JP2020146037A - Cultivation method of coral - Google Patents

Cultivation method of coral Download PDF

Info

Publication number
JP2020146037A
JP2020146037A JP2020039287A JP2020039287A JP2020146037A JP 2020146037 A JP2020146037 A JP 2020146037A JP 2020039287 A JP2020039287 A JP 2020039287A JP 2020039287 A JP2020039287 A JP 2020039287A JP 2020146037 A JP2020146037 A JP 2020146037A
Authority
JP
Japan
Prior art keywords
coral
acropora
led
wavelength band
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020039287A
Other languages
Japanese (ja)
Other versions
JP2020146037A5 (en
JP7448913B2 (en
Inventor
信三 山城
Shinzo Yamashiro
信三 山城
明洋 竹村
Akihiro Takemura
明洋 竹村
尚子 磯村
Naoko Isomura
尚子 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okiden Kaihatsu Co Ltd
University of the Ryukyus NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Okiden Kaihatsu Co Ltd
University of the Ryukyus NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okiden Kaihatsu Co Ltd, University of the Ryukyus NUC, Institute of National Colleges of Technologies Japan filed Critical Okiden Kaihatsu Co Ltd
Publication of JP2020146037A publication Critical patent/JP2020146037A/en
Publication of JP2020146037A5 publication Critical patent/JP2020146037A5/ja
Application granted granted Critical
Publication of JP7448913B2 publication Critical patent/JP7448913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

To provide a cultivation method capable of promoting growth of acropora coral, by utilizing irradiance of artificial light and seawater having a different water quality.SOLUTION: There is provided a cultivation method of coral for growing at least one kind selected from a grout comprising a coral egg, a coral planula, a coral baby, and a coral adult, in a cultivation water tank by free-flowing of surface seawater or underground seepage seawater, which is a cultivation method of coral for irradiating light having a different wavelength range.SELECTED DRAWING: Figure 1

Description

本発明は、サンゴの養殖に関する方法であって、特に、人工光の放射照度と水質が異なる海水を組み合わせて利用することによって、ミドリイシ属サンゴの成長を促進させる養殖方法である。 The present invention is a method for culturing coral, and in particular, it is a culturing method for promoting the growth of Acropora coral by using a combination of seawater having different irradiance and water quality of artificial light.

サンゴの生息は、海洋酸性化、海水温上昇、富栄養化、化学汚染などによって脅かされ、その生息環境は、地球温暖化の進行と人為活動の活発化によって、今後ますます劣悪化していくと考えられており、表層海水の水質の低下が、今あるサンゴ礁の生態系を悪化させていることも報告されている(環境省自然環境局2016年)。
そこで、サンゴを保全していくため、海中に人工物を設置したり、陸上に海水水槽を設置したりするなど、これまで様々な養殖方法が提案されている。
サンゴの成長には、様々な環境因子が関与し、例えば、比較的浅瀬に生息するサンゴは、光の波長が成長に影響することが知られているほか、水質の違いも影響することが知られている。
例えば、特許文献1には、サンゴに弱い赤色点滅光を照射することで、サンゴ骨格の成長を促進し、海水温度の上昇によるサンゴの白化を防止する方法が開示されている。
この発明によれば、サンゴの保護や増殖に有用であるほか、サンゴの保護や増殖を通して大気中の二酸化炭素を減少させることも期待できる。
Coral habitat is threatened by ocean acidification, rising seawater temperature, eutrophication, chemical pollution, etc., and its habitat will worsen in the future due to the progress of global warming and the activation of human activities. It is believed that the deterioration of surface seawater quality is deteriorating the existing coral reef ecosystem (Ministry of the Environment, Natural Environment Bureau, 2016).
Therefore, in order to conserve coral, various aquaculture methods have been proposed so far, such as installing an artificial object in the sea or installing a seawater tank on land.
Various environmental factors are involved in the growth of coral. For example, it is known that the wavelength of light affects the growth of coral that lives in relatively shallow water, and that the difference in water quality also affects it. Has been done.
For example, Patent Document 1 discloses a method of irradiating a coral with a weak red flashing light to promote the growth of a coral skeleton and prevent bleaching of the coral due to an increase in seawater temperature.
According to the present invention, in addition to being useful for the protection and growth of coral, it can be expected to reduce carbon dioxide in the atmosphere through the protection and growth of coral.

特開2010-279304JP 2010-279304

しかし、サンゴを保全し、群体数を増やしていくためには、大規模な養殖施設が必要であるし、水質に敏感なサンゴを養殖するには、水質の安定した海水を用いて育てる方法を確立する必要がある。
そこで、本発明は、上記課題に照らし、人工光の放射照度と水質が異なる海水を組み合わせて利用することによって、ミドリイシ属サンゴの成長を促進させる養殖方法を提供することを課題とする。
However, large-scale aquaculture facilities are required to conserve corals and increase the number of colonies, and to cultivate water-sensitive corals, a method of growing them using seawater with stable water quality is required. Need to be established.
Therefore, in light of the above problems, it is an object of the present invention to provide a culture method for promoting the growth of Acropora coral by using a combination of seawater having different irradiance and water quality of artificial light.

本発明は、
海水掛け流しの養殖用水槽中で、LED光を照射させることで、
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される少なくとも1種を生育させる
ことを特徴とするサンゴの養殖方法である。
The present invention
By irradiating LED light in the aquaculture tank that flows directly from the seawater,
It is a coral farming method characterized by growing at least one species selected from the group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral.

掛け流しの海水は、表層海水または地下浸透海水を用いることができる。 Surface seawater or underground seepage seawater can be used as the flowing seawater.

照射させるLED光は、Coral LED(420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈する。)、Reef LED(400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈する。)、Fresh LED(400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含む。このLED抗原の光は対色湿度と演色性がそれぞれ9000KとRa95である。)、Sunset LED(400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含む。このLED抗原の光は相対色湿度と演色性がそれぞれ3000KとRa85である。)のいずれか1以上を用いることができる。 The LED light to be irradiated is Coral LED (which has peak wavelengths near 420 nm, 450 nm, and 475 nm, respectively, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm) and Reef. LED (has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, respectively, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm), Fresh LED (400 nm, 420 nm, It has peak wavelengths near 450 nm and 475 nm, respectively, and the wavelength of 500 nm to 800 nm includes more than 50% of the wavelength band of 380 to 800 nm. The light of this LED antigen has color humidity and color playability of 9000K and Ra95, respectively. ), Sunset LED (has peak wavelengths near 400 nm, 420 nm, 660 nm, and wavelengths of 500 nm to 800 nm include more than 70% of the wavelength band of 380 to 800 nm. The light of this LED antigen has relative color humidity and color playability, respectively. Any one or more of 3000K and Ra85) can be used.

養殖するサンゴは、六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のサンゴであり、具体的には、ウスエダミドリイシ(Acropora tenuis)、トゲスギミドリイシ(Acropora intermedia)、または、コユビミドリイシ(Acropora digitifera)である。 The coral to be cultivated is a coral of the genus Acropora, Acropora tenuis, Acropora intermedia, or Acropora digitifera. ).

また、本発明は、
前記のサンゴのうちの1種、または、六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のサンゴの、
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される少なくとも1種を生育させるための、
表層海水、または、地下浸透海水を掛け流す水槽と、
水槽中を照射する前記のLED光を備えた
ことを特徴とするサンゴの養殖装置である。
In addition, the present invention
Of one of the above corals, or of the Hexacorallia subclass Stony Coral, Acroporidae, Acropora genus.
For growing at least one species selected from the group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral.
A water tank that flushes surface seawater or underground seepage seawater,
It is a coral farming device characterized by having the above-mentioned LED light that irradiates the inside of an aquarium.

