JP2020144026A - Insulated voltage measurement device - Google Patents

Insulated voltage measurement device Download PDF

Info

Publication number
JP2020144026A
JP2020144026A JP2019041378A JP2019041378A JP2020144026A JP 2020144026 A JP2020144026 A JP 2020144026A JP 2019041378 A JP2019041378 A JP 2019041378A JP 2019041378 A JP2019041378 A JP 2019041378A JP 2020144026 A JP2020144026 A JP 2020144026A
Authority
JP
Japan
Prior art keywords
voltage
conductor
current
detection
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019041378A
Other languages
Japanese (ja)
Other versions
JP7220500B2 (en
Inventor
洋治 大浦
Yoji Oura
洋治 大浦
曜二 塙
Yoji Hanawa
曜二 塙
隆好 関根
Takayoshi Sekine
隆好 関根
真克 澤田
Masakatsu Sawada
真克 澤田
龍三 野田
Ryuzo Noda
龍三 野田
和顕 松尾
Kazuaki Matsuo
和顕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Sanwa Electronic Instrument Co Ltd
CDN Corp
Original Assignee
Kandenko Co Ltd
Sanwa Electronic Instrument Co Ltd
CDN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, Sanwa Electronic Instrument Co Ltd, CDN Corp filed Critical Kandenko Co Ltd
Priority to JP2019041378A priority Critical patent/JP7220500B2/en
Publication of JP2020144026A publication Critical patent/JP2020144026A/en
Application granted granted Critical
Publication of JP7220500B2 publication Critical patent/JP7220500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

To provide an insulated voltage measurement device capable of highly accurately measuring a voltage of a measurement target conductor even in a state where another conductor is disposed near the voltage measurement target conductor.SOLUTION: A detection probe disposed on an outer surface of a voltage measurement target detects, by means of a current, a measurement target voltage component of a conductor of the voltage measurement target including a voltage noise component caused by a conductor of a nearby wire existing near the voltage measurement target. A voltage noise detection electrode disposed near the conductor of the nearby wire detects the voltage noise component including the measurement target voltage component as a current. In a current input arithmetic section, the current detected by the detection probe is inputted via a shield line and converted into a voltage, and the current detected by the voltage noise detection electrode is inputted via a shield line and converted into a voltage. In a correction voltage arithmetic section, the voltage noise component is removed from a detection voltage in which the conductor measurement target voltage component and the voltage noise component are mixed, converted into the voltage by the current input arithmetic section and a measured voltage of the conductor of the voltage measurement target is obtained.SELECTED DRAWING: Figure 1

Description

本発明は、電圧測定対象物体に印加された電圧を測定する絶縁型電圧測定装置に関する。 The present invention relates to an insulated voltage measuring device that measures a voltage applied to an object for voltage measurement.

電圧測定対象物体に印加された電圧を測定するものとして、絶縁被覆した電線の導体に印加された電圧を導体に非接触で測定する非接触電圧検出装置がある(例えば、特許文献1参照)。これは、絶縁部材中に電線側の第1電極と電圧検出用の第2電極とを有し、第1電極の一部に第2電極を間隔を保って配置し、電線の絶縁被覆の外面に密着させて巻き付け可能な可撓性を有した検出プローブを有したものである。 As a device for measuring the voltage applied to the object to be measured with voltage, there is a non-contact voltage detection device that measures the voltage applied to the conductor of the insulated wire in a non-contact manner (see, for example, Patent Document 1). This has a first electrode on the electric wire side and a second electrode for voltage detection in the insulating member, and the second electrode is arranged at a distance from a part of the first electrode, and the outer surface of the insulating coating of the electric wire is arranged. It has a flexible detection probe that can be wound in close contact with the electrode.

この検出プローブは、第1電極と第2電極との間で形成する補助コンデンサ部分の静電容量Caを電線の導体と第1電極間の静電容量Csに比べて十分小さく形成し、検出プローブの補助コンデンサ部分に検出用コンデンサ及び電圧検出回路を接続し、電線の導体に印加される交流電圧Vを測定するものである。 In this detection probe, the capacitance Ca of the auxiliary capacitor portion formed between the first electrode and the second electrode is formed sufficiently smaller than the capacitance Cs between the conductor of the electric wire and the first electrode, and the detection probe is formed. A detection capacitor and a voltage detection circuit are connected to the auxiliary capacitor portion of the above, and the AC voltage V applied to the conductor of the electric wire is measured.

つまり、電圧検出回路の入力電圧VinはVin≒(Ca/Cin)・V(Cinは検出用コンデンサの静電容量、Vは被測定電圧)となるので、被測定電圧(電線導体の交流電圧)Vは、補助コンデンサ部分の静電容量Caと検出用コンデンサの静電容量Cinとの比で表されることから、電線の導体と第1電極間の静電容量Csの影響を受けるとことなく、電線導体の交流電圧の電圧測定を高精度で行うことができるものである。 That is, since the input voltage Vin of the voltage detection circuit is Vin≈ (Ca / Cin) · V (Cin is the capacitance of the detection capacitor and V is the voltage to be measured), the voltage to be measured (AC voltage of the wire conductor). Since V is represented by the ratio of the capacitance Ca of the auxiliary capacitor portion to the capacitance C of the detection capacitor, it is not affected by the capacitance Cs between the conductor of the electric wire and the first electrode. , The voltage measurement of the AC voltage of the electric wire conductor can be performed with high accuracy.

また、本出願人は、特願2018−569076号(以下先の出願という)として、検出プローブの電極の浮遊静電容量の影響を抑制し、測定対象電線の種別が異なっても導体の交流電圧の電圧測定を高精度で行うことができる絶縁型電圧測定装置を開発し特許出願している。この絶縁型電圧測定装置は、電圧測定対象物の外面に近接して配置される導体側電極と、導体側電極より面積が小さく導体側電極と間隔を保って対面して配置される出力側電極と、導体側電極と出力側電極との間に設けられ絶縁抵抗が大きく誘電率が小さい誘電体とを有した検出プローブを設け、I/V変換回路(電流電圧変換回路)で構成された電圧検出部により、出力側電極の電流を入力し出力側電極の電流に比例した出力電圧Voutを得るようにしたものである。 Further, the applicant, as Japanese Patent Application No. 2018-569706 (hereinafter referred to as the earlier application), suppresses the influence of the floating capacitance of the electrode of the detection probe, and even if the type of the wire to be measured is different, the AC voltage of the conductor We have developed and applied for a patent for an isolated voltage measuring device that can measure the voltage of the above with high accuracy. In this insulated voltage measuring device, a conductor-side electrode arranged close to the outer surface of a voltage measurement object and an output-side electrode having a smaller area than the conductor-side electrode and arranged facing the conductor-side electrode at a distance from each other. A voltage composed of an I / V conversion circuit (current-voltage conversion circuit) provided with a detection probe provided between the conductor-side electrode and the output-side electrode and having a dielectric having a large insulation resistance and a small dielectric constant. The detection unit inputs the current of the output side electrode to obtain an output voltage Vout proportional to the current of the output side electrode.

特開2012−163394号公報Japanese Unexamined Patent Publication No. 2012-163394

しかし、特許文献1のものや先の出願のものでは、電圧測定対象物として絶縁被覆された電線の導体の電圧を静電容量を通じて測定するものであるので、近隣に別の導体があると、電圧測定対象の導体と検出プローブの測定電極との間に生じる静電容量を通じて近隣の別の導体の電圧成分が電圧ノイズ成分として混入して誤差となり、高精度な導体の電圧測定を行うことができない。 However, in Patent Document 1 and the previous application, the voltage of the conductor of an insulatingly coated electric wire as a voltage measurement object is measured through capacitance. Therefore, if there is another conductor in the vicinity, Through the capacitance generated between the conductor to be measured and the measurement electrode of the detection probe, the voltage component of another nearby conductor is mixed as a voltage noise component, resulting in an error, and it is possible to perform highly accurate voltage measurement of the conductor. Can not.

また、電圧測定対象の導体が絶縁された電線のような場合には、電線の種類により導体の径や導体の絶縁被覆の厚みが変わるので、測定対象電線の種別が異なる場合は、電圧測定対象の導体と測定電極との間の静電容量が変化してしまう。このため、電圧測定対象の電線の種別が異なる場合の対策が必要となる。 In addition, when the conductor to be measured for voltage is an insulated wire, the diameter of the conductor and the thickness of the insulation coating of the conductor change depending on the type of wire. Therefore, if the type of wire to be measured is different, the voltage is to be measured. The capacitance between the conductor and the measuring electrode will change. Therefore, it is necessary to take measures when the types of electric wires to be measured for voltage are different.

図8は、特許文献1の絶縁型電圧測定装置の説明図である。図8(a)はその概略構成図、図8(b)は図8(a)の等価回路、図8(c)は第1電極の浮遊静電容量Cs1及び第2電極15の浮遊静電容量Ca1を考慮した等価回路である。図8に示すように、電圧の測定対象電線11の導体12(以下、測定対象導体12という)に印加される交流電圧を測定するにあたって、測定対象電線11の絶縁被覆の外面に検出プローブ13を取り付ける。検出プローブ13は、絶縁被覆の外面に密着させて巻き付け可能な可撓性を有する絶縁部材中に、測定対象電線11側の大面積の第1電極14と、この第1電極14の一部に対向させる電圧検出用の小面積の第2電極15とを有している。そして、第2電極15の後段に大容量の検出用コンデンサCinを接続し検出用コンデンサCinの電圧を電圧検出回路16で測定することにより測定対象導体12に印加される交流電圧を測定する。 FIG. 8 is an explanatory diagram of the insulated voltage measuring device of Patent Document 1. 8 (a) is a schematic configuration diagram thereof, FIG. 8 (b) is an equivalent circuit of FIG. 8 (a), and FIG. 8 (c) is a floating capacitance of the first electrode Cs1 and a floating capacitance of the second electrode 15. It is an equivalent circuit considering the capacitance Ca1. As shown in FIG. 8, when measuring the AC voltage applied to the conductor 12 (hereinafter referred to as the measurement target conductor 12) of the voltage measurement target electric wire 11, the detection probe 13 is placed on the outer surface of the insulating coating of the measurement target electric wire 11. Install. The detection probe 13 is formed on a large-area first electrode 14 on the side of the electric wire to be measured 11 and a part of the first electrode 14 in a flexible insulating member that can be wound in close contact with the outer surface of the insulating coating. It has a second electrode 15 having a small area for detecting voltage to be opposed to each other. Then, a large-capacity detection capacitor Cin is connected to the subsequent stage of the second electrode 15, and the voltage of the detection capacitor Cin is measured by the voltage detection circuit 16 to measure the AC voltage applied to the measurement target conductor 12.

図8(b)に示すように、電線の導体と第1電極14との間の静電容量Csと、第1電極14と第2電極15との間で形成する補助コンデンサ部分の静電容量Caとの合成静電容量Cpが検出用コンデンサCinに直列接続されている。検出用コンデンサCinは測定対象電線11の浮遊容量分が無視できるほど大きな検出用コンデンサであり、図8(c)に示すように、第1電極14の浮遊静電容量Cs1及び第2電極15の浮遊静電容量Ca1が存在していても、これら浮遊容量分Cs1、Ca1の影響を受けないようにしている。 As shown in FIG. 8B, the capacitance Cs between the conductor of the electric wire and the first electrode 14 and the capacitance of the auxiliary capacitor portion formed between the first electrode 14 and the second electrode 15 The combined capacitance Cp with Ca is connected in series with the detection capacitor Cin. The detection capacitor Cin is a detection capacitor in which the stray capacitance of the electric wire 11 to be measured is negligible. As shown in FIG. 8C, the stray capacitance Cs1 of the first electrode 14 and the stray capacitance Cs1 of the second electrode 15 Even if the stray capacitance Ca1 is present, it is not affected by these stray capacitances Cs1 and Ca1.

つまり、低静電容量である第2電極15からの電流を大容量の検出用コンデンサCinの電圧Vinに変換し、ケーブルの浮遊容量分が無視できるようにしている。このことから、低静電容量である第2電極15からの電流は非常に小さく大容量コンデンサCinの容量は大きいので、電圧検出回路の入力電圧Vinは非常に微小になってしまい、ノイズの影響を受けやすい。 That is, the current from the second electrode 15 having a low capacitance is converted into the voltage Vin of the large-capacity detection capacitor Cin so that the stray capacitance of the cable can be ignored. From this, since the current from the second electrode 15 having a low capacitance is very small and the capacitance of the large-capacity capacitor Cin is large, the input voltage Vin of the voltage detection circuit becomes very small, which is affected by noise. Easy to receive.

