JP2020145097A - Manufacturing method of laminated lithium ion secondary battery - Google Patents

Manufacturing method of laminated lithium ion secondary battery Download PDF

Info

Publication number
JP2020145097A
JP2020145097A JP2019041543A JP2019041543A JP2020145097A JP 2020145097 A JP2020145097 A JP 2020145097A JP 2019041543 A JP2019041543 A JP 2019041543A JP 2019041543 A JP2019041543 A JP 2019041543A JP 2020145097 A JP2020145097 A JP 2020145097A
Authority
JP
Japan
Prior art keywords
vacuum degree
atmospheric pressure
active material
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019041543A
Other languages
Japanese (ja)
Inventor
友章 西野
Tomoaki Nishino
友章 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019041543A priority Critical patent/JP2020145097A/en
Publication of JP2020145097A publication Critical patent/JP2020145097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a manufacturing method of a laminated secondary battery including a decompression step capable of shortening a decompression processing time and suppressing scattering of an electrolytic solution.SOLUTION: A manufacturing method of a laminated secondary battery includes: a step of injecting an electrolyte into an opening at one end of an exterior body accommodating an electrode laminate in which a positive electrode and a negative electrode are arranged in opposition to each other under atmospheric pressure; and a decompression step of reducing pressure from the atmospheric pressure to a set degree of vacuum after the injection of the electrolyte, and then returning to the atmospheric pressure. In the decompression step, (1) the set degree of vacuum is set to a specific degree of vacuum in a range of 1 kPa to 10 kPa, and (2) a holding time for holding within a range from the decompression reaching degree of 50% to the set degree of vacuum is set to 10 to 80 seconds when decompressing from the atmospheric pressure to the set degree of vacuum.SELECTED DRAWING: Figure 1

Description

本発明は、ラミネート型リチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a laminated lithium ion secondary battery.

リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池の小型化及び薄型化の研究が進展している。小型化及び軽量化の要求に対する電池として、電池の厚さを薄くできるラミネート型リチウムイオン二次電池がある。 Lithium-ion secondary batteries are used as large-scale stationary power sources for power storage, power sources for electric vehicles, etc., and in recent years, research on miniaturization and thinning of batteries has been progressing. As a battery that meets the demand for miniaturization and weight reduction, there is a laminated lithium ion secondary battery that can reduce the thickness of the battery.

ラミネート型リチウムイオン二次電池は、外装体としてラミネートフィルム等を用い、正極、負極及びセパレータ等を含む電極積層体を外装体に収容した後、外装体の開口部から電解液を注入し、開口部を封止して作製される。 A laminated lithium-ion secondary battery uses a laminated film or the like as an exterior body, accommodates an electrode laminate including a positive electrode, a negative electrode, a separator, etc. in the exterior body, and then injects an electrolytic solution through the opening of the exterior body to open the opening. It is manufactured by sealing the part.

このラミネート型リチウムイオン二次電池では、初期充電時に電解液が負極活物質と反応して分解しガスが発生することが知られている。このガスが電極間に存在すると、電池の内部抵抗が増大して電池容量が減少し、サイクル特性等の電池特性が低下することがある。 In this laminated lithium ion secondary battery, it is known that the electrolytic solution reacts with the negative electrode active material and decomposes to generate gas at the time of initial charging. When this gas is present between the electrodes, the internal resistance of the battery increases, the battery capacity decreases, and the battery characteristics such as cycle characteristics may deteriorate.

そこで、外装体に電解液を注入した後、減圧処理を施してガス抜きを行うことが一般的である。ガス発生に起因する電池特性の低下を防ぐという意味で、この減圧処理は非常に重要な処理といえ、減圧の方法については種々の検討が必要になる。例えば、減圧の方法として特許文献1では、減圧度をステップ状に高くしていく方法が開示されている。 Therefore, it is common to inject the electrolytic solution into the exterior body and then perform decompression treatment to degas. This decompression treatment is a very important treatment in terms of preventing deterioration of battery characteristics due to gas generation, and various studies are required on the decompression method. For example, as a method of depressurizing, Patent Document 1 discloses a method of increasing the degree of decompression in a stepwise manner.

特開2002−110246号公報Japanese Unexamined Patent Publication No. 2002-11246

しかしながら、特許文献1のようにステップ状に減圧する方法では、減圧処理に要する時間が多くかかってしまうことが懸念される。一方で、減圧時間を短縮するために、減圧速度を単に高めると外装体から電解液が飛び散りやすくなり、その結果、設備を汚してしまう。 However, in the method of depressurizing in steps as in Patent Document 1, there is a concern that the depressurizing process will take a long time. On the other hand, if the decompression speed is simply increased in order to shorten the decompression time, the electrolytic solution tends to scatter from the exterior body, and as a result, the equipment is polluted.

以上から本発明は、減圧処理時間の短縮が可能で、かつ、電解液の飛散を抑制できる減圧工程を含むラミネート型二次電池の製造方法を提供することを課題とする。 From the above, it is an object of the present invention to provide a method for manufacturing a laminated secondary battery including a decompression step capable of shortening the decompression treatment time and suppressing scattering of an electrolytic solution.

上記課題に鑑み鋭意検討した結果、本発明者は、減圧の際の設定真空度を特定の真空度とし、大気圧から設定真空度まで減圧する際の減圧到達度50%から設定真空度までの範囲内に保持する保持時間を特定の範囲とすることで、上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、下記のとおりである。 As a result of diligent studies in view of the above problems, the present inventor sets the set vacuum degree at the time of depressurization to a specific vacuum degree, and reduces the pressure from atmospheric pressure to the set vacuum degree from 50% to the set vacuum degree. We have found that the above problems can be solved by setting the holding time within the range to a specific range, and have completed the following invention. That is, the present invention is as follows.

[1] 正極および負極が対向配置された電極積層体を収容する外装体の一端の開口部に、大気圧下で電解液を注入する電解液注入工程と、
前記電解液の注入後に、前記大気圧から設定真空度まで減圧し、その後、前記大気圧に戻す減圧工程と、を含み、
前記減圧工程において、
(1)前記設定真空度を1kPa〜10kPaの範囲で特定の真空度とし、
(2)前記大気圧から前記設定真空度まで減圧する際の減圧到達度50%から前記設定真空度までの範囲内に保持する保持時間を10〜80秒とする、ラミネート型リチウムイオン二次電池の製造方法。
[2] 前記大気圧から設定真空度まで減圧する際の減圧速度が3〜15kPa/secである[1]に記載のラミネート型リチウムイオン二次電池の製造方法。
[3] 前記大気圧から設定真空度まで減圧し、その後、前記大気圧に戻すまでに、真空度が前記設定真空度まで到達する到達回数が少なくとも1回ある[1]又は[2]に記載のラミネート型リチウムイオン二次電池の製造方法。
[4] 前記到達回数が1回である[3]に記載のラミネート型リチウムイオン二次電池の製造方法。
[5] 前記大気圧から設定真空度まで減圧する際の減圧開始から、前記大気圧に戻るまでの時間が100秒以内である[1]〜[4]のいずれかに記載のラミネート型リチウムイオン二次電池の製造方法。
[1] An electrolytic solution injection step of injecting an electrolytic solution under atmospheric pressure into an opening at one end of an exterior body accommodating an electrode laminate in which a positive electrode and a negative electrode are arranged so as to face each other.
After the injection of the electrolytic solution, the pressure is reduced from the atmospheric pressure to the set vacuum degree, and then the pressure is returned to the atmospheric pressure.
In the decompression step
(1) The set vacuum degree is set to a specific vacuum degree in the range of 1 kPa to 10 kPa.
(2) Laminated lithium ion secondary battery having a holding time of 10 to 80 seconds for holding within the range from the decompression reaching degree of 50% when decompressing from the atmospheric pressure to the set vacuum degree to the set vacuum degree. Manufacturing method.
[2] The method for manufacturing a laminated lithium ion secondary battery according to [1], wherein the depressurizing speed when depressurizing from the atmospheric pressure to the set vacuum degree is 3 to 15 kPa / sec.
[3] The number of times the vacuum degree reaches the set vacuum degree is at least once before the pressure is reduced from the atmospheric pressure to the set vacuum degree and then returned to the atmospheric pressure. [1] or [2]. How to manufacture a laminated lithium-ion secondary battery.
[4] The method for manufacturing a laminated lithium ion secondary battery according to [3], wherein the number of arrivals is one.
[5] The laminated lithium ion according to any one of [1] to [4], wherein the time from the start of depressurization when depressurizing from the atmospheric pressure to the set vacuum degree to returning to the atmospheric pressure is within 100 seconds. How to manufacture a secondary battery.