(1)サンゴの成長を促進させる養殖方法を提供することができる。
(2)表層海水及び地下浸透海水を使い分けることで、水温や水質が安定した海水を用いてサンゴを養殖できる。
(3)人工光の放射照度と水質が異なる海水を組み合わせて養殖することで、ミドリイシ属サンゴの成長を促進させる養殖方法及び養殖施設を提供できる。
(1) It is possible to provide aquaculture methods that promote the growth of coral.
(2) By properly using surface seawater and underground infiltrated seawater, coral can be cultivated using seawater with stable water temperature and quality.
(3) By cultivating a combination of seawater having different irradiance and water quality of artificial light, it is possible to provide aquaculture methods and aquaculture facilities that promote the growth of Acropora coral.

表層海水水槽に用いた各LED光の光スペクトルとその放射照度を示したグラフA graph showing the optical spectrum of each LED light used in the surface seawater tank and its irradiance. 地下浸透海水水槽に用いた各LED光の光スペクトルとその放射照度を示したグラフGraph showing the optical spectrum of each LED light used in the underground seepage seawater tank and its irradiance 実施例1における表層海水水槽でのウスエダミドリイシの成長率を示したグラフA graph showing the growth rate of Usuedamidoriishi in the surface seawater tank in Example 1. 実施例1における地下浸透海水水槽でのウスエダミドリイシの成長率を示したグラフGraph showing the growth rate of Usuedamidoriishi in the underground seepage seawater tank in Example 1. 実施例1における異なる水質間でのウスエダミドリイシの一日の相対成長率を示したグラフA graph showing the daily relative growth rate of Usuedamidoriishi between different water qualities in Example 1. 実施例1における表層海水水槽でのトゲスギミドリイシの成長率を示したグラフGraph showing the growth rate of Japanese cedar green sardine in the surface seawater tank in Example 1. 実施例1における地下浸透海水水槽でのトゲスギミドリイシの成長率を示したグラフGraph showing the growth rate of Japanese cedar green sardine in the underground seepage seawater tank in Example 1. 実施例1における異なる水質間でのトゲスギミドリイシの一日の相対成長率を示したグラフGraph showing daily relative growth rate of Japanese cedar green sardine between different water qualities in Example 1 実施例2における表層海水水槽でのウスエダミドリイシの成長率を示したグラフA graph showing the growth rate of Usuedamidoriishi in the surface seawater tank in Example 2. 実施例2における地下浸透海水水槽でのウスエダミドリイシの成長率を示したグラフGraph showing the growth rate of Usuedamidoriishi in the underground seepage seawater tank in Example 2. 実施例2における異なる水質間でのウスエダミドリイシの一日の相対成長率を示したグラフA graph showing the daily relative growth rate of Usuedamidoriishi between different water qualities in Example 2. 実施例2における表層海水水槽でのトゲスギミドリイシの成長率を示したグラフGraph showing the growth rate of Japanese cedar green sardine in the surface seawater tank in Example 2. 実施例2における地下浸透海水水槽でのトゲスギミドリイシの成長率を示したグラフGraph showing the growth rate of Japanese cedar green sardine in the underground seepage seawater tank in Example 2. 実施例2における異なる水質間でのトゲスギミドリイシの一日の相対成長率を示したグラフGraph showing daily relative growth rate of Japanese cedar green sardine between different water qualities in Example 2

2017年9月8日に琉球大学熱帯生物圏研究センター瀬底研究施設の旧桟橋付近の浅瀬(北緯26°37’50〜55”,東経127°51’47〜49”,水深1〜2m)で、六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のウスエダミドリイシ(Acropora tenuis)とトゲスギミドリイシ(Acropora intermedia)を採集し、各1群体を飼育に用いた。 On September 8, 2017, in the shallow water (26 ° 37'50-55 "north latitude, 127 ° 51'47-49" east longitude, water depth 1-2 m) near the old pier of the Ryukyu University Tropical Biosphere Research Center Sesoko Research Facility. Acropora tenuis and Acropora intermedia of the genus Acropora of the family Acroporidae of the order Acroporidae of the Hexacorallia subclass were collected, and one colony of each was used for breeding.

採集したサンゴの群体は、沖電開発株式会社水産養殖研究センターが管理している半閉鎖型循環方式で調節している地下浸透海水水槽に収容し、発光ダイオード(Fresh LED、加古川)下で約1ヶ月間馴致した。
その後、2017年10月12日に、各母群体の末端から頂端ポリプと側生ポリプを含むように枝打ち(ウスエダミドリイシ=50片、トゲスギミドリイシ=50片)を行った。
The collected coral colonies are housed in an underground seepage seawater tank controlled by the Fisheries Culture Research Center of Okiden Kaihatsu Co., Ltd., which is controlled by a semi-closed circulation system, and are stored under a light emitting diode (Fresh LED, Kakogawa). I got used to it for a month.
Then, on October 12, 2017, pruning was performed from the end of each mother colony so as to include apical polyps and lateral polyps (Usedamimidoriishi = 50 pieces, Togesugimidoriishi = 50 pieces).

飼育水槽は、同センター内の水質の異なる2つの水槽(地下浸透海水掛け流しの実験水槽(以下「地下浸透海水水槽」(Ground water)という。)と表層海水掛け流しの実験水槽(以下「表層海水水槽」(Surface water)という。))を用い、それぞれの水槽に実験区を設けた。
なお、本願発明において、表層海水とは、水深3〜5mから取水した海水で、水温が年間を通じて25℃前後である海水を意味し、地下浸透海水とは、海洋から浸入した海水が、石灰岩層(例えば、琉球石灰岩層)などによって濾過されて陸地まで浸透した海水であり、地下25mから取水した海水を意味する。
The breeding aquarium consists of two tanks with different water qualities in the center (experimental tank for underground seepage seawater flow (hereinafter referred to as "Ground water") and experimental tank for surface layer seawater flow (hereinafter "surface layer"). Using "seawater tanks" (Surface water))), experimental plots were set up in each tank.
In the present invention, the surface seawater means seawater taken from a depth of 3 to 5 m and the water temperature is around 25 ° C throughout the year, and the underground seepage seawater means seawater infiltrated from the ocean and is a limestone layer. It is seawater that has been filtered by (for example, the Ryukyu limestone layer) and permeated to the land, and means seawater taken from 25 m underground.

実験区は、次のとおり計10区であり、それぞれの実験区に枝打ち後のサンゴ群体をそれぞれ5片ずつ配置し、2週間馴致した後に飼育実験を開始した。
[地下浸透海水実験区]
(1)屋外水槽で自然光を用いた実験区(U-自然光群)
(2)屋内水槽でLED光(Coral LED)を用いた実験区(U-Coral群)
(3)屋内水槽でLED光(Reef LED)を用いた実験区(U-Reef群)
(4)屋内水槽でLED光(Fresh LED)を用いた実験区(U-Fresh群)
(5)屋内水槽でLED光(Sunset LED)を用いた実験区(U-Sunset群)
[表層海水実験区]
(6)屋外水槽で自然光を用いた実験区(S-自然光群)
(7)屋内水槽でLED光(Coral LED)を用いた実験区(S-Coral群)
(8)屋内水槽でLED光(Reef LED)を用いた実験区(S-Reef群)
(9)屋内水槽でLED光(Fresh LED)を用いた実験区(S-Fresh群)
(10)屋内水槽でLED光(Sunset LED)を用いた実験区(S-Sunset群)
The experimental plots were 10 plots in total as follows, and 5 pieces of coral colonies after pruning were placed in each experimental plot, and the breeding experiment was started after acclimatization for 2 weeks.
[Underground infiltration seawater experimental area]
(1) Experimental plot using natural light in an outdoor aquarium (U-natural light group)
(2) Experimental plot (U-Coral group) using LED light (Coral LED) in an indoor aquarium
(3) Experimental plot (U-Reef group) using LED light (Reef LED) in an indoor aquarium
(4) Experimental plot (U-Fresh group) using LED light (Fresh LED) in an indoor aquarium
(5) Experimental plot (U-Sunset group) using LED light (Sunset LED) in an indoor aquarium
[Surface Seawater Experimental Zone]
(6) Experimental plot using natural light in an outdoor aquarium (S-natural light group)
(7) Experimental plot (S-Coral group) using LED light (Coral LED) in an indoor aquarium
(8) Experimental group (S-Reef group) using LED light (Reef LED) in an indoor aquarium
(9) Experimental plot (S-Fresh group) using LED light (Fresh LED) in an indoor aquarium
(10) Experimental plot (S-Sunset group) using LED light (Sunset LED) in an indoor aquarium

屋内水槽の光源(LED光)は、サンゴ群体が受ける光の強さを均一にするため、各水槽内にテーブルを設置して水深10cmになるように、サンゴ群体直上に設置した。
サンゴ群体は、頂端ポリプが横向きなるように配置した。
屋外水槽のサンゴ群体は、屋内水槽と同様に設置した机の上に配置した。
The light source (LED light) of the indoor aquarium was installed directly above the coral colony so that the water depth would be 10 cm by installing a table in each aquarium in order to make the intensity of the light received by the coral colony uniform.
The coral colonies were placed with the apical polyps facing sideways.
The coral colony in the outdoor aquarium was placed on a desk installed in the same manner as the indoor aquarium.

