JP2020145530A - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
JP2020145530A
JP2020145530A JP2019039163A JP2019039163A JP2020145530A JP 2020145530 A JP2020145530 A JP 2020145530A JP 2019039163 A JP2019039163 A JP 2019039163A JP 2019039163 A JP2019039163 A JP 2019039163A JP 2020145530 A JP2020145530 A JP 2020145530A
Authority
JP
Japan
Prior art keywords
piezoelectric film
elastic wave
wave device
insulating portion
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019039163A
Other languages
Japanese (ja)
Inventor
哲也 岸野
Tetsuya Kishino
哲也 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019039163A priority Critical patent/JP2020145530A/en
Publication of JP2020145530A publication Critical patent/JP2020145530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

To provide an elastic wave device that is excellent in electrical characteristics.SOLUTION: An elastic wave device 1 comprises: an IDT electrode 9 that includes a plurality of electrode fingers; a piezoelectric film 7 that includes a first surface 7a and a second surface 7b, has the IDT electrode 9 located on the first surface 7a, has a thickness less than a wavelength λ defined by twice the repeating interval of the plurality of electrode fingers, and is formed of piezoelectric crystal containing a dopant Dp with a density of 10 ppm or more and 10000 ppm or less; and an insulating unit 5 that is formed of an insulating material directly or indirectly joined to the second surface 7b of the piezoelectric film 7.SELECTED DRAWING: Figure 1

Description

本発明は、弾性波装置に関する。 The present invention relates to an elastic wave device.

従来、圧電膜と、圧電膜に積層されており、伝搬するバルク波の音速が圧電膜を伝搬すするバルク波の音速よりも低い低音速膜と、低音速膜の圧電膜とは反対側の面に積層されており、伝搬するバルク波の音速が圧電膜を伝搬すするバルク波の音速よりも高い高音速基板とを含む弾性波装置が提案されている。(特許文献1参照)。このような弾性波装置によれば、Q値を高めることができる。 Conventionally, a low-sound velocity film, which is laminated on a piezoelectric film and a propagating bulk wave whose sound velocity is lower than the sound velocity of a bulk wave propagating through the piezoelectric film, and a low-sound velocity film on the opposite side of the piezoelectric film. An elastic wave device including a high sound velocity substrate which is laminated on a surface and whose sound velocity of the propagating bulk wave is higher than the sound velocity of the bulk wave propagating through the piezoelectric film has been proposed. (See Patent Document 1). According to such an elastic wave device, the Q value can be increased.

特開2015−73331号公報Japanese Unexamined Patent Publication No. 2015-73331

さらに電気特性の優れた弾性波装置が求められている。 Further, an elastic wave device having excellent electrical characteristics is required.

本開示は、このような状況に鑑みなされたものであり、その目的は、電気特性の優れた弾性波装置を提供することにある。 The present disclosure has been made in view of such a situation, and an object of the present disclosure is to provide an elastic wave device having excellent electrical characteristics.

本開示の弾性波装置は、複数の電極指を備えるIDT電極と、第1面と第2面とを備え、前記第1面に前記IDT電極が位置しており、前記複数の電極指の繰り返し間隔の2倍で定義される弾性表面波波長λ未満の厚みであり、10ppm以上10000ppm以下の濃度のドーパントを含む圧電結晶からなる圧電膜と、前記圧電膜の前記第2面に直接または間接的に接合される絶縁性材料からなる絶縁部と、を備える。 The surface acoustic wave device of the present disclosure includes an IDT electrode having a plurality of electrode fingers, a first surface and a second surface, the IDT electrode is located on the first surface, and the plurality of electrode fingers are repeated. A piezoelectric film having a thickness less than the surface acoustic wave wavelength λ defined by twice the interval and composed of a piezoelectric crystal containing a dopant having a concentration of 10 ppm or more and 10000 ppm or less, and directly or indirectly on the second surface of the piezoelectric film. It is provided with an insulating portion made of an insulating material to be joined to.

上記構成によれば、電気特性の優れた弾性波素子を提供することができる。 According to the above configuration, it is possible to provide an elastic wave element having excellent electrical characteristics.

本開示にかかる弾性波装置の模式的な断面図である。It is a schematic cross-sectional view of the elastic wave device which concerns on this disclosure. 図1の弾性波装置の上面図である。It is a top view of the elastic wave device of FIG. 弾性波装置の周波数特性を示す線図である。It is a diagram which shows the frequency characteristic of the elastic wave apparatus. 図4(a)はAFM分析結果を、図4(b)は圧電応答力顕微鏡による分析結果を示す図である。FIG. 4A is a diagram showing an AFM analysis result, and FIG. 4B is a diagram showing an analysis result by a piezoelectric response microscope. 図5(a),図5(b)はそれぞれ図1に係る弾性波装置の変形例を示す断面図である。5 (a) and 5 (b) are cross-sectional views showing modified examples of the elastic wave device according to FIG. 1, respectively. 図1に係る弾性波装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the elastic wave apparatus which concerns on FIG.