本発明によれば、減圧処理時間の短縮が可能で、かつ、電解液の飛散を抑制できる減圧工程を含むラミネート型二次電池の製造方法を提供することができる。すなわち、減圧処理時間の短縮により、ラミネート型二次電池の製造時間を短縮できる。また、電解液の飛散を抑制できるため、装置の洗浄やメンテナンスの手間を削減できる。 According to the present invention, it is possible to provide a method for manufacturing a laminated secondary battery, which can shorten the depressurization treatment time and can suppress the scattering of the electrolytic solution, and includes a decompression step. That is, by shortening the depressurization processing time, the manufacturing time of the laminated secondary battery can be shortened. In addition, since the scattering of the electrolytic solution can be suppressed, the labor for cleaning and maintenance of the device can be reduced.

減圧処理において、真空度と減圧時間との関係の一例を示す図である。It is a figure which shows an example of the relationship between the degree of vacuum and the decompression time in the depressurization process. 減圧処理において、真空度と減圧時間との関係の他の一例を示す図である。It is a figure which shows another example of the relationship between the degree of vacuum and the decompression time in the depressurization process.

本発明のラミネート型二次電池の製造方法は、正極および負極が対向配置された電極積層体を収容する外装体の一端の開口部に、大気圧下で電解液を注入する電解液注入工程と、
電解液の注入後に、大気圧から設定真空度まで減圧し、その後、大気圧に戻す減圧工程と、を含む。そして、上記減圧工程において、(1)設定真空度を1kPa〜10kPaの範囲で特定の真空度とし、(2)大気圧から設定真空度まで減圧する際の減圧到達度50%から設定真空度までの範囲内に保持する保持時間を10〜80秒とする。
以下、電解液注入工程及び減圧工程等について説明する。なお、本発明において真空度は絶対圧力で表記する。
The method for manufacturing a laminated secondary battery of the present invention includes an electrolytic solution injection step of injecting an electrolytic solution under atmospheric pressure into an opening at one end of an exterior body accommodating an electrode laminate in which a positive electrode and a negative electrode are arranged facing each other. ,
After the injection of the electrolytic solution, the pressure is reduced from the atmospheric pressure to the set vacuum degree, and then the pressure is returned to the atmospheric pressure. Then, in the above decompression step, (1) the set vacuum degree is set to a specific vacuum degree in the range of 1 kPa to 10 kPa, and (2) the decompression reaching degree when decompressing from atmospheric pressure to the set vacuum degree is from 50% to the set vacuum degree. The holding time for holding within the range of is 10 to 80 seconds.
Hereinafter, the electrolytic solution injection step, the decompression step, and the like will be described. In the present invention, the degree of vacuum is expressed as absolute pressure.

<電解液注入工程>
電解液注入工程では、電解液の注入に先立ち、外装体に電極積層体を収容する。電極積層体は、例えば、負極及び正極がセパレータを介して対向配置されており、さらに、絶縁層が負極とセパレータとの間、又は正極とセパレータとの間に設けられていてもよい。電極積層体は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
<Electrolyte injection process>
In the electrolytic solution injection step, the electrode laminate is housed in the exterior body prior to the injection of the electrolytic solution. In the electrode laminate, for example, the negative electrode and the positive electrode may be arranged facing each other via a separator, and an insulating layer may be provided between the negative electrode and the separator, or between the positive electrode and the separator. The electrode laminate may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated. In this case, the negative electrode and the positive electrode may be provided alternately along the stacking direction. When a separator is used, the separator may be arranged between each negative electrode and each positive electrode.

電極積層体を収容する外装体としては、特に限定されないが、外装フィルムであることが好ましい。外装フィルムは、2枚の矩形の外装フィルムの間、或いは、1枚の矩形の外装フィルムが例えば2つ折りで折り畳まれ、その外装フィルムの間に電極積層体を配置するとよい。配置後、外装フィルムの四辺のうち三辺をラミネート加工により封止して、外装体の一端が開口部となるようにする。そして、外装体の一端の開口部に、大気圧下で電解液を注入する。 The exterior body that accommodates the electrode laminate is not particularly limited, but an exterior film is preferable. The exterior film may be between two rectangular exterior films, or one rectangular exterior film may be folded in half, for example, and an electrode laminate may be arranged between the exterior films. After the arrangement, three of the four sides of the exterior film are sealed by laminating so that one end of the exterior body becomes an opening. Then, the electrolytic solution is injected under atmospheric pressure into the opening at one end of the exterior body.

電解液としては、リチウムイオン二次電池に用いられる電解液であれば特に限定されない。
電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート(DEC)、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。
電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩−三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
The electrolytic solution is not particularly limited as long as it is an electrolytic solution used for a lithium ion secondary battery.
Examples of the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate, dimethyl carbonate, diethyl carbonate (DEC), γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1 , 2-Diethoxyethane, tetrohydrafuran, 2-methyltetraethylene, dioxolane, methylacetamide and other polar solvents, or mixtures of two or more of these solvents.
Electrolyte salts include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ). Examples include lithium-containing salts such as 2 and LiN (COCF 2 CF 3 ) 2 , lithium bisoxalate boronate (LiB (C 2 O 4 ) 2 ), and lithium organic acid salt-boron trifluoride complex, LiBH. Complexes such as 4 and the like Complexes such as hydrides can be mentioned. These salts or complexes may be used alone or in admixture of two or more.

また、電解質は、上記電解液に更に高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。 Further, the electrolyte may be a gel-like electrolyte in which the above-mentioned electrolyte solution further contains a polymer compound. Examples of the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacrylic polymer such as methyl poly (meth) acrylate. The gel electrolyte may be used as a separator.

<減圧工程>
減圧工程では、まず、電解液の注入後の外装体を真空チャンバ内に設置する。その後、大気圧から設定真空度まで減圧し、最終的に大気圧に戻す。
本発明では、外装体からのガス抜き効率、電解液の飛散抑制、及び減圧処理時間を考慮して、既述の(1)及び(2)の条件が設定される。まず、設定真空度を1kPa〜10kPaの高い真空度の範囲の中から特定の真空度を設定するが、当該設定真空度を1kPa未満とすると、減圧しすぎによる電解液の飛散が激しくなって、その飛散量が増えてしまう。10kPaを超えると、減圧が十分でなくなりガス抜き効率が下がる。そのため、減圧処理の回数が増えて、トータルの減圧処理時間が長くなってしまう。設定真空度は、3kPa〜8kPaの範囲で特定の真空度とすることが好ましく、4kPa〜7.5kPaの範囲で特定の真空度とすることがより好ましく、4kPa〜5.5kPaの範囲で特定の真空度とすることがさらに好ましい。
なお、設定真空度とは、大気圧から減圧していき最初に設定真空度に達した際の真空度をいい、通常、設定真空度となった真空度は上下動せず安定しているが、上下に変動していてもよい。しかし、真空度に上下の変動が生じたとしても真空度は1kPa〜10kPaの範囲とする。
<Decompression process>
In the depressurizing step, first, the exterior body after injecting the electrolytic solution is installed in the vacuum chamber. After that, the pressure is reduced from the atmospheric pressure to the set vacuum degree, and finally returned to the atmospheric pressure.
In the present invention, the above-mentioned conditions (1) and (2) are set in consideration of the efficiency of degassing from the exterior body, the suppression of scattering of the electrolytic solution, and the depressurization treatment time. First, a specific vacuum degree is set from a high vacuum degree range of 1 kPa to 10 kPa, but if the set vacuum degree is less than 1 kPa, the electrolytic solution scatters violently due to excessive decompression. The amount of scattering will increase. If it exceeds 10 kPa, the decompression becomes insufficient and the degassing efficiency decreases. Therefore, the number of depressurization treatments increases, and the total decompression treatment time becomes long. The set vacuum degree is preferably a specific vacuum degree in the range of 3 kPa to 8 kPa, more preferably a specific vacuum degree in the range of 4 kPa to 7.5 kPa, and a specific vacuum degree in the range of 4 kPa to 5.5 kPa. It is more preferable to set the degree of vacuum.
The set vacuum degree refers to the vacuum degree when the pressure is reduced from the atmospheric pressure and the set vacuum degree is first reached. Normally, the vacuum degree that has reached the set vacuum degree does not move up and down and is stable. , May fluctuate up and down. However, even if the degree of vacuum fluctuates up and down, the degree of vacuum is in the range of 1 kPa to 10 kPa.

また、大気圧から設定真空度まで減圧する際の減圧到達度50%から設定真空度までの範囲内に保持する保持時間(複数回保持する場合は、その合計の保持時間)を10〜80秒とするが、保持時間を10秒未満とすると、ガス抜きのための十分な時間がとれないため、結果的に複数回の減圧処理が必要となって、減圧処理時間が長くなってしまう。保持時間が80秒を超えると、タクトタイムの観点から好ましくない。保持時間は15〜75秒とすることが好ましく、20〜70秒とすることがより好ましい。
また、設定真空度まで達した際に、当該設定真空度に維持する維持時間は、上記保持時間を保てる範囲で適宜設定できる。すなわち、設定真空度に到達したら直ちに減圧をやめてもいいし(維持時間0秒)、2〜45秒ほどの維持時間を設けてもよい。
In addition, the holding time for holding within the range from the decompression reaching degree of 50% to the set vacuum degree when decompressing from atmospheric pressure to the set vacuum degree (when holding multiple times, the total holding time) is 10 to 80 seconds. However, if the holding time is less than 10 seconds, a sufficient time for degassing cannot be obtained, and as a result, a plurality of depressurization treatments are required, resulting in a long decompression treatment time. If the holding time exceeds 80 seconds, it is not preferable from the viewpoint of tact time. The holding time is preferably 15 to 75 seconds, more preferably 20 to 70 seconds.
Further, when the set vacuum degree is reached, the maintenance time for maintaining the set vacuum degree can be appropriately set within the range in which the above-mentioned holding time can be maintained. That is, the depressurization may be stopped immediately after reaching the set vacuum degree (maintenance time 0 seconds), or a maintenance time of about 2 to 45 seconds may be provided.