各実験区に設置したテーブル直上水面に照射される放射照度と光波長を、分光色彩照度計(スペクトロマスターC-7000、SEKONIC、練馬)を用いて測定した。
計測結果は、図1及び2に示すとおりであり、図1は、表層海水水槽に用いた各LED光の光スペクトルとその放射照度を示したグラフであり、図2は、地下浸透海水水槽に用いた各LED光の光スペクトルとその放射照度を示したグラフである。
各LED光とその特徴は、次のとおりである。
Coral LED(製品番号:GLRX122/CR):420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈する。
Reef LED(製品番号:GLRX122/RF):400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈する。
Fresh LED(製品番号:GLRX122/FS):400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含む。このLED抗原の光は対色湿度と演色性がそれぞれ9000KとRa95である。
Sunset LED(製品番号:GLRX122/SS):400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含む。このLED抗原の光は相対色湿度と演色性がそれぞれ3000KとRa85である。
なお、これらLED光は、すべて株式会社ボルクスジャパン製であり、「製品番号」は同社の製品番号を示している。
The irradiance and light wavelength irradiating the water surface directly above the table installed in each experimental group were measured using a spectrocolor illuminance meter (Spectromaster C-7000, SEKONIC, Nerima).
The measurement results are as shown in FIGS. 1 and 2. FIG. 1 is a graph showing the optical spectrum of each LED light used in the surface seawater tank and its irradiance, and FIG. 2 is a graph showing the underground seepage seawater tank. It is a graph which showed the optical spectrum of each LED light used and its irradiance.
Each LED light and its features are as follows.
Coral LED (Product No .: GLRX122 / CR): It has peak wavelengths near 420 nm, 450 nm, and 475 nm, respectively, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm.
Reef LED (Product No .: GLRX122 / RF): It has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, respectively, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm.
Fresh LED (Product No .: GLRX122 / FS): Has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, respectively, and the wavelength of 500 nm to 800 nm includes 50% or more of the wavelength band of 380 to 800 nm. The light of this LED antigen has color humidity and color rendering properties of 9000K and Ra95, respectively.
Sunset LED (Product No .: GLRX122 / SS): Has peak wavelengths near 400 nm, 420 nm, and 660 nm, and the wavelength of 500 nm to 800 nm includes 70% or more of the wavelength band of 380 to 800 nm. The light of this LED antigen has relative color humidity and color rendering properties of 3000K and Ra85, respectively.
All of these LED lights are manufactured by Volks Japan Co., Ltd., and the "product number" indicates the company's product number.

屋内水槽で飼育した実験群の光周期は、16時間明期、8時間暗期、光強度は、いずれも200μEm-2-1である。
飼育実験は、2017年10月26日から同年12月21日の8週間(第一飼育実験期間)と2018年1月11日から同年3月8日の8週間(第二飼育実験期間)と2回に分けて行った。
実験期間中の水温は、次のとおりであった。
The photoperiod of the experimental group bred in the indoor aquarium was 16 hours light period and 8 hours dark period, and the photoperiod was 200 μEm -2 s -1 .
The breeding experiment is from October 26, 2017 to December 21, 2017 for 8 weeks (first breeding experiment period) and from January 11, 2018 to March 8, 2018 for 8 weeks (second breeding experiment period). I went in two parts.
The water temperature during the experiment was as follows.

第一飼育実験期間(2017年10月26日〜同年12月21日)
(1)表層海水(屋内水槽)25.2±2.9℃
(2)地下浸透海水(屋内水槽)25.1±0.7℃
(3)表層海水(屋外水槽)24.4±2.6℃
(4)地下浸透海水(屋外水槽)24.8±1.9℃
First breeding experiment period (October 26, 2017-December 21, 2017)
(1) Surface seawater (indoor water tank) 25.2 ± 2.9 ℃
(2) Underground seepage seawater (indoor water tank) 25.1 ± 0.7 ℃
(3) Surface seawater (outdoor water tank) 24.4 ± 2.6 ℃
(4) Underground seepage seawater (outdoor water tank) 24.8 ± 1.9 ℃

第二飼育実験期間(2018年1月11日〜同年3月8日)
(1)表層海水(屋内水槽)20.8±1.2℃
(2)地下浸透海水(屋内水槽)23.6±0.3℃
(3)表層海水(屋外水槽)20.5±1.5℃
(4)地下浸透海水(屋外水槽)22.8±0.8℃
Second breeding experiment period (January 11, 2018-March 8, 2018)
(1) Surface seawater (indoor water tank) 20.8 ± 1.2 ℃
(2) Underground seepage seawater (indoor water tank) 23.6 ± 0.3 ℃
(3) Surface seawater (outdoor water tank) 20.5 ± 1.5 ℃
(4) Underground seepage seawater (outdoor water tank) 22.8 ± 0.8 ℃

枝打ち後のサンゴ片の重量測定を2週間ごとに行い、水中重量測定法(Schtter et al.,2008)を用いて、ウスエダミドリイシとトゲスギミドリイシの成長量を評価した。
最終的な一日の相対成長量(SGR;Specific growth rate)は、飼育実験開始日の重量と、実験終了時の重量を用いて次式のとおり算出した。
SGR(%day-1)={(Bwf−Bwi)Bwi/Δt}×100
(Bwf:実験終了時の重量、Bwi:実験開始時の重量、Δt:実験開始から終了までの日数)
The weight of the coral pieces after pruning was measured every two weeks, and the growth amount of Usuedamidoriishi and Togesugimidoriishi was evaluated using the underwater weight measurement method (Schtter et al., 2008).
The final daily relative growth rate (SGR) was calculated by the following formula using the weight at the start date of the breeding experiment and the weight at the end of the experiment.
SGR (% day -1 ) = {(Bwf-Bwi) Bwi / Δt} × 100
(Bwf: weight at the end of the experiment, Bwi: weight at the start of the experiment, Δt: number of days from the start to the end of the experiment)

