn-Fe-P-Si (Fe2 P-type) magnetocaloric compounds
Samanta et al. Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems
Kang et al. Magnetic properties of Ce–Mn substituted M-type Sr-hexaferrites
JP6773652B2 (en) Multiple calorific value MnNiSi alloy
Chen et al. Magnetocaloric effect in (La, R) 2/3Ca1/3MnO3 (R= Gd, Dy, Tb, Ce)
JP2009054776A (en) Magnetic refrigeration material, its manufacturing method, and method of altering antiferromagnetic material to ferromagnetic material
Ezaami et al. Physical properties of La 0.7 Ca 0.2 Sr 0.1 MnO 3 manganite: a comparison between sol–gel and solid state process
Bouzidi et al. Second-Order Magnetic Transition and Low Field Magnetocaloric Effect in Nanocrystalline Pr _ 5 Co _ 19 Pr 5 Co 19 Compound
JP6606790B2 (en) Method for manufacturing magnetic refrigeration material
JP7134906B2 (en) magnetic refrigeration material
Khan et al. Near room temperature magnetocaloric properties in Ni deficient (Mn0. 525Fe0. 5) Ni0. 975Si0. 95Al0. 05
JP6009994B2 (en) Magnetic refrigeration material
Feng et al. Large low-field inverse magnetocaloric effect in Ni50− xMn38+ xSb12 alloys
Karel et al. Influence of nanoscale order–disorder transitions on the magnetic properties of Heusler compounds for spintronics
Galeano-Cabral et al. Enhanced thermoelectric properties of heavy-fermion compounds Yb x Ce y Sm z Ir 2 Zn 20 (x+ y+ z= 1)
Kumar et al. Effect of Si substitution on the structural, magnetic and magnetocaloric properties of Ni–Mn–In Heusler alloys
JP6115306B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
Mehri et al. Magnetocaloric Properties in La 0.5 Ca 0.45 K 0.05 MnO 3, Pr 0.5 Sr 0.45 K 0.05 MnO 3, and Nd 0.5 Sr 0.45 K 0.05 MnO 3 Manganites
Xu et al. Magnetic and Magnetocaloric Properties in Sr2 RE TaO6 (RE= Dy, Ho, and Er) Compounds
Hou et al. Magnetic entropy change in La0. 67− xCa0. 33MnO3
Dhahri et al. Behavior of the magnetocaloric effect in La0. 7Ba0. 2Ca0. 1Mn1-xSnxO3 manganite oxides as promising candidates for magnetic refrigeration
Wang et al. Constant magnetothermal response in two-layered perovskite (La1− xGdx) 1.4 Ca1. 6Mn2O7
JP7187431B2 (en) magnetic refrigeration material
Souca et al. MAGNETOCALORIC EFFECT AND MAGNETIC PROPERTIES OF Pr₁₋ ₓ Ceₓ Co₃ COMPOUNDS
JP6205839B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7134906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150