大気圧から設定真空度まで減圧する際の減圧速度は、電解液の飛散抑制と減圧処理時間短縮の観点から、3〜15kPa/secであることが好ましく、4.5〜5.5kPa/secであることがより好ましい。減圧速度は、ステップ状や上下動を繰り返すような変動をさせず、一定であることが好ましい。 The depressurizing speed when depressurizing from the atmospheric pressure to the set vacuum degree is preferably 3 to 15 kPa / sec, preferably 4.5 to 5.5 kPa / sec, from the viewpoint of suppressing scattering of the electrolytic solution and shortening the depressurizing treatment time. More preferably. The decompression rate is preferably constant without fluctuating in a step-like manner or repeating vertical movement.

大気圧から設定真空度まで減圧し、その後、大気圧に戻して減圧処理が終了するまでに、真空度が設定真空度まで到達する到達回数は、少なくとも1回であり、1〜3回であることが好ましく、1回若しくは2回であることがより好ましく、1回であることがさらに好ましい。到達回数が1回だけであることで、電解液の飛散抑制効果をより高めることができる。到達回数は、最初に設定真空度に到達した時を1回目とし、その後減圧を止めて圧力が上がり、減圧到達度50%未満から大気圧までの範囲となってから減圧を再び行って設定真空度に到達した時を2回目、というように減圧到達度50%以下から設定真空度に到達した時の数の合計が到達回数となる。 The number of times the vacuum degree reaches the set vacuum degree is at least 1 time, 1 to 3 times, by depressurizing from the atmospheric pressure to the set vacuum degree and then returning to the atmospheric pressure to complete the decompression process. It is preferable, once or twice, more preferably once, and even more preferably once. Since the number of arrivals is only once, the effect of suppressing the scattering of the electrolytic solution can be further enhanced. The number of arrivals is the first time when the set vacuum is reached, then the decompression is stopped and the pressure rises, and after the decompression reach reaches a range of less than 50% to atmospheric pressure, the decompression is performed again to set the vacuum. The number of arrivals is the total number of times when the set vacuum degree is reached from the decompression achievement degree of 50% or less, such as the second time when the degree is reached.

以上のような条件により、大気圧から設定真空度まで減圧する際の減圧開始から、最終的に大気圧に戻る(最後の減圧処理の終了)までの時間、すなわち減圧処理時間は100秒以内であることが好ましく、90秒以内であることがより好ましい。100秒以内であることでラミネート型二次電池の製造時間を短縮することができる。 Under the above conditions, the time from the start of decompression when decompressing from atmospheric pressure to the set vacuum degree to the final return to atmospheric pressure (end of the final decompression treatment), that is, the decompression treatment time is within 100 seconds. It is preferably present, and more preferably within 90 seconds. If it is within 100 seconds, the manufacturing time of the laminated secondary battery can be shortened.

なお、所定の保持時間を経た後は、その真空状態を維持した状態にて、外装体の一端の開口部を熱融着して封止することで、電極積層体と電解液が外装体中に密封された状態となる。そして、減圧を止めて真空チャンバ内を大気圧に戻すことで減圧工程が終了する。 After a predetermined holding time has passed, the electrode laminate and the electrolytic solution are contained in the exterior body by heat-sealing and sealing the opening at one end of the exterior body while maintaining the vacuum state. It will be in a sealed state. Then, the depressurization step is completed by stopping the depressurization and returning the inside of the vacuum chamber to the atmospheric pressure.

ここで、本発明に係る減圧処理において、真空度と減圧時間との関係を図1、図2を参照して説明する。図1に示す例では、まず、大気圧Aから設定真空度Bまで圧力を下げる。その後、設定真空度を一定時間維持した後、その一定時間経過後の設定真空度C(真空度はBと同一)で外装体の開口部を封止した後、減圧を止めて真空チャンバ内を大気圧Dに戻す。ここで、大気圧から設定真空度まで減圧する際の減圧到達度50%から設定真空度までの範囲内に保持する保持時間を10〜80秒とするが、この減圧到達度50%とは、AB及びCDの真空度に相当する。これらは、(A−B)/2の真空度に相当する。そして、ABからCDまでの時間Tが上記保持時間となる。 Here, in the decompression treatment according to the present invention, the relationship between the degree of vacuum and the decompression time will be described with reference to FIGS. 1 and 2. In the example shown in FIG. 1, first, the pressure is lowered from the atmospheric pressure A to the set vacuum degree B. After that, after maintaining the set vacuum degree for a certain period of time, the opening of the exterior body is sealed with the set vacuum degree C (the vacuum degree is the same as B) after the elapse of the certain time, and then the depressurization is stopped to move the inside of the vacuum chamber. Return to atmospheric pressure D. Here, the holding time for holding within the range from the decompression reaching degree of 50% to the set vacuum degree when decompressing from the atmospheric pressure to the set vacuum degree is 10 to 80 seconds, and the decompression reaching degree of 50% is defined as. It corresponds to the degree of vacuum of AB and CD. These correspond to the degree of vacuum of (AB) / 2. Then, the time T from AB to CD is the above-mentioned holding time.

図2に示す例は、大気圧に戻して減圧処理が終了するまでに、真空度が設定真空度まで到達する到達回数が2回の例である。図1の場合と同様に、大気圧Eから設定真空度Fまで圧力を下げる。その後直ちに真空チャンバ内の減圧を止める。減圧を止めることで真空度が下がり、減圧到達度50%である真空度FGを超える。その後、真空度Gから再び減圧を行い、減圧到達度50%である真空度GHを経て設定真空度H(真空度はFと同一)に到達する。到達後、外装体の開口部を封止した後、減圧を止めて真空チャンバ内を大気圧Jに戻す。ここで、図2の場合の減圧到達度50%とは、EF、FG、GH及びHJに相当する。これらは(E−F)/2の真空度に相当する。そして、EFからFGまでの時間T1と、GHからHJまでの時間T2の合計が保持時間となる。
図2の場合、EからFまでの減圧速度とGからHまでの減圧速度は同じとしているが、既述の好ましい減圧速度の範囲であれば、同一でなくてもよい。また、設定真空度FとHは同一としているが、1kPa〜10kPaの範囲であればこれらは同一でなくてもよい。
The example shown in FIG. 2 is an example in which the degree of vacuum reaches the set degree of vacuum twice before the pressure is returned to atmospheric pressure and the decompression process is completed. As in the case of FIG. 1, the pressure is lowered from the atmospheric pressure E to the set vacuum degree F. Immediately after that, the depressurization in the vacuum chamber is stopped. By stopping the decompression, the degree of vacuum decreases and exceeds the degree of vacuum FG, which is the degree of reaching 50% of the decompression. After that, the pressure is reduced again from the degree of vacuum G, and the set degree of vacuum H (the degree of vacuum is the same as F) is reached through the degree of vacuum GH, which is the degree of reaching 50% of the degree of reduction. After reaching, after sealing the opening of the exterior body, the depressurization is stopped and the inside of the vacuum chamber is returned to the atmospheric pressure J. Here, the decompression reaching degree of 50% in the case of FIG. 2 corresponds to EF, FG, GH and HJ. These correspond to a degree of vacuum of (EF) / 2. Then, the sum of the time T1 from EF to FG and the time T2 from GH to HJ is the holding time.
In the case of FIG. 2, the decompression rate from E to F and the decompression rate from G to H are the same, but they do not have to be the same as long as they are in the above-mentioned preferable range of the decompression rate. Further, although the set vacuum degrees F and H are the same, they do not have to be the same as long as they are in the range of 1 kPa to 10 kPa.

以上のような減圧工程を経ることで、ラミネート型二次電池が製造される。
ここで、電解液注入工程において外装体に収容される電極積層体としては、既述のとおり、負極及び正極がセパレータを介して対向配置され、適宜絶縁層が設けられた構成が挙げられる。以下、当該電極積層体及びその製造方法について説明する。
A laminated secondary battery is manufactured through the above decompression process.
Here, as the electrode laminate housed in the exterior body in the electrolytic solution injection step, as described above, a configuration in which the negative electrode and the positive electrode are arranged facing each other via the separator and an insulating layer is appropriately provided can be mentioned. Hereinafter, the electrode laminate and a method for manufacturing the same will be described.