以下、図面を参照しつつ、本開示の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by explaining specific embodiments of the present disclosure with reference to the drawings.

図1は、本開示の実施形態に係る弾性波装置(以下、SAW装置という)1の模式的な断面図である。 FIG. 1 is a schematic cross-sectional view of an elastic wave device (hereinafter referred to as a SAW device) 1 according to the embodiment of the present disclosure.

SAW装置1は、支持基板3と絶縁部5と圧電膜7とIDT電極9とを備える。支持基板3と絶縁部5と圧電膜7とはこの順に積層されている。 The SAW device 1 includes a support substrate 3, an insulating portion 5, a piezoelectric film 7, and an IDT electrode 9. The support substrate 3, the insulating portion 5, and the piezoelectric film 7 are laminated in this order.

支持基板3は、この例では、その上に積層される絶縁部5および圧電膜7を支持するものであり、一定の強度を備えれば特に限定されない。例えば、圧電膜7に比べて線膨張係数の小さい材料で構成する場合には、温度変化による圧電膜7の変形を低減することで、温度変化による特性変化を低減することができる。また、圧電膜7中を伝搬する弾性波の横波音速に比べて支持基板3中を伝搬する弾性波の横波音速が早くなるように材料を選定した場合には、弾性波を圧電膜7に閉じ込めることができ、周波数特性の優れたSAW装置1を提供することができる。 In this example, the support substrate 3 supports the insulating portion 5 and the piezoelectric film 7 laminated on the support substrate 3, and is not particularly limited as long as it has a certain strength. For example, when the material is made of a material having a coefficient of linear expansion smaller than that of the piezoelectric film 7, it is possible to reduce the characteristic change due to the temperature change by reducing the deformation of the piezoelectric film 7 due to the temperature change. Further, when the material is selected so that the transverse wave sound velocity of the elastic wave propagating in the support substrate 3 is faster than the transverse wave sound velocity of the elastic wave propagating in the piezoelectric film 7, the elastic wave is confined in the piezoelectric film 7. It is possible to provide the SAW device 1 having excellent frequency characteristics.

このような材料として、例えば、サファイア基板やSi基板等を例示できる。本実施形態においては支持基板3としてSi基板を用いた場合を例に説明する。 Examples of such a material include a sapphire substrate and a Si substrate. In this embodiment, a case where a Si substrate is used as the support substrate 3 will be described as an example.

なお、支持基板3と絶縁部5と圧電膜7との積層体の反りを低減するように、支持基板3の材料を選定してもよい。例えば、絶縁部5の線膨張係数が圧電膜7の線膨張係数に比べて小さい場合には、支持基板3は絶縁部5よりも線膨張係数の大きい材料にしてもよい。 The material of the support substrate 3 may be selected so as to reduce the warp of the laminate of the support substrate 3, the insulating portion 5, and the piezoelectric film 7. For example, when the coefficient of linear expansion of the insulating portion 5 is smaller than the coefficient of linear expansion of the piezoelectric film 7, the support substrate 3 may be made of a material having a coefficient of linear expansion larger than that of the insulating portion 5.

絶縁部5は、例えば、酸化ケイ素、窒素ケイ素、酸化アルミニウム等の絶縁性を有する材料からなり、その結晶性は特に限定されない。絶縁部5を設けることにより、不要の電位が形成されたり不要の容量が形成されたりすることを低減することができるので、SAW装置1の電気特性を向上させることができる。この例では、絶縁部5として、酸化ケイ素を用いている。 The insulating portion 5 is made of an insulating material such as silicon oxide, silicon nitrogen nitrogen, or aluminum oxide, and its crystallinity is not particularly limited. By providing the insulating portion 5, it is possible to reduce the formation of unnecessary potentials and unnecessary capacitances, so that the electrical characteristics of the SAW device 1 can be improved. In this example, silicon oxide is used as the insulating portion 5.

