JP2020147970A - Protection facility - Google Patents

Protection facility Download PDF

Info

Publication number
JP2020147970A
JP2020147970A JP2019045508A JP2019045508A JP2020147970A JP 2020147970 A JP2020147970 A JP 2020147970A JP 2019045508 A JP2019045508 A JP 2019045508A JP 2019045508 A JP2019045508 A JP 2019045508A JP 2020147970 A JP2020147970 A JP 2020147970A
Authority
JP
Japan
Prior art keywords
steel pipe
steel
steel beam
collision
collision direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019045508A
Other languages
Japanese (ja)
Inventor
雅充 斉藤
Masamitsu Saito
雅充 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2019045508A priority Critical patent/JP2020147970A/en
Publication of JP2020147970A publication Critical patent/JP2020147970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Abstract

To provide a protection facility capable of more efficiently absorbing collision energy than conventional ones.SOLUTION: A protection facility comprises a steel beam 14 with which a vehicle having a height exceeding passage limit from a presumed collision direction is presumed to collide. The steel beam 14 has a steel pipe 141. The internal part of the steel pipe 141 is divided into an upstream space and a downstream space in the presumed collision direction, and the downstream space is filled with a reinforcement material 143. The reinforcement material 143 is concrete.SELECTED DRAWING: Figure 2

Description

本発明は、所定の衝突想定方向からの通行限界高さを超える車両の衝突が想定される鋼梁を備えた防護工に関する。 The present invention relates to a protective work provided with a steel beam that is expected to collide with a vehicle exceeding the traffic limit height from a predetermined collision assumed direction.

通行限界高さを超える車両の衝突から橋桁を防護する設備として橋桁防護工がある(例えば、特許文献1を参照)。橋桁防護工は、車両の衝突が想定される部位である鋼梁(防護桁)を備える。鋼梁は、中空の鋼管を支柱間に架け渡して固定されている。車両の衝突を受けると、先ず衝突箇所に局部座屈が発生し、次に局部座屈が進展しつつ鋼梁全体が支柱との固定部を支点にして曲がり、その変形量を増大させながら衝突エネルギーを吸収する。 There is a bridge girder protector as a facility for protecting the bridge girder from a collision of a vehicle exceeding the traffic limit height (see, for example, Patent Document 1). The bridge girder protector is equipped with a steel beam (protection girder), which is a part where a vehicle is expected to collide. The steel beam is fixed by straddling a hollow steel pipe between the columns. When a vehicle collides, local buckling first occurs at the collision point, and then the entire steel beam bends with the fixed part with the support as a fulcrum while the local buckling progresses, and the collision occurs while increasing the amount of deformation. Absorb energy.

特開2007−205046号公報JP-A-2007-205046

近年、車両や道路事情の変化により、橋桁防護工に衝突してくる車両の重量や速度が従来よりも増加しており、橋桁防護工の強化が望まれている。しかし、橋桁防護工の設置には様々な制限があるため、鋼梁や支柱、基礎の寸法の増加を要する強化はできるだけ回避したいという要望がある。 In recent years, due to changes in vehicles and road conditions, the weight and speed of vehicles colliding with the bridge girder protector have increased more than before, and it is desired to strengthen the bridge girder protector. However, since there are various restrictions on the installation of bridge girder protectors, there is a desire to avoid strengthening that requires an increase in the dimensions of steel beams, columns, and foundations.

橋桁防護工が衝撃エネルギーを吸収する仕組みに改めて着目すると、車両の衝突を受けた箇所に局部座屈が発生し、局部座屈が進展しつつ鋼梁全体が支柱との固定部を支点にして曲がり、その変形量を増大させながら衝突エネルギーを吸収する。 Focusing again on the mechanism by which the bridge girder protector absorbs impact energy, local buckling occurs at the location where the vehicle collided, and while local buckling progresses, the entire steel beam uses the fixed part with the support as a fulcrum. It bends and absorbs collision energy while increasing its deformation.