(正極)
電極積層体における正極は、好ましくは正極集電体と、正極集電体上に積層された正極活物質層とを有する。正極活物質層は、典型的には、正極活物質と、正極用バインダーとを含む。
正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、正極活物質として、オリビン型リン酸鉄リチウム(LiFePO)等を使用してもよい。さらに、正極活物質として、リチウム以外の金属を複数使用したものを使用してもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物等を使用してもよい。正極活物質として、これらの物質を1種単独で使用してもよいし、2種以上を併用してもよい。
正極活物質は、特に限定されないが、その平均粒子径が0.5〜50μmであることが好ましく、1〜30μmであることがより好ましい。なお、平均粒子径は、レーザー回折・散乱法によって求めた粒度分布において、体積積算が50%での粒径(D50)を意味する。
正極活物質層における正極活物質の含有量は、正極活物質層全量基準で、50〜98.5質量%が好ましく、60〜98質量%がより好ましい。
(Positive electrode)
The positive electrode in the electrode laminate preferably has a positive electrode current collector and a positive electrode active material layer laminated on the positive electrode current collector. The positive electrode active material layer typically includes a positive electrode active material and a binder for the positive electrode.
Examples of the positive electrode active material include lithium metallic acid compounds. Examples of the lithium metal acid compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, as the positive electrode active material, olivine-type lithium iron phosphate (LiFePO 4 ) or the like may be used. Further, as the positive electrode active material, a material using a plurality of metals other than lithium may be used, and NCM (nickel cobalt manganese) oxide, NCA (nickel cobalt aluminum) oxide, etc., which are called ternary oxides, may be used. You may use it. As the positive electrode active material, these substances may be used alone or in combination of two or more.
The positive electrode active material is not particularly limited, but its average particle size is preferably 0.5 to 50 μm, and more preferably 1 to 30 μm. The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution obtained by the laser diffraction / scattering method.
The content of the positive electrode active material in the positive electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the positive electrode active material layer.

正極用バインダーの具体例としては、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム(SBR)、ポリ(メタ)アクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
これらのなかでは、フッ素含有樹脂が好ましく、中でもポリフッ化ビニリデンがより好ましい。
正極活物質層におけるバインダーの含有量は、正極活物質層全量基準で、0.5質量%以上であることが好ましく、0.5〜20質量%であることがより好ましく、1.0〜10質量%がさらに好ましい。
Specific examples of the binder for the positive electrode include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resin such as polytetrafluoroethylene (PTFE), and polymethyl acrylate (PMA). ), Acrylic resin such as polyvinylidene methacrylate (PMMA), polyvinylidene acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC), polyethernitrile (PEN), polyethylene (PE), polypropylene (PP) , Polyacrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber (SBR), poly (meth) acrylic acid, carboxymethyl cellulose (CMC), hydroxyethyl cellulose, polyvinyl alcohol and the like. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
Among these, a fluorine-containing resin is preferable, and polyvinylidene fluoride is more preferable.
The content of the binder in the positive electrode active material layer is preferably 0.5% by mass or more, more preferably 0.5 to 20% by mass, and 1.0 to 10% based on the total amount of the positive electrode active material layer. Mass% is more preferred.

正極活物質層は、導電助剤をさらに含んでもよい。導電助剤は、正極活物質や負極活物質よりも導電性が高い材料が使用され、具体的には、ケッチェンブラック、アセチレンブラック(AB)、カーボンナノチューブ、棒状カーボン等の炭素材料等が挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。正極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、正極活物質層全量基準で、0.5〜15質量%であることが好ましく、1.0〜9質量%であることがより好ましい。 The positive electrode active material layer may further contain a conductive auxiliary agent. As the conductive auxiliary agent, a material having higher conductivity than the positive electrode active material and the negative electrode active material is used, and specific examples thereof include carbon materials such as Ketjen black, acetylene black (AB), carbon nanotubes, and rod-shaped carbon. Be done. The conductive auxiliary agent may be used alone or in combination of two or more. When the positive electrode active material layer contains a conductive auxiliary agent, the content of the conductive auxiliary agent is preferably 0.5 to 15% by mass, preferably 1.0 to 9% by mass, based on the total amount of the positive electrode active material layer. More preferably.

正極活物質層は、正極活物質、導電助剤、及びバインダー以外の他の任意成分を含んでもよい。ただし、正極活物質層の総質量のうち、正極活物質、導電助剤、及びバインダーの総含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
正極活物質層の厚さ(正極活物質層が複数ある場合は各々の厚さ)は、特に限定されないが、10〜100μmが好ましく、20〜80μmがより好ましい。
The positive electrode active material layer may contain an optional component other than the positive electrode active material, the conductive auxiliary agent, and the binder. However, the total content of the positive electrode active material, the conductive auxiliary agent, and the binder in the total mass of the positive electrode active material layer is preferably 90% by mass or more, and more preferably 95% by mass or more.
The thickness of the positive electrode active material layer (thickness of each of the plurality of positive electrode active material layers) is not particularly limited, but is preferably 10 to 100 μm, more preferably 20 to 80 μm.

また、正極集電体となる材料は、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられる。これらの中では、アルミニウム、チタン、ニッケル及びステンレス鋼が好ましく、アルミニウムがより好ましい。正極集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1〜50μmが好ましく、5〜20μmがより好ましい。電極集電体の厚さが1〜50μmであると、電極集電体のハンドリングが容易になるとともに、エネルギー密度の低下を抑制できる。 Examples of the material used as the positive electrode current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum, titanium, nickel and stainless steel are preferable, and aluminum is more preferable. The positive electrode current collector is generally made of a metal foil, and the thickness thereof is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 20 μm. When the thickness of the electrode current collector is 1 to 50 μm, the handling of the electrode current collector can be facilitated and the decrease in energy density can be suppressed.

(負極)
電極積層体における負極は、好ましくは負極集電体と、負極集電体上に積層された負極活物質層とを有する。負極活物質層は、典型的には、負極活物質と、負極用バインダーとを含む。
負極活物質としては、グラファイト、ハードカーボンなどの炭素材料、スズ化合物とシリコンと炭素の複合体、リチウムなどが挙げられるが、これら中では炭素材料が好ましく、グラファイトがより好ましい。負極活物質として、これらの物質を1種単独で使用してもよいし、2種以上を併用してもよい。
負極活物質は、特に限定されないが、その平均粒子径が0.5〜50μmであることが好ましく、1〜30μmであることがより好ましい。
負極活物質層における負極活物質の含有量は、負極活物質層全量基準で、50〜98.5質量%が好ましく、60〜98質量%がより好ましい。
(Negative electrode)
The negative electrode in the electrode laminate preferably has a negative electrode current collector and a negative electrode active material layer laminated on the negative electrode current collector. The negative electrode active material layer typically includes a negative electrode active material and a binder for the negative electrode.
Examples of the negative electrode active material include carbon materials such as graphite and hard carbon, a composite of a tin compound, silicon and carbon, and lithium. Among these, a carbon material is preferable, and graphite is more preferable. As the negative electrode active material, these substances may be used alone or in combination of two or more.
The negative electrode active material is not particularly limited, but its average particle size is preferably 0.5 to 50 μm, more preferably 1 to 30 μm.
The content of the negative electrode active material in the negative electrode active material layer is preferably 50 to 98.5% by mass, more preferably 60 to 98% by mass, based on the total amount of the negative electrode active material layer.

負極用バインダーの具体例としては、正極用バインダーの具体例と同様であり、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース等は、ナトリウム塩等の塩の態様にて使用されていてもよい。
これらのなかでは、フッ素含有樹脂が好ましく、中でもポリフッ化ビニリデンがより好ましい。
負極活物質層におけるバインダーの含有量は、負極活物質層全量基準で、0.5質量%以上であることが好ましく、0.5〜20質量%であることがより好ましく、1.0〜10質量%がさらに好ましい。
Specific examples of the binder for the negative electrode are the same as those of the binder for the positive electrode, and one type may be used alone or two or more types may be used in combination. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.
Among these, a fluorine-containing resin is preferable, and polyvinylidene fluoride is more preferable.
The content of the binder in the negative electrode active material layer is preferably 0.5% by mass or more, more preferably 0.5 to 20% by mass, and 1.0 to 10% based on the total amount of the negative electrode active material layer. Mass% is more preferred.