今回の実験において、各データの正規性と等分散性は有意水準を5%に設定し、5%超過(p>0.05)の有意水準を得たデータにおいては正規性と等分散性における帰無仮説が正しいとした。
正規性はShapiro-Wilk検定を用いて確認し、等分散性はBartlett検定を用いて確認した。
正規性並びに等分散性が確認された場合において、それぞれのLED光群間比較は一元配置分散分析One-way analysis of variance(ANOVA)で有意性を調べた後、多重検定比較のTurkey-Kramer法を用いて各群間の有意性を確認した。
また、正規性及び等分散性のどちらか一つでも確認されなかった場合は、Kruskal-Wallis検定で有意性を調べた後、多重比較検定のKruskal nemenyi法を用いて各群間の有意性を確認した。
有意性の確認は有意水準を5%に設定し、5%未満(p<0.05)の場合において有意差があることとし、1%未満(p<0.01)の場合は顕著に有意差があるとした。
各LED光群における異なる水質間の比較は正規性が確認された場合において、Welchのt検定を用いて二群間の有意差を確認した。
正規性が確認されなかった場合は、ウィルコクソンの順位和検定を用いて二群間の有意差を確認した。
有意性の確認は有意水準を5%に設定し、5%未満(p<0.05)の場合において有意差があることとし、1%未満(p<0.01)の場合は顕著に有意差があるとした。
In this experiment, the significance level of the normality and homoscedasticity of each data was set to 5%, and the null hypothesis of normality and homoscedasticity was obtained for the data with a significance level exceeding 5% (p> 0.05). The hypothesis was correct.
Normality was confirmed using the Shapiro-Wilk test, and homoscedasticity was confirmed using the Bartlett test.
When normality and homoscedasticity are confirmed, the significance of each LED light group comparison is examined by one-way analysis of variance (ANOVA), and then the Turkey-Kramer method of multiple test comparison. The significance between each group was confirmed using.
If either normality or homoscedasticity is not confirmed, the significance is examined by the Kruskal-Wallis test, and then the significance between each group is determined by using the Kruskal nemenyi method of the multiplex comparison test. confirmed.
To confirm the significance, set the significance level to 5%, and if it is less than 5% (p <0.05), there is a significant difference, and if it is less than 1% (p <0.01), there is a significant difference. did.
A comparison between different water qualities in each LED light group confirmed a significant difference between the two groups using Welch's t-test when normality was confirmed.
If normality was not confirmed, Wilcoxon rank sum test was used to confirm the significant difference between the two groups.
To confirm the significance, set the significance level to 5%, and if it is less than 5% (p <0.05), there is a significant difference, and if it is less than 1% (p <0.01), there is a significant difference. did.

第一飼育実験期間の結果を、図3乃至8に示す。
図3は、表層海水水槽でのウスエダミドリイシの成長率を、図4は、地下浸透海水水槽でのウスエダミドリイシの成長率を、図5は、異なる水質間でのウスエダミドリイシの各LED光の成長率を、図6は、表層海水水槽でのトゲスギミドリイシの成長率を、図7は、地下浸透海水水槽でのトゲスギミドリイシの成長率を、図8は、異なる水質間でのトゲスギミドリイシの各LED光の成長率を、それぞれ示す。
なお、図3乃至8の各グラフ中のバーは、標準誤差(±SE)を表す。
The results of the first breeding experiment period are shown in FIGS. 3 to 8.
FIG. 3 shows the growth rate of Japanese cedar in a surface seawater tank, FIG. 4 shows the growth rate of Japanese cedar in an underground infiltration seawater tank, and FIG. 5 shows each LED of Japanese cedar between different water qualities. The growth rate of light is shown in FIG. 6, the growth rate of Japanese cedar greens in a surface seawater tank, FIG. 7 is the growth rate of Japanese cedar greens in an underground infiltration seawater tank, and FIG. 8 is a growth rate of Japanese cedar greens between different water qualities. The growth rate of each LED light of Togesugimidoriishi is shown.
The bars in each graph of FIGS. 3 to 8 represent the standard error (± SE).

異なる光(自然光とLED光4種)および水質(表層海水水槽と地下浸透海水水槽)でウスエダミドリイシとトゲスギミドリイシを飼育し、それらの成長量を実験開始時と終了時の水中重量差で求めた。
表層海水水槽で飼育した場合、ウスエダミドリイシとトゲスギミドリイシのいずれにおいてもS-Coral群、S-Reef群、及びS-Fresh群間で有意差がみられなかった。
地下浸透海水水槽で飼育したウスエダミドリイシの一日の相対成長量は、U-Sunset群で約0.49%と最も高く、U-Reef群及びU-自然光群に比べて有意に高かった。
また、U-Fresh群及びU-Coral群の一日の相対成長量がU-自然光群のそれよりも有意に高かった。
その他の群間に有意差はみられなかった。
地下浸透海水水槽で飼育したトゲスギミドリイシの一日の相対成長量は、U-自然光群で約0.65%と最も高く、U-Reef群に比べて有意に高かった。
その他の群間に有意差はみられなかった。
表層海水と地下浸透海水間で両種の成長を比較すると、S-Fresh群の成長がU-Fresh群の成長より、またS-Reef群の成長がU-Reef群の成長より、それぞれ有意に高かった。
第一飼育実験期間で飼育されたウスエダミドリイシとトゲスギミドリイシの生存率は表層海水水槽及び地下浸透海水水槽で100%であった。
以上の結果から、ウスエダミドリイシとトゲスギミドリイシにおいては、短波長帯の光を多く含む光を受けた実験群の一日の相対成長量が高くなる傾向がみられた。
また水質の違いにおける両種の一日の相対成長量は、表層海水水槽群が地下浸透海水水槽群よりも高くなる傾向が見られた。
Breeding Usuedamidoriishi and Togesugimidoriishi in different lights (natural light and 4 types of LED light) and water quality (surface seawater tank and underground seepage seawater tank), and the amount of their growth is determined by the difference in underwater weight between the start and end of the experiment. I asked.
When bred in a surface seawater tank, no significant difference was observed between the S-Coral group, the S-Reef group, and the S-Fresh group in any of the Usuedamidoriishi and Togesugimidoriishi.
The daily relative growth of Usuedamidoriishi bred in the underground seepage seawater tank was the highest in the U-Sunset group at about 0.49%, which was significantly higher than that in the U-Reef group and the U-natural light group.
In addition, the daily relative growth of the U-Fresh group and the U-Coral group was significantly higher than that of the U-natural light group.
No significant difference was found between the other groups.
The daily relative growth of Japanese cedar midoriishi bred in the underground seepage seawater tank was the highest in the U-natural light group at about 0.65%, which was significantly higher than that in the U-Reef group.
No significant difference was found between the other groups.
Comparing the growth of both species between surface seawater and underground infiltrated seawater, the growth of the S-Fresh group is significantly higher than that of the U-Fresh group, and the growth of the S-Reef group is significantly higher than that of the U-Reef group. it was high.
The survival rates of Usuedamidoriishi and Togesugimidoriishi bred during the first breeding experiment period were 100% in the surface seawater tank and the underground seepage seawater tank.
From the above results, in Usuedamidoriishi and Togesugimidoriishi, the daily relative growth amount of the experimental group that received a lot of light in the short wavelength band tended to be high.
In addition, the daily relative growth of both species due to the difference in water quality tended to be higher in the surface seawater tank group than in the underground infiltration seawater tank group.

第二飼育実験期間の結果を、図9乃至14に示す。
図9は、表層海水水槽でのウスエダミドリイシの成長率を、図10は、地下浸透海水水槽でのウスエダミドリイシの成長率を、図11は、異なる水質間でのウスエダミドリイシの各LED光の成長率を、図12は、表層海水水槽でのトゲスギミドリイシの成長率を、図13は、地下浸透海水水槽でのトゲスギミドリイシの成長率を、図14は、異なる水質間でのトゲスギミドリイシの各LED光の成長率を、それぞれ示す。
なお、図9乃至14の各グラフ中のバーは、標準誤差(±SE)を表す。
The results of the second breeding experiment period are shown in FIGS. 9 to 14.
FIG. 9 shows the growth rate of Japanese cedar in a surface seawater tank, FIG. 10 shows the growth rate of Japanese cedar in an underground infiltration seawater tank, and FIG. 11 shows each LED of Japanese cedar between different water qualities. The growth rate of light is shown in FIG. 12, the growth rate of Japanese cedar greens in a surface seawater tank, FIG. 13 is the growth rate of Japanese cedar greens in an underground seepage seawater tank, and FIG. 14 is a growth rate of Japanese cedar greens between different water qualities. The growth rate of each LED light of Togesugimidoriishi is shown.
The bars in the graphs of FIGS. 9 to 14 represent the standard error (± SE).

表層海水水槽で飼育したウスエダミドリイシの一日の相対成長量は、S-Sunset群で約0.43%と最も高く、S-自然光群に比べて有意に高かった。
その他の群間に有意差はみられなかった。
表層海水水槽で飼育したトゲスギミドリイシの一日の相対成長量は、どの群間においても有意差はみられなかった。
地下浸透海水水槽で飼育したウスエダミドリイシの一日の相対成長量は、U-Sunset群で約0.49%と最も高く、U-Fresh群よりも有意に高かった。
その他の群間に有意差はみられなかった。
地下浸透海水水槽で飼育したトゲスギミドリイシの一日の相対成長量は、どの群間においても有意差はみられなかった。
表層海水と地下浸透海水間で両種の成長を比較すると、ウスエダミドリイシにおける異なる水質間での一日の相対成長量は、どの群間においても有意差はみられなかった。
一方、トゲスギミドリイシにおける異なる水質間での一日の相対成長量は、S-Reef群がU-Reef群より顕著に高かった。
その他の群間において有意差はみられなかった。
第二飼育実験期間で飼育されたウスエダミドリイシとトゲスギミドリイシの生存率は表層海水水槽及び地下浸透海水水槽で100%であった。
The daily relative growth of Usuedamidoriishi bred in the surface seawater tank was the highest in the S-Sunset group at about 0.43%, which was significantly higher than that in the S-natural light group.
No significant difference was found between the other groups.
There was no significant difference in the daily relative growth of Japanese cedar and Japanese cedar bred in the surface seawater tank between the groups.
The daily relative growth of Usuedamidoriishi bred in the underground seepage seawater tank was the highest in the U-Sunset group at about 0.49%, which was significantly higher than that in the U-Fresh group.
No significant difference was found between the other groups.
There was no significant difference in the daily relative growth of Japanese cedar midoriishi bred in the underground infiltration seawater tank between the groups.
Comparing the growth of both species between surface seawater and underground osmotic seawater, the daily relative growth between different water qualities in Usuedamidoriishi was not significantly different between the groups.
On the other hand, the daily relative growth of Japanese cedar and Japanese cedar between different water qualities was significantly higher in the S-Reef group than in the U-Reef group.
No significant difference was found between the other groups.
The survival rates of Usuedamidoriishi and Togesugimidoriishi bred during the second breeding experiment period were 100% in the surface seawater tank and the underground seepage seawater tank.

地下浸透海水で飼育したウスエダミドリイシにおいて、U-Sunset群の一日の相対成長量はU-自然光群とU-Reef群のそれらに比べて有意に高かった。
またU-Coral群及びU-Fresh群の1日の相対成長量はU-自然光群のそれに比べて有意に高かった。
一方、同海水で飼育したトゲスギミドリイシにおいては、U-自然光群の一日の相対成長量がU-Reef群のそれに比べて有意に高かった。
サンゴに共生する褐虫藻が持つクロロフィルはaとC2であり、それぞれ450nm付近と650nm付近の光スペクトルで最も集光を行うことが知られており、褐虫藻の光合成がイシサンゴ類の石灰化を促進させて骨格形成に関与する(Goreau and Goreau,1959;Pearse and Muscatine,1971;Allemand et al.,2004)。
これらのことから、褐虫藻の光合成に利用される波長を含むSunset LED(660nm)がウスエダミドリイシとトゲスギミドリイシの骨格形成を促進させたと考えられる。
本実験に用いたLED光の660nm付近での放射照度は、Fresh LEDがSunset LEDの約29%、Reef LEDとCoral LEDがSunset LEDの約14%しかない。
したがって、Sunset LEDが与えた長波長光(660nm)がウスエダミドリイシに共生する褐虫藻の光合成を活性化し成長に影響を与えたと考えられる。
また、トゲスギミドリイシにおいて、Sunset LED及び自然光で飼育した群で比較的高い成長率を示した。
このことから、トゲスギミドリイシにおいて短期的な飼育でも長波長帯の光を多く含むSunset LED(660nm)による骨格形成の促進が起こると考えられる。
第一飼育実験期間では、U-Sunset群とU-Coral群との間で一日の相対成長率に有意差がみられなかった。
この点に関して、450nm付近と650nm付近におけるクロロフィルaの吸光度が共に約0.6程度であるのに対し、450nm付近と650nm付近でのクロロフィルC2の吸光度はそれぞれ約0.8と0.1であり、吸光度に約8倍近い差があるため、クロロフィル間の吸光度の差が、この結果に反映された可能性がある。
In the Usuedamidoriishi bred in underground seepage seawater, the daily relative growth of the U-Sunset group was significantly higher than that of the U-natural light group and the U-Reef group.
The daily relative growth of the U-Coral group and the U-Fresh group was significantly higher than that of the U-natural light group.
On the other hand, in the Japanese cedar midoriishi bred in the same seawater, the daily relative growth of the U-natural light group was significantly higher than that of the U-Reef group.
The chlorophylls of zooxanthellae that coexist in coral are a and C 2 , and it is known that they collect the most light in the optical spectra near 450 nm and 650 nm, respectively, and the photosynthesis of zooxanthellae is calcification of stony corals. Promotes photosynthesis and is involved in skeletal formation (Goreau and Goreau, 1959; Pearse and Muscatine, 1971; Allemand et al., 2004).
From these facts, it is considered that the Sunset LED (660 nm) containing the wavelength used for photosynthesis of zooxanthellae promoted the skeleton formation of Usuedamidoriishi and Togesugimidoriishi.
The irradiance of the LED light used in this experiment near 660 nm is only about 29% of the Sunset LED for Fresh LED and about 14% of Sunset LED for Reef LED and Coral LED.
Therefore, it is considered that the long wavelength light (660 nm) given by the Sunset LED activated the photosynthesis of zooxanthellae symbiotic with Usuedamidoriishi and affected the growth.
In addition, in the Japanese cedar green sardine, the growth rate was relatively high in the group bred with Sunset LED and natural light.
From this, it is considered that the skeleton formation is promoted by the Sunset LED (660 nm), which contains a large amount of light in the long wavelength band, even in the short-term breeding of Japanese cedar.
During the first breeding experiment period, there was no significant difference in the daily relative growth rate between the U-Sunset group and the U-Coral group.
In this regard, the absorbance of chlorophyll a at around 450 nm and 650 nm is about 0.6, while the absorbance of chlorophyll C 2 at around 450 nm and 650 nm is about 0.8 and 0.1, respectively, and the absorbance is about 8. The difference in absorbance between chlorophylls may have been reflected in this result, as there is a nearly double difference.

第一飼育実験期間ではU-Sunset群とU-Fresh群との間で有意差がみられなかった。
これは、第一飼育実験において実験期間が短かったため、特定波長を強めたLED光との間で有意差がみられなかった可能性がある。
さらに、第一飼育実験期間では、LED光群と自然光群との間で一日の相対成長率に差があった。
これは、自然光には光強度や光スペクトルなどに不安定な要素が多くあり、また自然光で飼育したサンゴが水面下10cmにあったことを踏まえると、サンゴが過剰光暴露による光阻害を受けてしまっていたと考えられる。
表層海水水槽においてS-Sunset群とS-自然光群の一日の相対成長量を計測することができなかった。
計測できたS-Coral群、S-Fresh群及びS-Reef群における一日の相対成長量に有意差がみられなかった。
この結果は、地下浸透海水水槽での飼育実験との結果とも類似していた。
今回使用した人工光は、光波長650nm付近ではSunset LEDの放射照度が最も高いことから、第一飼育実験期間ではサンゴに共生している褐虫藻が短波長帯の光よりも長波長帯の光を優先的に吸光し、短波長帯の吸光を強いられた実験群の褐虫藻は十分な光合成を行えず、各LED光間で相対成長量の有意差を確認できなかったと考えられる。
No significant difference was observed between the U-Sunset group and the U-Fresh group during the first breeding experiment period.
It is possible that there was no significant difference between the LED light and the LED light with a specific wavelength strengthened because the experiment period was short in the first breeding experiment.
Furthermore, during the first breeding experiment period, there was a difference in the daily relative growth rate between the LED light group and the natural light group.
This is because natural light has many unstable factors such as light intensity and light spectrum, and the coral bred in natural light was 10 cm below the surface of the water. Therefore, the coral was light-inhibited by excessive light exposure. It is probable that it had been closed.
It was not possible to measure the daily relative growth of the S-Sunset group and the S-natural light group in the surface seawater tank.
There was no significant difference in the daily relative growth between the S-Coral group, S-Fresh group and S-Reef group that could be measured.
This result was similar to the result of the breeding experiment in the underground seepage seawater tank.
Since the artificial light used this time has the highest radiation illuminance of the Sunset LED near the light wavelength of 650 nm, the brown worm algae coexisting with the coral in the first breeding experiment period have a longer wavelength band than the light in the short wavelength band. It is probable that the brown worm algae of the experimental group, which preferentially absorbed light and were forced to absorb light in the short wavelength band, could not perform sufficient photosynthesis, and could not confirm a significant difference in the relative growth amount between each LED light.