局部座屈は、進展すると耐力低下や断面の破壊に至る。そのため、従来の中空鋼管を鋼梁とした橋桁防護工では、鋼梁全体としては許容できる曲げ変形量に余裕があっても、局部座屈が耐力低下や断面の破壊に達してしまうため、鋼梁全体で本来吸収できるエネルギーよりも実際に利用できているエネルギー吸収は低いと考えられる。こうした事象は、トラックが荷台部の前面を鋼梁にぶつかるような衝突を面で受けるケースよりも、クレーン車がクレーンの先端を鋼梁にぶつけるような衝突を点で受けるケースにおいて顕著となる。後者のようなケースでも、十分有効に機能し、従来よりも効率的に衝突エネルギーを吸収できる橋桁防護工が望まれる。 When local buckling progresses, it leads to a decrease in yield strength and destruction of the cross section. Therefore, in the conventional bridge girder protection work using a hollow steel pipe as a steel beam, even if there is a margin in the amount of bending deformation that can be tolerated for the steel beam as a whole, local buckling will lead to a decrease in strength and cross-sectional destruction. It is considered that the energy absorption actually available is lower than the energy that can be originally absorbed by the entire beam. Such an event is more remarkable in the case where the crane vehicle receives a collision such as the tip of the crane hitting the steel beam at a point than in the case where the truck receives a collision such that the front surface of the loading platform hits the steel beam. Even in the latter case, a bridge girder protector that functions sufficiently effectively and can absorb collision energy more efficiently than before is desired.

こうした問題や要望は、橋桁防護工に限らず、架線防護工など、通行限界高さを超える車両の通行を防護する(より具体的には、当該車両が通行することによる防護対象物への衝突を防護する)防護工には共通して言えることである。 These problems and requests are not limited to bridge girder protection work, but also protect the passage of vehicles that exceed the traffic limit height, such as overhead wire protection work (more specifically, collision with the object to be protected due to the passage of the vehicle). This is common to protectors.

本発明が解決しようとする課題は、従来よりも効率的に衝突エネルギーを吸収できる防護工を実現するための技術を提供すること、である。 An object to be solved by the present invention is to provide a technique for realizing a protective work capable of absorbing collision energy more efficiently than before.

上述した課題を解決するための第1の発明は、所定の衝突想定方向からの通行限界高さを超える車両の衝突が想定される鋼梁を備えた防護工であって、前記鋼梁は、鋼管であり、前記鋼管の内部は、前記衝突想定方向の上流側と下流側とに分けた下流側が所定の補強材で充填されている、防護工である。 The first invention for solving the above-mentioned problems is a protective work provided with a steel beam that is expected to collide with a vehicle exceeding a traffic limit height from a predetermined collision assumed direction. It is a steel pipe, and the inside of the steel pipe is a protective work in which the downstream side divided into the upstream side and the downstream side in the assumed collision direction is filled with a predetermined reinforcing material.

第1の発明の防護工では、鋼梁の鋼管の内部に、衝突想定方向の上流側に中空部が残されて、衝突想定方向の下流側に補強材が部分充填されているので、衝突箇所の局部座屈が進展しても、補強材の上流部に当たることでそれ以上の進展を制限できる。よって、局部座屈が耐力低下や断面の破壊に達してしまうため、鋼梁全体で本来吸収できるエネルギーよりも実際に利用できているエネルギー吸収が低くなる事象を防ぐことができる。つまり、従来よりも効率的に衝突エネルギーを吸収できる。 In the protective work of the first invention, a hollow portion is left inside the steel pipe of the steel beam on the upstream side in the assumed collision direction, and the reinforcing material is partially filled on the downstream side in the assumed collision direction. Even if the local buckling of the steel progresses, further progress can be restricted by hitting the upstream part of the reinforcing material. Therefore, since the local buckling leads to a decrease in proof stress and a fracture of the cross section, it is possible to prevent an event in which the energy absorption actually available is lower than the energy that can be originally absorbed by the entire steel beam. That is, the collision energy can be absorbed more efficiently than before.

第2の発明は、前記鋼管の前記衝突想定方向の内法のうち、前記下流側の長さh2は、以下の数式を満足する長さである、

Figure 2020147970
(ここで、hは前記鋼管の前記衝突想定方向の内法の全長、bは前記鋼管の縦方向の幅、fsyは前記鋼管の鋼の降伏強度、tは前記鋼管の板厚、Eは前記鋼管の鋼のヤング係数)
第1の発明の防護工である。 In the second invention, in the internal method of the steel pipe in the assumed collision direction, the length h 2 on the downstream side is a length satisfying the following mathematical formula.
Figure 2020147970
(Here, h is the total length of the inner method of the steel pipe in the assumed collision direction, b is the vertical width of the steel pipe, f sy is the yield strength of the steel of the steel pipe, t is the plate thickness of the steel pipe, and E is. Young's modulus of steel in the steel pipe)
It is a protective work of the first invention.

第2の発明によれば、局所座屈の進展を、鋼の降伏強度に達する限界近くまで許容することができる。よって、第2の発明の橋桁防護工は、従来よりも一層効率的に衝突エネルギーを吸収できる。 According to the second invention, the development of local buckling can be allowed to near the limit of reaching the yield strength of the steel. Therefore, the bridge girder protection work of the second invention can absorb the collision energy more efficiently than the conventional one.

第3の発明は、前記補強材が、コンクリートである、第1又は第2の発明の防護工である。 The third invention is the protective work of the first or second invention in which the reinforcing material is concrete.

第3の発明によれば、補強材をコンクリートとすることで、局所座屈の荷重を受けて局所座屈の進展を阻止しつつ、荷重を鋼梁の鋼管の全体に効果的に分散し、鋼管全体での曲がり変形による衝突エネルギーの吸収を効率的に実現できる。 According to the third invention, by using concrete as the reinforcing material, the load is effectively distributed over the entire steel pipe of the steel beam while receiving the load of local buckling and preventing the progress of local buckling. It is possible to efficiently absorb collision energy due to bending deformation of the entire steel pipe.

第4の発明は、前記鋼管の内部の前記上流側が、前記コンクリートの打設空間を前記下流側に形成するための空間充填材で充填されている、第3の発明の防護工である。 The fourth invention is the protective work of the third invention, in which the upstream side inside the steel pipe is filled with a space filler for forming the concrete casting space on the downstream side.

第4の発明によれば、鋼管の姿勢によらずコンクリートの打設空間を維持できる。よって、コンクリート打設時に、鋼管を立ててコンクリートを流し込めるので、鋼梁の作成が容易且つ補強材の厚さ管理や精度を高めることができる。 According to the fourth invention, the concrete placing space can be maintained regardless of the posture of the steel pipe. Therefore, since the steel pipe can be erected and the concrete can be poured at the time of placing the concrete, it is possible to easily create the steel beam and improve the thickness control and accuracy of the reinforcing material.

橋桁防護工の構成例を示す斜視外観図。The perspective external view which shows the structural example of the bridge girder protection work. 鋼梁の縦断面図。Longitudinal section of a steel beam. 橋桁防護工の製作・設置手順を説明するためのフローチャート。A flowchart for explaining the manufacturing and installation procedure of the bridge girder protection work. 橋桁防護工の作用効果について説明するためのモデル図。A model diagram for explaining the action and effect of the bridge girder protection work. 補強材の厚さの決定原理について説明するためのモデル図。A model diagram for explaining the principle of determining the thickness of the reinforcing material. 鋼梁の構造の変形例を示す縦断面図。The vertical sectional view which shows the deformation example of the structure of a steel beam.

以下、所定の衝突想定方向からの通行限界高さを超える車両の衝突が想定される鋼梁を備えた防護工として橋桁防護工の実施形態を説明するが、本発明を適用可能な形態が以下の実施形態に限られないことは勿論である。 Hereinafter, an embodiment of the bridge girder protection work will be described as a protection work provided with a steel beam that is expected to collide with a vehicle exceeding the traffic limit height from a predetermined collision assumed direction, but the forms to which the present invention can be applied are as follows. Of course, it is not limited to the embodiment of.

図1は、本実施形態の橋桁防護工10の構成例を示す斜視外観図である。
橋桁防護工10は、道路4を走行する車両(移動体)が、高架橋6(保護対象構造体)に衝突するのを防ぐ防護工である。橋桁防護工10は、道路4の両サイドに打設された基礎11と、当該基礎それぞれに立設された支柱12と、鋼梁14を道路4の上方を跨ぐ様にして支柱12の間に架け渡して固定された鋼梁14と、を有する。橋桁防護工10への衝突想定方向は、道路4の道なりに沿った水平方向(図1中の太矢印)とする。
FIG. 1 is a perspective external view showing a configuration example of the bridge girder protection work 10 of the present embodiment.
The bridge girder protection work 10 is a protection work that prevents a vehicle (moving body) traveling on the road 4 from colliding with the viaduct 6 (protection target structure). The bridge girder protection work 10 is placed between the foundations 11 placed on both sides of the road 4, the columns 12 erected on each of the foundations, and the steel beams 14 straddling the upper part of the road 4. It has a steel beam 14 that is bridged and fixed. The assumed collision direction with the bridge girder protection work 10 is the horizontal direction (thick arrow in FIG. 1) along the road of the road 4.

図2は、鋼梁14の縦断面図である。鋼梁14は、鋼管141と、鋼管141の内部に部分充填された補強材143と、を有する。 FIG. 2 is a vertical cross-sectional view of the steel beam 14. The steel beam 14 has a steel pipe 141 and a reinforcing member 143 partially filled inside the steel pipe 141.

鋼管141は、略矩形断面の鋼管とするが、筒状の形状を有する鋼管であれば円断面などその他の断面形状の鋼管でもよい。 The steel pipe 141 is a steel pipe having a substantially rectangular cross section, but a steel pipe having a tubular shape may be used as long as it has a circular cross section or other cross-sectional shape.

補強材143は、鋼管141の内部を、衝突想定方向の上流側と下流側とに分けた下流側に、コンクリートを部分充填して形成される。換言すると、鋼管141の内部では、衝突想定方向の上流側と下流側とに分けた上流側に、コンクリートが充填されていない空隙145が設けられている。なお、補強材143は、その他の材料で実現するとしてもよい。 The reinforcing member 143 is formed by partially filling the inside of the steel pipe 141 on the downstream side divided into the upstream side and the downstream side in the assumed collision direction by partially filling concrete. In other words, inside the steel pipe 141, a void 145 not filled with concrete is provided on the upstream side divided into the upstream side and the downstream side in the assumed collision direction. The reinforcing material 143 may be realized by other materials.

図3は、橋桁防護工10の製作・設置手順を説明するためのフローチャートである。
橋桁防護工10を作成するには、先ず製管工程を実行する(ステップS2)。具体的には、鋼管141の衝突想定方向側の面に、コンクリートを流し込むための貫通孔を適当数設ける。次いで、鋼管141の両端の小口を塞ぐ。
FIG. 3 is a flowchart for explaining a procedure for manufacturing and installing the bridge girder protection work 10.
In order to create the bridge girder protection work 10, the pipe making process is first executed (step S2). Specifically, an appropriate number of through holes for pouring concrete are provided on the surface of the steel pipe 141 on the side in the assumed collision direction. Next, the edges at both ends of the steel pipe 141 are closed.

次に、充填工程を実行する(ステップS4)。具体的には、鋼管141を、衝突想定方向側の面を上にして横たえ、貫通孔から適量のコンクリートを流し込んで、コンクリートの硬化を待つ。コンクリートの硬化後に貫通孔を塞ぐ。なお、コンクリートを鋼管141の小口から流入させる場合には、貫通孔は設けなくともよい。 Next, the filling step is executed (step S4). Specifically, the steel pipe 141 is laid down with the surface on the assumed collision direction side up, an appropriate amount of concrete is poured through the through hole, and the concrete is waited for hardening. Close the through holes after the concrete has hardened. When concrete flows in from the edge of the steel pipe 141, it is not necessary to provide a through hole.