負極活物質層は、導電助剤を含有してもよい。導電助剤の具体例は、正極活物質層の場合と同じものが挙げられる。導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
負極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、負極活物質層全量基準で、1〜30質量%であることが好ましく、2〜25質量%であることがより好ましい。
なお、負極活物質層において、負極活物質、導電助剤、及びバインダー以外の他の任意成分を含んでもよいことは、正極活物質層の場合と同じであり、その含有量も同様である。
負極活物質層の厚さ(負極活物質層が複数ある場合は各々の厚さ)は、特に限定されないが、10〜100μmが好ましく、20〜80μmがより好ましい。
The negative electrode active material layer may contain a conductive auxiliary agent. Specific examples of the conductive auxiliary agent include the same as in the case of the positive electrode active material layer. The conductive auxiliary agent may be used alone or in combination of two or more.
When the negative electrode active material layer contains a conductive auxiliary agent, the content of the conductive auxiliary agent is preferably 1 to 30% by mass, preferably 2 to 25% by mass, based on the total amount of the negative electrode active material layer. Is more preferable.
It should be noted that the negative electrode active material layer may contain an optional component other than the negative electrode active material, the conductive auxiliary agent, and the binder, which is the same as in the case of the positive electrode active material layer, and the content thereof is also the same.
The thickness of the negative electrode active material layer (thickness of each of the plurality of negative electrode active material layers) is not particularly limited, but is preferably 10 to 100 μm, more preferably 20 to 80 μm.

負極集電体を構成する材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられる。これらの中では、銅、チタン、ニッケル及びステンレス鋼が好ましく、銅がより好ましい。負極集電体も、正極集電体と同様に一般的には金属箔からなり、その厚さは、特に限定されないが、1〜50μmが好ましく、5〜20μmがより好ましい。電極集電体の厚さが1〜50μmであると、電極集電体のハンドリングが容易になるとともに、エネルギー密度の低下を抑制できる。
(セパレータ)
セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。セパレータは、リチウムイオン二次電池駆動時の発熱により加熱されて熱収縮などすることがあるが、そのような熱収縮時でも、後述の絶縁層が設けられることで短絡が抑制しやすくなる。
Examples of the material constituting the negative electrode current collector include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, copper, titanium, nickel and stainless steel are preferable, and copper is more preferable. The negative electrode current collector is also generally made of a metal foil like the positive electrode current collector, and its thickness is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 20 μm. When the thickness of the electrode current collector is 1 to 50 μm, the handling of the electrode current collector can be facilitated and the decrease in energy density can be suppressed.
(Separator)
Examples of the separator include a porous polymer film, a non-woven fabric, and glass fiber, and among these, a porous polymer film is preferable. Examples of the porous polymer film include an olefin-based porous film. The separator may be heated by heat generated when the lithium ion secondary battery is driven and may undergo heat shrinkage. Even during such heat shrinkage, a short circuit can be easily suppressed by providing an insulating layer described later.

(絶縁層)
正極とセパレータとの間、又は、セパレータと負極との間に絶縁層を設けてもよい。絶縁層により正極及び負極の間の短絡が効果的に防止される。絶縁層は、好ましくは、絶縁性微粒子と絶縁層用バインダーとを含み、絶縁性微粒子が絶縁層用バインダーによって結着されて構成された多孔質構造を有する層である。
(Insulation layer)
An insulating layer may be provided between the positive electrode and the separator, or between the separator and the negative electrode. The insulating layer effectively prevents short circuits between the positive and negative electrodes. The insulating layer is preferably a layer having a porous structure containing insulating fine particles and a binder for an insulating layer, and the insulating fine particles are bound by a binder for an insulating layer.

絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン−アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ−タンタル複合酸化物、マグネシウム−タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。絶縁性微粒子は1種を単独で用いてもよいし、複数種を併用してもよい。
絶縁性微粒子の平均粒子径は、絶縁層の厚さよりも小さければ特に限定されず、例えば0.001〜1μm、好ましくは0.05〜0.8μm、より好ましくは0.1〜0.6μmである。
絶縁層に含有される絶縁性微粒子の含有量は、絶縁層全量基準で、好ましくは15〜95質量%、より好ましくは40〜90質量%、更に好ましくは60〜85質量%である。絶縁性微粒子の含有量が上記範囲内であると、絶縁層は、均一な多孔質構造が形成でき、かつ適切な絶縁性が付与される。
The insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles. Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamide-2-methylpropanesulfonate), and the like. Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin. Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and foot. Examples thereof include particles composed of inorganic compounds such as lithium pentoxide, clay, zeolite, and calcium carbonate. Further, the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide. One type of insulating fine particles may be used alone, or a plurality of types may be used in combination.
The average particle size of the insulating fine particles is not particularly limited as long as it is smaller than the thickness of the insulating layer, and is, for example, 0.001 to 1 μm, preferably 0.05 to 0.8 μm, and more preferably 0.1 to 0.6 μm. is there.
The content of the insulating fine particles contained in the insulating layer is preferably 15 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 60 to 85% by mass based on the total amount of the insulating layer. When the content of the insulating fine particles is within the above range, the insulating layer can form a uniform porous structure and is provided with appropriate insulating properties.

絶縁層用バインダーとしては、上記した正極用バインダーと同種のものが使用できる。絶縁層における絶縁層用バインダーの含有量は、絶縁層全量基準で、5〜50質量%であることが好ましく、10〜45質量%がより好ましく、15〜40質量%が更に好ましい。
絶縁層の厚さは、1〜10μmが好ましく、2〜8μmがより好ましく、3〜7μmが更に好ましい。
As the binder for the insulating layer, the same type as the binder for the positive electrode described above can be used. The content of the binder for the insulating layer in the insulating layer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, still more preferably 15 to 40% by mass, based on the total amount of the insulating layer.
The thickness of the insulating layer is preferably 1 to 10 μm, more preferably 2 to 8 μm, and even more preferably 3 to 7 μm.

<電極積層体の製造方法>
[正極の作製]
(正極活物質層の形成)
正極活物質層の形成においては、まず、正極活物質と、正極用バインダーと、溶媒とを含む正極活物質層用組成物を用意する。正極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。正極活物質、正極用バインダー、導電助剤などは上記で説明したとおりである。正極活物質層用組成物は、スラリーとなる。
<Manufacturing method of electrode laminate>
[Preparation of positive electrode]
(Formation of positive electrode active material layer)
In the formation of the positive electrode active material layer, first, a composition for the positive electrode active material layer containing the positive electrode active material, the binder for the positive electrode, and the solvent is prepared. The composition for the positive electrode active material layer may contain other components such as a conductive additive to be blended if necessary. The positive electrode active material, the binder for the positive electrode, the conductive auxiliary agent and the like are as described above. The composition for the positive electrode active material layer is a slurry.

正極活物質層組成物における溶媒は、水または有機溶剤を使用する。有機溶剤の具体例としては、N−メチルピロリドン、N−エチルピロリドン、ジメチルアセトアミド、及びジメチルホルムアミドから選択される1種又は2種以上が挙げられる。これらの中では、N−メチルピロリドンが好ましい。
正極活物質層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは20〜65質量%である。
Water or an organic solvent is used as the solvent in the positive electrode active material layer composition. Specific examples of the organic solvent include one or more selected from N-methylpyrrolidone, N-ethylpyrrolidone, dimethylacetamide, and dimethylformamide. Of these, N-methylpyrrolidone is preferred.
The solid content concentration of the composition for the positive electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.

正極活物質層は、上記正極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記正極活物質層用組成物を正極集電体の上に塗布し、乾燥することによって形成することができる。
また、正極活物質層は、正極活物質層用組成物を、正極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。正極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した正極活物質層は、好ましくは絶縁層を正極活物質層上に形成した後、基材から正極活物質層を剥がして正極集電体の上に転写すればよい。
正極集電体又は基材の上に形成した正極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
The positive electrode active material layer may be formed by a known method using the above-mentioned composition for the positive electrode active material layer. For example, the above-mentioned composition for the positive electrode active material layer is applied onto the positive electrode current collector and dried. Can be formed by
Further, the positive electrode active material layer may be formed by applying the composition for the positive electrode active material layer on a base material other than the positive electrode current collector and drying it. Examples of the base material other than the positive electrode current collector include known release sheets. For the positive electrode active material layer formed on the base material, preferably, after forming an insulating layer on the positive electrode active material layer, the positive electrode active material layer may be peeled off from the base material and transferred onto the positive electrode current collector.
The positive electrode active material layer formed on the positive electrode current collector or the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density. The pressure press may be performed by a roll press or the like.

[負極の作製]
(負極活物質層の形成)
負極活物質層の形成においては、まず、負極活物質と、負極用バインダーと、溶媒とを含む負極活物質層用組成物を用意する。負極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。負極活物質、負極用バインダー、導電助剤などは上記で説明したとおりである。負極活物質層用組成物は、スラリーとなる。
[Preparation of negative electrode]
(Formation of negative electrode active material layer)
In forming the negative electrode active material layer, first, a composition for the negative electrode active material layer containing the negative electrode active material, the negative electrode binder, and the solvent is prepared. The composition for the negative electrode active material layer may contain other components such as a conductive auxiliary agent to be blended as needed. The negative electrode active material, the binder for the negative electrode, the conductive auxiliary agent and the like are as described above. The composition for the negative electrode active material layer is a slurry.

負極活物質層組成物における溶媒は、正極活物質層組成物における溶媒と同様のものを用いることができ、その固形分濃度も同様である。 As the solvent in the negative electrode active material layer composition, the same solvent as in the positive electrode active material layer composition can be used, and the solid content concentration thereof is also the same.