そこで、出願人は先の出願の絶縁型電圧測定装置を開発した。図9は先の出願の絶縁型電圧測定装置の説明図である。図9において、絶縁被膜26で被膜された測定対象導体12には交流電源17から試験用電圧V1が印加されており、この交流電源17から印加された交流電圧V1が測定対象導体12の電圧となる。その測定対象導体12の電圧を測定するにあたり、測定対象電線11の絶縁被膜26の外面に検出プローブ13を取り付ける。検出プローブ13は、測定対象電線11の絶縁被膜26の外面に接触して配置される導体側電極18と、導体側電極18より面積が小さく導体側電極18と間隔を保って対面して配置される出力側電極19と、導体側電極18と出力側電極19との間に誘電体20とを有している。 Therefore, the applicant has developed the insulated voltage measuring device of the previous application. FIG. 9 is an explanatory diagram of the insulated voltage measuring device of the previous application. In FIG. 9, a test voltage V1 is applied from the AC power supply 17 to the measurement target conductor 12 coated with the insulating coating 26, and the AC voltage V1 applied from the AC power supply 17 is the voltage of the measurement target conductor 12. Become. In measuring the voltage of the conductor 12 to be measured, the detection probe 13 is attached to the outer surface of the insulating coating 26 of the electric wire 11 to be measured. The detection probe 13 is arranged so as to face the conductor side electrode 18 which is arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured and the conductor side electrode 18 which has a smaller area than the conductor side electrode 18 and is spaced from each other. A dielectric 20 is provided between the output side electrode 19 and the conductor side electrode 18 and the output side electrode 19.

測定対象導体12と出力側電極19との間には測定対象導体12の絶縁被膜26と誘電体20によって静電容量C12が生じる。この静電容量C12により測定対象導体の電圧V1は電流I1を生じ、この電流I1は電圧検出部21に入力される。電圧検出部21はインピーダンスが小さいI/V変換回路で形成される。また、出力側電極19の直近から電圧検出部21のオペアンプ22のマイナス入力端子までシールド線25を配置し、出力側電極19からの電圧検出部21までの配線の静電容量の影響を軽減している。 A capacitance C12 is generated between the measurement target conductor 12 and the output side electrode 19 by the insulating coating 26 and the dielectric 20 of the measurement target conductor 12. Due to the capacitance C12, the voltage V1 of the conductor to be measured generates a current I1, and this current I1 is input to the voltage detection unit 21. The voltage detection unit 21 is formed of an I / V conversion circuit having a small impedance. Further, the shield wire 25 is arranged from the immediate vicinity of the output side electrode 19 to the negative input terminal of the operational amplifier 22 of the voltage detection unit 21 to reduce the influence of the capacitance of the wiring from the output side electrode 19 to the voltage detection unit 21. ing.

出力側電極19からの電流I1はシールド線25の芯線を通って電圧検出部21のオペアンプ22のマイナス端子に入力され、電圧検出部21の出力電圧Voutは、Vout=−I1・Zとなる。オペアンプ22のプラス端子は接地(GND)されており、オペアンプ22は、マイナス端子をプラス端子と同電位になるように動作するからである。これにより、出力側電極19からの電流I1に比例した出力電圧Voutを得る。測定対象導体12の電圧V1と測定結果の出力電圧Voutとは特定の比例係数を持った比例関係となるため、測定結果の出力電圧Voutから測定対象導体12の電圧V1を求めることができる。 The current I1 from the output side electrode 19 is input to the negative terminal of the operational amplifier 22 of the voltage detection unit 21 through the core wire of the shield wire 25, and the output voltage Vout of the voltage detection unit 21 becomes Vout = −I1 · Z. This is because the positive terminal of the operational amplifier 22 is grounded (GND), and the operational amplifier 22 operates so that the negative terminal has the same potential as the positive terminal. As a result, an output voltage Vout proportional to the current I1 from the output side electrode 19 is obtained. Since the voltage V1 of the conductor 12 to be measured and the output voltage Vout of the measurement result have a proportional relationship with a specific proportional coefficient, the voltage V1 of the conductor 12 to be measured can be obtained from the output voltage Vout of the measurement result.

図10は、絶縁被膜26で被膜された測定対象導体12の近隣に絶縁被膜26xで被膜された第1近隣電線28xの導体29x(以下、第1近隣導体29xという)がある場合の図9に示した絶縁型電圧測定装置の説明図である。図10では、絶縁被膜26で被膜された測定対象導体12及び絶縁被膜26xで被膜された第1近隣導体29xは上側から見た状態を示している。 FIG. 10 shows FIG. 9 in the case where there is a conductor 29x of the first neighboring electric wire 28x coated with the insulating coating 26x (hereinafter, referred to as the first neighboring conductor 29x) in the vicinity of the measurement target conductor 12 coated with the insulating coating 26. It is explanatory drawing of the shown insulation type voltage measuring apparatus. In FIG. 10, the measurement target conductor 12 coated with the insulating coating 26 and the first neighboring conductor 29x coated with the insulating coating 26x are shown as viewed from above.

絶縁被膜26xで被膜された第1近隣導体29xには交流電源17xから試験用電圧Vxが印加されており、この交流電源17xから印加された交流電圧Vxが第1近隣導体29xの電圧となる。 A test voltage Vx is applied from the AC power supply 17x to the first neighboring conductor 29x coated with the insulating coating 26x, and the AC voltage Vx applied from the AC power supply 17x becomes the voltage of the first neighboring conductor 29x.

測定対象導体12の近隣に第1近隣導体29xがあると、第1近隣導体29xと検出プローブ13の出力側電極19との間には静電容量Cx1が生じる。第1近隣導体29xの電圧Vxは、第1近隣導体29xと出力側電極19との間の静電容量Cx1により電流Ixを生じる。このため、シールド線25の芯線には、測定対象導体12からの電流I1に加えて近隣導体29からの電流Ixが混在した電流(I1 +Ix)が流れることになり、電圧検出部21に電流(I1 +Ix)が入力される。従って、測定結果の出力電圧Voutには近隣導体29からの電流Ix分の誤差が生じる。 When the first neighboring conductor 29x is located in the vicinity of the measurement target conductor 12, a capacitance Cx1 is generated between the first neighboring conductor 29x and the output side electrode 19 of the detection probe 13. The voltage Vx of the first neighboring conductor 29x generates a current Ix due to the capacitance Cx1 between the first neighboring conductor 29x and the output side electrode 19. Therefore, a current (I1 + Ix) in which the current I1 from the conductor 12 to be measured and the current Ix from the neighboring conductor 29 are mixed flows through the core wire of the shield wire 25, and the current flows through the voltage detection unit 21. (I1 + Ix) is input. Therefore, the output voltage Vout of the measurement result has an error of the current Ix from the neighboring conductor 29.

つまり、先の出願の絶縁型電圧測定装置は、測定対象導体12の近隣に別の第1近隣導体29xが存在しない場合には有効であるが、測定対象導体12の近隣に第1近隣導体29xがあると、測定結果の出力電圧Voutには第1近隣導体29xからの電流Ix分の誤差が生じる。 That is, the insulated voltage measuring device of the previous application is effective when another first neighboring conductor 29x does not exist in the vicinity of the measurement target conductor 12, but the first neighboring conductor 29x is in the vicinity of the measurement target conductor 12. If there is, an error of the current Ix from the first neighboring conductor 29x occurs in the output voltage Vout of the measurement result.

電路は往路と復路の導体があることで電気エネルギーを伝達するので、測定対象導体の近隣には、戻りの導体が存在することが常である。また、測定対象導体12が電力関係の場合は3相も多く、電路の配線は3本になることも多い。また測定を行うことの多い配電盤には、単相及び三相の各種の配線が混在している。 Since the electric circuit transmits electrical energy by having conductors on the outward path and the return path, there is always a return conductor in the vicinity of the conductor to be measured. Further, when the conductor 12 to be measured is related to electric power, there are many three phases, and the wiring of the electric circuit is often three. In addition, various types of single-phase and three-phase wiring are mixed in the switchboard, which is often used for measurement.

このように、特許文献1のものや先の出願のものでは、近隣に測定対象導体とは別の導体があると、測定対象導体と測定電極である検出プローブの出力側電極との間に生じる静電容量を通じて、近隣の別の導体の電圧成分が混入して測定結果の出力電圧Voutの誤差となり、高精度な導体の電圧測定を行うことができない。 As described above, in Patent Document 1 and earlier applications, if there is a conductor different from the measurement target conductor in the vicinity, it occurs between the measurement target conductor and the output side electrode of the detection probe which is the measurement electrode. Through the capacitance, the voltage component of another conductor in the vicinity is mixed, resulting in an error of the output voltage Vout of the measurement result, and it is not possible to measure the voltage of the conductor with high accuracy.

本発明の目的は、電圧の測定対象導体の近隣に別の導体が配置された状態でも測定対象導体の電圧を高精度で測定できる絶縁型電圧測定装置を提供することである。 An object of the present invention is to provide an insulated voltage measuring device capable of measuring the voltage of a conductor to be measured with high accuracy even when another conductor is arranged in the vicinity of the conductor to be measured.

請求項1の発明に係る絶縁型電圧測定装置は、電圧測定対象物の外面に配置され前記電圧測定対象物の近隣に存在する近隣電線の導体による電圧ノイズ成分を含んだ前記電圧測定対象物の導体の測定対象電圧成分を電流で検出する検出プローブと、前記近隣電線の導体の近傍に配置され前記測定対象電圧成分を含んだ前記電圧ノイズ成分を電流として検出する電圧ノイズ検出電極と、前記検出プローブで検出された電流をシールド線を介して入力し電圧に変換するとともに前記電圧ノイズ検出電極で検出された電流をシールド線を介して入力し電圧に変換する電流入力演算部と、前記電流入力演算部で電圧に変換された前記導体測定対象電圧成分と前記電圧ノイズ成分とが混在した検出電圧から前記電圧ノイズ成分を除去し前記電圧測定対象物の導体の測定電圧を得る補正電圧演算部とを備えたことを特徴とする。 The insulated voltage measuring device according to the invention of claim 1 is the voltage measuring object which is arranged on the outer surface of the voltage measuring object and contains a voltage noise component due to a conductor of a neighboring electric wire existing in the vicinity of the voltage measuring object. A detection probe that detects the voltage component to be measured of the conductor with a current, a voltage noise detection electrode that is arranged near the conductor of the neighboring electric wire and detects the voltage noise component including the voltage component to be measured as a current, and the detection. The current input calculation unit that inputs the current detected by the probe through the shield wire and converts it into a voltage, and also inputs the current detected by the voltage noise detection electrode through the shield wire and converts it into a voltage, and the current input. A correction voltage calculation unit that removes the voltage noise component from the detection voltage in which the conductor measurement target voltage component converted into a voltage by the calculation unit and the voltage noise component are mixed to obtain the measurement voltage of the conductor of the voltage measurement target. It is characterized by having.

請求項2の発明に係る絶縁型電圧測定装置は、電圧測定対象物の外面に配置され前記電圧測定対象物の近隣に存在する近隣電線の導体による電圧ノイズ成分を含んだ前記電圧測定対象物の導体の測定対象電圧成分を電流で検出する検出プローブと、前記検出プローブで検出された電流を取り出すシールド線をさらにシールドした2重シールド線とし前記2重シールド線の外側シールド部から前記シールド線のシールド部の端部を前記検出プローブ側に露出させて形成され前記測定対象電圧成分を含んだ前記電圧ノイズ成分を電流として検出する電圧ノイズ一括検出部と、前記検出プローブで検出された電流を前記シールド線の芯線から電流電圧変換回路に入力し電圧に変換するとともに前記電圧ノイズ一括検出部で検出された電流を接地状態とみなせる前記シールド線のシールド部を介して電流電圧変換回路に入力し前記電圧ノイズ一括検出部で検出された電流を電圧に変換する電流入力演算部と、前記電流入力演算部で電圧に変換された前記導体測定対象電圧成分と前記電圧ノイズ成分とが混在した検出電圧から前記電圧ノイズ成分を除去し前記電圧測定対象物の導体の測定電圧を得る補正電圧演算部とを備えたことを特徴とする。 The insulated voltage measuring device according to the invention of claim 2 is the voltage measuring object which is arranged on the outer surface of the voltage measuring object and contains a voltage noise component due to a conductor of a neighboring electric wire existing in the vicinity of the voltage measuring object. The detection probe that detects the voltage component to be measured of the conductor by the current and the shield wire that takes out the current detected by the detection probe are further shielded as a double shield wire, and the shield wire is connected to the outer shield portion of the double shield wire. The voltage noise batch detection unit, which is formed by exposing the end of the shield portion to the detection probe side and detects the voltage noise component including the measurement target voltage component as a current, and the current detected by the detection probe are described. The core wire of the shielded wire is input to the current-voltage conversion circuit to convert it into a voltage, and the current detected by the voltage noise batch detection unit is input to the current-voltage conversion circuit via the shielded portion of the shielded wire, which can be regarded as a grounded state. From the current input calculation unit that converts the current detected by the voltage noise batch detection unit into voltage, and the detection voltage in which the conductor measurement target voltage component converted into voltage by the current input calculation unit and the voltage noise component are mixed. It is characterized by including a correction voltage calculation unit that removes the voltage noise component and obtains the measured voltage of the conductor of the voltage measurement object.

請求項1の発明によれば、電圧測定対象物の外面に配置された検出プローブにより電圧測定対象物の近隣に存在する近隣電線の導体による電圧ノイズ成分を含んだ電圧測定対象物の導体の測定対象電圧成分を電流で検出し、近隣電線の導体の近傍に設けた電圧ノイズ検出電極により測定対象電圧成分を含んだ電圧ノイズ成分を電流で検出し、検出プローブで検出された電流及び電圧ノイズ検出電極で検出された電流を電流入力演算部で電圧に変換し、補正電圧演算部は電流入力演算部で電圧に変換された導体測定対象電圧成分と電圧ノイズ成分とが混在した検出電圧から電圧ノイズ成分を除去し電圧測定対象物の導体の測定電圧を得るので、測定対象導体の近隣に別の導体が配置された状態でも測定対象導体の電圧を高精度で測定できる。 According to the invention of claim 1, the measurement of the conductor of the voltage measurement object including the voltage noise component by the conductor of the neighboring electric wire existing in the vicinity of the voltage measurement object by the detection probe arranged on the outer surface of the voltage measurement object. The target voltage component is detected by the current, the voltage noise component including the measurement target voltage component is detected by the current by the voltage noise detection electrode provided near the conductor of the neighboring electric wire, and the current and voltage noise detected by the detection probe are detected. The current detected by the electrodes is converted to voltage by the current input calculation unit, and the correction voltage calculation unit converts voltage noise from the detection voltage in which the conductor measurement target voltage component and voltage noise component converted to voltage by the current input calculation unit are mixed. Since the component is removed and the measured voltage of the conductor of the voltage measurement target is obtained, the voltage of the measurement target conductor can be measured with high accuracy even when another conductor is arranged in the vicinity of the measurement target conductor.

請求項2の発明によれば、検出プローブで検出された電流を取り出すシールド線をさらにシールドした2重シールド線とし、2重シールド線の外側シールド部からシールド線のシールド部の端部を検出プローブ側に露出させて形成された電圧ノイズ一括検出部により測定対象電圧成分を含んだ電圧ノイズ成分を電流で検出する。従って、検出プローブや電圧ノイズ一括検出部で検出した電流に対しシールド線や2重シールド線の静電容量や引き回しによる静電容量変化に関係なく電流入力演算部に入力できる。 According to the invention of claim 2, the shield wire that takes out the current detected by the detection probe is further shielded as a double shielded wire, and the end portion of the shielded portion of the shielded wire is detected from the outer shield portion of the double shielded wire. The voltage noise component including the voltage component to be measured is detected by the current by the voltage noise batch detection unit formed by exposing it to the side. Therefore, the current detected by the detection probe or the voltage noise batch detection unit can be input to the current input calculation unit regardless of the capacitance of the shielded wire or the double shielded wire or the change in capacitance due to routing.

電圧ノイズ一括検出部は、シールド線のシールド部の端部を検出プローブ側に露出させて周回構造に形成しているので、電圧測定対象物の近隣に存在するすべての近隣電線の導体による電圧ノイズ成分を検出できる。電流入力演算部は、電圧ノイズ一括検出部で検出された電流を接地状態とみなせるシールド線のシールド部を介して電流電圧変換回路に入力するので、シールド線が接地された場合と同様となる。そして、補正電圧演算部は電流入力演算部で電圧に変換された導体測定対象電圧成分と電圧ノイズ成分とが混在した検出電圧から電圧ノイズ成分を除去し電圧測定対象物の導体の測定電圧を得るので、電圧の測定対象導体の近隣に別の導体が配置された状態でも測定対象導体の電圧を高精度で測定できる。 Since the voltage noise batch detection unit is formed in a circumferential structure by exposing the end of the shielded part of the shielded wire to the detection probe side, the voltage noise due to the conductors of all the neighboring electric wires existing in the vicinity of the voltage measurement object is formed. Ingredients can be detected. Since the current input calculation unit inputs the current detected by the voltage noise batch detection unit to the current-voltage conversion circuit via the shield unit of the shield wire that can be regarded as the grounded state, it is the same as when the shield wire is grounded. Then, the correction voltage calculation unit removes the voltage noise component from the detection voltage in which the conductor measurement target voltage component and the voltage noise component converted into voltage by the current input calculation unit are mixed, and obtains the measurement voltage of the conductor of the voltage measurement target. Therefore, the voltage of the measurement target conductor can be measured with high accuracy even when another conductor is arranged in the vicinity of the voltage measurement target conductor.

本発明の第1実施形態に係わる絶縁型電圧測定装置の一例を示す構成図。The block diagram which shows an example of the insulation type voltage measuring apparatus which concerns on 1st Embodiment of this invention. 図1に示した絶縁型電圧検出装置の等価回路の回路図。The circuit diagram of the equivalent circuit of the insulation type voltage detection apparatus shown in FIG. 本発明の第1実施形態に係わる絶縁型電圧測定装置の他の一例を示す構成図。The block diagram which shows another example of the insulation type voltage measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係わる絶縁型電圧測定装置の別の他の一例を示す構成図。The block diagram which shows another other example of the insulation type voltage measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係わる絶縁型電圧測定装置の一例を示す構成図。The block diagram which shows an example of the insulation type voltage measuring apparatus which concerns on 2nd Embodiment of this invention. 図5に示した絶縁型電圧検出装置の等価回路の回路図。The circuit diagram of the equivalent circuit of the insulation type voltage detection apparatus shown in FIG. 本発明の第2実施形態に係わる絶縁型電圧測定装置の他の一例を示す構成図。The block diagram which shows another example of the insulation type voltage measuring apparatus which concerns on 2nd Embodiment of this invention. 特許文献1の絶縁型電圧測定装置の説明図。Explanatory drawing of the insulated voltage measuring apparatus of Patent Document 1. 先の出願の絶縁型電圧測定装置の説明図。Explanatory drawing of the insulated voltage measuring apparatus of the previous application. 測定対象電線の導体の近隣に近隣電線の導体がある場合の図9に示した絶縁型電圧測定装置の説明図。Explanatory drawing of the insulated voltage measuring apparatus shown in FIG. 9 when there is a conductor of a neighboring electric wire in the vicinity of the conductor of the electric wire to be measured.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係わる絶縁型電圧測定装置の一例を示す構成図である。図1では、測定対象導体12の近隣に2つの近隣導体29、すなわち、第1近隣導体29x、第2近隣導体29yが存在する場合を示している。電力関係の場合は3相が多いので、3相のうちの1つを測定対象導体12としその測定対象導体12の両サイドに第1近隣導体29xと第2近隣導体29yとが位置する場合を示す。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a configuration diagram showing an example of an insulated voltage measuring device according to the first embodiment of the present invention. FIG. 1 shows a case where two neighboring conductors 29, that is, a first neighboring conductor 29x and a second neighboring conductor 29y exist in the vicinity of the measurement target conductor 12. In the case of electric power, there are many three phases, so one of the three phases is set as the measurement target conductor 12, and the case where the first neighboring conductor 29x and the second neighboring conductor 29y are located on both sides of the measurement target conductor 12 Shown.

絶縁被膜26で被膜された測定対象導体12には交流電源17から試験用電圧V1が印加されており、この交流電源17から印加された交流電圧V1が測定対象導体12の電圧となる。一方、絶縁被膜26xで被膜された第1近隣導体29xには交流電源17xから試験用電圧Vxが印加されており、この交流電源17xから印加された交流電圧Vxが第1近隣導体29xの電圧となる。同様に、絶縁被膜26yで被膜された第2近隣導体29yには交流電源17yから試験用電圧Vyが印加されており、この交流電源17yから印加された交流電圧Vyが第2近隣導体29yの電圧となる。 A test voltage V1 is applied from the AC power supply 17 to the measurement target conductor 12 coated with the insulating coating 26, and the AC voltage V1 applied from the AC power supply 17 becomes the voltage of the measurement target conductor 12. On the other hand, a test voltage Vx is applied from the AC power supply 17x to the first neighboring conductor 29x coated with the insulating coating 26x, and the AC voltage Vx applied from the AC power supply 17x is the voltage of the first neighboring conductor 29x. Become. Similarly, a test voltage Vy is applied to the second neighboring conductor 29y coated with the insulating coating 26y from the AC power supply 17y, and the AC voltage Vy applied from the AC power supply 17y is the voltage of the second neighboring conductor 29y. It becomes.

測定対象導体12の電圧を測定するにあたり、測定対象電線11の絶縁被膜26の外面に検出プローブ13を配置する。検出プローブ13は、測定対象電線11の絶縁被膜26の外面に接触して配置される誘電体20Aと出力側電極19とを有している。 In measuring the voltage of the conductor 12 to be measured, the detection probe 13 is arranged on the outer surface of the insulating coating 26 of the electric wire 11 to be measured. The detection probe 13 has a dielectric 20A and an output side electrode 19 arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured.

測定対象導体12と出力側電極19との間には測定対象導体12の絶縁被膜26と誘電体20Aによって静電容量Cmが生じる。この静電容量Cmにより測定対象導体12の電圧V1は電流I1を生じる。電流I1は測定対象導体12からの測定対象電圧成分の電流である。また、第1近隣導体29xと検出プローブ13の出力側電極19との間には静電容量Cx1が生じる。第1近隣導体29xの電圧Vxは、第1近隣導体29xと出力側電極19との間の静電容量Cx1により電流Ixを生じる。電流Ixは第1近隣導体29xからの電圧ノイズ成分の電流である。同様に、第2近隣導体29yと検出プローブ13の出力側電極19との間には静電容量Cy1が生じる。第2近隣導体29yの電圧Vyは、第1近隣導体29xと出力側電極19との間の静電容量Cy1により電流Iyを生じる。電流Iyは第2近隣導体29yからの電圧ノイズ成分の電流である。 A capacitance Cm is generated between the measurement target conductor 12 and the output side electrode 19 by the insulating coating 26 of the measurement target conductor 12 and the dielectric 20A. Due to this capacitance Cm, the voltage V1 of the conductor 12 to be measured generates a current I1. The current I1 is the current of the voltage component to be measured from the conductor 12 to be measured. Further, a capacitance Cx1 is generated between the first neighboring conductor 29x and the output side electrode 19 of the detection probe 13. The voltage Vx of the first neighboring conductor 29x generates a current Ix due to the capacitance Cx1 between the first neighboring conductor 29x and the output side electrode 19. The current Ix is the current of the voltage noise component from the first neighboring conductor 29x. Similarly, a capacitance Cy1 is generated between the second neighboring conductor 29y and the output side electrode 19 of the detection probe 13. The voltage Vy of the second neighboring conductor 29y generates a current Iy due to the capacitance Cy1 between the first neighboring conductor 29x and the output side electrode 19. The current Iy is the current of the voltage noise component from the second neighboring conductor 29y.

このため、シールド線25の芯線には、測定対象導体12からの電流I1に加えて第1近隣導体29xからの電流Ixと第2近隣導体29yからの電流Iyとが混在した電流Im(=I1 +Ix+Iy)が流れることになり、電流入力演算部30の電圧検出部21に電流Imが入力される。すなわち、電流Imには、測定対象導体12の測定対象電圧成分の電流I1に加え、測定対象導体12の近隣に存在する第1近隣導体29xによる電圧ノイズ成分の電流Ix及び第2近隣導体29yによる電圧ノイズ成分の電流Iyが含まれている。この電流Imはシールド線25の芯線を通って電流入力演算部30の電圧検出部21のオペアンプ22のマイナス端子に入力され、電圧検出部21の出力電圧Voutmは、Voutm=−Im・Zとなる。これにより、電流入力演算部30の電圧検出部21は電流Imに比例した検出電圧Voutmを得る。この測定対象導体12の検出電圧Voutmには、測定対象導体12からの電流I1分の測定対象電圧成分に加え、近隣導体29からの電流(Ix+Iy)分の電圧ノイズ成分が含まれている。 Therefore, in the core wire of the shielded wire 25, in addition to the current I1 from the conductor 12 to be measured, the current Ix from the first neighboring conductor 29x and the current Iy from the second neighboring conductor 29y are mixed in the current Im (= I1). + Ix + Iy) will flow, and the current Im is input to the voltage detection unit 21 of the current input calculation unit 30. That is, the current Im includes the current I1 of the voltage component to be measured of the conductor 12 to be measured, the current Ix of the voltage noise component due to the first neighboring conductor 29x existing in the vicinity of the conductor 12 to be measured, and the second neighboring conductor 29y. The current Iy of the voltage noise component is included. This current Im is input to the negative terminal of the operational amplifier 22 of the voltage detection unit 21 of the current input calculation unit 30 through the core wire of the shield wire 25, and the output voltage Voutm of the voltage detection unit 21 becomes Voutm = −Im · Z. .. As a result, the voltage detection unit 21 of the current input calculation unit 30 obtains a detection voltage Voutm proportional to the current Im. The detection voltage Voutm of the measurement target conductor 12 includes a voltage noise component for the current (Ix + Iy) from the neighboring conductor 29 in addition to the measurement target voltage component for the current I1 from the measurement target conductor 12. ..

次に、2つの第1近隣電線28x、第2近隣電線28yの近傍には、電圧ノイズ検出電極27が設けられる。図1では、2個の電圧ノイズ検出電極27x、27yを設けた場合を示しており、2個の電圧ノイズ検出電極27x、27yは検出プローブ13の誘電体20Aに取り付けた場合を示しているが、誘電体20Aに代えて別の誘電体を設け、その別の誘電体にそれぞれ電圧ノイズ検出電極27x、27yを設けるようにしてもよい。その場合、電圧ノイズ検出電極27x、27yを取り付けた別の誘電体は、検出プローブ13に一体的に取り付けられた構造とすることが望ましい。これは、検出プローブ13を測定対象電線11に配置したときに、電圧ノイズ検出電極27xが第1近隣電線28xの第1近隣導体29xの電圧を検出できる箇所に位置し、電圧ノイズ検出電極27yが第2近隣電線28yの第2近隣導体29yの電圧を検出できる箇所に位置するようにするためである。 Next, a voltage noise detection electrode 27 is provided in the vicinity of the two first neighboring electric wires 28x and the second neighboring electric wire 28y. FIG. 1 shows a case where two voltage noise detection electrodes 27x and 27y are provided, and shows a case where the two voltage noise detection electrodes 27x and 27y are attached to the dielectric 20A of the detection probe 13. , Another dielectric may be provided instead of the dielectric 20A, and voltage noise detection electrodes 27x and 27y may be provided on the other dielectric, respectively. In that case, it is desirable that another dielectric to which the voltage noise detection electrodes 27x and 27y are attached has a structure integrally attached to the detection probe 13. This is because the voltage noise detection electrode 27x is located at a position where the voltage of the first neighboring conductor 29x of the first neighboring electric wire 28x can be detected when the detection probe 13 is arranged on the measurement target electric wire 11, and the voltage noise detecting electrode 27y This is because the voltage of the second neighboring conductor 29y of the second neighboring electric wire 28y is located at a position where the voltage can be detected.

ここで、測定対象導体12の出力側電極19は、測定対象導体12にできるだけ近く配置し、第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyを検出する電圧ノイズ検出電極27x、27yは、測定対象導体12から離れた位置に配置する。 Here, the output side electrode 19 of the measurement target conductor 12 is arranged as close as possible to the measurement target conductor 12, and the voltage noise detection electrodes 27x, 27y for detecting the voltages Vx and Vy of the first neighboring conductor 29x and the second neighboring conductor 29y. Is arranged at a position away from the conductor 12 to be measured.

電圧ノイズ検出電極27xは、第1近隣導体29xとの間の静電容量Cx2に流れる電流Ix2と測定対象導体12との間の静電容量Cx3に流れる電流Ix3との合計電流Ix1(=Ix2+Ix3)を検出し、電圧ノイズ検出電極27xの検出電流Ix1(=Ix2+Ix3)として電流入力演算部30の電圧検出部21xに入力する。電流Ix2は第1近隣導体29xからの電圧ノイズ成分であり、電流Ix3は測定対象導体12からの測定対象電圧成分の電流である。すなわち、電流Ix1には、第1近隣導体29xによる電圧ノイズ成分の電流Ix2に加え、測定対象導体12からの測定対象電圧成分の電流Ix3が含まれている。この電流Ix1はシールド線25の芯線を通って電流入力演算部30の電圧検出部21xのオペアンプ22xのマイナス端子に入力され、電圧検出部21xの出力電圧Voutxは、Voutx=−Ix1・Zとなる。これにより、電流入力演算部30の電圧検出部21xは電流Ix1(=Ix2+Ix3)に比例した検出電圧Voutxを得る。 The voltage noise detection electrode 27x is the total current Ix1 (= Ix2 + Ix3) of the current Ix2 flowing in the capacitance Cx2 between the first neighboring conductor 29x and the current Ix3 flowing in the capacitance Cx3 between the conductors 12 to be measured. Is detected and input to the voltage detection unit 21x of the current input calculation unit 30 as the detection current Ix1 (= Ix2 + Ix3) of the voltage noise detection electrode 27x. The current Ix2 is a voltage noise component from the first neighboring conductor 29x, and the current Ix3 is a current of the voltage component to be measured from the measurement target conductor 12. That is, the current Ix1 includes the current Ix2 of the voltage noise component from the first neighboring conductor 29x and the current Ix3 of the voltage component to be measured from the measurement target conductor 12. This current Ix1 is input to the negative terminal of the operational amplifier 22x of the voltage detection unit 21x of the current input calculation unit 30 through the core wire of the shield wire 25, and the output voltage Voutx of the voltage detection unit 21x becomes Voutx = -Ix1 · Z. .. As a result, the voltage detection unit 21x of the current input calculation unit 30 obtains a detection voltage Voutx proportional to the current Ix1 (= Ix2 + Ix3).

この電圧ノイズ検出電極27xの検出電圧Voutxは、第1近隣導体29xとの間の静電容量Cx2に流れる電流Ix2(電圧ノイズ成分の電流)と測定対象導体12との間の静電容量Cx3に流れる電流Ix3(測定対象電圧成分の電流)とによる測定対象電圧成分と電圧ノイズ成分との混合電圧である。 The detection voltage Voutx of the voltage noise detection electrode 27x has a capacitance Cx3 between the current Ix2 (current of the voltage noise component) flowing in the capacitance Cx2 between the first neighboring conductor 29x and the conductor 12 to be measured. It is a mixed voltage of the voltage component to be measured and the voltage noise component by the flowing current Ix3 (current of the voltage component to be measured).

同様に、電圧ノイズ検出電極27yは、第2近隣導体29yとの間の静電容量Cy2に流れる電流Iy2と測定対象導体12との間の静電容量Cy3に流れる電流Iy3との合計電流Iy1(=Iy2+Iy3)を検出し、電圧ノイズ検出電極27yの検出電流Iy1(=Iy2+Iy3)として電流入力演算部30の電圧検出部21yに入力する。電流Iy2は第2近隣導体29yからの電圧ノイズ成分であり、電流Iy3は測定対象導体12からの測定対象電圧成分の電流である。すなわち、電流Iy1には、第2近隣導体29yによる電圧ノイズ成分の電流Iy2に加え、測定対象導体12からの測定対象電圧成分の電流Iy3が含まれている。電流Ix1及び電流Iy1はシールド線25の芯線を通って電流入力演算部30の電圧検出部21yのオペアンプ22yのマイナス端子に入力され、電圧検出部21yの出力電圧Voutyは、Vouty=−Iy1・Zとなる。これにより、電流入力演算部30の電圧検出部21yは電流Iy1(=Iy2+Iy3)に比例した検出電圧Voutyを得る。 Similarly, the voltage noise detection electrode 27y is the total current Iy1 of the current Iy2 flowing in the capacitance Cy2 between the second neighboring conductor 29y and the current Iy3 flowing in the capacitance Cy3 between the measurement target conductor 12 ( = Iy2 + Iy3) is detected and input to the voltage detection unit 21y of the current input calculation unit 30 as the detection current Iy1 (= Iy2 + Iy3) of the voltage noise detection electrode 27y. The current Iy2 is a voltage noise component from the second neighboring conductor 29y, and the current Iy3 is a current of the voltage component to be measured from the measurement target conductor 12. That is, the current Iy1 includes the current Iy2 of the voltage noise component from the second neighboring conductor 29y and the current Iy3 of the voltage component to be measured from the measurement target conductor 12. The current Ix1 and the current Iy1 are input to the negative terminal of the operational amplifier 22y of the voltage detection unit 21y of the current input calculation unit 30 through the core wire of the shield wire 25, and the output voltage Vouty of the voltage detection unit 21y is Vouty = −Iy1 · Z. It becomes. As a result, the voltage detection unit 21y of the current input calculation unit 30 obtains a detection voltage Vouty proportional to the current Iy1 (= Iy2 + Iy3).

この電圧ノイズ検出電極27yの検出電圧Voutyは、第2近隣導体29yとの間の静電容量Cy2に流れる電流Iy2(電圧ノイズ成分の電流)と測定対象導体12との間の静電容量Cy3に流れる電流Iy3(測定対象電圧成分の電流)とによる測定対象電圧成分と電圧ノイズ成分との混合電圧である。 The detection voltage Vouty of the voltage noise detection electrode 27y is set to the capacitance Cy3 between the current Iy2 (current of the voltage noise component) flowing in the capacitance Cy2 between the second neighboring conductor 29y and the conductor 12 to be measured. It is a mixed voltage of the voltage component to be measured and the voltage noise component due to the flowing current Iy3 (current of the voltage component to be measured).

電流入力演算部30の電圧検出部21の検出電圧Voutm、電流入力演算部30の電圧検出部21xの検出電圧Voutx、及び電流入力演算部30の電圧検出部21yの検出電圧Voutyは、補正電圧演算部31に入力される。補正電圧演算部31では、測定対象導体12の検出電圧Voutmから近隣導体29からの電流(Ix+Iy)分の電圧ノイズ成分、電圧ノイズ検出電極27xの検出電圧Voutxから近隣導体29xからの電流Ix2分の電圧ノイズ成分、電圧ノイズ検出電極27yの検出電圧Voutyから近隣導体29yからの電流Iy2分の電圧ノイズ成分を除去した測定対象導体12の測定電圧を出力電圧Voutとして出力する。すなわち、補正電圧演算部31では、例えば下記(1)に示す演算式で測定対象電圧V1の測定電圧値を求め出力電圧Voutとして出力する。 The detection voltage Voutm of the voltage detection unit 21 of the current input calculation unit 30, the detection voltage Voutx of the voltage detection unit 21x of the current input calculation unit 30, and the detection voltage Vouty of the voltage detection unit 21y of the current input calculation unit 30 are corrected voltage calculations. It is input to the unit 31. In the correction voltage calculation unit 31, the voltage noise component corresponding to the current (Ix + Iy) from the neighboring conductor 29 from the detected voltage Voutm of the measurement target conductor 12, and the current Ix2 from the detected voltage Voutx of the voltage noise detection electrode 27x to the neighboring conductor 29x. The measured voltage of the measurement target conductor 12 obtained by removing the voltage noise component of the minute voltage noise component and the voltage noise component of the voltage noise detection electrode 27y from the detection voltage Vouty of the voltage noise detection electrode 27y for the current Iy2 minutes from the neighboring conductor 29y is output as the output voltage Vout. That is, the correction voltage calculation unit 31 obtains the measurement voltage value of the measurement target voltage V1 by the calculation formula shown in (1) below and outputs it as the output voltage Vout.

Vout= K1×(Voutm−(K2×Voutx + K3×Vouty)) … (1)
(1)式において、K1は出力電圧Voutと測定対象導体12の電圧(測定対象電圧)V1の対応を100Vrms時に1Vと成るような対応を取るための係数である。K2はVoutxに含まれる電圧ノイズ成分がVoutmに含まれる電圧ノイズ成分と同レベルに成るような係数であり、K3はVoutyに含まれる電圧ノイズ成分がVoutmに含まれる電圧ノイズ成分と同レベルに成るような係数である。これにより、近隣電圧Vx 、Vyによる電圧ノイズ成分を除くことができ、測定対象電圧V1の値を精度よく得ることができる。
Vout = K1 × (Voutm- (K2 × Voutx + K3 × Vouty))… (1)
In the equation (1), K1 is a coefficient for taking the correspondence between the output voltage Vout and the voltage (measurement target voltage) V1 of the measurement target conductor 12 so that it becomes 1V at 100 Vrms. K2 is a coefficient such that the voltage noise component contained in Voutx is at the same level as the voltage noise component contained in Voutm, and K3 is a coefficient at which the voltage noise component contained in Vouty is at the same level as the voltage noise component contained in Voutm. It is such a coefficient. As a result, the voltage noise component due to the neighboring voltages Vx and Vy can be removed, and the value of the measurement target voltage V1 can be obtained with high accuracy.

前述したように、測定対象導体12の出力側電極19は、測定対象導体12にできるだけ近く配置し、第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyを検出する電圧ノイズ検出電極27x、27yは、測定対象導体12から離れた位置に配置しているので、下記の(2a)式、(2b)式、(2c)式が成り立つ。 As described above, the output side electrode 19 of the measurement target conductor 12 is arranged as close as possible to the measurement target conductor 12, and the voltage noise detection electrode 27x for detecting the voltages Vx and Vy of the first neighboring conductor 29x and the second neighboring conductor 29y. , 27y are arranged at positions away from the conductor 12 to be measured, so that the following equations (2a), (2b), and (2c) are established.

Cm>Cx1,Cy1 …(2a)
Cm>Cx2,Cy2 …(2b)
Cm>Cy3,Cx3 …(2c)
ただし、
Cm:測定対象導体12と出力側電極19との間の静電容量
Cx1:第1近隣導体29xと出力側電極19との間の静電容量
Cy1:第2近隣導体29yと出力側電極19との間の静電容量
Cx2:第1近隣導体29xと電圧ノイズ検出電極27xとの間の静電容量
Cy2:第2近隣導体29yと電圧ノイズ検出電極27yとの間の静電容量
Cx3:測定対象導体12と電圧ノイズ検出電極27xとの間の静電容量
Cy3:測定対象導体12と電圧ノイズ検出電極27yとの間の静電容量。
Cm> Cx1, Cy1 ... (2a)
Cm> Cx2, Cy2 ... (2b)
Cm> Cy3, Cx3 ... (2c)
However,
Cm: Capacitance between the conductor 12 to be measured and the output side electrode 19 Cx1: Capacitance between the first neighboring conductor 29x and the output side electrode 19 Cy1: The second neighboring conductor 29y and the output side electrode 19 Capacitance Cx2 between: Capacitance between the first neighboring conductor 29x and the voltage noise detection electrode 27x Cy2: Capacitance between the second neighboring conductor 29y and the voltage noise detection electrode 27y Cx3: Measurement target Capacitance Cy3 between the conductor 12 and the voltage noise detection electrode 27x: Capacitance between the conductor 12 to be measured and the voltage noise detection electrode 27y.

図2は図1に示した絶縁型電圧検出装置の等価回路の回路図である。測定対象導体12の出力側電極19には測定対象導体12との間の静電容量Cm以外に 第1近隣導体29xとの間の静電容量Cx1と第2近隣導体29yとの間の静電容量Cy1とが生じている。このため、近隣電圧 Vx、Vyの成分による電流Ix、Iyが測定対象導体12の電圧V1の成分による電流I1に混入してしまう。また、測定対象導体12の電圧V1の成分と近隣電圧Vxの成分による電流Ix1が発生し、同様に、測定対象導体12の電圧V1の成分と近隣電圧Vyの成分による電流Iy1が発生する。 FIG. 2 is a circuit diagram of an equivalent circuit of the isolated voltage detection device shown in FIG. In addition to the capacitance Cm between the measurement target conductor 12 and the output side electrode 19 of the measurement target conductor 12, the capacitance Cx1 between the first neighboring conductor 29x and the static electricity between the second neighboring conductor 29y The capacitance Cy1 and the like are generated. Therefore, the currents Ix and Iy due to the components of the neighboring voltages Vx and Vy are mixed in the current I1 due to the components of the voltage V1 of the conductor 12 to be measured. Further, a current Ix1 is generated by a component of the voltage V1 of the conductor 12 to be measured and a component of the neighboring voltage Vx, and similarly, a current Iy1 is generated by a component of the voltage V1 of the conductor 12 to be measured and a component of the neighboring voltage Vy.

図2中の電流I1は測定対象導体の電圧V1により静電容量Cmに流れる電流(出力側電極19からの電流)であり、測定対象電圧成分の電流である。電流Ixは第1近隣導体29xの電圧Vxにより静電容量Cx1に流れる電流であり、電圧ノイズ成分の電流である。電流Iyは第2近隣導体29yの電圧Vyにより静電容量Cy1に流れる電流であり、電圧ノイズ成分の電流である。電流Ix1は第1近隣導体29xの電圧Vxにより静電容量Cx2に流れる電流(電圧ノイズ成分の電流)と測定対象導体の電圧V1により静電容量Cx3に流れる電流(測定対象電圧成分の電流)との合計電流である。電流Iy1は第2近隣導体29yの電圧Vyにより静電容量Cy2に流れる電流(電圧ノイズ成分の電流)と測定対象導体の電圧V1により静電容量Cy3に流れる電流(測定対象電圧成分の電流)との合計電流である。 The current I1 in FIG. 2 is a current (current from the output side electrode 19) flowing through the capacitance Cm due to the voltage V1 of the conductor to be measured, and is a current of the voltage component to be measured. The current Ix is a current flowing through the capacitance Cx1 due to the voltage Vx of the first neighboring conductor 29x, and is a current of a voltage noise component. The current Iy is a current flowing through the capacitance Cy1 due to the voltage Vy of the second neighboring conductor 29y, and is a current of a voltage noise component. The current Ix1 is the current flowing through the capacitance Cx2 due to the voltage Vx of the first neighboring conductor 29x (current of the voltage noise component) and the current flowing through the capacitance Cx3 by the voltage V1 of the conductor to be measured (current of the voltage component to be measured). Is the total current of. The current Iy1 is the current flowing through the capacitance Cy2 due to the voltage Vy of the second neighboring conductor 29y (current of the voltage noise component) and the current flowing through the capacitance Cy3 by the voltage V1 of the conductor to be measured (current of the voltage component to be measured). Is the total current of.

前述の(2a)〜(2c)式に示すように、測定対象導体12の出力側電極19との間の静電容量Cmは、他の静電容量Cx1、Cy1、Cx2、Cy2、Cy3,Cx3より大きいので、出力側電極19からの電流I1は、電流Ix1、電流Iy1よりも測定対象電圧V1の成分を多く含む。 As shown in the above equations (2a) to (2c), the capacitance Cm between the measurement target conductor 12 and the output side electrode 19 has other capacitances Cx1, Cy1, Cx2, Cy2, Cy3, Cx3. Since it is larger, the current I1 from the output side electrode 19 contains more components of the measurement target voltage V1 than the current Ix1 and the current Iy1.

また、検出対象導体12、第1近隣導体29x、第2近隣導体29yと、検出プローブ13(出力側電極19)、電圧ノイズ検出電極27x、27yとの位置関係から、下記の(3a)、(3b)式が成り立つ。 Further, from the positional relationship between the detection target conductor 12, the first neighboring conductor 29x, the second neighboring conductor 29y, the detection probe 13 (output side electrode 19), and the voltage noise detection electrodes 27x, 27y, the following (3a), ( 3b) Equation holds.

Cx2> Cx1 …(3a)
Cy2 >Cy1 …(3b)
従って、電圧ノイズ検出電極27xからの電流Ix1には、近隣電圧Vxの成分を多く含むことになる。電圧ノイズ検出電極27yからの電流Iy1には、近隣電圧Vyの成分を多く含むことになる。
Cx2> Cx1 ... (3a)
Cy2> Cy1 ... (3b)
Therefore, the current Ix1 from the voltage noise detection electrode 27x contains a large amount of components of the neighboring voltage Vx. The current Iy1 from the voltage noise detection electrode 27y contains a large amount of components of the neighboring voltage Vy.

また、電圧ノイズ検出電極27xには測定対象導体12との間に静電容量Cx3が生じるが、静電容量Cx3は測定対象導体12と出力側電極19との間の静電容量Cmより小さいため、電圧ノイズ検出電極27xから流れる電流Ix1には、測定対象電圧V1の成分は出力側電極19からの電流I1より小さくなる。同様に、電圧ノイズ検出電極27yには測定対象導体12との間に静電容量Cy3が生じるが、測定対象導体12と出力側電極19との間の静電容量Cmより小さいため、電圧ノイズ検出電極27yから流れる電流Iy1には、測定対象電圧V1の成分は出力側電極19からの電流I1より小さくなる。 Further, the voltage noise detection electrode 27x has a capacitance Cx3 between the measurement target conductor 12 and the measurement target conductor 12, but the capacitance Cx3 is smaller than the capacitance Cm between the measurement target conductor 12 and the output side electrode 19. In the current Ix1 flowing from the voltage noise detection electrode 27x, the component of the measurement target voltage V1 is smaller than the current I1 from the output side electrode 19. Similarly, the voltage noise detection electrode 27y has a capacitance Cy3 between the measurement target conductor 12 and the measurement target conductor 12, but the voltage noise detection is smaller than the capacitance Cm between the measurement target conductor 12 and the output side electrode 19. In the current Iy1 flowing from the electrode 27y, the component of the measurement target voltage V1 is smaller than the current I1 from the output side electrode 19.

そして、前述したように、電流入力演算部30では、出力側電極19からの電流I1に比例した検出電圧Voutm、電圧ノイズ検出電極27xから流れる電流Ix1に比例した検出電圧Voutx、及び電圧ノイズ検出電極27yから流れる電流Iy1に比例した検出電圧Voutyを求め、補正電圧演算部31に出力する。 Then, as described above, in the current input calculation unit 30, the detection voltage Voutm proportional to the current I1 from the output side electrode 19, the detection voltage Voutx proportional to the current Ix1 flowing from the voltage noise detection electrode 27x, and the voltage noise detection electrode The detection voltage Vouty proportional to the current Iy1 flowing from 27y is obtained and output to the correction voltage calculation unit 31.

補正電圧演算部31では、測定対象導体12の検出電圧Voutmから近隣導体29からの電流(Ix+Iy)分の電圧ノイズ成分、電圧ノイズ検出電極27xの検出電圧Voutxから近隣導体29xからの電流Ix2分の電圧ノイズ成分、電圧ノイズ検出電極27yの検出電圧Voutyから近隣導体29yからの電流Iy2分の電圧ノイズ成分を除去した測定対象導体12の測定電圧を出力電圧Voutとして出力する。 In the correction voltage calculation unit 31, the voltage noise component corresponding to the current (Ix + Iy) from the neighboring conductor 29 from the detected voltage Voutm of the measurement target conductor 12, and the current Ix2 from the detected voltage Voutx of the voltage noise detection electrode 27x to the neighboring conductor 29x. The measured voltage of the measurement target conductor 12 obtained by removing the voltage noise component of the minute voltage noise component and the voltage noise component of the voltage noise detection electrode 27y from the detection voltage Vouty of the voltage noise detection electrode 27y for the current Iy2 minutes from the neighboring conductor 29y is output as the output voltage Vout.

第1実施形態によれば、電圧測定対象物11の近隣に存在する近隣電線28x、28yに対し電圧ノイズ検出電極27x、27yを設け、近隣導体29x、29yの電圧が測定対象導体12の検出電圧に影響を与える電圧ノイズ成分を検出する。そして、電流入力演算部30は検出プローブ13で検出された測定対象導体12の検出電圧Voutmと、電圧ノイズ検出電極27x、27yで検出された検出電圧Voutx、Voutyとを求め、これら検出電圧Voutm、Voutx、Voutyから近隣電圧Vx 、Vyによる電圧ノイズ成分を除去した測定対象導体12の測定電圧を出力電圧Voutとして得るので、測定対象導体12の近隣に近隣導体29x、29yが配置された状態でも測定対象導体12の電圧を高精度で測定できる。 According to the first embodiment, voltage noise detection electrodes 27x and 27y are provided for neighboring electric wires 28x and 28y existing in the vicinity of the voltage measurement object 11, and the voltage of the neighboring conductors 29x and 29y is the detection voltage of the measurement target conductor 12. Detects voltage noise components that affect. Then, the current input calculation unit 30 obtains the detection voltage Voutm of the measurement target conductor 12 detected by the detection probe 13 and the detection voltages Voutx and Vouty detected by the voltage noise detection electrodes 27x and 27y, and these detection voltages Voutm, Since the measured voltage of the measurement target conductor 12 obtained by removing the voltage noise components due to the neighboring voltages Vx and Vy from Voutx and Vouty is obtained as the output voltage Vout, measurement is performed even when the neighboring conductors 29x and 29y are arranged in the vicinity of the measurement target conductor 12. The voltage of the target conductor 12 can be measured with high accuracy.

なお、電極の配置位置や電圧ノイズ検出電極27、出力側電極19の面積によっては(3a)式、(3b)式 が成り立たない場合もあり得るが、その場合でも(2a)式が成り立つ構造であれば、電流Imには測定対象電圧V1の成分が多く含まれているので、電圧ノイズ検出電流 Iy1、Ix1をVouty、Voutxに変換するI/V変換係数K2、K3を変更するか、補正電圧演算部での(1)式の演算式のK2、K3を調整することにより、測定対象電圧V1の成分出力である検出電圧Voutを得ることができる。 Depending on the arrangement position of the electrodes and the areas of the voltage noise detection electrode 27 and the output side electrode 19, the equations (3a) and (3b) may not hold, but even in that case, the structure (2a) holds. If there is, since the current Im contains many components of the voltage to be measured V1, the I / V conversion coefficients K2 and K3 that convert the voltage noise detection currents Iy1 and Ix1 into Vouty and Voutx are changed or the correction voltage is corrected. By adjusting K2 and K3 of the calculation formula of the formula (1) in the calculation unit, the detection voltage Vout which is the component output of the measurement target voltage V1 can be obtained.

以上の説明では、2つの近隣導体29x、29yの場合について説明したが、n個の近隣導体29に対してm個の電圧ノイズ検出電極27を設けた場合も同様に適用できる。m個のそれぞれの電圧ノイズ検出電極27は、測定対象導体12の測定対象電圧成分及びn個のすべての近隣導体29による電圧ノイズを検出することになるが、最も近い近隣導体29による電圧ノイズを主に検出することになる。 In the above description, the case of the two neighboring conductors 29x and 29y has been described, but the same can be applied to the case where m voltage noise detection electrodes 27 are provided for the n neighboring conductors 29. Each of the m voltage noise detection electrodes 27 detects the voltage component to be measured of the conductor 12 to be measured and the voltage noise from all n neighboring conductors 29, but detects the voltage noise from the nearest neighboring conductor 29. It will be mainly detected.

また、以上の説明では、検出プローブ13は測定対象電線11の絶縁被膜26の外面に接触して配置される誘電体20Aと出力側電極19とを有したものを示したが、図3に示すように、誘電体20Aの測定対象電線11側に導体側電極18を設けるようにしてもよい。これにより、導体側電極18は測定対象電線11の絶縁被膜26の外面に接触して配置される。導体側電極18は出力側電極19より大きく、導体側電極18と出力側電極19との間に誘電体20Aが位置するように形成される。導体側電極18を設けることにより、測定対象電線11の電線径(絶縁被覆の厚みの径)や導体の径の影響を受けにくくすることができる。その他の構成は、図1に示した絶縁型電圧測定装置と同一であるので、同一要素には同一符号を付し重複する説明は省略する。 Further, in the above description, the detection probe 13 has a dielectric 20A and an output side electrode 19 arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured, which is shown in FIG. As described above, the conductor side electrode 18 may be provided on the measurement target electric wire 11 side of the dielectric 20A. As a result, the conductor side electrode 18 is arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured. The conductor-side electrode 18 is larger than the output-side electrode 19, and is formed so that the dielectric 20A is located between the conductor-side electrode 18 and the output-side electrode 19. By providing the conductor-side electrode 18, it is possible to reduce the influence of the wire diameter (diameter of the thickness of the insulating coating) of the wire 11 to be measured and the diameter of the conductor. Since the other configurations are the same as those of the insulated voltage measuring device shown in FIG. 1, the same elements are designated by the same reference numerals and duplicate description will be omitted.

また、以上の説明では、図1及び図3に示すように、測定対象電線11の絶縁被膜26の外面に検出プローブ13の誘電体20Aを接触して、検出プローブ13を測定対象電線11に配置するようにしたが、図1に示し一例に対し、図4に示すように示すように、測定対象電線11の絶縁被膜26の外面に検出プローブ13や誘電体20Aが接触しないように間隔を保って配置することも可能である。図4では誘電体20Aに出力側電極19を埋め込んで設けた場合を示している。なお、図3に示した他の一例に対しても、同様に測定対象電線11の絶縁被膜26の外面に検出プローブ13や誘電体20Aが接触しないように間隔を保って配置することが可能である。 Further, in the above description, as shown in FIGS. 1 and 3, the dielectric 20A of the detection probe 13 is brought into contact with the outer surface of the insulating coating 26 of the measurement target electric wire 11, and the detection probe 13 is arranged on the measurement target electric wire 11. However, as shown in FIG. 4, as shown in FIG. 4, the distance between the detection probe 13 and the dielectric 20A is maintained so as not to come into contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured. It is also possible to arrange it. FIG. 4 shows a case where the output side electrode 19 is embedded in the dielectric 20A. Similarly, with respect to the other example shown in FIG. 3, it is possible to arrange the detection probe 13 and the dielectric 20A at intervals so as not to come into contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured. is there.

次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態に係わる絶縁型電圧測定装置の一例を示す構成図である。この第2実施形態は、図1に示した第1実施形態に対し、検出プローブ13の出力側電極19からの電流を取り出すシールド線25をさらにシールドした2重シールド線32とし、2重シールド線32の外側シールド部から検出プローブ13側に露出したシールド線25のシールド部(2重シールド線32の内側シールド部)の端部を電圧ノイズ一括検出部33としたものである。電圧ノイズ一括検出部33は、複数の近接導体29のそれぞれの電圧ノイズ成分を一括して検出でき、測定対象電線11と近接電線28との位置関係が一定でなくても汎用的に近隣電線28の影響低減を行うことができるようにしたものである。図1と同一要素には、同一符号を付し重複する説明は省略する。 Next, the second embodiment of the present invention will be described. FIG. 5 is a configuration diagram showing an example of an insulated voltage measuring device according to a second embodiment of the present invention. In the second embodiment, the shield wire 25 for extracting the current from the output side electrode 19 of the detection probe 13 is further shielded as the double shield wire 32 as compared with the first embodiment shown in FIG. The end of the shield portion (inner shield portion of the double shield wire 32) of the shield wire 25 exposed from the outer shield portion of 32 to the detection probe 13 side is used as the voltage noise batch detection portion 33. The voltage noise batch detection unit 33 can collectively detect the voltage noise components of each of the plurality of proximity conductors 29, and even if the positional relationship between the measurement target electric wire 11 and the proximity electric wire 28 is not constant, the neighborhood electric wire 28 can be used for general purposes. It is possible to reduce the influence of. The same elements as those in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.

図5において、2重シールド線32は2重のシールド構造になっており、2重シールド線32の外側シールド部から露出したシールド線25のシールド部の端部を電圧ノイズ一括検出部33としている。電圧ノイズ一括検出部33は2重シールド線32の外側シールドから露出したシールド線25のシールド部の端部であるので、その構造は周回構造となり断面は円形となる。従って、近隣導体29x、29yがいずれの位置関係にあっても近隣導体29からの電界を捉えられるので、近隣導体19の電圧が測定対象導体12の検出電圧に影響を与える電圧ノイズ成分を検出できる。 In FIG. 5, the double shielded wire 32 has a double shielded structure, and the end of the shielded portion of the shielded wire 25 exposed from the outer shielded portion of the double shielded wire 32 is used as the voltage noise batch detection unit 33. .. Since the voltage noise batch detection unit 33 is an end portion of the shield portion of the shield wire 25 exposed from the outer shield of the double shield wire 32, the structure is a circumferential structure and the cross section is circular. Therefore, since the electric field from the neighboring conductor 29 can be captured regardless of the positional relationship between the neighboring conductors 29x and 29y, the voltage noise component in which the voltage of the neighboring conductor 19 affects the detection voltage of the measurement target conductor 12 can be detected. ..

また、電圧ノイズ一括検出部33は、測定対象導体12の電圧V1を検出する出力側電極19に対しては垂直方向に位置することになるので、電圧ノイズ一括検出部33の測定対象導体12に対しての静電容量Cxyは小さくなる。それでいて、電圧ノイズ一括検出部33は出力側電極19に対して距離的には近いので、近隣導体29が出力側電極19に与える電界成分に対しては同等の成分を検出することができる。つまり、近隣導体19の電圧が測定対象導体12の検出電圧に影響を与える電圧ノイズ成分を高精度で検出できる。 Further, since the voltage noise batch detection unit 33 is located in the direction perpendicular to the output side electrode 19 that detects the voltage V1 of the measurement target conductor 12, the measurement target conductor 12 of the voltage noise batch detection unit 33 On the other hand, the capacitance Cxy becomes smaller. Nevertheless, since the voltage noise batch detection unit 33 is close to the output side electrode 19 in terms of distance, it is possible to detect an equivalent component with respect to the electric field component given to the output side electrode 19 by the neighboring conductor 29. That is, the voltage noise component in which the voltage of the neighboring conductor 19 affects the detection voltage of the conductor 12 to be measured can be detected with high accuracy.

測定対象導体12と出力側電極19との間には測定対象導体12の絶縁被膜26と誘電体20によって静電容量Cmが生じる。この静電容量Cmにより測定対象導体12の電圧V1は電流I1を生じる。電流I1は測定対象導体12からの測定対象電圧成分の電流である。また、第1近隣導体29xと検出プローブ13の出力側電極19との間には静電容量Cx1が生じる。第1近隣導体29xの電圧Vxはこの静電容量Cx1により電流Ixを生じる。電流Ixは第1近隣導体29xからの電圧ノイズ成分の電流である。同様に、第2近隣導体29yと検出プローブ13の出力側電極19との間には静電容量Cy1が生じる。第2近隣導体29yの電圧Vyはこの静電容量Cy1により電流Iyを生じる。電流Iyは第2近隣導体29yからの電圧ノイズ成分の電流である。 A capacitance Cm is generated between the measurement target conductor 12 and the output side electrode 19 by the insulating coating 26 and the dielectric 20 of the measurement target conductor 12. Due to this capacitance Cm, the voltage V1 of the conductor 12 to be measured generates a current I1. The current I1 is the current of the voltage component to be measured from the conductor 12 to be measured. Further, a capacitance Cx1 is generated between the first neighboring conductor 29x and the output side electrode 19 of the detection probe 13. The voltage Vx of the first neighboring conductor 29x produces a current Ix due to this capacitance Cx1. The current Ix is the current of the voltage noise component from the first neighboring conductor 29x. Similarly, a capacitance Cy1 is generated between the second neighboring conductor 29y and the output side electrode 19 of the detection probe 13. The voltage Vy of the second neighboring conductor 29y generates a current Iy due to this capacitance Cy1. The current Iy is the current of the voltage noise component from the second neighboring conductor 29y.

このため、シールド線25の芯線には、測定対象導体12からの電流I1に加えて第1近隣導体29xからの電流Ixと第2近隣導体29yからの電流Iyとが混在した電流Im(=I1 +Ix+Iy)が流れることになり、電流入力演算部30の電圧検出部21mに電流Imが入力される。すなわち、電流Imには、測定対象導体12の測定対象電圧成分の電流I1に加え、測定対象導体12の近隣に存在する第1近隣導体29xによる電圧ノイズ成分の電流Ix及び第2近隣導体29yによる電圧ノイズ成分の電流Iyが含まれている。この電流Imはシールド線25の芯線を通って電流入力演算部30の電圧検出部21mのオペアンプ22のマイナス端子に入力され、電圧検出部21mの出力電圧Vo1は、Vo1=−Im・Zとなる。これにより、電流入力演算部30の電圧検出部21mは電流Im(=I1 +Ix+Iy)に比例した検出電圧Vo1を得る。この測定対象導体12の検出電圧Vo1には測定対象導体12からの電流I1分の測定対象電圧成分に加え、近隣導体29からの電流(Ix+Iy)分の電圧ノイズ成分を含んでいる。 Therefore, in the core wire of the shielded wire 25, in addition to the current I1 from the conductor 12 to be measured, the current Ix from the first neighboring conductor 29x and the current Iy from the second neighboring conductor 29y are mixed in the current Im (= I1). + Ix + Iy) will flow, and the current Im is input to the voltage detection unit 21m of the current input calculation unit 30. That is, the current Im includes the current I1 of the voltage component to be measured of the conductor 12 to be measured, the current Ix of the voltage noise component due to the first neighboring conductor 29x existing in the vicinity of the conductor 12 to be measured, and the second neighboring conductor 29y. The current Iy of the voltage noise component is included. This current Im is input to the negative terminal of the operational amplifier 22 of the voltage detection unit 21m of the current input calculation unit 30 through the core wire of the shield wire 25, and the output voltage Vo1 of the voltage detection unit 21m becomes Vo1 = −Im · Z. .. As a result, the voltage detection unit 21m of the current input calculation unit 30 obtains a detection voltage Vo1 proportional to the current Im (= I1 + Ix + Iy). The detection voltage Vo1 of the measurement target conductor 12 includes a measurement target voltage component for the current I1 from the measurement target conductor 12 and a voltage noise component for the current (Ix + Iy) from the neighboring conductor 29.

次に、電圧ノイズ一括検出部33には測定対象導体12の電圧V1が加わっているため、電圧ノイズ一括検出部33と測定対象導体12との間の静電容量Cxyを通して電流Ixyが生じる。電流Ixyは測定対象導体12からの測定対象電圧成分の電流である。また、電圧ノイズ一括検出部33には第1近隣導体29xの電圧Vxの電圧が加わっているため、電圧ノイズ一括検出部33と第1近隣導体29xとの間の静電容量Cx2を通して電流Ix1が生じる。電流Ix1は第1近隣導体29xからの電圧ノイズ成分の電流である。同様に、電圧ノイズ一括検出部33には第2近隣導体29yの電圧Vyの電圧が加わっているため、電圧ノイズ一括検出部33と第2近隣導体29yとの間の静電容量Cy2を通して電流Iy1が生じる。電流Iy1は第2近隣導体29yからの電圧ノイズ成分の電流である。 Next, since the voltage V1 of the measurement target conductor 12 is applied to the voltage noise batch detection unit 33, a current Ixy is generated through the capacitance Cxy between the voltage noise batch detection unit 33 and the measurement target conductor 12. The current Ixy is the current of the voltage component to be measured from the conductor 12 to be measured. Further, since the voltage Vx of the first neighboring conductor 29x is applied to the voltage noise batch detecting unit 33, the current Ix1 passes through the capacitance Cx2 between the voltage noise batch detecting unit 33 and the first neighboring conductor 29x. Occurs. The current Ix1 is the current of the voltage noise component from the first neighboring conductor 29x. Similarly, since the voltage Vy of the second neighboring conductor 29y is applied to the voltage noise batch detecting unit 33, the current Iy1 is passed through the capacitance Cy2 between the voltage noise batch detecting unit 33 and the second neighboring conductor 29y. Occurs. The current Iy1 is the current of the voltage noise component from the second neighboring conductor 29y.

このため、シールド線25のシールド部には電流Ik(=Ixy+Ix1+Iy1)が流れ、電流入力演算部30の電圧検出部21kに入力される。すなわち、電流Ikには第1近隣導体29xによる電圧ノイズ成分の電流Ix1及び第2近隣導体29yによる電圧ノイズ成分の電流Iy1に加え、測定対象導体12からの測定対象電圧成分の電流Ixyが含まれている。この電流Ikはシールド線25のシールド部を通って電流入力演算部30の電圧検出部21kのオペアンプ22kのマイナス端子に入力され、電圧検出部21の出力電圧Vo2は、Vo2=−Ik・Zとなる。これにより、電流入力演算部30の電圧検出部21kは電流Ik(=Ixy+Ix1+Iy1)に比例した検出電圧Vo2を得る。この測定対象導体12の検出電圧Vo2には、測定対象導体12からの電流(Ixy)分の電圧ノイズ成分と近隣導体29からの電流(Ix1+Iy1)分の電圧ノイズ成分とが混在している。 Therefore, a current Ik (= Ixy + Ix1 + Iy1) flows through the shield portion of the shield wire 25 and is input to the voltage detection unit 21k of the current input calculation unit 30. That is, the current Ik includes the current Ix1 of the voltage noise component due to the first neighboring conductor 29x, the current Iy1 of the voltage noise component due to the second neighboring conductor 29y, and the current Ixy of the voltage component to be measured from the measurement target conductor 12. ing. This current Ik is input to the negative terminal of the operational amplifier 22k of the voltage detection unit 21k of the current input calculation unit 30 through the shield unit of the shield wire 25, and the output voltage Vo2 of the voltage detection unit 21 is Vo2 = -Ik · Z. Become. As a result, the voltage detection unit 21k of the current input calculation unit 30 obtains a detection voltage Vo2 proportional to the current Ik (= Ixy + Ix1 + Iy1). The detected voltage Vo2 of the conductor 12 to be measured contains a mixture of a voltage noise component corresponding to the current (Ixy) from the conductor 12 to be measured and a voltage noise component corresponding to the current (Ix1 + Iy1) from the neighboring conductor 29.

電流入力演算部30の電圧検出部21の検出電圧Vo1、電流入力演算部30の電圧検出部21kの検出電圧Vo2は補正電圧演算部31に入力される。補正電圧演算部31では、測定対象導体12の検出電圧Vo1から近隣導体29からの電流(Ix+Iy)分の電圧ノイズ成分、近隣導体29(第1近隣導体29x、第2近隣導体29y)の検出電圧Vo2から近隣導体29からの電流(Ix1+Iy1)分の電圧ノイズ成分を除去した測定対象導体12の測定電圧を出力電圧Voutとして出力する。すなわち、補正電圧演算部31では、例えば下記(4)に示す演算式で測定対象電圧V1の測定電圧値を求め出力電圧Voutとして出力する。 The detection voltage Vo1 of the voltage detection unit 21 of the current input calculation unit 30 and the detection voltage Vo2 of the voltage detection unit 21k of the current input calculation unit 30 are input to the correction voltage calculation unit 31. In the correction voltage calculation unit 31, the voltage noise component for the current (Ix + Iy) from the detection voltage Vo1 of the conductor 12 to be measured and the current (Ix + Iy) from the neighboring conductor 29, and the neighboring conductor 29 (first neighboring conductor 29x, second neighboring conductor 29y) The measured voltage of the measurement target conductor 12 obtained by removing the voltage noise component for the current (Ix1 + Iy1) from the neighboring conductor 29 from the detected voltage Vo2 is output as the output voltage Vout. That is, the correction voltage calculation unit 31 obtains the measurement voltage value of the measurement target voltage V1 by the calculation formula shown in (4) below and outputs it as the output voltage Vout.

Vout= K11×(Vo1−(K12×Vo2)) … (4)
(4)式において、K11は出力電圧Voutと測定対象導体12の電圧(測定対象電圧)V1の対応を100Vrms時に1Vと成るような対応を取るための係数である。K12はV02に含まれる電圧ノイズ成分がV01に含まれる電圧ノイズ成分と同レベルに成るような係数である。これにより、近隣電圧Vx 、Vyによる電圧ノイズ成分を除くことができ、測定対象電圧V1の値を精度よく得ることができる。
Vout = K11 × (Vo1- (K12 × Vo2))… (4)
In the equation (4), K11 is a coefficient for taking a correspondence between the output voltage Vout and the voltage (measurement target voltage) V1 of the measurement target conductor 12 so that the correspondence becomes 1V at 100 Vrms. K12 is a coefficient such that the voltage noise component contained in V02 becomes the same level as the voltage noise component contained in V01. As a result, the voltage noise component due to the neighboring voltages Vx and Vy can be removed, and the value of the measurement target voltage V1 can be obtained with high accuracy.

図6は図5に示した絶縁型電圧検出装置の等価回路である。検出プローブ13の出力側電極19には静電容量Cmを通して測定対象導体12の電圧V1が加わっているため電流I1が生じる。電流I1は測定対象電圧成分の電流である。また、検出プローブ13の出力側電極19には、静電容量Cx1、Cy1を通して第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyの電圧が加わっているため電流Ix、Iyが生じる。電流Ixは第1近隣導体29xによる電圧ノイズ成分の電流であり、電流Iyは第2近隣導体29yによる電圧ノイズ成分の電流である。従って、シールド線25の芯線には電流Im(=I1+Ix+Iy)が流れる。電流Imには、測定対象導体の電圧V1による電流I1(測定対象電圧成分の電流)と第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyによる電流Ix、Iy(電圧ノイズ成分の電流)との成分が混在している。 FIG. 6 is an equivalent circuit of the isolated voltage detection device shown in FIG. Since the voltage V1 of the conductor 12 to be measured is applied to the output side electrode 19 of the detection probe 13 through the capacitance Cm, a current I1 is generated. The current I1 is the current of the voltage component to be measured. Further, since the voltages Vx and Vy of the first neighboring conductor 29x and the second neighboring conductor 29y are applied to the output side electrode 19 of the detection probe 13 through the capacitances Cx1 and Cy1, currents Ix and Iy are generated. The current Ix is the current of the voltage noise component due to the first neighboring conductor 29x, and the current Iy is the current of the voltage noise component due to the second neighboring conductor 29y. Therefore, a current Im (= I1 + Ix + Iy) flows through the core wire of the shielded wire 25. The current Im includes the current I1 (current of the voltage component to be measured) due to the voltage V1 of the conductor to be measured, the voltage Vx of the first neighboring conductor 29x and the second neighboring conductor 29y, and the currents Ix and Iy (current of the voltage noise component) due to Vy. ) And the components are mixed.

一方、電圧ノイズ一括検出部33には静電容量Cxyを通して測定対象導体12の電圧V1が加わっているため電流Ixyが生じる。電流Ixyは測定対象導体12からの測定対象電圧成分の電流である。また、電圧ノイズ一括検出部33には、静電容量Cx2、Cy2を通して、第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyの電圧が加わっているため電流Ix1、Iy1が生じる。電流Ix1は第1近隣導体29xからの電圧ノイズ成分であり、電流Iy1は第2近隣導体29yからの電圧ノイズ成分の電流である。従って、シールド線25のシールド部には電流Ik(=Ixy+Ix1+Iy1)が流れる。電流Ikには、測定対象導体の電圧V1による電流Ixy(測定対象電圧成分の電流)と第1近隣導体29x、第2近隣導体29yの電圧Vx、Vyによる電流Ix1、Iy1との成分(電圧ノイズ成分の電流)が混在している。 On the other hand, since the voltage V1 of the conductor 12 to be measured is applied to the voltage noise batch detection unit 33 through the capacitance Cxy, a current Ixy is generated. The current Ixy is the current of the voltage component to be measured from the conductor 12 to be measured. Further, since the voltages Vx and Vy of the first neighboring conductor 29x and the second neighboring conductor 29y are applied to the voltage noise batch detection unit 33 through the capacitances Cx2 and Cy2, currents Ix1 and Iy1 are generated. The current Ix1 is a voltage noise component from the first neighboring conductor 29x, and the current Iy1 is a current of the voltage noise component from the second neighboring conductor 29y. Therefore, a current Ik (= Ixy + Ix1 + Iy1) flows through the shield portion of the shield wire 25. The current Ik includes a component (voltage noise) of the current Ixy (current of the voltage component to be measured) due to the voltage V1 of the conductor to be measured and the currents Ix1 and Iy1 due to the voltage Vx and Vy of the first neighboring conductor 29x and the second neighboring conductor 29y. The current of the components) is mixed.

そこで、(4)式において、シールド線25の芯線に流れる電流Imに含まれる近隣電圧Vx、Vyの電圧ノイズ成分と同レベルに成るような係数K12をシールド線25のシールド部に流れる電流Ikに乗算する。なお、係数K11は、前述したように、出力電圧Voutと測定対象導体12の電圧(測定対象電圧)V1の対応を100Vrms時に1Vと成るような対応を取るための係数である。これにより、出力電圧Voutは測定対象電圧V1のみに対応するようになる。 Therefore, in the equation (4), the coefficient K12 so as to be at the same level as the voltage noise components of the neighboring voltages Vx and Vy included in the current Im flowing in the core wire of the shield wire 25 is set to the current Ik flowing in the shield portion of the shield wire 25. Multiply. As described above, the coefficient K11 is a coefficient for taking a correspondence between the output voltage Vout and the voltage (measurement target voltage) V1 of the measurement target conductor 12 so that the correspondence becomes 1V at 100 Vrms. As a result, the output voltage Vout corresponds only to the measurement target voltage V1.

ここで、図5において、電圧ノイズ一括検出部33を構成するシールド線25のシールド部は大地(GND)には接続されていないが、電流入力演算部30の電圧検出部21kのオペアンプ22kのマイナス入力端子に接続されて、電圧検出部21kはI/V変換回路を構成している。I/V変換回路のマイナス入力端子はオペアンプ22kのGND電位と同じになるので、出力側電極19から見たシールド線25の電気的関係は図9に示したシールド線25(シールド部が接地されたシールド線25)と同じになる。 Here, in FIG. 5, the shield portion of the shield wire 25 constituting the voltage noise batch detection unit 33 is not connected to the ground (GND), but the minus of the operational amplifier 22k of the voltage detection unit 21k of the current input calculation unit 30. Connected to the input terminal, the voltage detection unit 21k constitutes an I / V conversion circuit. Since the negative input terminal of the I / V conversion circuit has the same GND potential as the operational amplifier 22k, the electrical relationship of the shielded wire 25 seen from the output side electrode 19 is the shielded wire 25 (shielded portion is grounded) shown in FIG. It becomes the same as the shield wire 25).

このため、出力側電極19からの電流Imは、シールド線25や2重シールド線32の静電容量や引き回しによる静電容量変化に関係なく電流Imとして電流入力演算部30の電圧検出部21mに入力される。さらに、前述したように、電圧ノイズ一括検出部33が周回構造となっていることで、図1に示した第1実施形態のように複数の電圧ノイズ検出電極27を必要としない。またシールド線25の電圧ノイズ一括検出部33以外は2重シールド線32の外側シールド部によりGNDで覆われているため2重シールド線32を引き回している部分の外部電界の影響は受けない。 Therefore, the current Im from the output side electrode 19 is set to the voltage detection unit 21m of the current input calculation unit 30 as the current Im regardless of the capacitance of the shield wire 25 or the double shield wire 32 or the change in capacitance due to routing. Entered. Further, as described above, since the voltage noise batch detection unit 33 has a circular structure, a plurality of voltage noise detection electrodes 27 are not required as in the first embodiment shown in FIG. Further, except for the voltage noise batch detection unit 33 of the shield wire 25, since it is covered with GND by the outer shield portion of the double shield wire 32, it is not affected by the external electric field of the portion where the double shield wire 32 is routed.

また、以上の説明では、検出プローブ13は測定対象電線11の絶縁被膜26の外面に接触して配置される誘電体20Aと出力側電極19とを有したものを示したが、図7に示すように、誘電体20Aの測定対象電線11側に導体側電極18を設けるようにしてもよい。これにより、導体側電極18は測定対象電線11の絶縁被膜26の外面に接触して配置される。導体側電極18は出力側電極19より大きく、導体側電極18と出力側電極19との間に誘電体20Aが位置するように形成される。導体側電極18を設けることにより、測定対象電線11の電線径(絶縁被覆の厚みの径)や導体の径の影響を受けにくくすることができる。その他の構成は、図5に示した絶縁型電圧測定装置と同一であるので、同一要素には同一符号を付し重複する説明は省略する
このように、第2実施形態によれば、検出プローブ13の出力側電極19からの電流を取り出すシールド線25をさらにシールドした2重シールド線32とし、2重シールド線32の外側シールドから検出プローブ13側に露出したシールド線25のシールド部の端部を電圧ノイズ一括検出部33としたので、検出プローブ13の出力側電極19は図9の出力側電極19の構造と同様のままで、近隣導体29が無い場合だけでなく、複数の電線や大小径の電線がある現場でも使用可能な絶縁型電圧測定装置を実現できる。また、測定対象電線11と近接電線29との位置関係が一定ではない場合であっても、使用可能な絶縁型電圧測定装置を実現できる。
Further, in the above description, the detection probe 13 has a dielectric 20A and an output side electrode 19 arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured, which is shown in FIG. As described above, the conductor side electrode 18 may be provided on the measurement target electric wire 11 side of the dielectric 20A. As a result, the conductor side electrode 18 is arranged in contact with the outer surface of the insulating coating 26 of the electric wire 11 to be measured. The conductor-side electrode 18 is larger than the output-side electrode 19, and is formed so that the dielectric 20A is located between the conductor-side electrode 18 and the output-side electrode 19. By providing the conductor-side electrode 18, it is possible to reduce the influence of the wire diameter (diameter of the thickness of the insulating coating) of the wire 11 to be measured and the diameter of the conductor. Since the other configurations are the same as those of the insulated voltage measuring device shown in FIG. 5, the same elements are designated by the same reference numerals and duplicate description is omitted. Thus, according to the second embodiment, the detection probe The shield wire 25 for extracting the current from the output side electrode 19 of 13 is further shielded as a double shield wire 32, and the end of the shield portion of the shield wire 25 exposed from the outer shield of the double shield wire 32 to the detection probe 13 side. Is the voltage noise batch detection unit 33, so that the output side electrode 19 of the detection probe 13 remains the same as the structure of the output side electrode 19 of FIG. 9, not only when there is no neighboring conductor 29, but also when a plurality of electric wires or large wires are used. It is possible to realize an insulated voltage measuring device that can be used even in the field where there is a small diameter electric wire. Further, even when the positional relationship between the measurement target electric wire 11 and the proximity electric wire 29 is not constant, it is possible to realize an insulated voltage measuring device that can be used.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

11…測定対象電線、12…測定対象導体、13…検出プローブ、14…第1電極、15…第2電極、16…電圧検出回路、17…交流電源、18…導体側電極、19…出力側電極、20、20A…誘電体、21…電圧検出部、22…オペアンプ、23…検出プローブ保持部、24…凹部、25…シールド線、26…絶縁被覆、27…電圧ノイズ検出電極、28…近隣電線、29…近接導体、30…電流入力演算部、31…補正電圧演算部、32…2重シールド線、33…電圧ノイズ一括検出部 11 ... Measurement target electric current, 12 ... Measurement target conductor, 13 ... Detection probe, 14 ... First electrode, 15 ... Second electrode, 16 ... Voltage detection circuit, 17 ... AC power supply, 18 ... Conductor side electrode, 19 ... Output side Electrodes, 20, 20A ... Dielectric, 21 ... Voltage detector, 22 ... Operate, 23 ... Detection probe holding part, 24 ... Recess, 25 ... Shielded wire, 26 ... Insulation coating, 27 ... Voltage noise detection electrode, 28 ... Neighborhood Electric wire, 29 ... Proximity conductor, 30 ... Current input calculation unit, 31 ... Correction voltage calculation unit, 32 ... Double shielded wire, 33 ... Voltage noise batch detection unit

Claims (2)

電圧測定対象物の外面に配置され前記電圧測定対象物の近隣に存在する近隣電線の導体による電圧ノイズ成分を含んだ前記電圧測定対象物の導体の測定対象電圧成分を電流で検出する検出プローブと、
前記近隣電線の導体の近傍に配置され前記測定対象電圧成分を含んだ前記電圧ノイズ成分を電流として検出する電圧ノイズ検出電極と、
前記検出プローブで検出された電流をシールド線を介して入力し電圧に変換するとともに前記電圧ノイズ検出電極で検出された電流をシールド線を介して入力し電圧に変換する電流入力演算部と、
前記電流入力演算部で電圧に変換された前記導体測定対象電圧成分と前記電圧ノイズ成分とが混在した検出電圧から前記電圧ノイズ成分を除去し前記電圧測定対象物の導体の測定電圧を得る補正電圧演算部とを備えたことを特徴とする絶縁型電圧測定装置。
A detection probe that detects the voltage component to be measured on the conductor of the voltage measurement object by current, including the voltage noise component from the conductor of the neighboring electric wire located on the outer surface of the voltage measurement object and existing in the vicinity of the voltage measurement object. ,
A voltage noise detection electrode arranged in the vicinity of the conductor of the neighboring electric wire and detecting the voltage noise component including the measurement target voltage component as a current,
A current input calculation unit that inputs the current detected by the detection probe through the shield wire and converts it into a voltage, and inputs the current detected by the voltage noise detection electrode through the shield wire and converts it into a voltage.
A correction voltage that removes the voltage noise component from the detection voltage in which the conductor measurement target voltage component and the voltage noise component converted into voltage by the current input calculation unit are mixed to obtain the measurement voltage of the conductor of the voltage measurement target. An isolated voltage measuring device characterized by having a calculation unit.
電圧測定対象物の外面に配置され前記電圧測定対象物の近隣に存在する近隣電線の導体による電圧ノイズ成分を含んだ前記電圧測定対象物の導体の測定対象電圧成分を電流で検出する検出プローブと、
前記検出プローブで検出された電流を取り出すシールド線をさらにシールドした2重シールド線とし前記2重シールド線の外側シールド部から前記シールド線のシールド部の端部を前記検出プローブ側に露出させて形成され前記測定対象電圧成分を含んだ前記電圧ノイズ成分を電流として検出する電圧ノイズ一括検出部と、
前記検出プローブで検出された電流を前記シールド線の芯線から電流電圧変換回路に入力し電圧に変換するとともに前記電圧ノイズ一括検出部で検出された電流を接地状態とみなせる前記シールド線のシールド部を介して電流電圧変換回路に入力し前記電圧ノイズ一括検出部で検出された電流を電圧に変換する電流入力演算部と、
前記電流入力演算部で電圧に変換された前記導体測定対象電圧成分と前記電圧ノイズ成分とが混在した検出電圧から前記電圧ノイズ成分を除去し前記電圧測定対象物の導体の測定電圧を得る補正電圧演算部とを備えたことを特徴とする絶縁型電圧測定装置。
A detection probe that detects the voltage component to be measured on the conductor of the voltage measurement object by current, including the voltage noise component from the conductor of the neighboring electric wire located on the outer surface of the voltage measurement object and existing in the vicinity of the voltage measurement object. ,
The shield wire for extracting the current detected by the detection probe is further shielded as a double shield wire, and the end portion of the shield portion of the shield wire is exposed from the outer shield portion of the double shield wire to the detection probe side. A voltage noise batch detection unit that detects the voltage noise component including the measurement target voltage component as a current, and
The shielded portion of the shielded wire that can input the current detected by the detection probe from the core wire of the shielded wire to the current-voltage conversion circuit and convert it into a voltage, and can regard the current detected by the voltage noise batch detector as a grounded state. A current input calculation unit that inputs to the current-voltage conversion circuit via the voltage noise unit and converts the current detected by the voltage noise batch detection unit into a voltage.
A correction voltage that removes the voltage noise component from the detection voltage in which the conductor measurement target voltage component and the voltage noise component converted into voltage by the current input calculation unit are mixed to obtain the measurement voltage of the conductor of the voltage measurement target. An isolated voltage measuring device characterized by having a calculation unit.
JP2019041378A 2019-03-07 2019-03-07 Isolated voltage measuring device Active JP7220500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041378A JP7220500B2 (en) 2019-03-07 2019-03-07 Isolated voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041378A JP7220500B2 (en) 2019-03-07 2019-03-07 Isolated voltage measuring device

Publications (2)

Publication Number Publication Date
JP2020144026A true JP2020144026A (en) 2020-09-10
JP7220500B2 JP7220500B2 (en) 2023-02-10

Family

ID=72354052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041378A Active JP7220500B2 (en) 2019-03-07 2019-03-07 Isolated voltage measuring device

Country Status (1)

Country Link
JP (1) JP7220500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190678A1 (en) * 2021-03-11 2022-09-15 オムロン株式会社 Non-contact voltage measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163394A (en) * 2011-02-04 2012-08-30 Hitachi Electric Systems Ltd Non-contact voltage detector
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method
JP2014232053A (en) * 2013-05-29 2014-12-11 パナソニック株式会社 Noncontact voltage measuring apparatus
JP2019174129A (en) * 2018-03-26 2019-10-10 株式会社関電工 Insulated type voltage measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163394A (en) * 2011-02-04 2012-08-30 Hitachi Electric Systems Ltd Non-contact voltage detector
JP2014232053A (en) * 2013-05-29 2014-12-11 パナソニック株式会社 Noncontact voltage measuring apparatus
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method
JP2019174129A (en) * 2018-03-26 2019-10-10 株式会社関電工 Insulated type voltage measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190678A1 (en) * 2021-03-11 2022-09-15 オムロン株式会社 Non-contact voltage measurement device

Also Published As

Publication number Publication date
JP7220500B2 (en) 2023-02-10

Similar Documents

Publication Publication Date Title
JP6050309B2 (en) High voltage measurement system
WO2015083618A1 (en) Contactless voltage measurement device and method
JP5737750B2 (en) AC power measuring device
JPWO2016021045A1 (en) Non-contact AC voltage measuring device
WO2015137017A1 (en) Non-contact voltage measurement device
Shenil et al. Feasibility study of a non-contact AC voltage measurement system
Tant et al. Design and application of a field mill as a high-voltage DC meter
TW201830033A (en) Sensor subsystems for non-contact voltage measurement devices
JP2003028900A (en) Non-contact voltage measurement method and apparatus
JP7220500B2 (en) Isolated voltage measuring device
WO2015182187A1 (en) Voltage measurement device and voltage measurement method
WO2016189864A1 (en) Probe and voltage measuring device using same
JP2019035707A (en) Gap measurement device and probe
KR20160088779A (en) Apparatus for measuring electrical characteristics
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP2020180797A (en) Current sensor and watt-hour meter
JP3501403B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP2019174129A (en) Insulated type voltage measuring device
JP5559638B2 (en) Degradation judgment method for power cables
JP2019002918A (en) Thickness measuring device
JP2005156492A (en) Movable apparatus, measuring device, electrostatic capacity typed range finder and positioning device
JP2017161366A (en) Voltage measuring device
JP2020159843A (en) Voltage measurement device
JP6320077B2 (en) Measurement method of partial pressure error
JP2003043079A (en) Probing system and capacitance measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R150 Certificate of patent or registration of utility model

Ref document number: 7220500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150