次に、支柱設置工程を実行する(ステップS6)。具体的には、基礎11を作成して、支柱12を立てる。 Next, the support column installation step is executed (step S6). Specifically, the foundation 11 is created and the support columns 12 are erected.

そして、組立工程を実行して、支柱12に鋼梁14を取り付け・固定し(ステップS8)、橋桁防護工10の組立を完了する。 Then, the assembly process is executed to attach and fix the steel beam 14 to the support column 12 (step S8), and the assembly of the bridge girder protection work 10 is completed.

図4は、橋桁防護工10の作用効果について説明するためのモデル図である。
図4(1)は従来の橋桁防護工における中空鋼管製の鋼梁14Jを衝突想定方向に沿った断面で見た図に相当し、図4(2)が本実施形態における橋桁防護工10の鋼梁14を衝突想定方向に沿った断面で見た図に相当する。
FIG. 4 is a model diagram for explaining the action and effect of the bridge girder protection work 10.
FIG. 4 (1) corresponds to a view of a steel beam 14J made of a hollow steel pipe in a conventional bridge girder protection work in a cross section along an assumed collision direction, and FIG. 4 (2) shows the bridge girder protection work 10 in the present embodiment. It corresponds to a view of the steel beam 14 in a cross section along the assumed collision direction.

図4(1)に示すように、従来の中空鋼管製の鋼梁14Jでは、衝突箇所に局所座屈が発生すると、鋼梁14Jの鋼管141の内部全体が中空なので、衝突により生じた局所座屈は留まることなく進行し、やがて耐力低下や断面破断に至る。すると、局所座屈部から鋼管141へ力を伝達する効果は、耐力低下や断面破断に至る前よりも格段に低下する。結果、鋼梁全体としてみれば、局所座屈部が耐力低下や断面破断に至ってからの衝突エネルギーの吸収は小さくなる。 As shown in FIG. 4 (1), in the conventional steel beam 14J made of hollow steel pipe, when local buckling occurs at the collision point, the entire inside of the steel pipe 141 of the steel beam 14J is hollow, so that the local seat generated by the collision occurs. The bending progresses without stopping, eventually leading to a decrease in strength and a fracture of the cross section. Then, the effect of transmitting the force from the local buckling portion to the steel pipe 141 is significantly lower than that before the proof stress is lowered or the cross-section is broken. As a result, when looking at the steel beam as a whole, the absorption of collision energy after the local buckling portion reaches a decrease in yield strength or cross-sectional fracture becomes small.

一方、図4(2)に示すように、本実施形態における鋼梁14の鋼管141の内部は、衝突想定方向の下流側に補強材143が設けられているので、局所座屈によるへこみの深さは、鋼管141の内部厚さ(内法の全長h)のうち補強材143の厚さ(下流側の長さh2)を、除いた空隙145の厚さ分(上流側の長さh1)に限られる。 On the other hand, as shown in FIG. 4 (2), the inside of the steel pipe 141 of the steel beam 14 in the present embodiment is provided with the reinforcing material 143 on the downstream side in the assumed collision direction, so that the depth of the dent due to local buckling is deep. The thickness is the thickness of the gap 145 (upstream length h1) excluding the thickness of the reinforcing material 143 (downstream length h2) from the internal thickness of the steel pipe 141 (internal length h). Limited to.

図5は、補強材143の厚さ(下流側の長さh2)の決定原理について説明するためのモデル図であって、図5(1)は、局部座屈の箇所を衝突想定方向から見た図、図5(2)は衝突想定方向に沿った断面で見た図に相当する。 FIG. 5 is a model diagram for explaining the principle of determining the thickness of the reinforcing material 143 (length h2 on the downstream side), and FIG. 5 (1) is a view of the local buckling point from the assumed collision direction. FIG. 5 (2) corresponds to a view seen in a cross section along the assumed collision direction.

基本的な考え方として、局部座屈に生じる「へこみ」によって、鋼管141の鋼材に発生する応力が鋼材の降伏強度に達するときが限界状態と考えられる。 As a basic idea, it is considered that the limit state is when the stress generated in the steel material of the steel pipe 141 reaches the yield strength of the steel material due to the "dent" generated in the local buckling.

具体的には、局部座屈による「へこみ」を,座標xにおける変位yで表すと式1で表される。ここで、h1は、へこみ深さであり、bは、へこみ幅であり鋼管141の縦方向の幅である。

Figure 2020147970
Specifically, the "dent" due to local buckling is expressed by Equation 1 when expressed by the displacement y at the coordinate x. Here, h 1 is the dent depth, b is the dent width, and is the vertical width of the steel pipe 141.
Figure 2020147970

板の曲率φは、変位yの2階微分であるため、式2で表される。

Figure 2020147970
Since the curvature φ of the plate is the second derivative of the displacement y, it is expressed by Equation 2.
Figure 2020147970

また、へこみの頂点における曲率φ0は、式3で表される。

Figure 2020147970
The curvature φ 0 at the apex of the dent is expressed by Equation 3.
Figure 2020147970

この曲率φ0によるへこみ頂点における曲げ応力度σ0は、式4で表される。ここで、Eは、鋼のヤング係数であり、ε0は、へこみ頂点におけるひずみ値であり、tは、鋼管141の板厚である。

Figure 2020147970
The degree of bending stress σ 0 at the apex of the dent due to the curvature φ 0 is expressed by Equation 4. Here, E is the Young's modulus of the steel, ε 0 is the strain value at the apex of the dent, and t is the plate thickness of the steel pipe 141.
Figure 2020147970

この曲げ応力度σ0は、部材軸方向に発生すると同時に、部材直角方向にも発生する。よって、この2軸応力より、へこみ頂点におけるミーゼス応力度σMisesは式5で表すことができる。

Figure 2020147970
This bending stress degree σ 0 is generated not only in the axial direction of the member but also in the direction perpendicular to the member. Therefore, from this biaxial stress, the Mises stress criterion σ Mises at the dent apex can be expressed by Equation 5.
Figure 2020147970

このミーゼス応力度σMisesが、鋼管141の鋼の降伏強度fsyを超えないためには式6を満足する必要がある。

Figure 2020147970
これを展開すると式7となる。
Figure 2020147970
Equation 6 must be satisfied so that the Mises stress criterion σ Mises does not exceed the yield strength f sy of the steel of the steel pipe 141.
Figure 2020147970
When this is expanded, it becomes Equation 7.
Figure 2020147970

これより、へこみによる鋼材の降伏を発生させないためには、へこみ高さh1は、以下の式8を満足する必要がある。

Figure 2020147970
From this, in order to prevent the yield of the steel material due to the dent, the dent height h 1 needs to satisfy the following equation 8.
Figure 2020147970

このため,補強材143の充填高さh2を次の式9に基づいて設定すればよいことになる。

Figure 2020147970
Therefore, the filling height h 2 of the reinforcing material 143 may be set based on the following equation 9.
Figure 2020147970

橋桁防護工10を強化するために、鋼梁14を、中空鋼管からコンクリート充填鋼管をそのまま置換したのでは、局部座屈を拘束する効果が高く耐力が増加するが、拘束度が高過ぎるために曲げ変形可能量は小さくなることが見込まれる。鋼梁14での曲げ変形量が従来よりも小さくなって、鋼梁14を支えている支柱12が変形する事態となる。変形を鋼梁14のみに限っておけば、衝突後の修復工事において鋼梁14のみを交換すれば済むが、支柱12が変形するに至ると、支柱12の交換や基礎11も修復対象となりかねず好ましくない。 If the steel beam 14 is replaced with the concrete-filled steel pipe as it is from the hollow steel pipe in order to strengthen the bridge girder protection work 10, the effect of restraining the local buckling is high and the yield strength is increased, but the degree of restraint is too high. The amount of bending deformation is expected to be small. The amount of bending deformation of the steel beam 14 becomes smaller than before, and the support column 12 supporting the steel beam 14 is deformed. If the deformation is limited to the steel beam 14, only the steel beam 14 needs to be replaced in the repair work after the collision, but when the support column 12 is deformed, the support column 12 may be replaced or the foundation 11 may also be repaired. Not preferable.

しかし、本実施形態のようにして、鋼梁14をコンクリートの部分充填材とし、補強材143の充填高さh2が設定されることで、局部座屈のへこみは鋼材の降伏に至らず、衝突荷重は局部座屈を介して鋼管141および補強材143に伝わる。そして、局部座屈のへこみが補強材143に達するまでに吸収した以降の衝突エネルギーが継続的・効率的にそれら全体の曲がり変形によって吸収されることなる。 However, as in the present embodiment, the steel beam 14 is used as a partial filler for concrete, and the filling height h 2 of the reinforcing member 143 is set, so that the dent of the local buckling does not lead to the yield of the steel material. The collision load is transmitted to the steel pipe 141 and the reinforcing member 143 via local buckling. Then, the collision energy after the dent of the local buckling reaches the reinforcing member 143 is continuously and efficiently absorbed by the bending deformation of the whole.

つまり、例えばクレーン車がクレーンの先端を鋼梁に衝突させるようなケースでも、十分有効に機能し、従来よりも効率的に衝突エネルギーを吸収できる橋桁防護工10が実現できる。 That is, for example, even in a case where a crane vehicle collides the tip of a crane with a steel beam, it is possible to realize a bridge girder protection work 10 that functions sufficiently effectively and can absorb collision energy more efficiently than before.

なお、本発明の実施形態は、上記に限らず適宜、変更・追加・削除することができる。 The embodiment of the present invention is not limited to the above, and can be changed, added, or deleted as appropriate.

例えば、図6に示すように、鋼管141の内部の上流側が、補強材143のコンクリートの打設空間を下流側に形成するための空間充填材147で充填した構成も可能である。
具体的には、空間充填材147として、成型発泡スチロール、成型ウレタンフォーム、などを用いることができる。当該構成を採用した場合、製管工程では、鋼管141の小口の一方を閉じて、コンクリートを流し込むための貫通孔は設ける必要がない。そして、当該構成を採用した場合の充填工程では、空間充填材147を、閉じていない側の鋼管141の小口より差し込んで、衝突想定方向の上流側に寄せて嵌着し、コンクリートの打設空間を形成する。次いで、閉じていない側の鋼管141の小口を上にして、当該打設空間にコンクリートを流し込む。
For example, as shown in FIG. 6, the upstream side inside the steel pipe 141 may be filled with the space filler 147 for forming the concrete casting space of the reinforcing material 143 on the downstream side.
Specifically, as the space filler 147, molded styrofoam, molded urethane foam, or the like can be used. When this configuration is adopted, it is not necessary to close one of the edges of the steel pipe 141 and provide a through hole for pouring concrete in the pipe making process. Then, in the filling process when this configuration is adopted, the space filling material 147 is inserted from the edge of the steel pipe 141 on the unclosed side and fitted toward the upstream side in the assumed collision direction to form a concrete casting space. To form. Next, concrete is poured into the casting space with the edge of the steel pipe 141 on the unclosed side facing up.

また、上述した実施形態では、橋桁防護工の例を説明したが、架線防護工など、通行限界高さを超える車両の通行を防護するその他の防護工に上記実施形態の技術を適用することができる。 Further, in the above-described embodiment, the example of the bridge girder protection work has been described, but the technology of the above-described embodiment can be applied to other protection work such as overhead wire protection work that protects the passage of vehicles exceeding the traffic limit height. it can.

10…橋桁防護工
11…基礎
12…支柱
14…鋼梁
141…鋼管
143…補強材
145…空隙
147…空間充填材
10 ... Bridge girder protection work 11 ... Foundation 12 ... Strut 14 ... Steel beam 141 ... Steel pipe 143 ... Reinforcing material 145 ... Void 147 ... Space filling material

Claims (4)

所定の衝突想定方向からの通行限界高さを超える車両の衝突が想定される鋼梁を備えた防護工であって、
前記鋼梁は、鋼管であり、
前記鋼管の内部は、前記衝突想定方向の上流側と下流側とに分けた下流側が所定の補強材で充填されている、
防護工。
It is a protective worker equipped with steel beams that are expected to collide with a vehicle that exceeds the traffic limit height from a predetermined collision direction.
The steel beam is a steel pipe and
The inside of the steel pipe is filled with a predetermined reinforcing material on the downstream side divided into the upstream side and the downstream side in the assumed collision direction.
Protective worker.
前記鋼管の前記衝突想定方向の内法のうち、前記下流側の長さh2は、以下の数式を満足する長さである、
Figure 2020147970
(ここで、hは前記鋼管の前記衝突想定方向の内法の全長、bは前記鋼管の縦方向の幅、fsyは前記鋼管の鋼の降伏強度、tは前記鋼管の板厚、Eは前記鋼管の鋼のヤング係数)
請求項1に記載の防護工。
Of the internal methods of the steel pipe in the assumed collision direction, the length h 2 on the downstream side is a length that satisfies the following mathematical formula.
Figure 2020147970
(Here, h is the total length of the inner method of the steel pipe in the assumed collision direction, b is the vertical width of the steel pipe, f sy is the yield strength of the steel of the steel pipe, t is the plate thickness of the steel pipe, and E is. Young's modulus of steel in the steel pipe)
The protective work according to claim 1.
前記補強材は、コンクリートである、
請求項1又は2に記載の防護工。
The reinforcing material is concrete.
The protective work according to claim 1 or 2.
前記鋼管の内部の前記上流側が、前記コンクリートの打設空間を前記下流側に形成するための空間充填材で充填されている、
請求項3に記載の防護工。
The upstream side inside the steel pipe is filled with a space filler for forming the concrete casting space on the downstream side.
The protective work according to claim 3.
JP2019045508A 2019-03-13 2019-03-13 Protection facility Pending JP2020147970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045508A JP2020147970A (en) 2019-03-13 2019-03-13 Protection facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045508A JP2020147970A (en) 2019-03-13 2019-03-13 Protection facility

Publications (1)

Publication Number Publication Date
JP2020147970A true JP2020147970A (en) 2020-09-17

Family

ID=72429212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045508A Pending JP2020147970A (en) 2019-03-13 2019-03-13 Protection facility

Country Status (1)

Country Link
JP (1) JP2020147970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477471B2 (en) 2021-01-25 2024-05-01 公益財団法人鉄道総合技術研究所 Protection Worker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477471B2 (en) 2021-01-25 2024-05-01 公益財団法人鉄道総合技術研究所 Protection Worker

Similar Documents

Publication Publication Date Title
KR100635098B1 (en) Girder bridge protection device using sacrifice means
JP2008241036A (en) Impact absorbing member and its arrangement structure
JP5597317B1 (en) Seismic reinforcement structure for bridge piers
KR100944363B1 (en) Iron frame brace having bucking protection part
JP2020147970A (en) Protection facility
Chen et al. Impact force models for bridge under barge collisions
KR20140014309A (en) Structure for supporting guard rail and constructing method thereof
JP2020147971A (en) Protection facility
KR102087262B1 (en) Shock-absorber for transition section of guardrail
JP6311047B2 (en) Buckling restraint brace
KR20130116619A (en) Reinforce type guard fence
KR101718139B1 (en) On-gutter installed type supporting sturucture for roadside vehicle barrier
EP3235953A1 (en) Road barrier, in particular integrated barrier
JP4395393B2 (en) Reinforced concrete protective fence post
JP3981688B2 (en) Joint structure and composite structure of steel beam and reinforced concrete column
JP6196065B2 (en) Buckling restraint brace
JP7239518B2 (en) protection worker
KR101948987B1 (en) Guardrail post structure
CN116043664B (en) Multilayer anti-seismic fortification stop block based on V support
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP4170800B2 (en) Retaining wall block for protection fence installation
JP4194738B2 (en) Falling object prevention pile
JP6262444B2 (en) Guard fence support
JP2019138108A (en) Connection structure and lightweight embankment structural object
JP7386687B2 (en) Crown protection work for transparent erosion control dam