JP2020148679A - Dynamic strain measurement device - Google Patents

Dynamic strain measurement device Download PDF

Info

Publication number
JP2020148679A
JP2020148679A JP2019047562A JP2019047562A JP2020148679A JP 2020148679 A JP2020148679 A JP 2020148679A JP 2019047562 A JP2019047562 A JP 2019047562A JP 2019047562 A JP2019047562 A JP 2019047562A JP 2020148679 A JP2020148679 A JP 2020148679A
Authority
JP
Japan
Prior art keywords
stress
light
luminescent material
dynamic strain
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019047562A
Other languages
Japanese (ja)
Inventor
海華 張
Kaika Chiyou
海華 張
佐々木 裕一
Yuichi Sasaki
裕一 佐々木
亮斗 尾崎
Akito Ozaki
亮斗 尾崎
亜久里 野田
Aguri Noda
亜久里 野田
靖広 大越
Yasuhiro Ogoshi
靖広 大越
翼 服部
Tsubasa Hattori
翼 服部
前川 利雄
Toshio Maekawa
利雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2019047562A priority Critical patent/JP2020148679A/en
Publication of JP2020148679A publication Critical patent/JP2020148679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

To provide a measurement device that measures dynamic strain generated on a structure due to an earthquake or the like.SOLUTION: A measurement device 10 of dynamic strain of a structure for measuring dynamic strain acting on a structure 1 based on a light emission state of a stress-induced illuminant 2 applied on a surface of the structure 1 comprises a light-shielding container 11 for shielding a surface of the stress-induced illuminant 2 from external light, photographing means 12 for photographing the light emission state of the stress-induced illuminant 2 continuously, and irradiation means 13 for irradiating the stress-induced illuminant 2 with excitation light at predetermined time intervals. The photographing means 12 and the irradiation means 13 are disposed inside the light-shielding container 11.SELECTED DRAWING: Figure 1

Description

本発明は、RC柱や梁などの構造物の動的ひずみを計測する装置に関する。 The present invention relates to an apparatus for measuring dynamic strain of structures such as RC columns and beams.

従来、応力発光体を構造物に取付け、その発光状態から構造物の縦ひずみ量を計測する技術が開示されている(例えば、特許文献1参照)。
応力発光体は、紫外線、電子線、X線などの光により励起され、応力がかかると発光するもので、構造物のひずみの変化量が大きいほど発光強度が大きくなることが知られている。
Conventionally, a technique of attaching a stress-stimulated luminescent material to a structure and measuring the amount of longitudinal strain of the structure from the light emitting state thereof has been disclosed (see, for example, Patent Document 1).
A stress luminescent material is excited by light such as ultraviolet rays, electron beams, and X-rays, and emits light when stress is applied. It is known that the larger the amount of change in strain of a structure, the higher the luminescence intensity.

特開2017−44634号公報JP-A-2017-44634

しかしながら、上記の特許文献1だけでなく、従来の応力発光体による構造物のひずみ計測は、静的な負荷状態における発光強度の計測が一般的であり、構造物の動的な変形については、出願人の知る限りでは、知見がなかった。
そこで、地震などの大きさが周期的に変化する応力が作用した時に発生する構造物のひずみ(以下、動的ひずみという)を計測する技術の開発が求められている。
However, in addition to the above-mentioned Patent Document 1, the strain measurement of a structure by a conventional stress-stimulated luminescent material generally measures the luminescence intensity under a static load state, and the dynamic deformation of the structure is described. As far as the applicant knows, there was no knowledge.
Therefore, there is a need for the development of a technique for measuring the strain of a structure (hereinafter referred to as dynamic strain) generated when a stress such as an earthquake whose magnitude changes periodically is applied.

本発明は、従来の問題点に鑑みてなされたもので、地震などにより構造物に発生する動的ひずみを計測する装置を提供することを目的とする。 The present invention has been made in view of the conventional problems, and an object of the present invention is to provide an apparatus for measuring dynamic strain generated in a structure due to an earthquake or the like.

