JP7134906B2 - magnetic refrigeration material - Google Patents

magnetic refrigeration material Download PDF

Info

Publication number
JP7134906B2
JP7134906B2 JP2019049525A JP2019049525A JP7134906B2 JP 7134906 B2 JP7134906 B2 JP 7134906B2 JP 2019049525 A JP2019049525 A JP 2019049525A JP 2019049525 A JP2019049525 A JP 2019049525A JP 7134906 B2 JP7134906 B2 JP 7134906B2
Authority
JP
Japan
Prior art keywords
magnetic refrigeration
magnetic
temperature
examples
refrigeration material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049525A
Other languages
Japanese (ja)
Other versions
JP2020152930A (en
Inventor
慧 副島
健佑 大坪
孝之 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2019049525A priority Critical patent/JP7134906B2/en
Publication of JP2020152930A publication Critical patent/JP2020152930A/en
Application granted granted Critical
Publication of JP7134906B2 publication Critical patent/JP7134906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

本発明は、磁性体材料から構成される磁気冷凍材料のうち、特に従来よりも高温域の温度域(例えば、室温域以上)において、大きな磁気熱量効果および断熱温度変化を示す磁気冷凍材料に関する。 The present invention relates to a magnetic refrigeration material composed of a magnetic material, and particularly to a magnetic refrigeration material that exhibits a large magnetocaloric effect and adiabatic temperature change in a higher temperature range (for example, room temperature or higher) than conventional magnetic refrigeration materials.

近年、地球温暖化、オゾン層の破壊などの環境問題を引き起こすフロン系ガスを冷媒として用いる従来の気体冷凍方式に代わる新しい磁気冷凍方式が提案されている。この磁気冷凍方式では、ある種の磁性体材料を冷媒とし、その磁気熱量効果つまり等温状態で磁性体の磁気秩序を磁場で変化させた際に生じる磁気エントロピー変化量及び断熱状態で磁性体の磁気秩序を磁場で変化させた際に生じる断熱温度変化を利用する。 In recent years, a new magnetic refrigeration system has been proposed to replace the conventional gas refrigeration system using Freon-based gas as a refrigerant, which causes environmental problems such as global warming and destruction of the ozone layer. In this magnetic refrigeration system, a certain type of magnetic material is used as a coolant, and the magnetocaloric effect, that is, the amount of change in magnetic entropy that occurs when the magnetic order of the magnetic material is changed by a magnetic field in an isothermal state, and the magnetic field in the adiabatic state. Utilizes the adiabatic temperature change that occurs when the order is changed by a magnetic field.

このような磁気熱量効果を有する磁性体材料を冷媒に用いた磁気冷凍装置ならびに磁気ヒートポンプ装置が広く研究されている。この磁気冷凍方式に従えば、フロンガスを使用することなく磁気冷凍装置ならびに磁気ヒートポンプ装置を作製することが可能になり、これまでの気体方式に比べて効率が高いという利点がある。 Magnetic refrigerators and magnetic heat pumps using magnetic materials having such a magnetocaloric effect as refrigerants have been extensively studied. According to this magnetic refrigeration system, it is possible to manufacture a magnetic refrigeration system and a magnetic heat pump system without using Freon gas, and it has the advantage of being more efficient than the conventional gas system.

このような磁気熱量効果を有する磁性体材料は、特に、磁気冷凍材料(磁気冷凍作業物質)と呼ばれている。 A magnetic material having such a magnetocaloric effect is particularly called a magnetic refrigeration material (magnetic refrigeration working material).

斯かる磁気冷凍方式に用いられる磁気冷凍材料としては、低い磁場で大きな磁気熱量効果を示す効率の良い材料として、LaFeSi系やMnFePSi系など化合物系の磁気冷凍材料が知られており、数種類の元素を混合し焼結または溶融によりバルク(ブロック状)として製造される。 As magnetic refrigeration materials used in such a magnetic refrigeration system, compound-based magnetic refrigeration materials such as LaFeSi and MnFePSi are known as efficient materials that exhibit a large magnetocaloric effect in a low magnetic field. are mixed and sintered or melted to produce a bulk (block shape).

このような磁気冷凍材料は、キュリー温度(Tc)(各物質の磁性が、強磁性から常磁性に転移する温度)をまたぐことによって、相転移が発生し、大きな磁気熱量効果が得られ、その結果、磁気冷凍材料に温度変化が生じる。 In such a magnetic refrigeration material, a phase transition occurs by crossing the Curie temperature (Tc) (the temperature at which the magnetism of each substance transitions from ferromagnetism to paramagnetism), and a large magnetocaloric effect can be obtained. As a result, a temperature change occurs in the magnetic refrigeration material.

なお、キュリー温度に関連して、磁気冷凍材料に熱を加えながら温度を上げたときのキュリー温度と冷却しながら温度を下げていったときのキュリー温度の差をヒステリシスという。このヒステリシスが大きくなると断熱温度変化が小さくなるという欠点がある。 In relation to the Curie temperature, the difference between the Curie temperature when the magnetic refrigeration material is heated while being heated and the Curie temperature when the temperature is being lowered while being cooled is called hysteresis. A disadvantage is that the larger the hysteresis, the smaller the adiabatic temperature change.

これまでに知られている磁気熱量効果を示す物質(例えば、LaFeSi系やMnFePSi系などの化合物)は、冷凍域から室温域までの比較的広い温度範囲で磁気熱量効果を有するが、より高温域、例えば、室温域以上、特に60℃以上の領域では磁気熱量効果が小さく、磁気ヒートポンプ装置として実用的な能力を実現するためには、超電導磁石などでしか実現できない非常に大きな強磁界を印加する必要がある。 So far known substances exhibiting a magnetocaloric effect (for example, LaFeSi-based and MnFePSi-based compounds) have a magnetocaloric effect in a relatively wide temperature range from the freezing range to the room temperature range. For example, the magnetocaloric effect is small at room temperature or higher, particularly at 60°C or higher, and in order to achieve practical performance as a magnetic heat pump device, a very strong magnetic field that can only be realized with a superconducting magnet or the like is applied. There is a need.