負極活物質層は、上記負極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、上記負極活物質層用組成物を負極集電体の上に塗布し、乾燥することによって形成することができる。
また、負極活物質層は、負極活物質層用組成物を、負極集電体以外の基材上に塗布し、乾燥することにより形成してもよい。負極集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した負極活物質層は、好ましくは絶縁層を負極活物質層上に形成した後、基材から負極活物質層を剥がして負極集電体の上に転写すればよい。
負極集電体又は基材の上に形成した負極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
The negative electrode active material layer may be formed by a known method using the negative electrode active material layer composition. For example, the negative electrode active material layer composition is applied onto the negative electrode current collector and dried. Can be formed by
Further, the negative electrode active material layer may be formed by applying the composition for the negative electrode active material layer on a base material other than the negative electrode current collector and drying it. Examples of the base material other than the negative electrode current collector include known release sheets. For the negative electrode active material layer formed on the base material, preferably, after the insulating layer is formed on the negative electrode active material layer, the negative electrode active material layer may be peeled off from the base material and transferred onto the negative electrode current collector.
The negative electrode active material layer formed on the negative electrode current collector or the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density. The pressure press may be performed by a roll press or the like.

(絶縁層の形成)
絶縁層を形成する場合に使用する絶縁層用組成物は、無機粒子と、絶縁層用バインダーと、溶媒とを含む。絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。無機粒子、絶縁層用バインダーなどの詳細は上記で説明したとおりである。絶縁層用組成物はスラリーとなる。溶媒としては、水又は有機溶剤を使用すればよく、有機溶剤の詳細は、正極活物質層組成物における有機溶剤と同様のものが挙げられる。絶縁層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは15〜50質量%である。
(Formation of insulating layer)
The composition for an insulating layer used when forming the insulating layer contains inorganic particles, a binder for the insulating layer, and a solvent. The composition for the insulating layer may contain other optional components to be blended as needed. Details of the inorganic particles, the binder for the insulating layer, and the like are as described above. The composition for the insulating layer is a slurry. As the solvent, water or an organic solvent may be used, and the details of the organic solvent include those similar to those of the organic solvent in the positive electrode active material layer composition. The solid content concentration of the composition for the insulating layer is preferably 5 to 75% by mass, more preferably 15 to 50% by mass.

絶縁層は、絶縁層用組成物を、正極若しくは負極活物質層の上に塗布して乾燥することによって形成することができる。絶縁層用組成物を正極若しくは負極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。
また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40〜120℃、好ましくは50〜90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒〜20分間である。
The insulating layer can be formed by applying the composition for an insulating layer on the positive electrode or negative electrode active material layer and drying it. The method of applying the composition for the insulating layer to the surface of the positive electrode or negative electrode active material layer is not particularly limited, and for example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a bar coating method, a gravure coating method, etc. Screen printing method and the like can be mentioned.
The drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 20 minutes.

上記のようにして得られた正極及び負極は、本発明のセパレータを介して圧着させて電極積層体を形成する。正極と負極とを圧着させる具体的な方法は、正極とセパレータと負極とを重ね合わせたもの(それぞれが複数層ある場合には、交互に配置して重ね合わせたもの)をプレス機などによりプレスすることで行うとよい。プレス条件は、正極活物質層及び負極活物質層が必要以上に圧縮されない程度の条件で行うとよい。具体的には、プレス温度は、50〜130℃、好ましくは60〜100℃であり、プレス圧力は、例えば、0.2〜3MPa、好ましくは0.4〜1.5MPaである。また、プレス時間は、例えば、15秒〜15分間、好ましくは30秒〜10分間である。
上記のようにして得られた電極積層体は、例えば、正極集電体を正極端子に、負極集電体を負極端子に接続させる。
The positive electrode and the negative electrode obtained as described above are pressure-bonded via the separator of the present invention to form an electrode laminate. The specific method of crimping the positive electrode and the negative electrode is to press the positive electrode, the separator, and the negative electrode on top of each other (if there are multiple layers, they are alternately arranged and superposed) with a press or the like. It is good to do it by doing. The pressing conditions may be such that the positive electrode active material layer and the negative electrode active material layer are not compressed more than necessary. Specifically, the press temperature is 50 to 130 ° C., preferably 60 to 100 ° C., and the press pressure is, for example, 0.2 to 3 MPa, preferably 0.4 to 1.5 MPa. The press time is, for example, 15 seconds to 15 minutes, preferably 30 seconds to 10 minutes.
In the electrode laminate obtained as described above, for example, the positive electrode current collector is connected to the positive electrode terminal and the negative electrode current collector is connected to the negative electrode terminal.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

得られたラミネート型リチウムイオン二次電池は、以下の評価方法により評価した。
(充放電特性)
実施例、比較例で得られた各電池を1C,1Cの充放電速度でサイクリングを行い、充放電容量と容量維持率を測定した。充放電容量が35.5Ah以上であり、200サイクル容量維持率が95%以上であれば、「良」とし、いずれかが劣る場合は「不良」とした。
The obtained laminated lithium ion secondary battery was evaluated by the following evaluation method.
(Charging / discharging characteristics)
The batteries obtained in Examples and Comparative Examples were cycled at 1C and 1C charge / discharge rates, and the charge / discharge capacity and capacity retention rate were measured. If the charge / discharge capacity is 35.5 Ah or more and the 200-cycle capacity retention rate is 95% or more, it is evaluated as "good", and if any of them is inferior, it is evaluated as "bad".

[実施例1]
(正極の作製)
正極活物質としてLiFePO(平均粒子径10μm)を92.8質量部と、導電助剤としてカーボンブラックを5質量部と、電極用バインダーとしてポリフッ化ビニリデン2.2質量部と、溶媒としてのN−メチルピロリドンとを混合し、固形分濃度55.5質量%に調整した正極活物質層用スラリーを得た。この正極活物質層用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極活物質層用スラリーを塗布した正極集電体を、400kN/mの線圧でローラにより加圧プレスし、更に電極寸法の467mm×175mm角に打ち抜いて、両面に正極活物質層を有する正極とした。該寸法のうち、正極活物質が塗布された面積は432mm×175mmであった。なお、両面に形成された正極活物質層の厚さは、片面あたり64.25μmであった。
[Example 1]
(Preparation of positive electrode)
92.8 parts by mass of LiFePO 4 (average particle size 10 μm) as the positive electrode active material, 5 parts by mass of carbon black as the conductive auxiliary agent, 2.2 parts by mass of polyvinylidene fluoride as the electrode binder, and N as the solvent. -Methylpyrrolidone was mixed to obtain a slurry for a positive electrode active material layer adjusted to a solid content concentration of 55.5% by mass. This slurry for the positive electrode active material layer was applied to both sides of an aluminum foil having a thickness of 15 μm as a positive electrode current collector, pre-dried, and then vacuum dried at 120 ° C. After that, the positive electrode current collector coated with the slurry for the positive electrode active material layer on both sides is pressure-pressed by a roller at a linear pressure of 400 kN / m, and further punched into an electrode size of 467 mm × 175 mm square, and the positive electrode active material is punched on both sides. A positive electrode having a layer was used. Of the dimensions, the area to which the positive electrode active material was applied was 432 mm × 175 mm. The thickness of the positive electrode active material layer formed on both sides was 64.25 μm per side.

(負極の作製)
負極活物質としてグラファイト(平均粒子径10μm)100質量部と、電極用バインダーとしてカルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、スチレンブタジエンゴム(SBR)1.5質量部と、溶媒として水とを混合し、固形分50質量%に調整した負極活物質層用スラリーを得た。この負極活物質層用スラリーを、負極集電体としての厚さ12μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に負極活物質層用スラリーを塗布した負極集電体を、500kN/mの線圧でローラにより加圧プレスし、更に電極寸法の468mm×181mm角に打ち抜いて、両面に負極活物質層を有する負極とした。該寸法のうち、負極活物質が塗布された面積は439mm×181mmであった。なお、両面に形成された負極活物質層の厚さは、片面あたり43.5μmであった。
(Preparation of negative electrode)
100 parts by mass of graphite (average particle diameter 10 μm) as a negative electrode active material, 1.5 parts by mass of sodium salt of carboxymethyl cellulose (CMC) as an electrode binder, 1.5 parts by mass of styrene butadiene rubber (SBR), and a solvent. Was mixed with water to obtain a slurry for the negative electrode active material layer adjusted to have a solid content of 50% by mass. This slurry for the negative electrode active material layer was applied to both sides of a copper foil having a thickness of 12 μm as a negative electrode current collector and vacuum dried at 100 ° C. After that, the negative electrode current collector coated with the slurry for the negative electrode active material layer on both sides is pressure-pressed by a roller at a linear pressure of 500 kN / m, and further punched into an electrode size of 468 mm × 181 mm square, and the negative electrode active material is punched on both sides. It was a negative electrode having a layer. Of the dimensions, the area to which the negative electrode active material was applied was 439 mm × 181 mm. The thickness of the negative electrode active material layer formed on both sides was 43.5 μm per side.