特に、本例のように、支持基板3として半導体材料であるSi基板を用いる場合には、圧電膜7と支持基板3との間に絶縁部5を設けることにより、支持基板3の影響を低減すことができる。絶縁性を確保しつつ、かつ、支持基板3の高音速材料の特性を活かすためには、絶縁部3の厚みは、後述のIDT電極9により規定されるピッチpに対して0.01p以上2p以下としてもよい。特に0.1p〜0.4pとした場合には支持基板3(この場合はSi)の導電率の影響を避けることができる。また、絶縁部5として酸化ケイ素を用いる場合には、圧電膜7中を伝搬する弾性波の横波音速に比べて絶縁部5中を伝搬する弾性波の横波音速が遅くなる。この場合には、圧電膜7が規定より薄くなりSAW装置1としての共振周波数が高くなるときには、絶縁部5における弾性波の分布量が増え、周波数を低くするように働き、圧電膜7が規定より厚くなりSAW装置1としての共振周波数が低くなるときには、絶縁部5における弾性波の分布量が減り、周波数を高くするように働く。このため、SAW装置1において圧電膜7の厚みが変動しても周波数特性の変化を低減することができるので、ロバスト性を高めることができる。さらに、温度特性の向上効果も期待できる。 In particular, when a Si substrate, which is a semiconductor material, is used as the support substrate 3 as in this example, the influence of the support substrate 3 is reduced by providing an insulating portion 5 between the piezoelectric film 7 and the support substrate 3. Can be done. In order to ensure the insulating property and to utilize the characteristics of the high sound velocity material of the support substrate 3, the thickness of the insulating portion 3 is 0.01p or more and 2p with respect to the pitch p defined by the IDT electrode 9 described later. It may be as follows. In particular, when the value is 0.1p to 0.4p, the influence of the conductivity of the support substrate 3 (Si in this case) can be avoided. Further, when silicon oxide is used as the insulating portion 5, the transverse wave sound velocity of the elastic wave propagating in the insulating portion 5 is slower than the transverse wave sound velocity of the elastic wave propagating in the piezoelectric film 7. In this case, when the piezoelectric film 7 becomes thinner than the specified value and the resonance frequency of the SAW device 1 becomes high, the distribution amount of elastic waves in the insulating portion 5 increases and works to lower the frequency, so that the piezoelectric film 7 is specified. When it becomes thicker and the resonance frequency of the SAW device 1 becomes lower, the distribution amount of elastic waves in the insulating portion 5 decreases, and it works to increase the frequency. Therefore, even if the thickness of the piezoelectric film 7 fluctuates in the SAW device 1, the change in frequency characteristics can be reduced, so that the robustness can be improved. Furthermore, the effect of improving the temperature characteristics can be expected.

圧電膜7は、第1面7aとこれに対向する第2面7bとを備える。便宜上、第2面7bから第1面7aに向かう方向を上方ということがある。絶縁部5は圧電膜7の第2面7bに接合されている。 The piezoelectric film 7 includes a first surface 7a and a second surface 7b facing the first surface 7a. For convenience, the direction from the second surface 7b to the first surface 7a may be referred to as upward. The insulating portion 5 is joined to the second surface 7b of the piezoelectric film 7.

圧電膜7は、例えば、タンタル酸リチウム(LiTaO;以下LTという)結晶からなる圧電性を有する単結晶の基板や、ニオブ酸リチウム(LiNbO;以下LNという)結晶からなる圧電性を有する単結晶の基板を用いることができる。 The piezoelectric film 7 is, for example, a single crystal substrate having piezoelectricity made of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) crystal or a single having piezoelectricity made of lithium niobate (LiNbO 3 ; hereinafter referred to as LN) crystal. A crystalline substrate can be used.

圧電膜7は、厚みは2p以下、すなわち弾性波の波長λ以下である。弾性波の波長λ以
下の厚みとすることで、弾性波を圧電膜7に閉じ込めることができ、SAW装置1のQ値を高めることができる。また、圧電膜7のオイラー角を選定することにより、共振周波数を高くすることもできる。
The piezoelectric film 7 has a thickness of 2 p or less, that is, an elastic wave wavelength λ or less. By setting the thickness to be equal to or less than the wavelength λ of the elastic wave, the elastic wave can be confined in the piezoelectric film 7, and the Q value of the SAW device 1 can be increased. Further, the resonance frequency can be increased by selecting the Euler angles of the piezoelectric film 7.

ここで、圧電膜7は、ドーパントDpを含む。すなわち、LT結晶を用いる場合には、Li,Ta,O以外に不純物元素を含む。ドーパントDpは、例えば金属元素からなり、その濃度は10ppm以上10000ppm以下である。 Here, the piezoelectric film 7 contains a dopant Dp. That is, when an LT crystal is used, it contains an impurity element in addition to Li, Ta, and O. The dopant Dp is composed of, for example, a metal element, and its concentration is 10 ppm or more and 10000 ppm or less.

IDT電極9は、圧電膜7の第1面7aに位置する。IDT電極9は、導電性を有する材料を用いて形成されており、この例ではAlにCuを添加したAl−Cu合金で形成されている。IDT電極9は、Al,Cu,Pt,Mo,Au等種々の導電性材料を採用することができ、さらに、これら複数の層を積層させて構成してもよい。また。複数層の積層体からなる場合には、積層界面に下地層を介在させてもよい。 The IDT electrode 9 is located on the first surface 7a of the piezoelectric film 7. The IDT electrode 9 is formed by using a conductive material, and in this example, it is formed of an Al—Cu alloy in which Cu is added to Al. Various conductive materials such as Al, Cu, Pt, Mo, and Au can be used for the IDT electrode 9, and a plurality of layers thereof may be laminated. Also. When it is composed of a laminated body of a plurality of layers, a base layer may be interposed at the laminated interface.

図2に、IDT電極9の形状を示す。図2は、SAW装置1の上面図である。図2に示すように、IDT電極9は、2つのバスバー91と、バスバー91のいずれかに接続される複数の長尺状の電極指92が複数一方向に配列されている。そして一方のバスバー91に接続される電極指92と他方のバスバー91に接続される電極指92とが交互に配置されている。また、一方のバスバー91に接続される電極指92の先端に対向し、他方のバスバー91に接続されるダミー電極93を備えている。なお、図中において、一方のバスバー91に接続される構成と他方のバスバー91に接続される構成を区別するために、一方に斜線を付している。 FIG. 2 shows the shape of the IDT electrode 9. FIG. 2 is a top view of the SAW device 1. As shown in FIG. 2, in the IDT electrode 9, a plurality of two bus bars 91 and a plurality of elongated electrode fingers 92 connected to any of the bus bars 91 are arranged in one direction. The electrode fingers 92 connected to one bus bar 91 and the electrode fingers 92 connected to the other bus bar 91 are alternately arranged. Further, a dummy electrode 93 facing the tip of the electrode finger 92 connected to one bus bar 91 and connected to the other bus bar 91 is provided. In the figure, one is shaded in order to distinguish between the configuration connected to one bus bar 91 and the configuration connected to the other bus bar 91.

このようなIDT電極9に高周波信号が印加されると、電極指92の中心間間隔pを半波長とする定在波が励振される。 When a high-frequency signal is applied to such an IDT electrode 9, a standing wave having a half-wavelength between the centers of the electrode fingers 92 is excited.

なお、IDT電極9の電極指92の配列方向の両側には反射器11が位置している。これにより、IDT電極9と反射器11とで1ポート型の共振子として機能する。なお、本開示のSAW素子1はこのようなIDT電極9を含めばよく、その数、配置等については特に限定されない。例えば、このような共振子を複数含むラダー型フィルタや、縦結合型フィルタ等を構成することもできる。 Reflectors 11 are located on both sides of the IDT electrode 9 in the arrangement direction of the electrode fingers 92. As a result, the IDT electrode 9 and the reflector 11 function as a 1-port type resonator. The SAW element 1 of the present disclosure may include such an IDT electrode 9, and the number, arrangement, and the like thereof are not particularly limited. For example, a ladder type filter including a plurality of such resonators, a vertically coupled type filter, and the like can be configured.

本開示のSAW装置1によれば、上述の構成を備えることで、電気特性の優れたものとなる。以下、そのメカ二ズムについて詳述する。 According to the SAW device 1 of the present disclosure, by providing the above-mentioned configuration, the electrical characteristics are excellent. The mechanics will be described in detail below.

発明者は、圧電膜7の厚みを薄くしていくときに、周波数特性が劣化する現象を発見した。具体的には、共振周波数および反共振周波数の近傍にリップルが発生することがあることを発見した。 The inventor has discovered a phenomenon in which the frequency characteristics deteriorate as the thickness of the piezoelectric film 7 is reduced. Specifically, it was discovered that ripples may occur in the vicinity of the resonance frequency and the antiresonance frequency.

図3は、IDT電極9でフィルタを構成したときのSAW装置1の通過帯域近傍の周波数特性を示す。横軸は周波数であり、縦軸は透過特性を示す。線L1は線L2に比べ通過帯域内に図中に矢印で示すようなリップルが発生し電気特性が劣化していることが分かる。 FIG. 3 shows the frequency characteristics in the vicinity of the pass band of the SAW device 1 when the filter is configured by the IDT electrode 9. The horizontal axis is the frequency, and the vertical axis is the transmission characteristic. It can be seen that the line L1 has a ripple as shown by an arrow in the figure in the pass band as compared with the line L2, and the electrical characteristics are deteriorated.

一般に、圧電膜7の焦電性を改善するために、圧電膜として予め還元処理を施したLT基板やLN基板を用いることが知られている。このような還元処理を施した圧電膜を用いることで圧電膜の厚みが厚い場合にはリップルが発生することがなかった。また、例え圧電膜が薄くなっても、例えば圧電膜とSi基板とが直接接合されるような構成においてはリップルが発生することがなかった。これに対して、発明者は圧電膜が薄くなり、かつ、その直下に絶縁材料が位置する場合には、例え還元処理を施した圧電膜を用いてもリップ
ルが発生することがあることを見出した。
Generally, in order to improve the pyroelectricity of the piezoelectric film 7, it is known to use an LT substrate or an LN substrate which has been subjected to a reduction treatment in advance as the piezoelectric film. By using the piezoelectric film subjected to such a reduction treatment, ripple did not occur when the piezoelectric film was thick. Further, even if the piezoelectric film becomes thin, ripple does not occur in a configuration in which the piezoelectric film and the Si substrate are directly bonded, for example. On the other hand, the inventor has found that when the piezoelectric film is thin and the insulating material is located directly under the piezoelectric film, ripple may occur even if a reduction-treated piezoelectric film is used. It was.

この現象につき発明者が鋭意検討を行なった結果、線L1のリップルは、熱を原因として圧電膜7の一部で発生する分極反転に起因することを見出した。ここで「熱」とは、IDT電極7形成後に加わるSAW装置1作製上の熱履歴や、高周波信号印加による発熱を含む。 As a result of diligent studies by the inventor on this phenomenon, it has been found that the ripple of the line L1 is caused by the polarization reversal that occurs in a part of the piezoelectric film 7 due to heat. Here, "heat" includes heat history in manufacturing the SAW device 1 added after the formation of the IDT electrode 7 and heat generation due to application of a high frequency signal.

圧電膜7が薄いことにより、還元処理を施していたとしても酸化が進み焦電効果が発現しやすくなる状況となった上に、絶縁性の材料が接していることでさらに表面電位が不安定となり焦電効果が発現しやすくなる。このような状況下で、熱により焦電効果が発生し、IDT電極9において電圧が生じ、分極反転が生じるものと推察される。 Since the piezoelectric film 7 is thin, oxidation proceeds even if the reduction treatment is performed, and the pyroelectric effect is likely to be exhibited. In addition, the surface potential is further unstable due to the contact with the insulating material. Therefore, the pyroelectric effect is likely to appear. Under such circumstances, it is presumed that the pyroelectric effect is generated by heat, a voltage is generated at the IDT electrode 9, and polarization reversal occurs.

これを抑制するために、本開示では圧電膜7にドーパントDpを含ませている。これにより導電率を向上させて、焦電性を改善させることができる。このため、ドーパントDpとしては金属元素であるとよい。ただし、ドーパントDpの混在は圧電膜7の導電率を向上させることにもつながるため、SAW装置1として機能させるためには10000ppm以下とする必要がある。同様に、ドーパントDpの効果を発現するためにも10ppm以上含ませる必要がある。ドーパントDpが少なすぎると下に述べる結晶ドメインを反転しにくくする効果が小さくなり、また、ドーパントDpが多すぎると結晶成長が難しくなったり、結晶が脆くなったりするため、ドーパントDpの範囲は100ppm〜500ppmとしてもよい。 In order to suppress this, in the present disclosure, the piezoelectric film 7 contains a dopant Dp. As a result, the conductivity can be improved and the pyroelectricity can be improved. Therefore, the dopant Dp is preferably a metal element. However, since the mixture of the dopant Dp also leads to the improvement of the conductivity of the piezoelectric film 7, it is necessary to make it 10,000 ppm or less in order to function as the SAW device 1. Similarly, it is necessary to include 10 ppm or more in order to exhibit the effect of the dopant Dp. If the amount of dopant Dp is too small, the effect of making it difficult to invert the crystal domain described below becomes small, and if the amount of dopant Dp is too large, crystal growth becomes difficult or the crystal becomes brittle. Therefore, the range of dopant Dp is 100 ppm. It may be ~ 500 ppm.

また、ドーパントDpとして導電率を向上させるのみではなく、以下のような効果がある。すなわち、ドーパントDpを含ませることで圧電膜7を構成する圧電結晶の結晶格子に歪や欠陥を発生させることで、結晶ドメインを反転しにくくしたり、反転したドメインの移動を低減したりすることができる。このような観点から、ドーパントDpとしてある程度大きい原子番号の元素を選択してもよい。例えば、遷移金属の元素から選択してもよく、一例としてFeを例示することができる。 In addition, the dopant Dp not only improves the conductivity, but also has the following effects. That is, by including the dopant Dp, distortion and defects are generated in the crystal lattice of the piezoelectric crystal constituting the piezoelectric film 7, so that the crystal domain is hard to be inverted and the movement of the inverted domain is reduced. Can be done. From this point of view, an element having a somewhat large atomic number may be selected as the dopant Dp. For example, it may be selected from the elements of the transition metal, and Fe can be exemplified as an example.

このような圧電膜7を用いることで、線L1のようなリップルは発生せずに線L2のような波形をえることを確認した。 It was confirmed that by using such a piezoelectric film 7, a waveform like the line L2 can be obtained without generating a ripple like the line L1.

なお、圧電膜7はドーパントDpを含ませた上で還元処理も施したものとしてもよい。 The piezoelectric film 7 may be subjected to a reduction treatment after containing the dopant Dp.

上述のようなSAW装置1を実際に作製した。具体的には、圧電膜7の膜厚を0.8μm(0.7p)、絶縁部5の膜厚を0.32μm(0.3p)とした。このようなSAW装置1に対して、共振周波数近傍の周波数を有する高周波信号を印加して耐電力試験を行なった場合と、熱履歴のないSAW装置に対して加熱を行なった場合においてリップルは発生しないことを確認した。一方で、比較例として、圧電膜7として還元処理をしたのみでドーパントDpを含まない圧電結晶を用いた場合にも同様の試験を行なったところ、線L1のリップルを再現することができることを確認した。 The SAW device 1 as described above was actually manufactured. Specifically, the film thickness of the piezoelectric film 7 was 0.8 μm (0.7p), and the film thickness of the insulating portion 5 was 0.32 μm (0.3p). Ripple occurs when a high-frequency signal having a frequency close to the resonance frequency is applied to such a SAW device 1 to perform a power withstand test, and when a SAW device having no thermal history is heated. I confirmed not to. On the other hand, as a comparative example, when a similar test was performed even when a piezoelectric crystal containing only the reduction treatment as the piezoelectric film 7 and not containing the dopant Dp was used, it was confirmed that the ripple of the line L1 could be reproduced. did.

さらに、このような比較例にかかるSAW装置について、ウエットエッチングによりIDT電極9を除去して圧電膜7を露出させ、圧電応答力顕微鏡(PFM)により分極状態を測定した。その結果を図4に示す。図4(a)は圧電膜7表面のダミー電極93があった場所付近のAFM像である。IDT電極9そのものは除去されているが、製造工程でできた圧電膜7表面の凸凹が検出されており、IDT電極9の痕跡が確認できる。図4(a)では、左端にバスバー91があり、そこからダミー電極93が紙面の右方向に伸びており、紙面左側から伸びている電極指92にギャップを隔てて対向している。図4(b)は同じ場所のPFM像である。図4(b)から、ダミー電極93と対向電極のギャップ付近を中心に、ダミー電極と対向電極に沿って電圧Vがマイナスになっており、分極の方向がその他の部分と反転していることが確認できた。なお、SAW装置1では正負反転している部分は確認されなかった。 Further, with respect to the SAW apparatus according to such a comparative example, the IDT electrode 9 was removed by wet etching to expose the piezoelectric film 7, and the polarization state was measured by a piezoelectric response force microscope (PFM). The result is shown in FIG. FIG. 4A is an AFM image near the location where the dummy electrode 93 on the surface of the piezoelectric film 7 was located. Although the IDT electrode 9 itself has been removed, unevenness on the surface of the piezoelectric film 7 formed in the manufacturing process has been detected, and traces of the IDT electrode 9 can be confirmed. In FIG. 4A, there is a bus bar 91 at the left end, from which a dummy electrode 93 extends to the right of the paper surface and faces the electrode finger 92 extending from the left side of the paper surface with a gap. FIG. 4B is a PFM image at the same location. From FIG. 4B, the voltage V is negative along the dummy electrode and the counter electrode, centering on the vicinity of the gap between the dummy electrode 93 and the counter electrode, and the direction of polarization is reversed from the other parts. Was confirmed. In the SAW device 1, no positive / negative inverted portion was confirmed.

このように、ダミー電極93においては加熱・冷却時の焦電性により電圧が生じると同時に、電場の方向が分極方向に沿った方向(ダミー電極とその電極指の方向)になるため、分極反転が生じるものと推察される。このため、ダミー電極93を備え、高い電圧が印加される可能性があるIDT電極9を含む場合には特に圧電膜7を備えるSAW装置1とすることが好ましい。同様に浮き電位となる電極部においても分極判断が生じやすくなる。 In this way, in the dummy electrode 93, a voltage is generated due to the pyroelectricity during heating and cooling, and at the same time, the direction of the electric field is in the direction along the polarization direction (the direction of the dummy electrode and its electrode finger), so that the polarization is reversed. Is presumed to occur. Therefore, when the dummy electrode 93 is provided and the IDT electrode 9 to which a high voltage may be applied is included, the SAW device 1 including the piezoelectric film 7 is particularly preferable. Similarly, the polarization determination is likely to occur in the electrode portion that has a floating potential.

(他の例)
上述の例では、支持基板3を備える構成としたがその構成に限定されない。例えば、図5(a)に示すように絶縁部5が厚く、支持基板3を備えない構成や、図5(b)に示ように、絶縁部5の直下に支持基板3が存在しない構成であってもよい。
(Other examples)
In the above example, the configuration includes the support substrate 3, but the configuration is not limited to that configuration. For example, as shown in FIG. 5A, the insulating portion 5 is thick and the support substrate 3 is not provided, or as shown in FIG. 5B, the supporting substrate 3 does not exist directly under the insulating portion 5. There may be.

図5(a)に示す例としては、例えば絶縁部5としてサファイア基板を用いた場合を例示できる。 As an example shown in FIG. 5A, for example, a case where a sapphire substrate is used as the insulating portion 5 can be exemplified.

さらに、図6に示すように、支持基板3と絶縁部5との間に複数層が介在してもよい。図6において、支持基板3と圧電膜7との間に音響多層膜15を含んでいてもよい。圧電膜7としては、LT基板でそのオイラー角を(0,25,0)付近とすると発生する弾性波の音速が高くなる。この高音速の弾性波を圧電膜7の側に閉じ込めるために音響多層膜15が必要となる。 Further, as shown in FIG. 6, a plurality of layers may be interposed between the support substrate 3 and the insulating portion 5. In FIG. 6, the acoustic multilayer film 15 may be included between the support substrate 3 and the piezoelectric film 7. As the piezoelectric film 7, if the Euler angles of the LT substrate are set to around (0.25.0), the sound velocity of the elastic wave generated becomes high. An acoustic multilayer film 15 is required to confine this high sound velocity elastic wave on the side of the piezoelectric film 7.

音響多層膜15は高音響インピーダンス層15aと低音響インピーダンス層15bとが交互に複数層積層されてなる。高音響インピーダンス層15aとしては酸化タンタルや酸化ハフニウム等を例示できる。低音響インピーダンス層15bとしては酸化ケイ素を例示できる。この低音響インピーダンス層15bが絶縁部5として機能する。 The acoustic multilayer film 15 is formed by alternately stacking a plurality of high acoustic impedance layers 15a and low acoustic impedance layers 15b. Examples of the high acoustic impedance layer 15a include tantalum oxide and hafnium oxide. Silicon oxide can be exemplified as the low acoustic impedance layer 15b. The low acoustic impedance layer 15b functions as the insulating portion 5.

このような構成の場合には、高音速の弾性波を圧電膜7の側に反射させ支持基板3の側に漏洩させることがないため低ロスのSAW装置とすることができることに加え、分極反転を抑制することができるので、高い電気特性を実現することができる。 In the case of such a configuration, since the high sound velocity elastic wave is not reflected to the side of the piezoelectric film 7 and leaked to the side of the support substrate 3, a low-loss SAW device can be obtained, and the polarization is reversed. Can be suppressed, so that high electrical characteristics can be realized.

なお、上述の例では、圧電膜7と絶縁部5とが直接接合されている場合を例に説明したが、両者の間に、電気特性に影響しない範囲の厚みおよび導電率の導電層を備えていてもよい。例えば5nm以下の厚みの導電層としてもよい。この場合には、電位を安定させ、焦電性の影響を低減することができる。同様に、圧電膜7と絶縁部5と間に、Fe,Ni,Cu等の金属元素を分散させてもよい。導電性を有する元素が点在することにより、圧電膜7の第2面7bにおいて電位を安定させることができる。分散濃度としては、接合界面に露出する圧電膜7の原子数よりも少なく、例えば1/10以下、より好ましくは1/1000以下としてもよい。具体的な濃度としては、例えば1014atoms/cm以下としてもよい。 In the above example, the case where the piezoelectric film 7 and the insulating portion 5 are directly bonded is described as an example, but a conductive layer having a thickness and conductivity within a range that does not affect the electrical characteristics is provided between the two. You may be. For example, it may be a conductive layer having a thickness of 5 nm or less. In this case, the potential can be stabilized and the effect of pyroelectricity can be reduced. Similarly, a metal element such as Fe, Ni, or Cu may be dispersed between the piezoelectric film 7 and the insulating portion 5. By interspersing the elements having conductivity, the potential can be stabilized on the second surface 7b of the piezoelectric film 7. The dispersion concentration may be less than the number of atoms of the piezoelectric film 7 exposed at the bonding interface, for example, 1/10 or less, more preferably 1/1000 or less. The specific concentration may be, for example, 10 14 atoms / cm 2 or less.

1:SAW装置
3:支持基板
5:絶縁部
7:圧電膜
9:IDT電極
1: SAW device 3: Support substrate 5: Insulation part 7: Piezoelectric film 9: IDT electrode

Claims (9)

複数の電極指を備えるIDT電極と、
第1面と第2面とを備え、前記第1面に前記IDT電極が位置しており、前記複数の電極指の繰り返し間隔の2倍で定義される弾性表面波波長λ未満の厚みであり、10ppm以上10000ppm以下の濃度のドーパントを含む圧電結晶からなる圧電膜と、
前記圧電膜の前記第2面に直接または間接的に接合される絶縁性材料からなる絶縁部と、を備える弾性波装置。
IDT electrodes with multiple electrode fingers and
It has a first surface and a second surface, and the IDT electrode is located on the first surface, and has a thickness less than the surface acoustic wave wavelength λ defined by twice the repetition interval of the plurality of electrode fingers. A piezoelectric film made of a piezoelectric crystal containing a dopant having a concentration of 10 ppm or more and 10000 ppm or less,
An elastic wave device including an insulating portion made of an insulating material that is directly or indirectly bonded to the second surface of the piezoelectric film.
前記ドーパントは、遷移金属元素である、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the dopant is a transition metal element. 前記ドーパントは、Feである、請求項1または2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the dopant is Fe. 前記絶縁部は、前記圧電膜よりも横波音速の遅い材料からなり、
前記絶縁部の前記圧電膜が位置する側と反対側の面に直接または間接的に接合された支持基板と、を備える、請求項1乃至3のいずれかに記載の弾性波装置。
The insulating portion is made of a material having a slower transverse sound velocity than the piezoelectric film.
The elastic wave device according to any one of claims 1 to 3, further comprising a support substrate directly or indirectly bonded to a surface of the insulating portion opposite to the side on which the piezoelectric film is located.
前記支持基板は、前記圧電膜よりも横波音速の速い材料からなる、請求項4に記載の弾性波装置。 The elastic wave device according to claim 4, wherein the support substrate is made of a material having a transverse sound velocity faster than that of the piezoelectric film. 前記絶縁部は、酸化ケイ素である、請求項1乃至5のいずれかに記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 5, wherein the insulating portion is silicon oxide. 前記圧電膜の下面に高音響インピーダンス層と低音響インピーダンス層とが交互に積層されてなる音響多層膜が接合されており、前記低音響インピーダンス層が、前記絶縁部からなる、請求項1乃至3、6のいずれかに記載の弾性波装置。 Claims 1 to 3 wherein an acoustic multilayer film formed by alternately laminating high acoustic impedance layers and low acoustic impedance layers is bonded to the lower surface of the piezoelectric film, and the low acoustic impedance layer is composed of the insulating portion. , 6. The elastic wave device according to any one of 6. 前記IDT電極は、ダミー電極を含む、請求項1乃至7のいずれかに記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 7, wherein the IDT electrode includes a dummy electrode. 前記圧電膜と前記絶縁部との間には、導電性の層を備える、請求項1乃至6のいずれかに記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 6, further comprising a conductive layer between the piezoelectric film and the insulating portion.
JP2019039163A 2019-03-05 2019-03-05 Elastic wave device Pending JP2020145530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039163A JP2020145530A (en) 2019-03-05 2019-03-05 Elastic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039163A JP2020145530A (en) 2019-03-05 2019-03-05 Elastic wave device

Publications (1)

Publication Number Publication Date
JP2020145530A true JP2020145530A (en) 2020-09-10

Family

ID=72355595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039163A Pending JP2020145530A (en) 2019-03-05 2019-03-05 Elastic wave device

Country Status (1)

Country Link
JP (1) JP2020145530A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314137A (en) * 2004-04-27 2005-11-10 Yamajiyu Ceramics:Kk Treatment method and apparatus for suppressing electrification of piezoelectric oxide single crystal
WO2012086639A1 (en) * 2010-12-24 2012-06-28 株式会社村田製作所 Elastic wave device and production method thereof
WO2013018604A1 (en) * 2011-07-29 2013-02-07 株式会社村田製作所 Piezoelectric device and method of manufacturing piezoelectric device
JP2013214954A (en) * 2012-03-07 2013-10-17 Taiyo Yuden Co Ltd Resonator, frequency filter, duplexer, electronic device, and method for manufacturing resonator
US20160020747A1 (en) * 2014-07-21 2016-01-21 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
WO2016098526A1 (en) * 2014-12-18 2016-06-23 株式会社村田製作所 Acoustic wave device and manufacturing method therefor
JP2017007881A (en) * 2015-06-18 2017-01-12 住友金属鉱山株式会社 Lithium niobate single crystal substrate, and manufacturing method thereof
JP2017224890A (en) * 2016-06-13 2017-12-21 株式会社村田製作所 Acoustic wave device
JP2018007239A (en) * 2016-06-24 2018-01-11 株式会社村田製作所 Acoustic wave device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314137A (en) * 2004-04-27 2005-11-10 Yamajiyu Ceramics:Kk Treatment method and apparatus for suppressing electrification of piezoelectric oxide single crystal
WO2012086639A1 (en) * 2010-12-24 2012-06-28 株式会社村田製作所 Elastic wave device and production method thereof
WO2013018604A1 (en) * 2011-07-29 2013-02-07 株式会社村田製作所 Piezoelectric device and method of manufacturing piezoelectric device
JP2013214954A (en) * 2012-03-07 2013-10-17 Taiyo Yuden Co Ltd Resonator, frequency filter, duplexer, electronic device, and method for manufacturing resonator
US20160020747A1 (en) * 2014-07-21 2016-01-21 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
WO2016098526A1 (en) * 2014-12-18 2016-06-23 株式会社村田製作所 Acoustic wave device and manufacturing method therefor
JP2017007881A (en) * 2015-06-18 2017-01-12 住友金属鉱山株式会社 Lithium niobate single crystal substrate, and manufacturing method thereof
JP2017224890A (en) * 2016-06-13 2017-12-21 株式会社村田製作所 Acoustic wave device
JP2018007239A (en) * 2016-06-24 2018-01-11 株式会社村田製作所 Acoustic wave device

Similar Documents

Publication Publication Date Title
TWI762832B (en) Surface acoustic wave device
JP6477721B2 (en) Elastic wave device
JP4178328B2 (en) Boundary acoustic wave device
US8471653B2 (en) Elastic wave resonator and ladder filter
CN110582938A (en) Elastic wave device
JP5141763B2 (en) Boundary acoustic wave device
JP5187444B2 (en) Surface acoustic wave device
KR20190110020A (en) Elastic wave device
WO2006126327A1 (en) Boundary acoustic wave device
JPWO2005086345A1 (en) Boundary acoustic wave device
WO2021065684A1 (en) Elastic wave device
JP2007281701A (en) Method of manufacturing surface acoustic wave device and surface acoustic wave device
JP7120441B2 (en) Acoustic wave device
JP4883089B2 (en) Boundary acoustic wave device
JP2006319887A (en) Elastic boundary wave device
JP7493306B2 (en) Elastic Wave Device
JP7345411B2 (en) Piezoelectric bodies and piezoelectric elements
JP2020145530A (en) Elastic wave device
WO2010125940A1 (en) Elastic wave device
WO2023048256A1 (en) Elastic wave device
US20220123711A1 (en) Acoustic wave device
JP5625787B2 (en) Elastic wave element and ladder type filter
WO2023229049A1 (en) Elastic wave device and filter device
US20240113682A1 (en) Acoustic wave device
WO2023234321A1 (en) Elastic wave device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117