異なる水質間での一日の相対成長量は、両種においてFresh LEDとReef LED下で飼育した群で表層海水水槽群が地下浸透海水水槽群よりも有意に高かった。
第一飼育実験期間では、ウスエダミドリイシとトゲスギミドリイシに共生する褐虫藻は、長波長帯の光を吸光している傾向にあった。
Fresh LEDとReef LEDを用いて飼育した場合、長波長帯の放射照度が極めて低いため、石灰化を促進するために十分な褐虫藻由来の光合成産物を享受できていなかったと考察される。
このことから、第一飼育実験期間においては、短期間飼育によるサンゴの成長は、水質よりも光に優先的に依存するが、十分な光を受けることができない場合においては、水質の違いがサンゴの骨格形成に大きく影響すると考察される。
第一飼育実験期間と同様の実験を異なる時期に行った。
ウスエダミドリイシにおいて、表層海水水槽におけるS-Sunset群の一日の相対成長量は、S-自然光群のそれよりも高かった。
また、ウスエダミドリイシにおいて、地下浸透海水水槽におけるU-Sunset群の一日の相対成長量は、U-Fresh群のそれよりも高かった。
このことから、地下浸透海水水槽で飼育されたウスエダミドリイシにおける結果は、第一と第二飼育実験期間で、長波長帯を受けた群の成長率が最も高いという点で類似しており、ウスエダミドリイシが優先的に吸光する光波長帯は変わらないと考えられる。
表層海水水槽で長期飼育されたウスエダミドリイシにおいても長波長帯の光を優先的に吸光している傾向が示唆されたが、自然光群においては第一飼育実験同様、光阻害の影響を受けていた可能性が考えられる。
The daily relative growth between different water qualities was significantly higher in the surface seawater tank group than in the underground seepage seawater tank group in the groups bred under Fresh LED and Reef LED in both species.
During the first breeding experiment period, the zooxanthellae that coexist with Usuedamidoriishi and Togesugimidoriishi tended to absorb light in the long wavelength band.
It is considered that when bred using Fresh LED and Reef LED, the irradiance in the long wavelength band was extremely low, and therefore sufficient photosynthetic products derived from zooxanthellae were not enjoyed to promote calcification.
From this, in the first breeding experiment period, the growth of coral by short-term breeding depends more preferentially on light than water quality, but when sufficient light cannot be received, the difference in water quality is different. It is considered that it greatly affects the skeleton formation of.
Experiments similar to those during the first breeding experiment were conducted at different times.
In Usuedamidoriishi, the daily relative growth of the S-Sunset group in the surface seawater tank was higher than that of the S-natural light group.
In Usuedamidoriishi, the daily relative growth of the U-Sunset group in the underground seepage seawater tank was higher than that of the U-Fresh group.
From this, the results of Usuedamidoriishi bred in the underground seepage seawater tank are similar in that the growth rate of the group that received the long wavelength band was the highest during the first and second breeding experiments. It is considered that the light wavelength band in which Usuedamidoriishi preferentially absorbs does not change.
It was suggested that Usuedamidoriishi, which was bred for a long time in the surface seawater tank, also tended to preferentially absorb light in the long wavelength band, but the natural light group was affected by light inhibition as in the first breeding experiment. It is possible that this was the case.

地下浸透海水水槽におけるU-Sunset群とU-Fresh群との間の一日の相対成長量に差があったことについて、サンゴに共生する褐虫藻が持つクロロフィルaとCは、光波長450nm付近と650nm付近で極大吸収することから、短波長帯450nm付近と長波長帯650nm付近での放射照度が極めて低いFresh LEDでは、長期飼育によるウスエダミドリイシの成長を促進できなかった可能性がある。
クロロフィルaとCの吸光度に特性差があることから、ウスエダミドリイシでは、クロロフィルaによる吸光がクロロフィルCによる吸光よりも盛んに行われていたため、成長が促進されたのかもしれない。
また、ウスエダミドリイシでは、共生している褐虫藻が保有するクロロフィルCの含有量は、クロロフィルaのそれよりも低いかもしれない。
トゲスギミドリイシにおいては、表層海水水槽及び地下浸透海水水槽において異なる光で長期飼育された各LED光群間で、有意差がみられなくなった。
このことより、異なる光波長条件で長期飼育された場合、光波長以外の環境要因がトゲスギミドリイシの骨格形成に関わっていることが考察される。
Regarding the difference in daily relative growth between the U-Sunset group and the U-Fresh group in the underground seepage seawater tank, the chlorophyll a and C 2 of the zooxanthellae symbiotic with coral have light wavelengths. Since it absorbs maximally near 450 nm and 650 nm, it is possible that the fresh LED, which has extremely low irradiance around 450 nm in the short wavelength band and 650 nm in the long wavelength band, could not promote the growth of zooxanthellae by long-term breeding. is there.
Since there is a characteristic difference in the absorbance of chlorophyll a and C 2, the absorption of chlorophyll a was more active than that of chlorophyll C 2 in Usuedamidoriishi, which may have promoted the growth.
Also, in Usuedamidoriishi, the content of chlorophyll C 2 possessed by the symbiotic zooxanthellae may be lower than that of chlorophyll a.
In the Japanese cedar green sardine, no significant difference was observed between the LED light groups bred for a long time with different lights in the surface seawater tank and the underground seepage seawater tank.
From this, it is considered that environmental factors other than the light wavelength are involved in the skeleton formation of the Japanese cedar green squirrel when they are bred for a long period of time under different light wavelength conditions.

5つの異なる光で飼育されたトゲスギミドリイシにおいて、異なる水質間での一日の相対成長量は、Reef LEDで飼育された群で、表層海水水槽群のほうが地下浸透海水水槽群のそれよりも顕著に高かった。
このことから、トゲスギミドリイシにおいては長波長帯の光が極端に少なく短波長帯の光に依存する場合において、短波長帯の放射照度の大きさが成長促進に関わると考察される。
Coral LEDとReef LEDの放射照度が450nm付近で最大であり、Reef LEDの放射照度がCoral LEDのそれに比べると約70%しかない。
このことから、Reef LEDにおいて水質間で一日の相対成長量に差があったのは、U-Reef群が光波長450nm付近において十分な放射照度を受けていなかったことが考えられる。
ハナヤサイサンゴの成長は、光の放射照度が70μmol photons m−2s−1の時に二酸化炭素分圧の影響を大きく受け、成長率は二酸化炭素分圧が正常である時(493μatm)に高く、同分圧が高い時(878μatm)に低い。
しかし、二酸化炭素分圧の違いによるハナヤサイサンゴの成長率への影響は、放射照度が上がるにつれて確認できなくなる(Dufault et al.,2013)。
この報告を踏まえると、本実験で用いたReef LEDでは、トゲスギミドリイシが石灰化を行うために必要とする面積当たりの放射照度が不十分であり、そのことが水質の影響を受ける原因になったと考えられる。
In the five different light-reared Japanese cedar green squirrels, the daily relative growth between different water qualities was higher in the Reef LED-fed group in the surface seawater tank group than in the underground seepage seawater tank group. It was significantly higher.
From this, it is considered that the magnitude of the irradiance in the short wavelength band is related to the growth promotion when the light in the long wavelength band is extremely small and depends on the light in the short wavelength band in Togesugimidoriishi.
The irradiance of Coral LED and Reef LED is the maximum around 450nm, and the irradiance of Reef LED is only about 70% of that of Coral LED.
From this, it is considered that the difference in the daily relative growth amount between the water qualities in the Reef LED is that the U-Reef group did not receive sufficient irradiance near the light wavelength of 450 nm.
The growth of Pocillopora damicosa is greatly affected by the partial pressure of carbon dioxide when the irradiance of light is 70 μmol photons m- 2 s- 1 , and the growth rate is high when the partial pressure of carbon dioxide is normal (493 μat m). It is low when the partial pressure is high (878 μatm).
However, the effect of the difference in carbon dioxide partial pressure on the growth rate of Pocillopora damiculi becomes uncertain as the irradiance increases (Dufault et al., 2013).
Based on this report, the Reef LED used in this experiment has insufficient irradiance per area required for calcification of Japanese cedar, which causes the influence of water quality. It is thought that it was.

なお、2018年10月から2019年6月に行ったサンゴの完全養殖を目指した屋内・屋外飼育下での産卵確認試験の結果、産卵は7日間(2019年5月19・20・21・22・25日、同年6月6・7日)であり、表層海水により、コユビミドリイシ(屋内)、スギノキミドリシ(屋内および自然光)、雑種ミドリイシ(自然光)の複数種類にて、それぞれ50個体以上の産卵が確認できた。
この前年の2017年10月から2018年6月の確認試験では、全く同じ条件で、コユビミドリイシ(屋内・表層海水、屋外・地下浸透海水)、スギノキミドリシ(屋外・表層海水)のみ産卵し、いずれも産卵は1日(2018年5月)のみ、それぞれ4個体であった。
このことから、産卵日数、産卵したサンゴの種類およびその個体数の全てが、前年よりも増えたことになる。
サンゴの種類ごとに、海水と光の種類の違いをもとに産卵の有無をまとめた表は、次のとおりである(産卵したものを「〇」、産卵しなかったものを「×」で示している。「―」は実験を行っていないことを示している。)。
In addition, as a result of the spawning confirmation test in indoor and outdoor captivity aiming at complete cultivation of coral from October 2018 to June 2019, spawning is 7 days (May 19, 20, 21, 22)・ 25th, June 6th and 7th of the same year), with more than 50 individuals each of multiple types of Koyubimidoriishi (indoor), Suginokimidoriishi (indoor and natural light), and hybrid Midoriishi (natural light) depending on the surface seawater. I was able to confirm the spawning of.
In the confirmation test from October 2017 to June 2018 of the previous year, only Koyubimidoriishi (indoor / surface seawater, outdoor / underground seepage seawater) and Suginokimidorishi (outdoor / surface seawater) spawned under exactly the same conditions. , In each case, spawning was only one day (May 2018), and there were 4 individuals each.
From this, the number of spawning days, the types of spawned corals and their populations all increased from the previous year.
The table that summarizes the presence or absence of spawning based on the difference between the types of seawater and light for each type of coral is as follows ("○" for spawning and "x" for non-spawning. Indicates. "-" Indicates that no experiment has been conducted.)

なお、表1中の産卵を確認できた「LED光」を使った実験区は、次のとおりである。
2019年 コユビミドリイシ 表層海水:「Coral LED」(S-Coral群)
2019年 スギノキミドリイシ 表層海水:「Coral LED」(S-Coral群)、「Fresh LED」(S-Fresh群)、「Sunset LED」(S-Sunset群)
2018年 コユビミドリイシ 表層海水:「Coral LED」(S-Coral群)
The experimental plots using "LED light" that confirmed spawning in Table 1 are as follows.
2019 Koyubi Midoriishi Surface Seawater: "Coral LED" (S-Coral group)
2019 Suginoki Midoriishi Surface Seawater: "Coral LED" (S-Coral group), "Fresh LED" (S-Fresh group), "Sunset LED" (S-Sunset group)
2018 Koyubi Midoriishi Surface Seawater: "Coral LED" (S-Coral group)

2018年7月までは、サンゴの管理はブラッシング作業のみであったところを、2018年10月から2019年6月に行った試験では、ブラッシング作業に加え、水槽内にサンゴ内の卵を食べる環形動物を捕食する魚類や藻類を常食するナマコ類および貝類を追加し、さらに水槽底面の清掃を止めることで、水槽内を自然環境に近づける改善を行った。
これらの飼育環境の改善によって、卵が成長過程で十分に発達・成熟し、産卵の個体数が増加したと推測する。


Until July 2018, coral management was limited to brushing work, but in the test conducted from October 2018 to June 2019, in addition to brushing work, a ring shape that eats eggs in the coral in the aquarium By adding fish that prey on animals and catfish and shellfish that regularly eat algae, and by stopping cleaning the bottom of the aquarium, we made improvements to bring the inside of the aquarium closer to the natural environment.
It is presumed that due to these improvements in the breeding environment, the eggs developed and matured sufficiently during the growth process, and the number of spawning individuals increased.


Claims (7)

表層海水掛け流しの養殖用水槽中で、
420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈するCoral LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈するReef LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含み、対色湿度と演色性がそれぞれ9000KとRa95であるFresh LED、
400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含み、相対色湿度と演色性がそれぞれ3000KとRa85であるSunset LED、
のいずれかのLED光を照射させることで、
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される少なくとも1種を生育させる
ことを特徴とするサンゴの養殖方法。
In the aquaculture tank that flows from the surface seawater
Coral LED, which has peak wavelengths near 420 nm, 450 nm, and 475 nm, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm.
Reef LED, which has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm.
Fresh LEDs, which have peak wavelengths near 400nm, 420nm, 450nm, and 475nm, have wavelengths of 500nm to 800nm containing more than 50% of the wavelength band of 380 to 800nm, and have color humidity and color rendering properties of 9000K and Ra95, respectively.
Sunset LEDs, which have peak wavelengths near 400 nm, 420 nm, and 660 nm, have wavelengths of 500 nm to 800 nm containing more than 70% of the wavelength band of 380 to 800 nm, and have relative color humidity and color rendering properties of 3000 K and Ra85, respectively.
By irradiating one of the LED lights,
A method for culturing coral, which comprises growing at least one species selected from a group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral.
地下浸透海水掛け流しの養殖用水槽中で、
420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈するCoral LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈するReef LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含み、対色湿度と演色性がそれぞれ9000KとRa95であるFresh LED、
400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含み、相対色湿度と演色性がそれぞれ3000KとRa85であるSunset LED、
のいずれかのLED光を照射させることで、
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される少なくとも1種を生育させる
ことを特徴とするサンゴの養殖方法。
In the aquaculture tank that flows underground infiltrated seawater
Coral LED, which has peak wavelengths near 420 nm, 450 nm, and 475 nm, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm.
Reef LED, which has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm.
Fresh LEDs, which have peak wavelengths near 400nm, 420nm, 450nm, and 475nm, have wavelengths of 500nm to 800nm containing more than 50% of the wavelength band of 380 to 800nm, and have color humidity and color rendering properties of 9000K and Ra95, respectively.
Sunset LEDs, which have peak wavelengths near 400 nm, 420 nm, and 660 nm, have wavelengths of 500 nm to 800 nm containing more than 70% of the wavelength band of 380 to 800 nm, and have relative color humidity and color rendering properties of 3000 K and Ra85, respectively.
By irradiating one of the LED lights,
A method for culturing coral, which comprises growing at least one species selected from a group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral.
前記のサンゴが、
六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のウスエダミドリイシ(Acropora tenuis)
であることを特徴とする請求項1または2に記載のサンゴの養殖方法。
The coral mentioned above
Hexacorallia subclass Stony coral Acroporidae Acropora tenuis of the genus Acropora
The coral farming method according to claim 1 or 2, wherein the coral is cultivated.
前記のサンゴが、
六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のトゲスギミドリイシ(Acropora intermedia)
であることを特徴とする請求項1または2に記載のサンゴの養殖方法。
The coral mentioned above
Hexacorallia subclass Stony coral Acroporidae Acroporidae Acropora intermedia
The coral farming method according to claim 1 or 2, wherein the coral is cultivated.
前記のサンゴが、
六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のコユビミドリイシ(Acropora digitifera)
であることを特徴とする請求項1または2に記載のサンゴの養殖方法。
The coral mentioned above
Hexacorallia subclass Stony coral, Acroporidae, Acropora digitifera
The coral farming method according to claim 1 or 2, wherein the coral is cultivated.
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される少なくとも1種を生育させるための、
表層海水または地下浸透海水を掛け流す水槽と、
水槽中を照射する
420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈するCoral LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈するReef LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含み、対色湿度と演色性がそれぞれ9000KとRa95であるFresh LED、
400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含み、相対色湿度と演色性がそれぞれ3000KとRa85であるSunset LED、
のいずれかのLED光を備えた
ことを特徴とするサンゴの養殖装置。
For growing at least one species selected from the group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral.
A water tank that flushes surface seawater or underground seepage seawater,
Irradiate the inside of the aquarium
Coral LED, which has peak wavelengths near 420 nm, 450 nm, and 475 nm, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm.
Reef LED, which has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm.
Fresh LEDs, which have peak wavelengths near 400nm, 420nm, 450nm, and 475nm, have wavelengths of 500nm to 800nm containing more than 50% of the wavelength band of 380 to 800nm, and have color humidity and color rendering properties of 9000K and Ra95, respectively.
Sunset LEDs, which have peak wavelengths near 400 nm, 420 nm, and 660 nm, have wavelengths of 500 nm to 800 nm containing more than 70% of the wavelength band of 380 to 800 nm, and have relative color humidity and color rendering properties of 3000 K and Ra85, respectively.
A coral farming device characterized by being equipped with one of the LED lights.
サンゴ卵、サンゴプラヌラ幼生、稚サンゴ、サンゴ成体からなる群より選択される、
六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のウスエダミドリイシ(Acropora tenuis)、六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のトゲスギミドリイシ(Acropora intermedia)、六放サンゴ亜綱イシサンゴ目ミドリイシ科ミドリイシ属のコユビミドリイシ(Acropora digitifera)のうち、少なくとも1種を生育させるための、
表層海水または地下浸透海水を掛け流す水槽と、
水槽中を照射する
420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の95%以上を含むことで強い青色を呈するCoral LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、380nm〜500nmの波長が380〜800nmの波長帯の80%以上を含むことで青色を呈するReef LED、
400nm、420nm、450nm、475nm付近にそれぞれピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の50%以上を含み、対色湿度と演色性がそれぞれ9000KとRa95であるFresh LED、
400nm、420nm、660nm付近にピーク波長をもち、500nm〜800nmの波長が380〜800nmの波長帯の70%以上を含み、相対色湿度と演色性がそれぞれ3000KとRa85であるSunset LED、
のいずれかのLED光を備えた
ことを特徴とするサンゴの養殖装置。
Selected from the group consisting of coral eggs, coral planula larvae, juvenile coral, and adult coral,
Acropora tenuis, Acropora tenuis, Acropora, Acropora, Acropora, Acropora, Acropora, Acropora, Acropora, Acropora, Acropora, Acropora, For growing at least one of the genus Acropora digitifera
A water tank that flushes surface seawater or underground seepage seawater,
Irradiate the inside of the aquarium
Coral LED, which has peak wavelengths near 420 nm, 450 nm, and 475 nm, and exhibits a strong blue color when the wavelength of 380 nm to 500 nm includes 95% or more of the wavelength band of 380 to 800 nm.
Reef LED, which has peak wavelengths near 400 nm, 420 nm, 450 nm, and 475 nm, and exhibits blue color when the wavelength of 380 nm to 500 nm includes 80% or more of the wavelength band of 380 to 800 nm.
Fresh LEDs, which have peak wavelengths near 400nm, 420nm, 450nm, and 475nm, have wavelengths of 500nm to 800nm containing more than 50% of the wavelength band of 380 to 800nm, and have color humidity and color rendering properties of 9000K and Ra95, respectively.
Sunset LEDs, which have peak wavelengths near 400 nm, 420 nm, and 660 nm, have wavelengths of 500 nm to 800 nm containing more than 70% of the wavelength band of 380 to 800 nm, and have relative color humidity and color rendering properties of 3000 K and Ra85, respectively.
A coral farming device characterized by being equipped with one of the LED lights.
JP2020039287A 2019-03-08 2020-03-06 Method and device for inducing coral spawning Active JP7448913B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019042100 2019-03-08
JP2019042100 2019-03-08

Publications (3)

Publication Number Publication Date
JP2020146037A true JP2020146037A (en) 2020-09-17
JP2020146037A5 JP2020146037A5 (en) 2023-04-14
JP7448913B2 JP7448913B2 (en) 2024-03-13

Family

ID=72429058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039287A Active JP7448913B2 (en) 2019-03-08 2020-03-06 Method and device for inducing coral spawning

Country Status (1)

Country Link
JP (1) JP7448913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021004596T5 (en) 2020-08-31 2023-07-20 Alps Alpine Co., Ltd. input device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185973B2 (en) 2004-04-14 2008-11-26 独立行政法人産業技術総合研究所 Useful marine organisms cultivated on land, useful marine organisms obtained by the method and apparatus
JP2009044979A (en) 2007-08-17 2009-03-05 Shizuoka Prefecture Device for rearing aquatic organism
TWI580890B (en) 2016-05-25 2017-05-01 國立中正大學 Light source module
JP2019013182A (en) 2017-07-06 2019-01-31 国立研究開発法人産業技術総合研究所 Method and apparatus for breeding hermatypic corals
US11282989B2 (en) 2017-09-26 2022-03-22 Kyocera Corporation Light-emitting device and illumination apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021004596T5 (en) 2020-08-31 2023-07-20 Alps Alpine Co., Ltd. input device

Also Published As

Publication number Publication date
JP7448913B2 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
Omori Coral restoration research and technical developments: what we have learned so far
TWI700031B (en) Oyster farming method on land
CN101411311B (en) Method for producing fingerling of Trachidermus fasciatus
CN1915007A (en) Production method for summer offspring of Songjiang blue pickerel
Lampman et al. Chapter twenty two: Developing techniques for artificial propagation and early rearing of Pacific lamprey (Entosphenus tridentatus) for species recovery.
JP2012120480A (en) Method for breeding semisulcospira libertina, and water tank for breeding semisulcospira libertina
JP4185973B2 (en) Useful marine organisms cultivated on land, useful marine organisms obtained by the method and apparatus
JP2020146037A (en) Cultivation method of coral
CN107265653B (en) Method for promoting growth of submerged plants by using fish and benthonic animals in synergy mode
JP2008125440A (en) Method for culturing coral
Shafir et al. A mid-water coral nursery
McMahon Optimization of light irradiance during the early life of sexually-produced Porites astreoides and Agaricia agaricites recruits
CN107381827B (en) Spirogyra and attached algae control method based on water quality maintenance
Perry et al. Expansion of the Soft Crab Fishery in Mississippi Using Cultured Blue Crabs.
CN107372227A (en) A kind of lithosporic fry pond rearing cultural method
SGG Polyhouse driven raised-temperature induces cichlid tilapia to breed during winter
JP4041915B1 (en) Submarine bivalve culture method
MURAKOSHI et al. Development of mass seed production techniques for green snail, Turbo marmoratus in Okinawan water
JP2003225035A (en) Method for raising firefly, and soil and system for raising firefly
ES2567955B2 (en) Procedure for obtaining a marine product based on amphipods
Gogoi et al. Canals in Indian Sundarbans: Opportunities towards livelihood improvement through fisheries intervention
KR101713396B1 (en) Process of farming the lugworm
KR100531663B1 (en) Aquarium achieving natural ecosystem
Ruby et al. Priphyton based aquaculture: A review
Abdullahi et al. ISSN 1595-465X

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R150 Certificate of patent or registration of utility model

Ref document number: 7448913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150