(電解液の調製)
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を3:7の体積比(EC:EMC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(Preparation of electrolyte)
LiPF 6 as an electrolyte salt is dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3: 7 (EC: EMC) so as to be 1 mol / liter, and the electrolytic solution is prepared. Was prepared.

(電池の製造)
上記で得た負極18枚と、正極17枚と、セパレータ34枚を積層して電極積層体を得た。ここで、負極と正極は交互に配置して、各負極と正極の間にセパレータを配置した。また、セパレータとしては、厚さ12μmのポリエチレン製多孔質フィルムを用いた。
各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
次いで、2枚のアルミラミネートフィルムで上記電極積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止し、一端を開口部とした。
(Battery manufacturing)
The 18 negative electrodes, 17 positive electrodes, and 34 separators obtained above were laminated to obtain an electrode laminate. Here, the negative electrode and the positive electrode were arranged alternately, and a separator was arranged between each negative electrode and the positive electrode. Further, as the separator, a polyethylene porous film having a thickness of 12 μm was used.
The exposed ends of the positive electrode current collectors of each positive electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined. Similarly, the exposed ends of the negative electrode current collectors of each negative electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined.
Next, the electrode laminate was sandwiched between two aluminum laminate films, the terminal tabs were projected to the outside, three sides were sealed by laminating, and one end was used as an opening.

一端を開口部とし電極積層体を収容した外装体の開口部から電解液190gを大気圧下で注入ノズルを通して注入した。 190 g of the electrolytic solution was injected through the injection nozzle under atmospheric pressure from the opening of the exterior body containing the electrode laminate with one end as an opening.

つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始し、ラミネート型リチウムイオン二次電池を作製した。大気圧から設定真空度まで減圧する際の減圧開始から、減圧処理を終えて最終的に大気圧に戻るまでの時間を測定した(以下の実施例、比較例についても同様に測定した)。結果を表1に示す。
なお、使用した真空チャンバは、その排気管に介装されたバルブの開閉及び真空チャンバの大気導入管に介装されたバルブの開閉を行なって減圧速度を調製することができる。
また、各実施例及び比較例における大気圧は101.3kPaであった。
Subsequently, the exterior body was installed in the vacuum chamber, the vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process, and a laminated lithium ion secondary battery was produced. The time from the start of depressurization when depressurizing from the atmospheric pressure to the set vacuum degree to the end of the depressurization treatment and finally returning to the atmospheric pressure was measured (the same was measured for the following examples and comparative examples). The results are shown in Table 1.
The vacuum chamber used can adjust the decompression speed by opening and closing the valve interposed in the exhaust pipe and opening and closing the valve interposed in the atmosphere introduction pipe of the vacuum chamber.
The atmospheric pressure in each example and comparative example was 101.3 kPa.

減圧処理の条件としては、設定真空度を4.6kPaとし、減圧速度を4.84kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(48.35kPa)から設定真空度(設定真空度の維持時間:0秒)までの範囲内に保持する保持時間を11秒とした(設定真空度到達1回目)。その後、一旦大気圧に戻した後、再び上記減圧速度で減圧して減圧到達度50%(48.35kPa)から設定真空度(設定真空度の維持時間:25秒)までの範囲内に保持する保持時間を41秒とした後(設定真空度到達2回目)、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻した。
減圧処理後の電解液の液飛散量を、減圧処理前の重量と封止処理後の重量との差から求めた。当該液飛散量と注液電解液量とから、電解液量の減少割合を、下記式から求めた。結果を表1に示す。
式)電解液量の減少割合(%)=液飛散量/注液電解液量×100
また、作製したラミネート型二次電池について充放電特性の評価を行った。結果を表1に示す。
As the conditions for the depressurization treatment, the set vacuum degree was 4.6 kPa and the decompression rate was 4.84 kPa / sec. In addition, the holding time for holding the pressure within the range from 50% (48.35 kPa) to the set vacuum degree (maintenance time of the set vacuum degree: 0 seconds) when decompressing from the atmospheric pressure to the set vacuum degree is 11 seconds. (The first time the set vacuum level was reached). Then, after returning to atmospheric pressure once, the pressure is reduced again at the above decompression rate and maintained within the range from the decompression reaching degree of 50% (48.35 kPa) to the set vacuum degree (maintenance time of the set vacuum degree: 25 seconds). After setting the holding time to 41 seconds (the second time when the set vacuum degree was reached), the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to atmospheric pressure.
The amount of the electrolytic solution scattered after the reduced pressure treatment was determined from the difference between the weight before the reduced pressure treatment and the weight after the sealing treatment. From the amount of liquid scattered and the amount of injection electrolyte, the rate of decrease in the amount of electrolyte was calculated from the following formula. The results are shown in Table 1.
Equation) Reduction rate of electrolyte amount (%) = Liquid scattering amount / Liquid injection electrolyte amount x 100
In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例2]
電解液の注入量を170gとし、設定真空度(設定真空度到達1回目の維持時間:0秒、設定真空度到達2回目の維持時間:25秒)を6.5kPa、減圧速度を4.74kPa/secとしとした以外は実施例1と同様にしてラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
[Example 2]
The injection amount of the electrolytic solution is 170 g, the set vacuum degree (maintenance time for the first time to reach the set vacuum degree: 0 seconds, maintenance time for the second time to reach the set vacuum degree: 25 seconds) is 6.5 kPa, and the decompression speed is 4.74 kPa. A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that it was set to / sec.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例3]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液210gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Example 3]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 210 g of the electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度を4.6kPaとし、減圧速度を4.84kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(48.35kPa)から設定真空度(設定真空度の維持時間:0秒)までの範囲内に保持する保持時間を21秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the depressurization treatment, the set vacuum degree was 4.6 kPa and the decompression rate was 4.84 kPa / sec. In addition, the holding time for holding the pressure within the range from 50% (48.35 kPa) to the set vacuum degree (maintenance time of the set vacuum degree: 0 seconds) when decompressing from the atmospheric pressure to the set vacuum degree is 21 seconds. (The first set vacuum degree was reached). After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例4]
設定真空度を6.5kPa、減圧速度を4.74kPa/sec、設定真空度到達1回目の維持時間を0秒、保持時間を11秒、設定真空度到達2回目の維持時間を25秒、保持時間を21秒とした以外は実施例1と同様にしてラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
[Example 4]
The set vacuum degree is 6.5 kPa, the decompression speed is 4.74 kPa / sec, the first maintenance time when the set vacuum degree is reached is 0 seconds, the holding time is 11 seconds, and the second maintenance time when the set vacuum degree is reached is 25 seconds. A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the time was set to 21 seconds.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例5]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液190gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Example 5]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 190 g of an electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度を4.6kPaとし、減圧速度を4.84kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(48.35kPa)から設定真空度(設定真空度の維持時間:40秒)までの範囲内に保持する保持時間を56秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the depressurization treatment, the set vacuum degree was 4.6 kPa and the decompression rate was 4.84 kPa / sec. In addition, the holding time for holding the pressure within the range from 50% (48.35 kPa) to the set vacuum degree (maintenance time of the set vacuum degree: 40 seconds) when decompressing from the atmospheric pressure to the set vacuum degree is 56 seconds. (The first set vacuum degree was reached). After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例6]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液190gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Example 6]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 190 g of an electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度を6.5kPaとし、減圧速度を4.74kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(47.4kPa)から設定真空度(設定真空度の維持時間:25秒)までの範囲内に保持する保持時間を41秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the decompression treatment, the set vacuum degree was 6.5 kPa and the decompression rate was 4.74 kPa / sec. In addition, the holding time for holding the pressure within the range from 50% (47.4 kPa) to the set vacuum degree (maintenance time of the set vacuum degree: 25 seconds) when decompressing from the atmospheric pressure to the set vacuum degree is 41 seconds. (The first set vacuum degree was reached). After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[実施例7]
電解液の注入量を170gとし、設定真空度を4.6kPa、減圧速度を4.84kPa/sec、設定真空度到達1回目の維持時間を0秒、保持時間を11秒、設定真空度到達2回目の維持時間を40秒、保持時間を56秒とした以外は実施例1と同様にしてラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
[Example 7]
The injection amount of the electrolytic solution is 170 g, the set vacuum degree is 4.6 kPa, the decompression speed is 4.84 kPa / sec, the set vacuum degree is reached, the first maintenance time is 0 seconds, the holding time is 11 seconds, and the set vacuum degree is reached 2. A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the holding time was 40 seconds and the holding time was 56 seconds.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[比較例1]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液170gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Comparative Example 1]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 170 g of the electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度(設定真空度の維持時間:5秒)を0.6kPaとし、減圧速度を5.04kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(50.35kPa)から設定真空度までの範囲内に保持する保持時間を21秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the decompression treatment, the set vacuum degree (maintenance time of the set vacuum degree: 5 seconds) was set to 0.6 kPa, and the decompression rate was set to 5.04 kPa / sec. In addition, the holding time for holding the pressure within the range from 50% (50.35 kPa) to the set vacuum degree when decompressing from the atmospheric pressure to the set vacuum degree was set to 21 seconds (the first set vacuum degree reached). .. After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[比較例2]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液170gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Comparative Example 2]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 170 g of the electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度(設定真空度の維持時間:40秒)を0.6kPaとし、減圧速度を4.74kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(50.35kPa)から設定真空度までの範囲内に保持する保持時間を56秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the depressurization treatment, the set vacuum degree (maintenance time of the set vacuum degree: 40 seconds) was set to 0.6 kPa, and the decompression rate was set to 4.74 kPa / sec. In addition, the holding time for holding within the range from 50% (50.35 kPa) to the set vacuum degree when decompressing from the atmospheric pressure to the set vacuum degree was set to 56 seconds (the first set vacuum degree reached). .. After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[比較例3]
電解液の注入量を210gとし、設定真空度を0.6kPa、減圧速度を5.04kPa/sec、設定真空度到達1回目の維持時間を0秒、保持時間を11秒、設定真空度到達2回目の維持時間を5秒、保持時間を21秒とした以外は実施例1と同様にしてラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
[Comparative Example 3]
The injection amount of the electrolytic solution is 210 g, the set vacuum degree is 0.6 kPa, the decompression rate is 5.04 kPa / sec, the set vacuum degree is reached, the first maintenance time is 0 seconds, the holding time is 11 seconds, and the set vacuum degree is reached 2. A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the holding time was 5 seconds and the holding time was 21 seconds.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[比較例4]
電解液の注入量を210gとし、設定真空度を0.6kPa、減圧速度を5.04kPa/sec、設定真空度到達1回目の維持時間を0秒、保持時間を11秒、設定真空度到達2回目の維持時間を40秒、保持時間を56秒とした以外は実施例1と同様にしてラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
[Comparative Example 4]
The injection amount of the electrolytic solution is 210 g, the set vacuum degree is 0.6 kPa, the decompression rate is 5.04 kPa / sec, the set vacuum degree is reached, the first maintenance time is 0 seconds, the holding time is 11 seconds, and the set vacuum degree is reached 2. A laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the holding time was 40 seconds and the holding time was 56 seconds.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