このような状況において、磁気熱量効果を向上させるために、これまでの磁気熱量効果を示す物質に元素添加を行った磁気冷凍材料が提案されている。 Under such circumstances, in order to improve the magnetocaloric effect, a magnetic refrigeration material has been proposed in which an element is added to a substance exhibiting the conventional magnetocaloric effect.

例えば、従来の磁気冷凍材料としては、MnFeRuPSi系やMnFePSiB系の磁気冷凍材料が提案されている。例えば、従来の磁気冷凍材料としては、次の一般式(1)で表される化合物よりなることを特徴とする磁気冷凍材料がある。
(Mn2-xFex-zRu1+σ(P1-y)・・・(1)
ここで、AはGe(ゲルマニウム)またはSi(ケイ素)を表わし、-0.1≦σ≦+0.1、0.6≦x≦1.2、0.03≦y≦0.7、0<z≦0.7である(特許文献1)。
For example, MnFeRuPSi-based and MnFePSiB-based magnetic refrigeration materials have been proposed as conventional magnetic refrigeration materials. For example, as a conventional magnetic refrigeration material, there is a magnetic refrigeration material characterized by being composed of a compound represented by the following general formula (1).
(Mn 2-x Fe x-z Ru z ) 1+σ (P 1-y A y ) (1)
Here, A represents Ge (germanium) or Si (silicon), −0.1≦σ≦+0.1, 0.6≦x≦1.2, 0.03≦y≦0.7, 0< z≦0.7 (Patent Document 1).

また、例えば、マンガンを含有するマンガン系化合物を、当該マンガン系化合物固有のキュリー温度以下に冷却する冷却工程を含むことを特徴とする磁気冷凍材料の製造方法もある。(特許文献2)。 Further, for example, there is a method for producing a magnetic refrigeration material, which includes a cooling step of cooling a manganese-based compound containing manganese to a Curie temperature specific to the manganese-based compound or lower. (Patent Document 2).

特開2014-15678号公報JP 2014-15678 A 国際公開WO2016/104739号公報International publication WO2016/104739

しかし、従来の磁気冷凍材料は、例えば、MnFeRuPSi系の磁気冷凍材料では、室温域以上、特に60℃以上にキュリー温度を有する材料は上述したヒステリシスが大きくなり、その結果、断熱温度変化が小さくなり、実用的な能力を実現できないという問題があった。 However, conventional magnetic refrigerating materials, such as MnFeRuPSi-based magnetic refrigerating materials, having a Curie temperature above room temperature, particularly above 60° C., have a large hysteresis, and as a result, the adiabatic temperature change is small. , there was a problem that practical ability could not be realized.

このように、室温付近以上、特に60℃以上で動作できるような磁気冷凍材料であって、小さいヒステリシスを併せ持つと共に、巨大磁気熱量効果を示し、大きな断熱温度変化値を有するというような磁気冷凍材料が切望されているものの、そのような磁気冷凍材料は、現在のところ見当たらない。 Thus, a magnetic refrigeration material that can operate at room temperature or higher, particularly 60° C. or higher, has a small hysteresis, exhibits a giant magnetocaloric effect, and has a large adiabatic temperature change value. However, such magnetic refrigeration materials are currently absent.

本発明は前記課題を解決するためになされたものであり、高温域(例えば、室温付近以上)で動作可能な磁気冷凍材料であって、小さいヒステリシスを併せ持つと共に、巨大磁気熱量効果を示し、大きな断熱温度変化値を有する磁気冷凍材料を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a magnetic refrigeration material that can operate in a high temperature range (for example, around room temperature or higher), has a small hysteresis, exhibits a giant magnetocaloric effect, and has a large It is an object of the present invention to provide a magnetic refrigeration material with an adiabatic temperature change value.

本発明者は、鋭意研究の結果、FeP型構造を有し、SiとGeを共に含む従来には知られていない組成で示される材料を用いたところ、室温域以上、特に330K(約60℃)以上の温度領域での、永久磁石等での磁界の印加によって実質的な構造変態を伴わずに、常磁性相から強磁性相に一次磁気相転移するという新しいタイプの磁気冷凍材料を見出した。 As a result of intensive research, the present inventors have found that a material having an Fe 2 P-type structure and containing both Si and Ge and having a composition that has not been known in the past has been found to operate at room temperature or higher, particularly at 330 K (approximately A new type of magnetic refrigeration material that undergoes a primary magnetic phase transition from a paramagnetic phase to a ferromagnetic phase without substantial structural transformation by applying a magnetic field with a permanent magnet or the like in a temperature range of 60 ° C. or higher. Found it.

MnFePSi系、MnFeRuPSi系の磁気冷凍材料はMnとFeの比率を小さくしていくと、つまりはFeの比率を大きくしていくことで60℃以上にキュリー温度(Tc)を有する磁気冷凍材料を作製しようとした場合には、一般に、ヒステリシスが非常に大きくなり、結果として断熱温度変化が小さくなるものであるが、本発明者が特定の比率でGe置換(Si存在下)して得られた磁気冷凍材料では、キュリー温度(Tc)を増大させると共にヒステリシスの増大も抑えることが可能となり、大きな断熱温度変化を示すことを見出した。 MnFePSi-based and MnFeRuPSi-based magnetic refrigeration materials have a Curie temperature (Tc) of 60° C. or higher by decreasing the ratio of Mn to Fe, that is, by increasing the ratio of Fe. When trying to do so, the hysteresis generally becomes very large, resulting in a small adiabatic temperature change. It was found that the frozen material can increase the Curie temperature (Tc) and suppress the increase in hysteresis, exhibiting a large adiabatic temperature change.

さらに、MnとFeの比率、PとSiの比率ならびにGeの置換量を調節することにより、キュリー温度(Tc)を300K以上447K未満の範囲内で制御することができる。従って、キュリー温度(Tc)の異なる複数の磁気冷凍材料を調製し、これらを組み合わせることによって、室温付近を含む広い温度範囲で動作可能な磁気冷凍装置および磁気ヒートポンプ装置を実現することが可能となる。 Furthermore, the Curie temperature (Tc) can be controlled within the range of 300K or more and less than 447K by adjusting the ratio of Mn and Fe, the ratio of P and Si, and the substitution amount of Ge. Therefore, by preparing a plurality of magnetic refrigerating materials with different Curie temperatures (Tc) and combining them, it is possible to realize a magnetic refrigerating device and a magnetic heat pump device that can operate in a wide temperature range including near room temperature. .

本発明に係る磁気冷凍材料のX線回折(XRD)測定結果を示す。1 shows X-ray diffraction (XRD) measurement results of the magnetic refrigeration material according to the present invention. 比較例に係る磁気冷凍材料のX線回折(XRD)測定結果を示す。FIG. 4 shows X-ray diffraction (XRD) measurement results of a magnetic refrigeration material according to a comparative example; FIG. 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例1~10)。1 shows measurement results of a magnetic refrigeration material according to the present invention with a differential scanning calorimeter (DSC) (Examples 1 to 10). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果(走査速度2℃/分の結果(a)および10℃/分の結果(b))を示す(実施例11~14、比較例4、5)。Measurement results of the magnetic refrigeration material according to the present invention with a differential scanning calorimeter (DSC) (scanning speed 2 ° C./min result (a) and 10 ° C./min result (b)) are shown (Examples 11 to 14 , Comparative Examples 4 and 5). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例17~19)。1 shows the measurement results of the magnetic refrigeration material according to the present invention with a differential scanning calorimeter (DSC) (Examples 17 to 19). 本発明に係る磁気冷凍材料の示差走査熱量計(DSC)での測定結果を示す(実施例6、20~22)。2 shows the measurement results of the magnetic refrigeration material according to the present invention with a differential scanning calorimeter (DSC) (Examples 6, 20 to 22).

かくして、本発明の実施形態に係る磁気冷凍材料は、Mn、Fe、Ru、P、Si、およびGeから構成される磁気冷凍材料であって、SiおよびGeの配合モル比率の和が、0.40以上0.65以下であり、Pの配合モル比率が、0.35以上0.60以下であるものである。 Thus, the magnetic refrigeration material according to the embodiment of the present invention is a magnetic refrigeration material composed of Mn, Fe, Ru, P, Si, and Ge, wherein the sum of the compounding molar ratios of Si and Ge is 0.5. It is 40 or more and 0.65 or less, and the compounding molar ratio of P is 0.35 or more and 0.60 or less.

本実施形態に係る磁気冷凍材料は、Mn、Fe、Ru、P、Si、およびGeの各元素から構成されていれば、上記条件を満たしていれば、各々の構成元素の配合モル比率は特に限定されないが、FeP型構造が構成される化学量論比近傍であることがより好ましいことから、MnFeおよびRuの配合モル比率の和が、PSiおよびGeの配合モル比率の和に対して、1.9以上2.1以下であることが好ましく、次の一般式(I)で表される化合物よりなる磁気冷凍材料を用いることができる。
(MnFeRu)(PSiGe) (I)
(上記式中、1.9≦A≦2.1である)
If the magnetic refrigeration material according to the present embodiment is composed of each element of Mn, Fe, Ru, P, Si, and Ge, and if the above conditions are satisfied, the compounding molar ratio of each constituent element is particularly Although it is not limited, it is more preferable that the ratio is near the stoichiometric ratio where the Fe 2 P type structure is formed, so the sum of the blending molar ratios of Mn , Fe and Ru is the blending molar ratio of P , Si and Ge is preferably 1.9 or more and 2.1 or less with respect to the sum of .
(Mn , Fe , Ru) A (P , Si , Ge) (I)
(In the above formula, 1.9 ≤ A ≤ 2.1)

このうち、構成元素であるMnFeおよびRuの各々の配合モル比率や、PSiおよびGeの各々の配合モル比率は、特に限定されないが、より良好な磁気熱量効果を発揮するという点から、より好ましくは、次の一般式(I-1)で表される化合物よりなる磁気冷凍材料を用いることである。
MnA-x-yFeRu1-z-wSiGe (I-1)
(上記式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)
Among these, the compounding molar ratio of each of the constituent elements Mn , Fe, and Ru, and the compounding molar ratio of each of P , Si , and Ge are not particularly limited, but the point is that a better magnetocaloric effect is exhibited. Therefore, it is more preferable to use a magnetic refrigeration material comprising a compound represented by the following general formula (I-1).
MnAxyFexRuyP1 - zwSizGew ( I - 1)
(In the above formula, 1.9≦A≦2.1, 0<x<A, 0<y<1, 0.40≦w+z≦0.65, 0<w, 0<z)

また、Mnの配合モル比率については、Feの配合モル比率より大きいことが好ましく、温度の上昇時と下降時の強磁性と常磁性が変わる時点の温度差、すなわちヒステリシスの値が大きくなることに起因する特性低下を抑制することができ、安定的に磁気熱量効果を発揮させることが可能となる。 In addition, the compounding molar ratio of Mn is preferably larger than the compounding molar ratio of Fe, and the temperature difference at the time when ferromagnetism and paramagnetism change when the temperature rises and falls, that is, the hysteresis value increases. It is possible to suppress the deterioration of the properties caused by this, and to stably exhibit the magnetocaloric effect.

また、上述したように、MnFeおよびRuの配合モル比率の和は、PSiおよびGeの配合モル比率の和に対して、1.9以上2.1以下であることが好ましいが、より好ましくは、化学量論比以下であり、すなわち、MnFeおよびRuの配合モル比率が、PSiおよびGeの配合モル比率の和に対して、1.9以上2.0以下であることがより好ましい。この構成によって、結晶に一部欠損が生じて歪みのある結晶状態が形成されることとなり、この歪みのある結晶状態によって大きな磁気熱量効果を奏することが可能となる。 In addition, as described above, the sum of the blending molar ratios of Mn , Fe and Ru is preferably 1.9 or more and 2.1 or less with respect to the sum of the blending molar ratios of P , Si and Ge. , More preferably, it is less than the stoichiometric ratio, that is, the blending molar ratio of Mn , Fe and Ru is 1.9 or more and 2.0 or less with respect to the sum of the blending molar ratios of P , Si and Ge is more preferable. With this configuration, a distorted crystalline state is formed due to partial defects in the crystal, and this distorted crystalline state can produce a large magnetocaloric effect.

また、本磁気冷凍材料は、結晶構造が六方晶であることが好ましく、さらに室温での格子定数aが6.20Å≦a≦6.32Å、および格子定数cが3.26Å≦c≦3.34Åであることが好ましい。このような結晶構造によって、大きな磁気熱量効果を安定的に奏することが可能となる。 Further, the present magnetic refrigeration material preferably has a hexagonal crystal structure, and has a lattice constant a at room temperature of 6.20 Å≦a≦6.32 Å and a lattice constant c of 3.26 Å≦c≦3. 34 Å is preferred. Such a crystal structure makes it possible to stably exhibit a large magnetocaloric effect.

本発明の特徴を更に明らかにするために、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。 In order to further clarify the characteristics of the present invention, examples are shown below, but the present invention is not limited to these examples.

(実施例)
本発明に係る各実施例の試料は以下の手順で作製した。すなわち、それぞれの原料を秤量し、それらの試料とボールをグローブボックス内で専用の容器に入れ遊星ボールミルで6時間混合した。容器内は窒素雰囲気とした。
(Example)
A sample of each example according to the present invention was produced by the following procedure. That is, each raw material was weighed, and the samples and balls were placed in a special container in a glove box and mixed with a planetary ball mill for 6 hours. A nitrogen atmosphere was maintained in the container.

混合した試料の60gをカーボン製の容器に入れて焼成した。 60 g of the mixed sample was placed in a carbon container and fired.

封入した試料を室温から6時間かけて1100℃程度まで昇温し、温度を維持したまま5時間保持した後、室温まで自然冷却した。得られた焼結体を53ミクロン以下になるまで粉砕して試料を得た。 The sealed sample was heated from room temperature to about 1100° C. over 6 hours, maintained at the temperature for 5 hours, and then naturally cooled to room temperature. The obtained sintered body was pulverized to 53 microns or less to obtain a sample.

上述した混合および焼成方法に従って、目的組成が、上記一般式(I-1)で示されたMnA-x-yFeRu1-z-wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される化合物のうち、表1で示される実施例1~16、および比較例1~8の磁気冷凍材料を作製した。Geで置換していない磁気冷凍材料を比較例1~3とした。また、SiとGeの配合モル比率の和が、0.65を超えている磁気冷凍材料を比較例4、6、8とした。また、Siを含まない磁気冷凍材料を比較例5、7とした。 According to the mixing and firing method described above, the target composition is MnAxyFexRuyP1 - zwSizGew represented by the general formula (I-1) above ( wherein 1 . 9≦A≦2.1, 0<x<A, 0<y<1, 0.40≦w+z≦0.65, 0<w, 0<z), Table 1 Magnetic refrigeration materials of Examples 1 to 16 and Comparative Examples 1 to 8 shown in were produced. Magnetic refrigeration materials not substituted with Ge were designated as Comparative Examples 1-3. Comparative Examples 4, 6, and 8 were magnetic refrigeration materials in which the sum of the compounding molar ratios of Si and Ge exceeded 0.65. Comparative Examples 5 and 7 were magnetic refrigeration materials containing no Si.

Figure 0007134906000001
Figure 0007134906000001

各実施例に係る磁気冷凍材料の結晶相の構造を同定するために、X線回折(XRD)測定を行った。それぞれの磁気冷凍材料を53μm以下に粉砕した粉末をXRD用試料とした。ターゲットにはCuを用いた。比較例についても同様にX線回折(XRD)測定を行った。 In order to identify the crystal phase structure of the magnetic refrigeration material according to each example, X-ray diffraction (XRD) measurement was performed. A powder obtained by pulverizing each magnetic refrigeration material to a size of 53 μm or less was used as an XRD sample. Cu was used as the target. An X-ray diffraction (XRD) measurement was similarly performed for the comparative example.

得られたX線回折(XRD)測定の結果のうち、図1(a)にA=2、x=0.75、y=0.01、z=0.55、w=0.01(実施例1)、図1(b)にA=2、x=0.77、y=0.01、z=0.55、w=0.015(実施例5)、図1(c)にA=2、x=0.79、y=0.01、z=0.55、w=0.023(実施例9)、図1(d)にA=2、x=0.79、y=0.01、z=0.25、w=0.30(実施例14)の測定結果を示す。また、比較例としては、図2(a)にA=2、x=0.79、y=0.01、z=0.70、w=0.20(比較例6)、図2(b)にA=2、x=0.79、y=0.01、z=0.60、w=0.30(比較例8)の測定結果を示す。 Among the obtained X-ray diffraction (XRD) measurement results, A = 2, x = 0.75, y = 0.01, z = 0.55, w = 0.01 (implementation Example 1), A = 2, x = 0.77, y = 0.01, z = 0.55, w = 0.015 (Example 5) in Fig. 1(b), A in Fig. 1(c) = 2, x = 0.79, y = 0.01, z = 0.55, w = 0.023 (Example 9), A = 2, x = 0.79, y = 0.01, z=0.25, w=0.30 (Example 14). In addition, as a comparative example, A = 2, x = 0.79, y = 0.01, z = 0.70, w = 0.20 (comparative example 6) in FIG. ) shows the measurement results of A=2, x=0.79, y=0.01, z=0.60, w=0.30 (Comparative Example 8).

いずれの組成においても、各実施例に係る磁気冷凍材料は、室温で強磁性相(FM-phase)であり、FeP型構造の材料が得られた。これに対して、各比較例に係る磁気冷凍材料は、図2の結果から明らかなように、異相が多く存在し、FeP型構造の材料として得られなかった。 In any composition, the magnetic refrigeration material according to each example was in a ferromagnetic phase (FM-phase) at room temperature, and a material with an Fe 2 P type structure was obtained. On the other hand, in the magnetic refrigeration materials according to the respective comparative examples, as is clear from the results of FIG. 2, many heterogeneous phases existed, and they could not be obtained as materials with an Fe 2 P type structure.

図3は本発明に係る実施例1~10、図4は本発明に係る実施例11~14および比較例4~5の示差走査熱量計(DSC)での測定結果を示したグラフである。測定試料の重量は約30mgとし、標準試料としてアルミナを用いた。試料のキュリー温度では極小値を示す。以下の表に実施例1~14ならびに比較例1~5のキュリー温度を示す。 3 is a graph showing the results of measurement by a differential scanning calorimeter (DSC) of Examples 1 to 10 according to the present invention, and FIG. 4 is Examples 11 to 14 and Comparative Examples 4 and 5 according to the present invention. The weight of the measurement sample was about 30 mg, and alumina was used as a standard sample. It shows a minimum value at the Curie temperature of the sample. The following table shows the Curie temperatures of Examples 1-14 and Comparative Examples 1-5.

また、実施例1~10ならびに比較例1~3の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。以下の表に各実施例の断熱温度変化値ならびにヒステリシス(△Thys)を示す。 Further, the adiabatic temperature changes (ΔT ad ) of Examples 1 to 10 and Comparative Examples 1 to 3 were measured with an adiabatic temperature measuring device. The applied magnetic field was 1 T, the temperature before magnetic field application and the temperature after magnetic field application were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. The following table shows the adiabatic temperature change values and hysteresis (ΔT hys ) for each example.

Figure 0007134906000002
Figure 0007134906000002

なお、実施例11~14の断熱温度変化(K)は、使用した測定装置の測定限界を超えた高温域のキュリー温度のために実測できなかった領域であるが、測定されたヒステリシス値に拠れば、実施例1~10と同様の非常に小さいヒステリシスを有することが確認されたため、結果として実施例1~10と同様に優れた断熱温度変化を発揮するものと考えられる。 The adiabatic temperature change (K) of Examples 11 to 14 is a region that could not be measured due to the Curie temperature in the high temperature range exceeding the measurement limit of the measuring device used, but it is based on the measured hysteresis value. For example, it was confirmed to have a very small hysteresis similar to that of Examples 1-10.

得られた結果から、実施例1~10においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は最も大きいもので1.8K(A=2、x=0.77、y=0.01、z=0.55、w=0.023)であり、小さいものでも1.7Kである。これは比較例1~3の1.5倍以上の値である(なお、比較例4および5は、特に図4(b)の結果から明らかなように、図4における走査速度基準ではDSCスペクトルのピークが検出されていないというレベルであり、当該ピークが検出されなかったことから、良好な磁気熱量効果を奏しないものと考えられる)。また室温域(40℃以下)にキュリー温度を有するGe置換(Si存在下)していない材料と比較しても同等以上の大きな断熱温度変化が確認できた。 From the obtained results, in Examples 1 to 10, a large adiabatic temperature change was observed near the Curie temperature. , y=0.01, z=0.55, w=0.023) and the smallest is 1.7K. This value is 1.5 times or more that of Comparative Examples 1 to 3 (Comparative Examples 4 and 5 have DSC spectrum This is the level at which no peak was detected, and since this peak was not detected, it is considered that a good magnetocaloric effect is not achieved). In addition, adiabatic temperature change equal to or greater than that of a material without Ge substitution (in the presence of Si) having a Curie temperature in the room temperature range (40° C. or lower) was confirmed.

次に室温付近にキュリー温度を有する磁気冷凍材料のGe置換(Si存在下)による効果を確認するために、上述した混合および焼成方法に従って、目的組成が、上記一般式(I-1)で示されたMnA-x-yFeRu1-z-wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される化合物のうち、以下の表で示される実施例17~19、および比較例9~11の磁気冷凍材料を作製した。比較例9~11は、Geを含まない磁気冷凍材料である。 Next, in order to confirm the effect of Ge replacement (in the presence of Si) of a magnetic refrigeration material having a Curie temperature near room temperature, the target composition was obtained by the above general formula (I-1) according to the above-described mixing and firing method. Mn Axy Fe x Ru y P 1- zw Si z Ge w (where 1.9≦A≦2.1, 0<x<A, 0<y<1, 0 . 40≦w+z≦0.65, 0<w, 0<z), the magnetic refrigeration materials of Examples 17 to 19 and Comparative Examples 9 to 11 shown in the table below were produced. did. Comparative Examples 9-11 are magnetic refrigeration materials that do not contain Ge.

Figure 0007134906000003
Figure 0007134906000003

図5は本発明に係る実施例17~19の示差走査熱量計(DSC)での測定結果を示したグラフである。測定試料の重量は約30mgとし、標準試料としてアルミナを用いた。試料のキュリー温度では極小値を示す。 FIG. 5 is a graph showing the results of measurement with a differential scanning calorimeter (DSC) in Examples 17-19 according to the present invention. The weight of the measurement sample was about 30 mg, and alumina was used as a standard sample. It shows a minimum value at the Curie temperature of the sample.

以下の表に、実施例17~19ならびに比較例9~11のキュリー温度を示す。さらに、実施例17~19ならびに比較例9~11の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。各断熱温度変化値ならびにヒステリシス(△Thys)も併せて、以下の表に示す。 The following table shows the Curie temperature of Examples 17-19 and Comparative Examples 9-11. Furthermore, the adiabatic temperature changes (ΔT ad ) of Examples 17-19 and Comparative Examples 9-11 were measured with an adiabatic temperature measuring device. The applied magnetic field was 1 T, the temperature before magnetic field application and the temperature after magnetic field application were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. Each adiabatic temperature change value and hysteresis (ΔT hys ) are also shown in the table below.

Figure 0007134906000004
Figure 0007134906000004

得られた結果から、実施例17~19においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は最も大きいもので1.9K(A=2、x=0.68、y=0.08、z=0.54、w=0.01)であり、小さいものでも1.8Kである。これは比較例の約1.2倍程度の値であり、室温域から50℃程度にキュリー温度を有する磁気冷凍材料においてもGe置換(Si存在下)により断熱温度変化値が向上することを確認した。 From the obtained results, in Examples 17 to 19, a large adiabatic temperature change was observed near the Curie temperature, and the maximum adiabatic temperature change value in a magnetic field of 1 T was 1.9 K (A = 2, x = 0.68 , y=0.08, z=0.54, w=0.01) and the smallest is 1.8K. This value is about 1.2 times that of the comparative example, and it was confirmed that the adiabatic temperature change value was improved by replacing Ge (in the presence of Si) even in magnetic refrigeration materials with a Curie temperature between room temperature and about 50°C. did.

また、上記各実施例のうちGeの配合モル比率が0.30という一定条件でP、Siを増減させたケースとなる比較例8、実施例14、実施例16について、上記と同様の手法により、キュリー温度、ヒステリシス、DSCピーク、及びXRDによる構造解析結果を得て、以下の表に整理した(以下の表ではPの配合モル比率が昇順となる順番で記載した)。

Figure 0007134906000005
In addition, Comparative Example 8, Example 14, and Example 16, which are cases in which P and Si are increased or decreased under the constant condition that the molar ratio of Ge is 0.30 among the above Examples, were obtained by the same method as described above. , Curie temperature, hysteresis, DSC peak, and structural analysis results by XRD were obtained and arranged in the following table (listed in the following table in ascending order of the blending molar ratio of P).
Figure 0007134906000005

得られた結果から、GeとSiの配合モル比率の和が0.90となる比較例8では目的化合物が合成できないことが確認された。これに対して、GeとSiの配合モル比率の和が0.55となる実施例14では目的化合物が合成された。また、実施例16の結果から、Pの配合モル比率については、実施例14の値である0.45から増加させても0.60までは確実に良好な特性が得られることが確認された。 From the obtained results, it was confirmed that the target compound could not be synthesized in Comparative Example 8 in which the sum of the molar ratios of Ge and Si was 0.90. On the other hand, in Example 14 in which the sum of the compounding molar ratios of Ge and Si was 0.55, the desired compound was synthesized. Further, from the results of Example 16, it was confirmed that even if the molar ratio of P was increased from 0.45, which is the value of Example 14, to 0.60, good characteristics could be obtained without fail. .

次に、上記各実施例のうちGeの配合モル比率が0.20という一定条件でP、Siの配合モル比率を増減させたケースとなる比較例4、比較例6、比較例7、実施例15について、上記と同様の手法により、キュリー温度、ヒステリシス、DSCピーク、およびXRDによる構造解析結果を得て、以下の表に整理した(以下の表ではPの配合モル比率が昇順となる順番で記載した)。 Next, Comparative Example 4, Comparative Example 6, Comparative Example 7, and Example, which are cases in which the compounding molar ratio of P and Si were increased or decreased under the constant condition that the compounding molar ratio of Ge was 0.20 among the above Examples. For 15, the Curie temperature, hysteresis, DSC peak, and structural analysis results by XRD were obtained by the same method as above, and are summarized in the following table (in the following table, the molar ratio of P is in ascending order. Described).

Figure 0007134906000006
Figure 0007134906000006

得られた結果から、GeとSiの配合モル比率の和が0.80となる比較例6では目的化合物が合成できないことが確認された。また、GeとSiの配合モル比率の和が0.75となる比較例4でも目的化合物が合成できないことが確認された。これに対して、GeとSiの配合モル比率の和が0.50となる(すなわち0.40以上0.65以下である)実施例15では目的化合物が合成された。
また、比較例7の結果から、Pの配合モル比率については、実施例15の値である0.5から増加させても、上述したように0.60までは確実に良好な特性が得られることが確認されたが、0.80まで増加させると、キュリー温度が著しく低下することが確認された。
From the obtained results, it was confirmed that the target compound could not be synthesized in Comparative Example 6 in which the sum of the mixing molar ratios of Ge and Si was 0.80. It was also confirmed that the target compound could not be synthesized even in Comparative Example 4, in which the sum of the compounding molar ratios of Ge and Si was 0.75. On the other hand, in Example 15 in which the sum of the compounding molar ratios of Ge and Si was 0.50 (that is, 0.40 or more and 0.65 or less), the target compound was synthesized.
Further, from the results of Comparative Example 7, even if the molar ratio of P is increased from 0.5, which is the value of Example 15, to 0.60 as described above, good characteristics can be reliably obtained. However, it was confirmed that the Curie temperature decreased significantly when the ratio was increased to 0.80.

次に、各実施例に係る磁気冷凍材料の結晶構造について、格子定数aおよび格子定数cを測定した結果を以下に示す。なお、比較例6と比較例8では、結晶が生成されなかったためにデータは無い。また、比較例7は、キュリー温度が低温過ぎるため対象外としてデータを取得していない。 Next, the results of measuring the lattice constant a and the lattice constant c of the crystal structure of the magnetic refrigeration material according to each example are shown below. In Comparative Examples 6 and 8, there is no data because no crystals were formed. Moreover, since the Curie temperature of Comparative Example 7 was too low, it was excluded from the target and no data was obtained.

Figure 0007134906000007
Figure 0007134906000007

上記の結果から、各実施例に係る磁気冷凍材料の結晶構造について、本実施磁気冷凍材料は、結晶構造が六方晶であることが好ましく、さらに室温での格子定数aが6.20Å≦a≦6.32Åであり、格子定数cが3.26Å≦c≦3.34Åであることが好ましいことが確認された。このような特徴を有する結晶構造によって、大きな磁気熱量効果を安定的に奏することが可能となる。 From the above results, regarding the crystal structure of the magnetic refrigeration material according to each example, the magnetic refrigeration material of this embodiment preferably has a hexagonal crystal structure, and furthermore, the lattice constant a at room temperature is 6.20 Å ≤ a ≤ 6.32 Å, and it was confirmed that the lattice constant c is preferably 3.26 Å≦c≦3.34 Å. A crystal structure having such characteristics can stably exhibit a large magnetocaloric effect.

次に、実施例6の磁気冷凍材料の配合モル比率をベースに、Feの配合モル比率を減少させた以下の配合モル比率で実施例20~22の磁気冷凍材料を得た。すなわち、実施例20~22では、一般式(I-1)としてMnA-x-yFeRu1-z-wSiGe(式中、1.9≦A≦2.1、0<x<A、0<y<1、0.40≦w+z≦0.65、0<w、0<zである)で表される磁気冷凍材料のうち、特に、1.9≦A≦2.0となるものである。 Next, magnetic refrigeration materials of Examples 20 to 22 were obtained with the following molar ratios of Fe, which were based on the molar ratio of the magnetic refrigeration material of Example 6. That is, in Examples 20 to 22, the general formula (I- 1 ) was MnAxyFexRuyP1 - zwSizGew ( where 1.9≤A≤2.1 , 0<x<A, 0<y<1, 0.40≦w+z≦0.65, 0<w, 0<z), particularly 1.9≦A ≦2.0.

Figure 0007134906000008
Figure 0007134906000008

得られたDSCスペクトルの結果を、図6に示す。得られた結果から、Mn、Fe、およびRuの配合モル比率の和が、特に1.9以上2.0以下である場合には、より急峻なDSCスペクトルのピークが得られたことが確認されたことから、優れた磁気熱量効果を有することが確認された。 The results of the obtained DSC spectrum are shown in FIG. From the obtained results, it was confirmed that when the sum of the blending molar ratios of Mn, Fe, and Ru was 1.9 or more and 2.0 or less, a steeper DSC spectrum peak was obtained. Therefore, it was confirmed to have an excellent magnetocaloric effect.

以下の表に、実施例20~22のキュリー温度を示す。さらに、実施例20~22の断熱温度変化(△Tad)を断熱温度測定装置で測定した。印加磁場は1Tで、各指定した温度で磁場印加前の温度および磁場印加後の温度を測定し、その差を断熱温度変化値とした。各断熱温度変化値ならびにヒステリシス(△Thys)も併せて、以下の表に示す。 The table below shows the Curie temperature for Examples 20-22. Furthermore, the adiabatic temperature change (ΔT ad ) of Examples 20-22 was measured with an adiabatic temperature measuring device. The applied magnetic field was 1 T, the temperature before magnetic field application and the temperature after magnetic field application were measured at each specified temperature, and the difference was taken as the adiabatic temperature change value. Each adiabatic temperature change value and hysteresis (ΔT hys ) are also shown in the table below.

Figure 0007134906000009
Figure 0007134906000009

得られた結果から、実施例20~22においてキュリー温度付近で大きな断熱温度変化が見られ、磁場1Tでの断熱温度変化値は1.7Kである。Mn、Fe、およびRuの配合モル比率の和が1.9以上2.0以下である磁気冷凍材料においても、Ge置換(Si存在下)により断熱温度変化値が向上することを確認した。 From the obtained results, a large adiabatic temperature change is observed near the Curie temperature in Examples 20 to 22, and the adiabatic temperature change value is 1.7K in a magnetic field of 1T. It was confirmed that even in a magnetic refrigeration material in which the sum of the blending molar ratios of Mn, Fe, and Ru is 1.9 or more and 2.0 or less, the Ge replacement (in the presence of Si) improves the adiabatic temperature change value.

以上の結果から、本実施例に係る磁気冷凍材料は、キュリー温度が室温付近だけでなく、特に高い温度領域(60℃以上)においても大きな磁気熱量効果を示し、大きな断熱温度変化値が得られることが確認された。
From the above results, the magnetic refrigeration material according to this example exhibits a large magnetocaloric effect not only in the vicinity of room temperature, but also in a particularly high temperature range (60 ° C. or higher), and a large adiabatic temperature change value can be obtained. was confirmed.

Claims (3)

次の一般式(I-1)で表される化合物よりなることを特徴とする磁気冷凍材料。
MnA-x-yFeRu1-z-wSiGe (I-1)
(上記式中、1.9≦A≦2.1、0<x<A、0.01≦≦0.08、0.40≦w+z≦0.65、0<w、0<zである)
A magnetic refrigeration material comprising a compound represented by the following general formula (I-1).
MnAxyFexRuyP1 - zwSizGew ( I - 1)
(In the above formula, 1.9≦A≦2.1, 0<x<A, 0.01≦ y ≦0.08 , 0.40≦w+z≦0.65, 0<w, 0<z )
Mnの配合モル比率が、Feの配合モル比率より大きいことを特徴とする請求項に記載の磁気冷凍材料。 2. The magnetic refrigeration material according to claim 1 , wherein the compounding molar ratio of Mn is larger than the compounding molar ratio of Fe. Mn、Fe、およびRuの配合モル比率の和が、1.9以上2.0以下であることを特徴とする請求項1又は2に記載の磁気冷凍材料。 3. The magnetic refrigeration material according to claim 1, wherein the sum of molar ratios of Mn, Fe, and Ru is 1.9 or more and 2.0 or less.
JP2019049525A 2019-03-18 2019-03-18 magnetic refrigeration material Active JP7134906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049525A JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049525A JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Publications (2)

Publication Number Publication Date
JP2020152930A JP2020152930A (en) 2020-09-24
JP7134906B2 true JP7134906B2 (en) 2022-09-12

Family

ID=72558056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049525A Active JP7134906B2 (en) 2019-03-18 2019-03-18 magnetic refrigeration material

Country Status (1)

Country Link
JP (1) JP7134906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892054B (en) * 2022-05-16 2023-09-26 上海电力大学 Magnetic storage semi-metal material with exchange bias effect and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514158A (en) 2003-01-29 2006-04-27 スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン Magnetic material having cooling capacity, method for producing the material, and method for using the material
JP2011523771A (en) 2008-04-28 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Open-cell porous moldings for heat exchangers
JP2014015678A (en) 2012-06-12 2014-01-30 Kyushu Univ Magnetic refrigerant
WO2016104739A1 (en) 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
WO2018083819A1 (en) 2016-11-02 2018-05-11 日本碍子株式会社 Method for manufacturing magnetic material
JP2018107203A (en) 2016-12-22 2018-07-05 大電株式会社 Magnetic refrigerating material and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514158A (en) 2003-01-29 2006-04-27 スティッチング ヴォール デ テクニッシェ ヴェッテンシャッペン Magnetic material having cooling capacity, method for producing the material, and method for using the material
JP2011523771A (en) 2008-04-28 2011-08-18 ビーエーエスエフ ソシエタス・ヨーロピア Open-cell porous moldings for heat exchangers
JP2014015678A (en) 2012-06-12 2014-01-30 Kyushu Univ Magnetic refrigerant
WO2016104739A1 (en) 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
WO2018083819A1 (en) 2016-11-02 2018-05-11 日本碍子株式会社 Method for manufacturing magnetic material
JP2018107203A (en) 2016-12-22 2018-07-05 大電株式会社 Magnetic refrigerating material and manufacturing method of the same

Also Published As

Publication number Publication date
JP2020152930A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
Phan et al. Excellent magnetocaloric properties of La0. 7Ca0. 3− xSrxMnO3 (0.05⩽ x⩽ 0.25) single crystals
Fries et al. Microstructural and magnetic properties of Mn-Fe-P-Si (Fe2 P-type) magnetocaloric compounds
US8293030B2 (en) Intermetallic compounds, their use and a process for preparing the same
JP4663328B2 (en) Magnetic material having cooling capacity, method for producing the material, and method for using the material
US8424314B2 (en) Intermetallic compounds, their use and a process for preparing the same
Bao et al. Magnetocaloric properties of La (Fe, Si) 13-based material and its hydride prepared by industrial mischmetal
US20110126550A1 (en) Magnetocaloric refrigerators
Chen et al. Magnetocaloric effect in (La, R) 2/3Ca1/3MnO3 (R= Gd, Dy, Tb, Ce)
JP2009054776A (en) Magnetic refrigeration material, its manufacturing method, and method of altering antiferromagnetic material to ferromagnetic material
CN107710429B (en) P-type skutterudite thermoelectric material, method for preparing same, and thermoelectric device comprising same
JP7134906B2 (en) magnetic refrigeration material
JP6009994B2 (en) Magnetic refrigeration material
JP6115306B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
JP6205838B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
JP7187431B2 (en) magnetic refrigeration material
Souca et al. MAGNETOCALORIC EFFECT AND MAGNETIC PROPERTIES OF Pr₁₋ ₓ Ceₓ Co₃ COMPOUNDS
JP2003313544A (en) Working substance for magnetic refrigeration, heat regenerator and magnetic refrigeration apparatus
JP6205839B2 (en) Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus
KR101575861B1 (en) Magnetocaloric metal compound and method for preparing thereof
KR102589531B1 (en) Magneto-caloric alloy and preparing method thereof
JP2013104129A (en) Magnetic refrigeration material, magnetic refrigeration device, and magnetic refrigeration system
Mehri et al. Magnetocaloric Properties in LaCaKMnO, PrSrKMnO, and NdSrKMnO Manganites.
Bezergheanu et al. Structural, magnetic and magnetocaloric properties of R2/3Ba1/3MnO3 (R= La, Pr) manganites
ÇETİN et al. Effects of Mn-site doping on the magnetocaloric properties of La 0.62 Bi 0.05 Ca 0.33 Mn 1-x Ru x O 3 manganite system.
JP3987334B2 (en) Double aligned perovskite magnetoresistive element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7134906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150