本発明は、RC柱や梁などの構造物の表面に塗布された応力発光体の発光状態から、前記構造物に作用する動的ひずみを計測する装置であって、前記応力発光体の発光状態を連続的に撮影する撮影手段と、所定時間毎に前記応力発光体に励起光を照射する照射手段と、前記応力発光体の表面を外光から遮蔽する遮光用容器と、を備え、前記撮影手段と前記照射手段とが、前記遮光用容器の内側に配置されていることを特徴とする。
これにより、地震などにより構造物に発生した動的ひずみの大きさとその分布状態の時間的変化のデータを動画として取得することができるので、構造物に作用する動的ひずみの状態を正確に把握することができる。
また、遮光用容器の内側に撮影手段を配置して応力発光体の発光状態を撮影するようにしたので、鮮明な動画を取得することができる。したがって、動的ひずみの大きさと分布とを精度よく計測することができる。
また、前記遮光用容器の内側に、所定時間毎に前記応力発光体に励起光を照射する照射手段を配置したので、構造物の動的ひずみを長時間に亘って精度よく計測できる。
また、前記撮影された応力発光体の画像から、前記構造物に発生する動的ひずみの大きさを計算するひずみ計算手段を設けたので、計算された動的ひずみの大きさや分布のデータを、地震による損傷の大きさやその範囲と対応づけすれば、動的ひずみの大きさや分布から地震による損傷箇所を特定することができる。
また、前記構造物に取付けられて、前記構造物に入力する振動を検知する振動検出手段を設けるとともに、前記振動検出手段に入力した振動の大きさが予め設定された閾値を超えた場合のみ、前記応力発光体を撮影するようにしたので、構造物の動的ひずみのデータを効率よく取得することができる。
The present invention is an apparatus for measuring dynamic strain acting on the structure from the light emitting state of the stress-stimulated luminescent material applied to the surface of a structure such as an RC column or a beam, and the light emitting state of the stress-stimulated luminescent material. The imaging means is provided with an imaging means for continuously photographing the stress luminescent material, an irradiation means for irradiating the stress-stimulated luminescent material with excitation light at predetermined time intervals, and a light-shielding container for shielding the surface of the stress-stimulated luminescent material from external light. The means and the irradiation means are arranged inside the light-shielding container.
As a result, it is possible to acquire data on the magnitude of dynamic strain generated in a structure due to an earthquake or the like and the temporal change of its distribution state as a moving image, so that the state of dynamic strain acting on the structure can be accurately grasped. can do.
Further, since the photographing means is arranged inside the light-shielding container to photograph the light emitting state of the stress-stimulated luminescent material, a clear moving image can be obtained. Therefore, the magnitude and distribution of the dynamic strain can be measured accurately.
Further, since the irradiation means for irradiating the stress-stimulated luminescent material with excitation light is arranged inside the light-shielding container at predetermined time intervals, the dynamic strain of the structure can be accurately measured over a long period of time.
Further, since a strain calculation means for calculating the magnitude of the dynamic strain generated in the structure from the photographed image of the stress luminescent material is provided, the calculated dynamic strain magnitude and distribution data can be obtained. By associating with the magnitude and range of damage caused by an earthquake, the location of damage caused by an earthquake can be identified from the magnitude and distribution of dynamic strain.
Further, only when the vibration detecting means attached to the structure and detecting the vibration input to the structure is provided and the magnitude of the vibration input to the vibration detecting means exceeds a preset threshold value. Since the stress luminescent material is photographed, the dynamic strain data of the structure can be efficiently acquired.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。 It should be noted that the outline of the present invention does not list all the necessary features of the present invention, and subcombinations of these feature groups can also be inventions.

本実施の形態に係る動的ひずみの計測装置を示す図である。It is a figure which shows the dynamic strain measuring apparatus which concerns on this embodiment. 動的ひずみと応力発光体の発光との関係を示す図である。It is a figure which shows the relationship between dynamic strain and light emission of a stress chemoluminescent body.

図1(a),(b)は、本実施の形態を示す図で、(a)図は、動的ひずみの計測装置(以下、計測装置10という)の設置状態を示す図で、(b)図は、計測装置10の機能ブロック図である。
本例では、構造物であるRC柱1の表面の動的歪みを観測したい範囲に応力発光体2を塗布しておき、計測装置10にて、RC柱1に、地震による応力が作用したとき応力発光体2の発光状態を撮影して、RC柱1の動的ひずみを計測する。
応力発光体2は、応力発光材料に塗料を配合したもので、観測したいひずみ量により、応力発光材料の含有量を調節してある。
計測装置10は、遮光用容器11と、撮影手段としてのカラーCCDカメラ(以下、カメラ12という)と、照射手段としての紫外線照射器13と、記憶手段14と、ひずみ計算手段15と、振動検出手段としての加速度センサ16と、スイッチ17とを備える。カメラ12と紫外線照射器13とは遮光用容器11の内側に配置される。
なお、(a)図では、カメラ12、紫外線照射器13、加速度センサ16の電源線、及び、信号線については省略している。
1 (a) and 1 (b) are diagrams showing the present embodiment, and FIG. 1 (a) is a diagram showing an installed state of a dynamic strain measuring device (hereinafter referred to as a measuring device 10), (b). ) Is a functional block diagram of the measuring device 10.
In this example, when the stress luminescent material 2 is applied to the area where the dynamic strain of the surface of the RC column 1 which is a structure is to be observed, and the stress due to the earthquake acts on the RC column 1 in the measuring device 10. The dynamic strain of the RC column 1 is measured by photographing the light emitting state of the stress mechanoluminescent body 2.
The stress-stimulated luminescent material 2 is a mixture of a stress-stimulated luminescent material and a paint, and the content of the stress-stimulated luminescent material is adjusted according to the amount of strain to be observed.
The measuring device 10 includes a light-shielding container 11, a color CCD camera as an imaging means (hereinafter referred to as a camera 12), an ultraviolet irradiator 13 as an irradiating means, a storage means 14, a strain calculating means 15, and vibration detection. An acceleration sensor 16 and a switch 17 are provided as means. The camera 12 and the ultraviolet irradiator 13 are arranged inside the light-shielding container 11.
In the figure (a), the camera 12, the ultraviolet irradiator 13, the power line of the acceleration sensor 16, and the signal line are omitted.

遮光用容器11は、取付側に、応力発光体2よりも大きな開口部を有する箱体11aと、箱体11aの開口部の周縁に取付けられた取付部材としてのゴム部材11bとを備えたもので、ゴム部材11bをRC柱1に取付けたときに、カメラ12と紫外線照射器13とが暗所になるように密閉された箱を形成する。なお、ゴム部材11bに代えて、箱体11aの開口部の周縁に取付部材を設けてもよいが、ゴム部材11bを用いる方が密閉性を高める上で好ましい。
カメラ12は、RC柱1の応力発光体2が塗布された範囲を含むカラー画像を連続的(1/30秒〜1/50秒毎)に撮影するとともに、撮影されたカラー画像のデータを記憶手段14に送る。なお、後述するように、応力発光体2の撮影は、RC柱1に地震などの振動が入力された場合のみ行う。上記のように、カメラ12は、外光が入らないように、遮光用容器11の内側に配置されているので、応力発光体2の発光時には、鮮明な動画を取得することができる。
紫外線照射器13は、所定時間毎に応力発光体2に励起光を照射する。なお、励起後の応力発光体2は、応力が作用しない場合には、ほぼ励起状態を維持するので、計測する毎に励起光を照射する必要はないが、応力発光体2を確実に発光させるためには、図示しないタイマーにより、例えば、24時間おきに5分程度照射すればよい。なお、照射間隔や照射時間については、応力発光材料の組成や含有量により、適宜決定すればよい。
The light-shielding container 11 is provided with a box body 11a having an opening larger than that of the mechanoluminescent body 2 on the mounting side, and a rubber member 11b as a mounting member mounted on the peripheral edge of the opening of the box body 11a. When the rubber member 11b is attached to the RC pillar 1, the camera 12 and the ultraviolet illuminator 13 form a sealed box so as to be in a dark place. Instead of the rubber member 11b, a mounting member may be provided on the peripheral edge of the opening of the box body 11a, but it is preferable to use the rubber member 11b in order to improve the airtightness.
The camera 12 continuously (every 1/30 second to 1/50 second) captures a color image including the area where the mechanoluminescent body 2 of the RC column 1 is applied, and stores the captured color image data. Send to means 14. As will be described later, the stress-stimulated luminescent material 2 is photographed only when vibration such as an earthquake is input to the RC column 1. As described above, since the camera 12 is arranged inside the light-shielding container 11 so as to prevent outside light from entering, a clear moving image can be obtained when the stress-stimulated luminescent material 2 emits light.
The ultraviolet irradiator 13 irradiates the stress luminescent material 2 with excitation light at predetermined time intervals. Since the stress-stimulated luminescent material 2 after excitation maintains an almost excited state when stress does not act, it is not necessary to irradiate the excitation light every time measurement is performed, but the stress-stimulated luminescent material 2 is surely emitted. For this purpose, irradiation may be performed by a timer (not shown) for about 5 minutes every 24 hours, for example. The irradiation interval and irradiation time may be appropriately determined depending on the composition and content of the stress-stimulated luminescent material.

記憶手段14は、動画保存部14aと、ひずみ−輝度テーブル保存部14bと、計算結果保存部14cとを備える。
動画保存部14aは、撮影したカメラ12の画像データを動画データとして保存し、ひずみ−輝度テーブル保存部14bは、予め求めておいたひずみの大きさと撮影された画像の輝度との関係を示すひずみ−輝度テーブル(σ−LテーブルT)を保存する。また、計算結果保存部14cは、ひずみ計算手段15の計算結果を保存する。
ひずみ計算手段15は、記憶手段14に保存された画像データを用いて、RC柱1に発生する動的ひずみを計算する。具体的には、画像データの各セルの輝度を算出して画像の輝度分布を求めた後、σ−LテーブルTを用いて、輝度分布を動的ひずみの分布に変換し、この変換された動的ひずみの分布のデータを計算結果として記憶手段14の計算結果保存部14cに保存する。
記憶手段14とひずみ計算手段15とは記憶・演算器18を構成する。記憶・演算器18は、例えば、マイクロコンピュータのメモリーとソフトウェアにより構成される。
本例では、地震後に上記メモリーが取出し易いように、記憶・演算器18を遮光用容器11の外側に取付けている。
なお、地震後には、地震の大小にかかわらず、計測装置10全体を付替える場合には、記憶・演算器18を遮光用容器11の内側に設置してもよい。
The storage means 14 includes a moving image storage unit 14a, a strain-luminance table storage unit 14b, and a calculation result storage unit 14c.
The moving image storage unit 14a stores the image data of the captured camera 12 as moving image data, and the strain-luminance table storage unit 14b shows the relationship between the magnitude of the strain obtained in advance and the brightness of the captured image. -Save the brightness table (σ-L table T). Further, the calculation result storage unit 14c stores the calculation result of the strain calculation means 15.
The strain calculation means 15 calculates the dynamic strain generated in the RC column 1 by using the image data stored in the storage means 14. Specifically, after calculating the brightness of each cell of the image data to obtain the brightness distribution of the image, the brightness distribution was converted into a dynamic strain distribution using the σ-L table T, and this conversion was performed. The data of the distribution of the dynamic strain is stored as the calculation result in the calculation result storage unit 14c of the storage means 14.
The storage means 14 and the strain calculation means 15 constitute a storage / arithmetic unit 18. The storage / arithmetic unit 18 is composed of, for example, a memory and software of a microcomputer.
In this example, the storage / arithmetic unit 18 is attached to the outside of the light-shielding container 11 so that the memory can be easily taken out after an earthquake.
After an earthquake, the storage / arithmetic unit 18 may be installed inside the light-shielding container 11 when the entire measuring device 10 is replaced regardless of the magnitude of the earthquake.

加速度センサ16は、RC柱1の表面に取付けられて、RC柱1に入力する振動を検知する。加速度センサ16の設置箇所としては、応力発光体2の近くに設置することが好ましく、遮光用容器11の覆う領域内に設置すれば、更に好ましい。
加速度センサ16の出力はスイッチ17に送られる。
スイッチ17は、加速度センサ16で検知された振動の大きさが予め設定された閾値を超えた場合に、カメラ12に応力発光体2の撮影を開始するための信号を出力する。
なお、加速度センサ16の情報に代えて、地震情報を取得する手段を設け、地震情報が入ったときに、カメラ12に応力発光体2の撮影を開始するための信号を出力するようにしてもよい。
また、励起光の照射時には、応力発光体2の発光を撮影できないので、スイッチ17に、地震の発生時に励起光が照射されていた場合には、直ちに、励起光の照射を中止する信号を紫外線照射器13に送る機能を持たせることが好ましい。
The acceleration sensor 16 is attached to the surface of the RC pillar 1 and detects the vibration input to the RC pillar 1. The acceleration sensor 16 is preferably installed near the stress luminescent material 2, and more preferably installed in the area covered by the light-shielding container 11.
The output of the acceleration sensor 16 is sent to the switch 17.
The switch 17 outputs a signal for starting the imaging of the stress-stimulated luminescent material 2 to the camera 12 when the magnitude of the vibration detected by the acceleration sensor 16 exceeds a preset threshold value.
In addition, instead of the information of the acceleration sensor 16, a means for acquiring earthquake information is provided, and when the earthquake information is input, a signal for starting the imaging of the stress luminescent material 2 may be output to the camera 12. Good.
Further, since the emission of the stress-stimulated luminescent material 2 cannot be photographed when the excitation light is irradiated, if the switch 17 is irradiated with the excitation light at the time of the occurrence of an earthquake, an ultraviolet ray is immediately sent to the switch 17 to stop the irradiation of the excitation light. It is preferable to have a function of sending to the irradiator 13.

次に、計測装置10の動作について説明する。
なお、遮光用容器11は、応力発光体2が塗布されたRC柱1に予め設置されているものとする。
加速度センサ16が、RC柱1に地震などによる振動を検知し、その振動の大きさが予め設定された閾値(例えば、0.2G)を超えた場合に、スイッチ17が作動して、カメラ12は撮影を開始する。
応力発光体2は、下記の実験例に示すように、動的ひずみの大きさが所定の値を超えたときに発光する。
図2(a)は、小型振動体にて、鋼板に、地震による振動の周期に近い周期(約1sec.)の周期の振動を与えたとき動的ひずみの履歴を示すグラフで、横軸は時間(sec.)、縦軸はひずみ(μ)である。同図の実線が、±1000μ(±1×10-3)のひずみが発生する大振幅の振動を鋼板に与えたときのグラフで、破線が±500μのひずみが発生する中振幅の振動を鋼板に与えたときのグラフである。また、丸印は応力発光体2が発光したところを示す。なお、ひずみは、鋼板にひずみゲージを取付けて測定した。
同図に示すように、応力発光体2は、ひずみの変化量が所定の大きさ以上でないと発光しないことが分かる。
一方、図2(b)に示すように、小型振動体にて、鋼板に、地震による振動の周期よりも短い周期(約0.2sec.)の振動を与えた場合には、応力発光体2は発光しなかった。
なお、実際の地震動では、建物に短周期で大振幅なひずみは発生しにくいので、鋼板に中振幅のひずみが発生する振動を与えた場合と、小振幅(±250μ)ひずみが発生する振動を与えた場合とについて実験した。
また、図2(c)のグラフは、鋼板を手動にて一定間隔で曲げて応力発光体2の発光を確認したものである。手動実験では、ひずみの負側のみ載荷しているが、応力発光体2が発光したのは、正側にも振動させたと仮定したときの与えたひずみが、±1000μの大振幅に相当するためである。
また、これらのグラフから、応力発光体2は、静的な応力だけでなく、地震の振動に近い、長い周期の振動に対しても応答することが分かる。
カメラ12は、RC柱1に振動が入力した時の応力発光体2を撮影し、撮影された画像データを順次記憶手段14に送る。画像データは、記憶手段14の動画保存部14aに動画データとして時系列的に保存される。
そして、各画像データをひずみ計算手段15にて画像の輝度分布を求めた後、ひずみ−輝度テーブルTを用いて、輝度分布を動的ひずみの分布に変換する。動的ひずみの分布は、記憶手段14の計算結果保存部14cに保存される。
なお、計測装置10をRC柱1に取付けた状態では、応力発光体2は、遮光用容器11により外光から遮断されているので、紫外線照射器13により、所定時間毎に応力発光体2に励起光を照射する必要があることはいうまでもない。
Next, the operation of the measuring device 10 will be described.
It is assumed that the light-shielding container 11 is pre-installed on the RC pillar 1 coated with the stress-stimulated luminescent material 2.
When the acceleration sensor 16 detects vibration caused by an earthquake or the like on the RC pillar 1 and the magnitude of the vibration exceeds a preset threshold value (for example, 0.2 G), the switch 17 is activated and the camera 12 is activated. Starts shooting.
As shown in the experimental example below, the stress luminescent material 2 emits light when the magnitude of dynamic strain exceeds a predetermined value.
FIG. 2A is a graph showing the history of dynamic strain when a steel plate is vibrated with a period (about 1 sec.) Close to the period of vibration due to an earthquake with a small vibrating body. Time (sec.) And vertical axis are strain (μ). The solid line in the figure is a graph when a large-amplitude vibration with a strain of ± 1000 μ (± 1 × 10 -3 ) is applied to the steel sheet, and the broken line is a medium-amplitude vibration with a strain of ± 500 μ. It is a graph when given to. Further, the circle mark indicates the place where the stress mechanoluminescent body 2 emits light. The strain was measured by attaching a strain gauge to the steel plate.
As shown in the figure, it can be seen that the stress luminescent material 2 does not emit light unless the amount of change in strain is a predetermined magnitude or more.
On the other hand, as shown in FIG. 2B, when the steel sheet is vibrated with a period shorter than the period of vibration due to an earthquake (about 0.2 sec.) In the small vibrating body, the stress luminescent material 2 Did not emit light.
In actual seismic motion, it is difficult for a building to generate large-amplitude strain in a short period of time. Therefore, when a steel sheet is subjected to vibration that causes medium-amplitude strain, and vibration that causes small-amplitude (± 250μ) strain, Experimented with and when given.
Further, the graph of FIG. 2C shows the light emission of the stress mechanoluminescent body 2 by manually bending the steel plate at regular intervals. In the manual experiment, only the negative side of the strain was loaded, but the stress-stimulated luminescent material 2 emitted light because the strain applied when it was assumed to vibrate on the positive side also corresponds to a large amplitude of ± 1000μ. Is.
Further, from these graphs, it can be seen that the stress luminescent material 2 responds not only to static stress but also to vibration having a long period, which is close to the vibration of an earthquake.
The camera 12 photographs the stress-stimulated luminescent material 2 when vibration is input to the RC pillar 1, and sequentially sends the captured image data to the storage means 14. The image data is stored in the moving image storage unit 14a of the storage means 14 as moving image data in time series.
Then, after obtaining the brightness distribution of the image by the strain calculation means 15 for each image data, the brightness distribution is converted into the dynamic strain distribution by using the strain-luminance table T. The distribution of the dynamic strain is stored in the calculation result storage unit 14c of the storage means 14.
In the state where the measuring device 10 is attached to the RC pillar 1, the mechanoluminescent body 2 is blocked from outside light by the light-shielding container 11, so that the mechanoluminescent body 2 is subjected to the ultraviolet irradiator 13 at predetermined time intervals. Needless to say, it is necessary to irradiate the excitation light.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the claims that forms with such modifications or improvements may also be included in the technical scope of the invention.

例えば、前記実施の形態では、構造物をRC柱1としたが、鋼製の梁、鋼柱、あるいは、鋼板などの他の構造部材であってもよい。要は、加えられた応力の大きさに応じたひずみを発生する構造物であればよい。
また、前記実施の形態では、画像データの各セルの輝度を算出して、画像の輝度分布を求めてこれを動的ひずみの分布としたが、応力発光体2が発光を繰り返す動画データそのものを、動的ひずみの計測結果としてもよい。すなわち、動画データのうち、発光している部分が所定の大きさ以上のひずみが発生している領域であり、暗い部分がひずみがないか、もしくは、ひずみの少ない領域であるとすればよい。
また、前記実施の形態では、記憶・演算器18を遮光用容器11の外壁部に取付けたが、更に送信機を取付けて、記憶手段14の計算結果保存部14cに保存されている動的ひずみの分布のデータを、図示しない建物管理センター等に送るようにしてもよい。
あるいは、ひずみ計測手段15を建物管理センターに設け、撮影したカメラ12の画像データを、送信機から、建物管理センターに送るようにしてもよい。
For example, in the above-described embodiment, the structure is the RC column 1, but it may be a steel beam, a steel column, or another structural member such as a steel plate. In short, it may be a structure that generates strain according to the magnitude of the applied stress.
Further, in the above-described embodiment, the brightness of each cell of the image data is calculated, the brightness distribution of the image is obtained, and this is used as the dynamic strain distribution. However, the moving image data itself in which the stress luminescent body 2 repeats light emission is used. , It may be a measurement result of dynamic strain. That is, in the moving image data, the light emitting portion may be a region in which distortion of a predetermined magnitude or more is generated, and the dark portion may be a region in which there is no distortion or there is little distortion.
Further, in the above-described embodiment, the storage / calculation device 18 is attached to the outer wall portion of the light-shielding container 11, but a transmitter is further attached to the dynamic strain stored in the calculation result storage unit 14c of the storage means 14. The data of the distribution of the above may be sent to a building management center or the like (not shown).
Alternatively, the strain measuring means 15 may be provided in the building management center, and the image data of the camera 12 taken may be sent from the transmitter to the building management center.

1 RC柱、2 応力発光体、
10 動的ひずみの計測装置、11 遮光用容器、11a 箱体、11b ゴム部材、
12 カラーCCDカメラ、13 紫外線照射器、14 記憶手段、
14a 動画保存部、14b ひずみ−輝度テーブル保存部、14c 計算結果保存部、
15 ひずみ計算手段、16 加速度センサ、17 スイッチ、18 記憶・演算器、
T ひずみ−輝度テーブル。
1 RC column, 2 stress luminescent material,
10 Dynamic strain measuring device, 11 Light-shielding container, 11a box body, 11b rubber member,
12 color CCD camera, 13 UV irradiator, 14 storage means,
14a video storage unit, 14b strain-brightness table storage unit, 14c calculation result storage unit,
15 Strain calculation means, 16 Accelerometer, 17 Switch, 18 Memory / calculator,
T strain-brightness table.

Claims (3)

構造物の表面に塗布された応力発光体の発光状態から、前記構造物に作用する動的ひずみを計測する装置であって、
前記応力発光体の発光状態を連続的に撮影する撮影手段と、
所定時間毎に前記応力発光体に励起光を照射する照射手段と、
前記応力発光体の表面を外光から遮蔽する遮光用容器と、を備え、
前記撮影手段と前記照射手段とが、前記遮光用容器の内側に配置されていることを特徴とする構造物の動的ひずみの計測装置。
A device that measures the dynamic strain acting on the structure from the light emitting state of the stress-stimulated luminescent material applied to the surface of the structure.
An imaging means for continuously photographing the light emitting state of the stress-stimulated luminescent material,
An irradiation means for irradiating the stress-stimulated luminescent material with excitation light at predetermined time intervals,
A light-shielding container that shields the surface of the stress-stimulated luminescent material from external light is provided.
A device for measuring dynamic strain of a structure, wherein the photographing means and the irradiation means are arranged inside the light-shielding container.
前記撮影された応力発光体の画像から、前記構造物に発生する動的ひずみの大きさを計算するひずみ計算手段を更に備えたことを特徴とする請求項1に記載の構造物の動的ひずみの計測装置。 The dynamic strain of the structure according to claim 1, further comprising a strain calculation means for calculating the magnitude of the dynamic strain generated in the structure from the photographed image of the stress luminescent material. Measuring device. 前記構造物に取付けられて、前記構造物に入力する振動を検知する振動検出手段を設けるとともに、前記振動検出手段に入力した振動の大きさが予め設定された閾値を超えた場合のみ、前記応力発光体を撮影することを特徴とする請求項1または請求項2に記載の構造物の動的ひずみの計測装置。
The stress is provided only when the vibration detecting means attached to the structure and detecting the vibration input to the structure is provided and the magnitude of the vibration input to the vibration detecting means exceeds a preset threshold value. The device for measuring dynamic strain of a structure according to claim 1 or 2, wherein the luminescent material is photographed.
JP2019047562A 2019-03-14 2019-03-14 Dynamic strain measurement device Pending JP2020148679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047562A JP2020148679A (en) 2019-03-14 2019-03-14 Dynamic strain measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047562A JP2020148679A (en) 2019-03-14 2019-03-14 Dynamic strain measurement device

Publications (1)

Publication Number Publication Date
JP2020148679A true JP2020148679A (en) 2020-09-17

Family

ID=72430515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047562A Pending JP2020148679A (en) 2019-03-14 2019-03-14 Dynamic strain measurement device

Country Status (1)

Country Link
JP (1) JP2020148679A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276140A (en) * 2008-05-13 2009-11-26 Toshiba It & Control Systems Corp Impact testing machine
JP2015075477A (en) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 Stress luminescence evaluation system and stress luminescence evaluation method
JP2017011429A (en) * 2015-06-19 2017-01-12 日本信号株式会社 Inspection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276140A (en) * 2008-05-13 2009-11-26 Toshiba It & Control Systems Corp Impact testing machine
JP2015075477A (en) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 Stress luminescence evaluation system and stress luminescence evaluation method
JP2017011429A (en) * 2015-06-19 2017-01-12 日本信号株式会社 Inspection apparatus

Similar Documents

Publication Publication Date Title
JP5670540B2 (en) Breast radiation imaging equipment
US9846131B2 (en) Motion-based radiograph interlock systems, structures, and processes
DE60333081D1 (en) EXPOSURE CONTROL IN DETECTING IONIZING SCANNING RADIATION
JP6439404B2 (en) Method for inspecting waterproof performance of radiographic equipment
EP1734405A3 (en) Radiographic imaging apparatus, control method thereof, and radiographic imaging system
EP1420618A3 (en) X-Ray imaging apparatus
JP2010131223A (en) Image processor and image processing method
JP2010017376A (en) Radiographic imaging apparatus
RU2014151621A (en) METHOD AND SYSTEM FOR INSPECTION OF A HUMAN BODY ON THE BASIS OF REVERSE SCATTERING
US7335905B2 (en) Radiation image information reading apparatus with radiation conversion panel, and method of correcting sensitivity of radiation conversion panel
RU2013140978A (en) DEVICE AND METHOD FOR FORMING X-RAY IMAGES
EP2363733A3 (en) Radiographic imaging apparatus, method and program
EP3444594A3 (en) X-ray analyzer and spectrum generation method
JP2020148679A (en) Dynamic strain measurement device
EP1555812A3 (en) Imaging apparatus and imaging method
US20180299565A1 (en) A method for reshaping the characteristic exposure response and dosimetry of a direct radiography system
JP5367275B2 (en) Radiation imaging system
JP6455337B2 (en) Radiographic imaging system and radiographic imaging device
JP2012021900A5 (en)
JP2019113405A5 (en)
US20130176465A1 (en) Image pickup apparatus and method of forming image data
KR101629934B1 (en) X-ray scattering measurement system, Method thereof and Saving device saving that method
KR100793562B1 (en) Ultraviolet ray irradiating device
JP2007256981A (en) Radiation image information reading apparatus with radiation conversion panel, and method of judging condition of radiation conversion panel
JP2016080593A (en) Radioactive ray inspection method and radioactive ray inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404