[比較例5]
実施例1と同様にして、一端を開口部とし電極積層体を収容した外装体を作製し、その開口部から電解液210gを大気圧下で注入ノズルを通して注入した。つづいて、真空チャンバ内に外装体を設置し、真空チャンバの排気管に接続された真空ポンプを作動して減圧処理を開始しラミネート型リチウムイオン二次電池を作製した。
[Comparative Example 5]
In the same manner as in Example 1, an exterior body containing the electrode laminate was prepared with one end as an opening, and 210 g of the electrolytic solution was injected from the opening through an injection nozzle under atmospheric pressure. Subsequently, an exterior body was installed in the vacuum chamber, and a vacuum pump connected to the exhaust pipe of the vacuum chamber was operated to start the depressurization process to produce a laminated lithium ion secondary battery.

減圧処理の条件としては、設定真空度(設定真空度の維持時間:0、25秒)を0.6kPaとし、減圧速度を5.04kPa/secとした。また、大気圧から設定真空度まで減圧する際の減圧到達度50%(50.35kPa)から設定真空度までの範囲内に保持する保持時間を41秒とした(1回目の設定真空度到達)。前記保持時間の経過後、開口部を熱封止してから減圧を止めて真空チャンバ内を大気圧に戻し、ラミネート型リチウムイオン二次電池を作製した。
実施例1と同様にして液飛散量と電解液量の減少割合を求めた。また、作製したラミネート型二次電池の充放電特性の評価を行った。結果を表1に示す。
As the conditions for the depressurization treatment, the set vacuum degree (maintenance time of the set vacuum degree: 0, 25 seconds) was set to 0.6 kPa, and the decompression rate was set to 5.04 kPa / sec. In addition, the holding time for holding within the range from 50% (50.35 kPa) to the set vacuum degree when decompressing from the atmospheric pressure to the set vacuum degree was set to 41 seconds (the first set vacuum degree reached). .. After the lapse of the holding time, the opening was heat-sealed, the depressurization was stopped, and the inside of the vacuum chamber was returned to the atmospheric pressure to prepare a laminated lithium ion secondary battery.
In the same manner as in Example 1, the amount of liquid scattered and the rate of decrease in the amount of electrolytic solution were determined. In addition, the charge / discharge characteristics of the manufactured laminated secondary battery were evaluated. The results are shown in Table 1.

Claims (5)

正極および負極が対向配置された電極積層体を収容する外装体の一端の開口部に、大気圧下で電解液を注入する電解液注入工程と、
前記電解液の注入後に、前記大気圧から設定真空度まで減圧し、その後、前記大気圧に戻す減圧工程と、を含み、
前記減圧工程において、
(1)前記設定真空度を1kPa〜10kPaの範囲で特定の真空度とし、
(2)前記大気圧から前記設定真空度まで減圧する際の減圧到達度50%から前記設定真空度までの範囲内に保持する保持時間を10〜80秒とする、ラミネート型リチウムイオン二次電池の製造方法。
An electrolytic solution injection step of injecting an electrolytic solution under atmospheric pressure into an opening at one end of an exterior body accommodating an electrode laminate in which a positive electrode and a negative electrode are arranged facing each other.
After the injection of the electrolytic solution, the pressure is reduced from the atmospheric pressure to the set vacuum degree, and then the pressure is returned to the atmospheric pressure.
In the decompression step
(1) The set vacuum degree is set to a specific vacuum degree in the range of 1 kPa to 10 kPa.
(2) Laminated lithium ion secondary battery having a holding time of 10 to 80 seconds for holding within the range from the decompression reaching degree of 50% when decompressing from the atmospheric pressure to the set vacuum degree to the set vacuum degree. Manufacturing method.
前記大気圧から設定真空度まで減圧する際の減圧速度が3〜15kPa/secである請求項1に記載のラミネート型リチウムイオン二次電池の製造方法。 The method for manufacturing a laminated lithium ion secondary battery according to claim 1, wherein the decompression rate when depressurizing from the atmospheric pressure to the set vacuum degree is 3 to 15 kPa / sec. 前記大気圧から設定真空度まで減圧し、その後、前記大気圧に戻すまでに、真空度が前記設定真空度まで到達する到達回数が少なくとも1回ある請求項1又は2に記載のラミネート型リチウムイオン二次電池の製造方法。 The laminated lithium ion according to claim 1 or 2, wherein the vacuum degree reaches the set vacuum degree at least once before the pressure is reduced from the atmospheric pressure to the set vacuum degree and then returned to the atmospheric pressure. How to manufacture a secondary battery. 前記到達回数が1回である請求項3に記載のラミネート型リチウムイオン二次電池の製造方法。 The method for manufacturing a laminated lithium ion secondary battery according to claim 3, wherein the number of arrivals is one. 前記大気圧から設定真空度まで減圧する際の減圧開始から、前記大気圧に戻るまでの時間が100秒以内である請求項1〜4のいずれか1項に記載のラミネート型リチウムイオン二次電池の製造方法。 The laminated lithium ion secondary battery according to any one of claims 1 to 4, wherein the time from the start of depressurization when depressurizing from the atmospheric pressure to the set vacuum degree to returning to the atmospheric pressure is within 100 seconds. Manufacturing method.
JP2019041543A 2019-03-07 2019-03-07 Manufacturing method of laminated lithium ion secondary battery Pending JP2020145097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041543A JP2020145097A (en) 2019-03-07 2019-03-07 Manufacturing method of laminated lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041543A JP2020145097A (en) 2019-03-07 2019-03-07 Manufacturing method of laminated lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2020145097A true JP2020145097A (en) 2020-09-10

Family

ID=72354469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041543A Pending JP2020145097A (en) 2019-03-07 2019-03-07 Manufacturing method of laminated lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2020145097A (en)

Similar Documents

Publication Publication Date Title
JP6286829B2 (en) Lithium ion secondary battery
JP2010080105A (en) Method of manufacturing nonaqueous electrolyte secondary battery
WO2013065187A1 (en) Hermetic lithium secondary battery and method for manufacturing same
JP2007273183A (en) Negative electrode and secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
CN110265629B (en) Negative electrode and lithium ion secondary battery
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2011086448A (en) Lithium ion secondary battery
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6744216B2 (en) Method for manufacturing negative electrode of lithium-ion battery, and method for manufacturing lithium-ion battery
KR20190066867A (en) Negative electrode active material, negative electrode including the negative electrode active material, and lithium secondary battery including the same
JP2022547501A (en) Method for manufacturing secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP7475768B2 (en) Anode and secondary battery including said anode
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014007183A1 (en) Lithium ion secondary battery
JP2019149333A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2020145097A (en) Manufacturing method of laminated lithium ion secondary battery
KR20170111289A (en) Electrode for secondary battery
CN114051666A (en) Method for manufacturing secondary battery
JP2020140895A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery