WO2015182187A1 - Voltage measurement device and voltage measurement method - Google Patents

Voltage measurement device and voltage measurement method Download PDF

Info

Publication number
WO2015182187A1
WO2015182187A1 PCT/JP2015/055259 JP2015055259W WO2015182187A1 WO 2015182187 A1 WO2015182187 A1 WO 2015182187A1 JP 2015055259 W JP2015055259 W JP 2015055259W WO 2015182187 A1 WO2015182187 A1 WO 2015182187A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrode
ground
capacitance detection
acquisition circuit
Prior art date
Application number
PCT/JP2015/055259
Other languages
French (fr)
Japanese (ja)
Inventor
悟郎 川上
公平 冨田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2015182187A1 publication Critical patent/WO2015182187A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a voltage measuring device and a voltage measuring method for measuring an alternating voltage applied to a conductor of an insulated wire.
  • Patent Document 1 a technique for measuring a voltage applied to an insulated wire without bringing a measurement electrode into contact with a conductor of the insulated wire is known.
  • the coupling capacity between the conductor of the wire and the electrode is obtained from the input signal from the electrode arranged on the insulator of the wire, and the AC voltage is obtained based on the value of this coupling capacity.
  • a reference alternating current advanced by 90 ° with respect to the alternating voltage is detected through an insulator.
  • the dielectric loss current accompanying the dielectric loss of the insulator is detected through the insulator.
  • the phase difference between these reference AC current (reference AC voltage) and dielectric loss current (dielectric loss voltage) is obtained, and the dielectric loss tangent of the insulator is calculated from this phase difference. Further, the previously obtained AC voltage value is corrected based on the value of the dielectric loss tangent.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-177310 (published on June 24, 2004)”
  • Patent Document 1 a circuit for obtaining a phase difference between two AC voltages (reference AC voltage and dielectric loss voltage) and obtaining a dielectric loss tangent from the obtained phase difference is required.
  • capacitance and the switch which switches these capacitors are provided. For this reason, there is a problem that the circuit configuration becomes complicated.
  • an object of the present invention is to provide a voltage measuring device and a voltage measuring method capable of accurately measuring the voltage of a measuring wire with a simple configuration.
  • a voltage measuring device is a voltage measuring device that measures an AC voltage of an electric wire through an insulating coating of the electric wire, and a first electrode and a second electrode arranged around the insulating coating.
  • a first switching unit that switches between a first connection state in which the first electrode is electrically connected to a first ground common to the ground of the electric wire and a first non-connection state in which the first electrode is not connected, A first voltage acquisition circuit that is grounded to one ground and that can acquire a first electrode voltage induced in the first electrode by the AC voltage when the first switching unit is in the first connection state; A second switching unit that switches between a second connection state in which the second electrode is electrically connected to the first ground and a second non-connection state in which the second electrode is not connected, and is grounded to the first ground, Before by the AC voltage A second voltage acquisition circuit that can acquire a second electrode voltage induced in the second electrode when the second switching unit is in the second connection state; and a second voltage acquisition circuit that is insulated from the first ground.
  • a capacitance detection voltage acquisition circuit capable of acquiring a voltage induced in the first electrode as a capacitance detection voltage, and the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage. And an arithmetic unit for obtaining a voltage.
  • FIG. 1 It is a circuit diagram which shows the structure of the voltage measuring device of embodiment of this invention.
  • the capacitance detection voltage acquisition circuit is distinguished from other circuits and is a circuit diagram indicated by a broken line. It is a circuit diagram explaining the operation
  • FIG. 6 is a circuit diagram illustrating an operation in the vicinity of a third electrode voltage acquisition circuit in the capacitance detection voltage acquisition circuit shown in FIG. 1.
  • FIG. 2 is a circuit diagram illustrating operations of first and second electrode voltage acquisition circuits shown in FIG. 1.
  • FIG. 4 is an equivalent circuit of the capacitance detection voltage acquisition circuit shown in FIG. 3. It is an equivalent circuit of the 1st electrode voltage acquisition circuit shown in FIG. It is an equivalent circuit of the 2nd electrode voltage acquisition circuit shown in FIG. It is a longitudinal cross-sectional view which shows the substantive example of the voltage measuring device shown in FIG. It is a perspective view of the detection unit shown in FIG.
  • FIG. 1 is a circuit diagram showing a configuration of a voltage measuring apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing the capacitance detection voltage acquisition circuit 64 in a circuit diagram of the voltage measuring apparatus 1 shown in FIG.
  • the voltage measuring device 1 is a method for measuring the voltage of the measuring wire 11 (hereinafter referred to as a measured voltage VL) by the following procedure. That is, the voltage (injection voltage) Vin, voltage (capacitance detection voltage) V2, voltage V (first electrode voltage) 11, and voltage V (second electrode voltage) 12 shown in FIG. 1 are measured. Next, based on the voltage Vin and the voltage V ⁇ b> 2, a coupling capacitance CL ⁇ b> 1 between the first electrode 21 and the measuring wire 11 and a coupling capacitance CL ⁇ b> 2 between the second electrode 22 and the measuring wire 11 are obtained. Next, the measurement voltage VL is obtained based on the coupling capacitors CL1 and CL2 and the voltages V11 and V12. Details of the procedure for obtaining the measurement voltage VL will be described later.
  • grounding grounding to the same ground as the ground of the voltage measurement target wire (for example, GND1 (first ground) in FIG. 1; hereinafter referred to as ground connection), and voltage measuring device 1 is distinguished from grounding to one frame (for example, GND2 (second ground) in FIG. 1; hereinafter referred to as frame connection).
  • GND1 first ground
  • GND2 second ground
  • frame connection ground connection and frame connection are electrically insulated from each other.
  • the voltage measuring device 1 measures the voltage of a measuring wire (electric wire) 11 that is a covered wire for voltage measurement.
  • the voltage measuring apparatus 1 includes a first electrode 21, a second electrode 22, a third electrode 23, a calculation unit (calculation unit) 24, a voltage Vin (injection voltage) to the calculation unit 24,
  • Each circuit that supplies voltage V2 (capacitance detection voltage), voltage V11 (first electrode voltage), and voltage V12 (second electrode voltage), and a power supply circuit 44 are provided.
  • the first electrode 21 to the third electrode 23 have an arc shape having a predetermined width in the direction of the measurement electric wire 11 so that the first electrode 21 to the third electrode 23 can be arranged on the outer periphery of the measurement electric wire 11.
  • the shape of the 1st electrode 21 and the reference electrode 22 is not limited to this, What is necessary is just a shape which can contact
  • the first electrode 21 is grounded via a resistor R11 and a switch (first switching unit) SW1 connected in series.
  • the circuit from the first electrode 21 to the calculation unit 24 includes the first and second circuits in parallel.
  • an operational amplifier 31 a resistor R2, an A / D converter 32, and an insulating circuit 41 are provided in series.
  • an operational amplifier 33 and an A / D converter 34 are provided in series.
  • the circuit including the resistor R 11 and the switch SW 1 connected to the first electrode 21 and the second circuit constitute a first electrode voltage acquisition circuit (first voltage acquisition circuit) 61.
  • the resistor R2 is connected between the inverting input terminal 31a and the output terminal 31c of the operational amplifier 31.
  • the non-inverting input terminal 31b of the operational amplifier 31 is frame-connected (GND2).
  • the second electrode 22 is grounded (GND1) via a resistor R12 and a switch (second switching unit) SW2 connected in series.
  • an operational amplifier 35 and an A / D converter 36 are provided in series.
  • the circuit including the resistor R12 and the switch SW2 and the circuit including the operational amplifier 35 and the A / D converter 36 connected to the second electrode 22 are a second electrode voltage acquisition circuit (second voltage acquisition circuit) 62. Is configured.
  • an operational amplifier 37 In the circuit from the third electrode 23 to the calculation unit 24, an operational amplifier 37, a resistor Rf1, a resistor RF2, a photocoupler (signal transmission unit) 42, an operational amplifier 38, an A / D converter 39, and an insulation circuit 43 are connected in series. Is provided.
  • the second electrode 22 is connected between the operational amplifier 38 and the A / D converter 39.
  • Insulation circuits 41 and 43 are those that cause the A / D converters 32 and 39 to output their inputs to the calculation unit 24 and insulate the left and right circuits of the insulation circuits 41 and 43.
  • Conventionally known general-purpose circuits and components can be used.
  • the resistor Rf1 is connected between the inverting input terminal 37a and the output terminal 37c of the operational amplifier 37.
  • a non-inverting input terminal 37 b of the operational amplifier 37 is connected to the DC offset circuit 40.
  • the DC offset circuit 40 applies a DC offset voltage (Voffset) to the operational amplifier 37 so as to increase the negative voltage so that the sine wave voltage induced in the third electrode 23 changes in the positive polarity region. It is.
  • the photocoupler 42 has anode 42a, cathode 42b, collector 42c, and emitter 42 terminals.
  • a resistor RF2 is connected to the anode 42a of the photocoupler 42, and a cathode 42b is connected to ground (GND1).
  • the collector 42c is connected to the operational amplifier 38, and the emitter 42d is frame-connected (GND2).
  • a power supply voltage Vcc2 is supplied from the power supply circuit 44 to the collector 42c via the resistor Rt1.
  • the circuit including the operational amplifier 37 connected to the third electrode 23, the resistor Rf1, the resistor RF2, the LED of the photocoupler 42, and the DC offset circuit 40 is a third electrode voltage acquisition circuit (third voltage acquisition circuit) 63. Is configured.
  • the operational amplifier 33, the operational amplifier 35, and the operational amplifier 38 constitute a voltage follower and have a function as a buffer.
  • the first to third electrode voltage acquisition circuits 61 to 63 are grounded, while the capacitance detection voltage acquisition circuit 64 is frame-connected, and the capacitance detection voltage acquisition circuit 64 is connected to the first to third electrode voltage acquisition circuits 61 to 63 is electrically insulated.
  • the calculation part 24 is based on the voltage V2, the voltage V11, V12, and the voltage Vin which are input from the circuit between the measurement electric wire 11 and the calculation part 24, the core wire of the measurement electric wire 11, the first electrode 21 and the second electrode. 22 is obtained, and the measurement voltage VL is obtained from these coupling capacitors CL1 and CL2.
  • the calculator 24 is supplied with the power supply voltage Vcc1 from the power supply circuit 44.
  • the power supply circuit 44 supplies the power supply voltage Vcc1 or the power supply voltage Vcc2 to each unit as described above.
  • the calculation unit 24 is configured to be supplied with the power supply voltage Vcc1 and connected to the ground (GND1).
  • the configuration is not limited to this, and the calculation unit 24 may be configured to be supplied with the power supply voltage Vcc2 and to be frame-connected (GND2).
  • the calculation unit 24 is configured to be insulated from the circuit connected to the ground (GND1).
  • FIG. 3 is a circuit diagram for explaining the operation of the capacitance detection voltage acquisition circuit in the voltage measuring apparatus shown in FIG.
  • the capacitance detection voltage In the acquisition circuit 64 as shown in FIG. 3, a current flows along a path indicated by a two-dot chain line. Thereby, the capacitance detection voltage acquisition circuit 64 acquires the voltage Vin and the voltage V2.
  • the signal acquired from the third electrode 23 by the third electrode voltage acquisition circuit 63 is input to the capacitance detection voltage acquisition circuit 64 via the photocoupler 42.
  • This signal is a signal having the same frequency as the measurement voltage VL.
  • the capacitance detection voltage acquisition circuit 64 current flows through the path shown in FIG. 3, signal injection is performed on the second electrode 22, and the voltage V ⁇ b> 2 can be obtained from the first electrode 21.
  • the capacitance detection voltage acquisition circuit 64 is electrically insulated from the first to third electrode voltage acquisition circuits 61 to 63, the first electrode 21 and the second electrode are connected to the capacitance detection voltage acquisition circuit 64.
  • the signal due to the measurement voltage VL of the measurement wire 11 does not flow directly through 22. Therefore, the voltage V2 does not become a mixed wave but can be taken out as an output voltage corresponding to the signal injected from the third electrode 23.
  • FIG. 4 is a circuit diagram for explaining the operation of the third electrode voltage acquisition circuit 63 (the circuit on the LED side of the photocoupler 42).
  • FIG. 5 is a circuit diagram for explaining the operation of the capacitance detection voltage acquisition circuit 64 (circuit on the transistor side of the photocoupler 42).
  • the measurement voltage VL is a sine wave (alternating current)
  • the voltage (signal) induced in the third electrode 23 the total current I flowing through the coupling capacitance CL3 of the third electrode 23, and the LED of the photocoupler 42
  • the current I1 flowing through is also a sine wave (AC).
  • the LED of the photocoupler 42 does not react to a negative voltage. Therefore, the DC offset circuit 40 applies a DC offset voltage (Voffset) to the operational amplifier 37 so that the sine wave changes in the positive polarity region, and increases the negative voltage component induced in the third electrode 23. is doing.
  • Voffset DC offset voltage
  • FIG. 6 is a circuit diagram for explaining the operation of the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62.
  • the voltage measuring apparatus 1 when the calculation unit 23 turns on the switches SW1 and SW2 (first connection state and second connection state), as shown in FIG.
  • the second electrode voltage acquisition circuit 62 a current flows along a path indicated by a one-dot chain line.
  • the first electrode voltage acquisition circuit 61 acquires V11
  • the second electrode voltage acquisition circuit 62 acquires V12.
  • a voltage V11 is induced in the first electrode 21 by the measurement voltage VL, and this voltage V11 is input to the calculation unit 24 via the operational amplifier 33 and the A / D converter 34.
  • a voltage V12 is induced on the second electrode 22 by the measurement voltage VL, and this voltage V12 is input to the calculation unit 24 via the operational amplifier 35 and the A / D converter 36.
  • the calculation unit 24 uses the voltage Vin and the voltage V2 input from the capacitance detection voltage acquisition circuit 64, the coupling capacitance CL1 between the first electrode 21 and the core of the measurement wire 11, and the second electrode 22 and the measurement wire 11.
  • the coupling capacitance CL2 with the core wire is calculated.
  • the calculation unit 24 obtains a combined capacitance CL of the coupling capacitance CL1 and the coupling capacitance CL2 based on the circuit shown in FIG.
  • FIG. 7 is an equivalent circuit of the capacitance detection voltage acquisition circuit 64 shown in FIG.
  • the calculation unit 24 calculates the ratio between the coupling capacitance CL1 and the coupling capacitance CL2 from the voltage V11 input from the first electrode voltage acquisition circuit 61 and the voltage V12 input from the second electrode voltage acquisition circuit 62.
  • FIG. 8 is an equivalent circuit of the first electrode voltage acquisition circuit 61 shown in FIG. 6, and
  • FIG. 9 is an equivalent circuit of the second electrode voltage acquisition circuit 62 shown in FIG.
  • Equation (5) the absolute value of the impedance Z of the circuit of FIG. 8 is expressed by Equation (5). Since the voltage V11 is a voltage across the resistor R11 when the measurement voltage VL is divided by the coupling capacitor CL1 and the resistor R11, the voltage V11 is expressed by Equation (6). Since the circuit in FIG. 9 has the same configuration as the circuit in FIG. 8, the voltage 12 is expressed by Equation (7) in the same manner as the voltage 11. Further, when formula (6) is arranged for the measurement voltage VL, formula (8) is obtained.
  • Equation (9) requires measurement voltage VL by the following calculation.
  • the combined capacitance CL is calculated from the input voltage V2 by the equation (3).
  • the coupling capacity CL2 is calculated from the calculated combined capacity CL and Expression (4). The calculation of the coupling capacitance CL2 in this case is as follows.
  • the capacitance detection voltage acquisition circuit 64 is formed, and the switches SW1 and SW2 are turned on by the calculation unit 23.
  • the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62 are formed.
  • the capacitance detection voltage acquisition circuit 64 and the first to third electrode voltage acquisition circuits 61 to 63 are electrically insulated from each other.
  • a signal (injection signal) induced in the third electrode 23 by the measurement voltage VL is injected into the second electrode 22, and from the third electrode 23, injection into the second electrode 22 is performed. Only the voltage V2 induced in the first electrode 21 by the signal can be taken out.
  • the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62 the voltage V11 induced in the first electrode 21 by the measurement voltage VL and the voltage V12 induced in the second electrode 22 by the measurement voltage VL, respectively. Can be taken out.
  • the calculation unit 24 obtains coupling capacitances CL1 and CL2 between the core wire of the measurement electric wire 11 and the first electrode 21 and the second electrode 22 based on the voltage Vin and the voltage V2. Further, the calculation unit 24 obtains the measurement voltage VL from the coupling capacitors CL1 and CL2, the voltage V11, and the voltage V12.
  • the voltage measuring device 1 does not require a means for separating the mixed wave, and a measurement value error due to separation accuracy does not occur. Therefore, the voltage measuring apparatus 1 can accurately measure the measurement voltage VL with a simple configuration.
  • FIG. 10 is a longitudinal sectional view showing a substantial form of the voltage measuring apparatus 1
  • FIG. 11 is a perspective view of the detection unit shown in FIG.
  • the configurations shown in FIGS. 4 and 5 are the same for the voltage measuring devices of the other embodiments.
  • the voltage measurement device 1 includes a detection unit 141 and a calculation unit 24.
  • the detection unit 141 includes a housing part 142 separated into an upper housing part 143 and a lower housing part 144.
  • the upper housing part 143 and the lower housing part 144 are connected by a hinge 145, and the upper housing part 143 can be opened and closed with respect to the lower housing part 144.
  • a shield plate 146 is provided on the inner surface of the housing 142.
  • the second electrode 22 and the third electrode 23 are disposed on the upper surface portion of the lower housing portion 144, and the first electrode 21 is disposed on the lower surface portion of the upper housing portion 143 so as to face the second electrode 22. ing.
  • the first electrode 21, the second electrode 22, and the third electrode 23 are formed in a semi-cylindrical shape in which a cylinder is vertically divided. Therefore, when the upper housing part 143 is closed with respect to the lower housing part 144, a cylinder is formed by the first electrode 21 and the second electrode 22, and the first to third electrodes 21 are formed around the measurement wire 11.
  • reference numeral 12 denotes a core wire of the measurement electric wire 11
  • reference numeral 13 denotes an insulation coating of the measurement electric wire 11.
  • the arrangement form of the first to third electrodes 21 to 23 in the detection unit 141 is not limited to the above, and the measurement electric wire is obtained when the upper casing 143 is closed with respect to the lower casing 144. It is only necessary that the first to third electrodes 21 to 23 can be arranged around 11.
  • a detection circuit board 147 is arranged inside the lower housing part 144.
  • the detection circuit board 147 is provided with circuits other than the first to third electrodes 21 to 23 and the calculation unit 24 in the voltage measuring apparatus 1 shown in FIG.
  • the detection circuit board 147 is connected to the calculation unit 24 disposed outside the housing unit 142 via the connector 148 provided in the lower housing unit 144 and the cable 149.
  • the voltage measuring device 1 shown in FIGS. 1 and 10 is used in one set when the measuring wire 11 is a single-layer two-wire. Moreover, when the measurement electric wire 11 is a three-phase three-wire, three sets are used.
  • the voltage (measurement voltage) VL of the measurement wire 11 is applied to the first electrode 21 and the second electrode 22 via the third electrode 23.
  • a voltage may be applied to the first electrode 21 and the second electrode 22 from an AC voltage generation source (frequency is 1 kHz or less) independent of the measuring wire 11 to obtain the voltage Vin and the voltage V2.
  • the AC voltage generated by the AC voltage generation source is preferably close to the frequency of the voltage (measurement voltage) VL of the measuring wire 11, and is more preferably, for example, 200 Hz or less.
  • the AC voltage generation source may be connected to the GND 2 so as to generate AC from the output terminal of the operational amplifier 38.
  • the third electrode 23, the operational amplifier 37, the photocoupler 42, and the power supply voltage Vcc2 power supply that supplies Vcc2 are not required.
  • the calculation unit 24 is configured to turn on and off the switches SW1 and SW2, but the switches SW1 and SW2 may be controlled from the outside. In this case, the calculation unit 24 obtains information on the on / off control of the switches SW1 and SW2 (information on which timing is turned on and at which timing is turned off), and acquires the voltage at an appropriate timing.
  • the voltage measuring device of the present invention is a voltage measuring device that measures an AC voltage of an electric wire through an insulating coating of the electric wire, and the first electrode and the second electrode arranged around the insulating coating, and the first electrode is connected to the electric wire.
  • a first switching unit that switches between a first connection state that is electrically connected to a first ground common to the first ground and a first non-connection state that is not connected, and is grounded to the first ground, and the AC A first voltage acquisition circuit capable of acquiring a first electrode voltage induced in the first electrode by a voltage when the first switching unit is in the first connection state; and A second switching unit that switches between a second connection state that is electrically connected to the ground and a second non-connection state that is not connected, and is grounded to the first ground and connected to the second electrode by the AC voltage Induced second electrode
  • a second voltage acquisition circuit that can acquire a pressure when the second switching unit is in the second connection state, and a second ground that is insulated from the first ground, and the first When the switching unit is in the first disconnected state and the second switching unit is in the second disconnected state, the switching unit is induced in the first electrode by supplying an injection voltage to the second electrode.
  • a capacitance detection voltage acquisition circuit that can acquire a voltage as a capacitance detection voltage; and a calculation unit that calculates the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage. It is a configuration.
  • the first voltage acquisition circuit is grounded to the first ground common to the ground of the electric wire.
  • the first voltage acquisition circuit includes a first electrode that is induced in the first electrode by an AC voltage when the first switching unit is in a first connection state in which the first electrode is electrically connected to the first ground. Get the voltage.
  • the second voltage acquisition circuit is grounded to the first ground.
  • the second voltage acquisition circuit includes a second electrode that is induced in the second electrode by an AC voltage when the second switching unit is in a second connection state in which the second electrode is electrically connected to the first ground. Get the voltage.
  • the capacitance detection voltage acquisition circuit is grounded to a second ground that is insulated from the first ground.
  • the capacitance detection voltage acquisition circuit is in a first non-connected state in which the first switching unit does not electrically connect the first electrode to the first ground, and the second switching unit electrically connects the second electrode to the first ground.
  • the voltage induced in the first electrode is obtained as the capacitance detection voltage by supplying the injection voltage to the second electrode.
  • the calculation unit obtains the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
  • the capacitance detection voltage acquisition circuit may supply an AC injection voltage having the same frequency as the AC voltage of the electric wire.
  • capacitance detection voltage acquisition circuit acquires the voltage induced by the 1st electrode as a capacity
  • it is no longer affected by the difference in the relative dielectric constant of the insulation of the wire due to the difference between the frequency of the AC voltage of the wire and the frequency of the injection voltage, and the voltage of the wire is affected by changes in temperature and humidity. Without being able to measure accurately.
  • the voltage measuring device includes a third electrode disposed around the insulating coating, and a third electrode that is grounded to the first ground and that is induced in the third electrode by the AC voltage.
  • a voltage proportional to the third electrode voltage is applied as the injection voltage to the capacitance detection voltage acquisition circuit, and the third voltage acquisition circuit and the capacitance detection voltage acquisition circuit are insulated from each other. It is good also as a structure provided with the signal transmission part.
  • the third voltage acquisition circuit acquires the third electrode voltage induced in the third electrode by the AC voltage.
  • the signal transmission unit applies a voltage proportional to the third electrode voltage as an injection voltage to the capacitance detection voltage acquisition circuit, and is grounded to the third voltage acquisition circuit and the second ground that are grounded to the first ground. It is insulated from the capacitance detection voltage acquisition circuit.
  • the third voltage acquisition circuit provides the capacitance detection voltage acquisition circuit with the same voltage and frequency as those of the electric wire without providing a supply power supply for the injection voltage. Can do.
  • the signal transmission unit may be a photocoupler.
  • the signal transmission unit is a photocoupler, the signal transmission unit can be configured simply and inexpensively.
  • the third voltage acquisition circuit is connected to the light-emitting diode of the photocoupler, and the third electrode is such that the polarity of the third electrode voltage that is an AC voltage is always positive. It is good also as a structure provided with the offset circuit which raises a voltage.
  • the third electrode voltage which is an AC voltage
  • the offset circuit so that the polarity is always positive.
  • the capacitance detection voltage and the injection voltage may be input to the arithmetic unit via the photocoupler.
  • the capacitance detection voltage and the injection voltage are input to the calculation unit via the photocoupler, the capacitance detection voltage and the injection voltage are grounded to the first ground between the capacitance detection voltage acquisition circuit and the calculation unit. Even if a circuit is present, it is possible to ensure insulation between the circuit grounded to the first ground and the capacitance detection voltage acquisition circuit.
  • the calculation unit obtains each capacitance between the core wire of the electric wire and the first electrode and the second electrode from the capacitance detection voltage and the injected voltage, It is good also as a structure which calculates
  • the calculation unit can easily obtain the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
  • the injection voltage may have a frequency of 1 kHz or less.
  • the capacitance detection voltage acquisition circuit can supply a suitable injection voltage whose frequency is close to the frequency of the AC voltage of the electric wire to the second electrode.
  • the voltage measuring method of the present invention is a voltage measuring method for measuring an AC voltage of an electric wire through an insulating coating of the electric wire, wherein a first electrode is disposed around the insulating coating of the electric wire, and the first electrode is connected to a ground of the electric wire.
  • a voltage acquisition step the first electrode and the second electrode are not electrically connected to the first ground, and an injection voltage is supplied to the second electrode, thereby being insulated from the first ground.
  • a capacitance detection voltage acquisition step of acquiring a voltage induced at the first electrode as a capacitance detection voltage in a circuit grounded to the second ground, the first electrode voltage, the second electrode voltage, and the injection And a calculation step of obtaining the voltage of the electric wire from the voltage and the capacitance detection voltage.
  • the voltage of the wire to be measured can be accurately measured with a simple configuration, similar to the above voltage measuring device.
  • the present invention can be used as an AC voltage measuring device such as a commercial power source supplied to various devices.

Abstract

A voltage measurement device (1) is provided with first and second electrode voltage acquisition circuits (61, 62) that can be connected to and disconnected from a first ground (GND1), a capacitance detection voltage acquisition circuit (64) that is connected to a second ground (GND2) and is for acquiring a capacitance detection voltage that occurs in a first electrode (21) when voltage is applied to a second electrode (22), and a calculation unit (24) that calculates the voltage of a measurement wire (11) on the basis of the voltages of the first and second electrodes, an injection voltage, and the capacitance detection voltage.

Description

電圧計測装置および電圧計測方法Voltage measuring device and voltage measuring method
 本発明は、絶縁被覆されている電線の導体に印加されている交流の電圧を計測する電圧計測装置および電圧計測方法に関する。 The present invention relates to a voltage measuring device and a voltage measuring method for measuring an alternating voltage applied to a conductor of an insulated wire.
 従来、特許文献1に示されているように、計測電極を絶縁電線の導体に接触させることなく、絶縁電線に印加されている電圧を計測する技術が知られている。 Conventionally, as disclosed in Patent Document 1, a technique for measuring a voltage applied to an insulated wire without bringing a measurement electrode into contact with a conductor of the insulated wire is known.
 特許文献1に記載の構成では、電線の交流電圧を求め、基準交流電流と誘電損失電流との位相差から、電線を被覆する絶縁体の誘電正接を求め、この誘電正接の値により、先に求めた交流電圧を補正するようにしている。 In the configuration described in Patent Document 1, the AC voltage of the electric wire is obtained, and the dielectric loss tangent of the insulator covering the electric wire is obtained from the phase difference between the reference alternating current and the dielectric loss current. The obtained AC voltage is corrected.
 具体的には、電線の絶縁体に配した電極からの入力信号により、電線の導体と電極との間の結合容量を求め、この結合容量の値に基づき交流電圧を求めている。また、交流電圧に対して90°進んだ基準交流電流を絶縁体を通して検出している。また、絶縁体の誘電損失に伴う誘電損失電流を絶縁体を通して検出している。次に、これら基準交流電流(基準交流電圧)と誘電損失電流(誘電損失電圧)との位相差を求め、この位相差から絶縁体の誘電正接を算出している。さらに、誘電正接の値に基づき、先に求めた交流電圧値を補正している。 Specifically, the coupling capacity between the conductor of the wire and the electrode is obtained from the input signal from the electrode arranged on the insulator of the wire, and the AC voltage is obtained based on the value of this coupling capacity. Further, a reference alternating current advanced by 90 ° with respect to the alternating voltage is detected through an insulator. In addition, the dielectric loss current accompanying the dielectric loss of the insulator is detected through the insulator. Next, the phase difference between these reference AC current (reference AC voltage) and dielectric loss current (dielectric loss voltage) is obtained, and the dielectric loss tangent of the insulator is calculated from this phase difference. Further, the previously obtained AC voltage value is corrected based on the value of the dielectric loss tangent.
日本国公開特許公報「特開2004-177310号公報(2004年6月24日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-177310 (published on June 24, 2004)”
 しかしながら、特許文献1の構成では、二つの交流電圧(基準交流電圧、誘電損失電圧)の位相差を求め、求めた位相差から誘電正接を求める回路が必要となる。また、電線の導体と電極との間の結合容量を求めるために、容量が既知の2個のコンデンサ、およびこれらコンデンサを切り替えるスイッチを備えている。このため、回路構成が複雑になるという問題点を有している。 However, in the configuration of Patent Document 1, a circuit for obtaining a phase difference between two AC voltages (reference AC voltage and dielectric loss voltage) and obtaining a dielectric loss tangent from the obtained phase difference is required. Moreover, in order to obtain | require the coupling capacity | capacitance between the conductor of an electric wire and an electrode, the two capacitors with a known capacity | capacitance and the switch which switches these capacitors are provided. For this reason, there is a problem that the circuit configuration becomes complicated.
 したがって、本発明は、簡単な構成により計測電線の電圧を正確に計測することができる電圧計測装置および電圧計測方法の提供を目的としている。 Therefore, an object of the present invention is to provide a voltage measuring device and a voltage measuring method capable of accurately measuring the voltage of a measuring wire with a simple configuration.
 上記の課題を解決するために、本発明の電圧計測装置は、電線の交流電圧を電線の絶縁被覆を通して計測する電圧計測装置において、前記絶縁被覆の周りに配置される第1電極および第2電極と、前記第1電極を前記電線のグランドと共通の第1のグランドに電気的に接続させた第1接続状態と接続させない第1非接続状態とに切り替える第1切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第1電極に誘起される第1電極電圧を、前記第1切替部が前記第1接続状態であるときに取得し得る第1の電圧取得回路と、前記第2電極を前記第1のグランドに電気的に接続させた第2接続状態と接続させない第2非接続状態とに切り替える第2切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第2電極に誘起される第2電極電圧を、前記第2切替部が前記第2接続状態であるときに取得し得る第2の電圧取得回路と、前記第1のグランドと絶縁されている第2のグランドに接地され、前記第1切替部が前記第1非接続状態であり、かつ前記第2切替部が前記第2非接続状態であるときに、注入電圧を前記第2電極に供給することにより前記第1電極に誘起された電圧を容量検出電圧として取得し得る容量検出電圧取得回路と、前記第1電極電圧、前記第2電極電圧、前記注入電圧および前記容量検出電圧から前記電線の電圧を求める演算部とを備えていることを特徴としている。 In order to solve the above-described problems, a voltage measuring device according to the present invention is a voltage measuring device that measures an AC voltage of an electric wire through an insulating coating of the electric wire, and a first electrode and a second electrode arranged around the insulating coating. And a first switching unit that switches between a first connection state in which the first electrode is electrically connected to a first ground common to the ground of the electric wire and a first non-connection state in which the first electrode is not connected, A first voltage acquisition circuit that is grounded to one ground and that can acquire a first electrode voltage induced in the first electrode by the AC voltage when the first switching unit is in the first connection state; A second switching unit that switches between a second connection state in which the second electrode is electrically connected to the first ground and a second non-connection state in which the second electrode is not connected, and is grounded to the first ground, Before by the AC voltage A second voltage acquisition circuit that can acquire a second electrode voltage induced in the second electrode when the second switching unit is in the second connection state; and a second voltage acquisition circuit that is insulated from the first ground. When the first switching unit is in the first non-connected state and the second switching unit is in the second non-connected state, an injection voltage is supplied to the second electrode. A capacitance detection voltage acquisition circuit capable of acquiring a voltage induced in the first electrode as a capacitance detection voltage, and the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage. And an arithmetic unit for obtaining a voltage.
 本発明の構成によれば、簡単な構成により計測対象である電線の電圧を正確に計測することができる。 According to the configuration of the present invention, it is possible to accurately measure the voltage of the wire to be measured with a simple configuration.
本発明の実施の形態の電圧計測装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the voltage measuring device of embodiment of this invention. 図1に示した電圧計測装置の回路図において、容量検出電圧取得回路を他の回路と区別し、破線にて示した回路図である。In the circuit diagram of the voltage measuring apparatus shown in FIG. 1, the capacitance detection voltage acquisition circuit is distinguished from other circuits and is a circuit diagram indicated by a broken line. 図1に示した電圧計測装置における容量検出電圧取得回路の動作を説明する回路図である。It is a circuit diagram explaining the operation | movement of the capacity | capacitance detection voltage acquisition circuit in the voltage measuring device shown in FIG. 図1に示した第3電極電圧取得回路の動作を説明する回路図である。It is a circuit diagram explaining the operation | movement of the 3rd electrode voltage acquisition circuit shown in FIG. 図1に示した容量検出電圧取得回路における第3電極電圧取得回路近傍部分の動作を説明する回路図である。FIG. 6 is a circuit diagram illustrating an operation in the vicinity of a third electrode voltage acquisition circuit in the capacitance detection voltage acquisition circuit shown in FIG. 1. 図1に示した第1および第2電極電圧取得回路の動作を説明する回路図である。FIG. 2 is a circuit diagram illustrating operations of first and second electrode voltage acquisition circuits shown in FIG. 1. 図3に示した容量検出電圧取得回路の等価回路である。4 is an equivalent circuit of the capacitance detection voltage acquisition circuit shown in FIG. 3. 図6に示した第1電極電圧取得回路の等価回路である。It is an equivalent circuit of the 1st electrode voltage acquisition circuit shown in FIG. 図6に示した第2電極電圧取得回路の等価回路である。It is an equivalent circuit of the 2nd electrode voltage acquisition circuit shown in FIG. 図1に示した電圧計測装置の実体的な形態例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the substantive example of the voltage measuring device shown in FIG. 図10に示した検出ユニットの斜視図である。It is a perspective view of the detection unit shown in FIG.
 本発明の実施の形態を図面に基づいて以下に説明する。図1は、本発明の実施の形態の電圧計測装置1の構成を示す回路図である。図2は、図1に示した電圧計測装置1の回路図において、容量検出電圧取得回路64を他の回路と区別し、破線にて示した回路図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of a voltage measuring apparatus 1 according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing the capacitance detection voltage acquisition circuit 64 in a circuit diagram of the voltage measuring apparatus 1 shown in FIG.
 〔電圧計測装置1の概要〕
 本実施の形態の電圧計測装置1は、次の手順によって計測電線11の電圧(以下、計測電圧VLと称する)を計測する方式である。すなわち、図1に示す電圧(注入電圧)Vin、電圧(容量検出電圧)V2、電圧V(第1電極電圧)11および電圧V(第2電極電圧)12を計測する。次に、電圧Vinおよび電圧V2に基づいて、第1電極21と計測電線11の心線との結合容量CL1、および第2電極22と計測電線11の心線との結合容量CL2を求める。次に、これら結合容量CL1、CL2、電圧V11およびV12に基づいて計測電圧VLを求める。計測電圧VLを求める手順の詳細については後述する。
[Outline of voltage measuring device 1]
The voltage measuring device 1 according to the present embodiment is a method for measuring the voltage of the measuring wire 11 (hereinafter referred to as a measured voltage VL) by the following procedure. That is, the voltage (injection voltage) Vin, voltage (capacitance detection voltage) V2, voltage V (first electrode voltage) 11, and voltage V (second electrode voltage) 12 shown in FIG. 1 are measured. Next, based on the voltage Vin and the voltage V <b> 2, a coupling capacitance CL <b> 1 between the first electrode 21 and the measuring wire 11 and a coupling capacitance CL <b> 2 between the second electrode 22 and the measuring wire 11 are obtained. Next, the measurement voltage VL is obtained based on the coupling capacitors CL1 and CL2 and the voltages V11 and V12. Details of the procedure for obtaining the measurement voltage VL will be described later.
 ここで、本実施形態において、接地については、電圧計測対象の電線のアースと同じアースへの接地(例えば図1のGND1(第1のグランド);以下、アース接続と称する)と、電圧計測装置1のフレームへの接地(例えば図1のGND2(第2のグランド);以下、フレーム接続と称する)とを区別して示している。これらアース接続とフレーム接続とは互いに電気的に絶縁されている。 Here, in the present embodiment, with respect to grounding, grounding to the same ground as the ground of the voltage measurement target wire (for example, GND1 (first ground) in FIG. 1; hereinafter referred to as ground connection), and voltage measuring device 1 is distinguished from grounding to one frame (for example, GND2 (second ground) in FIG. 1; hereinafter referred to as frame connection). These ground connection and frame connection are electrically insulated from each other.
 〔電圧計測装置1の構成〕
 電圧計測装置1は、電圧計測対象の被覆電線である計測電線(電線)11の電圧を計測するものである。図1および図2に示すように、電圧計測装置1は、第1電極21、第2電極22、第3電極23、計算部(演算部)24、計算部24へ電圧Vin(注入電圧)、電圧V2(容量検出電圧)、電圧V11(第1電極電圧)および電圧V12(第2電極電圧)を供給する各回路、および電源回路44を備えている。第1電極21~第3電極23は計測電線11の外周に配置できるように、計測電線11の方向に所定幅を有する円弧形状となっている。なお、第1電極21および基準電極22の形状は、これに限定されず、例えば平板状など、計測電線11に接することができる形状であればよい。 第1電極21は、直列接続された抵抗R11およびスイッチ(第1切替部)SW1を介してアース接続されている。
[Configuration of Voltage Measuring Device 1]
The voltage measuring device 1 measures the voltage of a measuring wire (electric wire) 11 that is a covered wire for voltage measurement. As shown in FIGS. 1 and 2, the voltage measuring apparatus 1 includes a first electrode 21, a second electrode 22, a third electrode 23, a calculation unit (calculation unit) 24, a voltage Vin (injection voltage) to the calculation unit 24, Each circuit that supplies voltage V2 (capacitance detection voltage), voltage V11 (first electrode voltage), and voltage V12 (second electrode voltage), and a power supply circuit 44 are provided. The first electrode 21 to the third electrode 23 have an arc shape having a predetermined width in the direction of the measurement electric wire 11 so that the first electrode 21 to the third electrode 23 can be arranged on the outer periphery of the measurement electric wire 11. In addition, the shape of the 1st electrode 21 and the reference electrode 22 is not limited to this, What is necessary is just a shape which can contact | connect the measurement electric wire 11, such as flat form, for example. The first electrode 21 is grounded via a resistor R11 and a switch (first switching unit) SW1 connected in series.
 第1電極21から計算部24に至る回路は、第1および第2の回路が並列に存在する。第1の回路には、演算増幅器31および抵抗R2、A/D変換器32、並びに絶縁回路41が直列に設けられている。第2の回路には、演算増幅器33およびA/D変換器34が直列に設けられている。 The circuit from the first electrode 21 to the calculation unit 24 includes the first and second circuits in parallel. In the first circuit, an operational amplifier 31, a resistor R2, an A / D converter 32, and an insulating circuit 41 are provided in series. In the second circuit, an operational amplifier 33 and an A / D converter 34 are provided in series.
 第1電極21に接続されている、抵抗R11およびスイッチSW1を含む回路、並びに上記第2の回路は、第1電極電圧取得回路(第1の電圧取得回路)61を構成している。 The circuit including the resistor R 11 and the switch SW 1 connected to the first electrode 21 and the second circuit constitute a first electrode voltage acquisition circuit (first voltage acquisition circuit) 61.
 上記第1の回路において、抵抗R2は、演算増幅器31の反転入力端子31aと出力端子31cとの間に接続されている。演算増幅器31の非反転入力端子31bは、フレーム接続(GND2)されている。 In the first circuit, the resistor R2 is connected between the inverting input terminal 31a and the output terminal 31c of the operational amplifier 31. The non-inverting input terminal 31b of the operational amplifier 31 is frame-connected (GND2).
 第2電極22は、直列接続された抵抗R12およびスイッチ(第2切替部)SW2を介してアース接続(GND1)されている。第2電極22から計算部24に至る回路には、演算増幅器35およびA/D変換器36が直列に設けられている。第2電極22に接続されている、抵抗R12およびスイッチSW2を含む回路、並びに演算増幅器35およびA/D変換器36を含む回路は、第2電極電圧取得回路(第2の電圧取得回路)62を構成している。 The second electrode 22 is grounded (GND1) via a resistor R12 and a switch (second switching unit) SW2 connected in series. In the circuit from the second electrode 22 to the calculation unit 24, an operational amplifier 35 and an A / D converter 36 are provided in series. The circuit including the resistor R12 and the switch SW2 and the circuit including the operational amplifier 35 and the A / D converter 36 connected to the second electrode 22 are a second electrode voltage acquisition circuit (second voltage acquisition circuit) 62. Is configured.
 第3電極23から計算部24に至る回路には、演算増幅器37および抵抗Rf1、抵抗RF2、フォトカプラ(信号伝達部)42、演算増幅器38、A/D変換器39、並びに絶縁回路43が直列に設けられている。演算増幅器38とA/D変換器39との間には第2電極22が接続されている。 In the circuit from the third electrode 23 to the calculation unit 24, an operational amplifier 37, a resistor Rf1, a resistor RF2, a photocoupler (signal transmission unit) 42, an operational amplifier 38, an A / D converter 39, and an insulation circuit 43 are connected in series. Is provided. The second electrode 22 is connected between the operational amplifier 38 and the A / D converter 39.
 なお、絶縁回路41,43は、A/D変換器32,39を出力を計算部に24へ入力させ、かつ絶縁回路41,43の左右の回路を絶縁するものであり、このような機能を有する従来周知の汎用の回路や部品を使用することができる。 Insulation circuits 41 and 43 are those that cause the A / D converters 32 and 39 to output their inputs to the calculation unit 24 and insulate the left and right circuits of the insulation circuits 41 and 43. Conventionally known general-purpose circuits and components can be used.
 抵抗Rf1は、演算増幅器37の反転入力端子37aと出力端子37cとの間に接続されている。演算増幅器37の非反転入力端子37bは、DCオフセット回路40と接続されている。DCオフセット回路40は、第3電極23に誘起される正弦波の電圧が正極性の領域で変化するように、演算増幅器37にDCオフセット電圧(Voffset)を与えて、負電圧分を嵩上げするものである。 The resistor Rf1 is connected between the inverting input terminal 37a and the output terminal 37c of the operational amplifier 37. A non-inverting input terminal 37 b of the operational amplifier 37 is connected to the DC offset circuit 40. The DC offset circuit 40 applies a DC offset voltage (Voffset) to the operational amplifier 37 so as to increase the negative voltage so that the sine wave voltage induced in the third electrode 23 changes in the positive polarity region. It is.
 フォトカプラ42は、アノード42a、カソード42b、コレクタ42cおよびエミッタ42の各端子を有している。フォトカプラ42のアノード42aには抵抗RF2が接続され、カソード42bはアース接続(GND1)されている。コレクタ42cは演算増幅器38と接続され、エミッタ42dはフレーム接続(GND2)されている。コレクタ42cには、電源回路44から抵抗Rt1を介して電源電圧Vcc2が供給されている。 The photocoupler 42 has anode 42a, cathode 42b, collector 42c, and emitter 42 terminals. A resistor RF2 is connected to the anode 42a of the photocoupler 42, and a cathode 42b is connected to ground (GND1). The collector 42c is connected to the operational amplifier 38, and the emitter 42d is frame-connected (GND2). A power supply voltage Vcc2 is supplied from the power supply circuit 44 to the collector 42c via the resistor Rt1.
 第3電極23と接続されている演算増幅器37および抵抗Rf1、抵抗RF2、フォトカプラ42のLED、並びにDCオフセット回路40を含む回路は、第3電極電圧取得回路(第3の電圧取得回路)63を構成している。また、上記演算増幅器33、演算増幅器35および演算増幅器38は、ボルテージフォロワを構成し、バッファとしての機能を有する。 The circuit including the operational amplifier 37 connected to the third electrode 23, the resistor Rf1, the resistor RF2, the LED of the photocoupler 42, and the DC offset circuit 40 is a third electrode voltage acquisition circuit (third voltage acquisition circuit) 63. Is configured. The operational amplifier 33, the operational amplifier 35, and the operational amplifier 38 constitute a voltage follower and have a function as a buffer.
 また、第1電極21に接続されている上記第1の回路のうち、演算増幅器31、抵抗R2、A/D変換器32、および絶縁回路41、並びにフォトカプラ42のトランジスタと絶縁回路43との間の回路(絶縁回路43を含む)、すなわちフォトカプラ42のトランジスタ、抵抗Rt1、演算増幅器38、A/D変換器39、および絶縁回路43は、容量検出電圧取得回路64を構成している。 Of the first circuit connected to the first electrode 21, the operational amplifier 31, the resistor R 2, the A / D converter 32, the insulating circuit 41, and the transistor of the photocoupler 42 and the insulating circuit 43 A circuit between them (including the insulation circuit 43), that is, the transistor of the photocoupler 42, the resistor Rt1, the operational amplifier 38, the A / D converter 39, and the insulation circuit 43 constitute a capacitance detection voltage acquisition circuit 64.
 上記第1~第3電極電圧取得回路61~63はアース接続される一方、容量検出電圧取得回路64はフレーム接続され、容量検出電圧取得回路64は、第1~第3電極電圧取得回路61~63とは電気的に絶縁されている。 The first to third electrode voltage acquisition circuits 61 to 63 are grounded, while the capacitance detection voltage acquisition circuit 64 is frame-connected, and the capacitance detection voltage acquisition circuit 64 is connected to the first to third electrode voltage acquisition circuits 61 to 63 is electrically insulated.
 計算部24は、計測電線11と計算部24との間の回路から入力される電圧V2、電圧V11、V12および電圧Vinに基づいて、計測電線11の心線と第1電極21および第2電極22との間の結合容量CL1、CL2を求め、これら結合容量CL1、CL2から計測電圧VLを求める。計算部24には、電源回路44から電源電圧Vcc1が供給されている。 The calculation part 24 is based on the voltage V2, the voltage V11, V12, and the voltage Vin which are input from the circuit between the measurement electric wire 11 and the calculation part 24, the core wire of the measurement electric wire 11, the first electrode 21 and the second electrode. 22 is obtained, and the measurement voltage VL is obtained from these coupling capacitors CL1 and CL2. The calculator 24 is supplied with the power supply voltage Vcc1 from the power supply circuit 44.
 電源回路44は、上記のように、各部に対して電源電圧Vcc1あるいは電源電圧Vcc2を供給する。 The power supply circuit 44 supplies the power supply voltage Vcc1 or the power supply voltage Vcc2 to each unit as described above.
 なお、図1および図2に示した回路では、計算部24は、電源電圧Vcc1が供給され、かつアース接続(GND1)された構成となっている。しかしながら、これに限定されず、計算部24は、電源電圧Vcc2が供給され、かつフレーム接続(GND2)された構成であってもよい。この場合、計算部24は、アース接続(GND1)された回路と絶縁された構成とされる。 In the circuits shown in FIGS. 1 and 2, the calculation unit 24 is configured to be supplied with the power supply voltage Vcc1 and connected to the ground (GND1). However, the configuration is not limited to this, and the calculation unit 24 may be configured to be supplied with the power supply voltage Vcc2 and to be frame-connected (GND2). In this case, the calculation unit 24 is configured to be insulated from the circuit connected to the ground (GND1).
 〔電圧計測装置1の動作〕
 上記の構成において、電圧計測装置1の動作について以下に説明する。
電圧計測装置1により計測電圧VLを計測する場合には、第1電極21~第3電極23を計測電線11の絶縁被覆の外周面に配置する。この場合に、計測電線11の心線と第1電極21~第3電極23との間に生じる結合容量をそれぞれCL1~CL3とする。
[Operation of Voltage Measuring Device 1]
In the above configuration, the operation of the voltage measuring apparatus 1 will be described below.
When the measurement voltage VL is measured by the voltage measurement device 1, the first electrode 21 to the third electrode 23 are arranged on the outer peripheral surface of the insulation coating of the measurement wire 11. In this case, the coupling capacities generated between the core of the measuring wire 11 and the first electrode 21 to the third electrode 23 are defined as CL1 to CL3, respectively.
  (容量検出電圧取得回路64の動作)
 図3は、図1に示した電圧計測装置における容量検出電圧取得回路の動作を説明する回路図である。上記のように第1電極21~第3電極23を配置した状態において、計算部23によってスイッチSW1,SW2がオフにされた場合(第1非接続状態および第2非接続状態)、容量検出電圧取得回路64では、図3に示すように、二点鎖線にて示す経路にて電流が流れる。これにより、容量検出電圧取得回路64は、電圧Vinおよび電圧V2を取得する。
(Operation of the capacitance detection voltage acquisition circuit 64)
FIG. 3 is a circuit diagram for explaining the operation of the capacitance detection voltage acquisition circuit in the voltage measuring apparatus shown in FIG. In the state where the first electrode 21 to the third electrode 23 are arranged as described above, when the switches SW1 and SW2 are turned off by the calculation unit 23 (first unconnected state and second unconnected state), the capacitance detection voltage In the acquisition circuit 64, as shown in FIG. 3, a current flows along a path indicated by a two-dot chain line. Thereby, the capacitance detection voltage acquisition circuit 64 acquires the voltage Vin and the voltage V2.
 具体的には、第3電極電圧取得回路63により第3電極23から取得された信号は、フォトカプラ42を介して容量検出電圧取得回路64に入力される。この信号は、計測電圧VLと同周波数の信号である。容量検出電圧取得回路64では、図3に示した経路にて電流が流れ、第2電極22に対して信号注入が行われ、第1電極21から電圧V2を得ることができる。このとき、容量検出電圧取得回路64は第1~第3電極電圧取得回路61~63とは電気的に絶縁されているので、容量検出電圧取得回路64へは、第1電極21および第2電極22を介して、計測電線11の計測電圧VLによる信号が直接流入しない。したがって、電圧V2は、混合波とならず、第3電極23から注入された信号に応じた出力電圧として取り出すことができる。 Specifically, the signal acquired from the third electrode 23 by the third electrode voltage acquisition circuit 63 is input to the capacitance detection voltage acquisition circuit 64 via the photocoupler 42. This signal is a signal having the same frequency as the measurement voltage VL. In the capacitance detection voltage acquisition circuit 64, current flows through the path shown in FIG. 3, signal injection is performed on the second electrode 22, and the voltage V <b> 2 can be obtained from the first electrode 21. At this time, since the capacitance detection voltage acquisition circuit 64 is electrically insulated from the first to third electrode voltage acquisition circuits 61 to 63, the first electrode 21 and the second electrode are connected to the capacitance detection voltage acquisition circuit 64. The signal due to the measurement voltage VL of the measurement wire 11 does not flow directly through 22. Therefore, the voltage V2 does not become a mixed wave but can be taken out as an output voltage corresponding to the signal injected from the third electrode 23.
  (フォトカプラ42、DCオフセット回路40および周辺回路の動作)
 ここで、フォトカプラ42、DCオフセット回路40およびその周辺回路の動作について説明する。図4は、第3電極電圧取得回路63(フォトカプラ42のLED側の回路)の動作を説明する回路図である。図5は、容量検出電圧取得回路64(フォトカプラ42のトランジスタ側の回路)の動作を説明する回路図である。
(Operation of Photocoupler 42, DC Offset Circuit 40, and Peripheral Circuit)
Here, operations of the photocoupler 42, the DC offset circuit 40, and peripheral circuits thereof will be described. FIG. 4 is a circuit diagram for explaining the operation of the third electrode voltage acquisition circuit 63 (the circuit on the LED side of the photocoupler 42). FIG. 5 is a circuit diagram for explaining the operation of the capacitance detection voltage acquisition circuit 64 (circuit on the transistor side of the photocoupler 42).
 図4において、計測電圧VLが正弦波(交流)であるため、第3電極23に誘起される電圧(信号)、第3電極23の結合容量CL3を流れる全体電流I、およびフォトカプラ42のLEDを流れる電流I1も正弦波(交流)となる。一方、フォトカプラ42のLEDは負電圧には反応しない。そこで、DCオフセット回路40は、上記正弦波が正極性の領域で変化するように、演算増幅器37にDCオフセット電圧(Voffset)を与え、第3電極23に誘起される電圧の負電圧分を嵩上げしている。 In FIG. 4, since the measurement voltage VL is a sine wave (alternating current), the voltage (signal) induced in the third electrode 23, the total current I flowing through the coupling capacitance CL3 of the third electrode 23, and the LED of the photocoupler 42 The current I1 flowing through is also a sine wave (AC). On the other hand, the LED of the photocoupler 42 does not react to a negative voltage. Therefore, the DC offset circuit 40 applies a DC offset voltage (Voffset) to the operational amplifier 37 so that the sine wave changes in the positive polarity region, and increases the negative voltage component induced in the third electrode 23. is doing.
 この場合、フォトカプラ42のLEDの順電圧をVf、演算増幅器37の出力電圧をVoとすると、出力電圧VoおよびLEDを流れる電流I1は、
  Vo=Voffset-Rf1×I
  I1=(Vo-Vf)/Rf2
となる。
In this case, assuming that the forward voltage of the LED of the photocoupler 42 is Vf and the output voltage of the operational amplifier 37 is Vo, the output voltage Vo and the current I1 flowing through the LED are
Vo = Voffset−Rf1 × I
I1 = (Vo−Vf) / Rf2
It becomes.
 次に、図5において、フォトカプラ42のトランジスタを流れる電流をI2、演算増幅器38の出力電圧をVbufとすると、電流I2および出力電圧Vbufは、
  Vbuf=Vcc2-Rt1×I2
    I2=a×I1 (aはフォトカプラ42のトランジスタの増幅率)
となる。なお、Vbuf=Vinである。
Next, in FIG. 5, when the current flowing through the transistor of the photocoupler 42 is I2, and the output voltage of the operational amplifier 38 is Vbuf, the current I2 and the output voltage Vbuf are
Vbuf = Vcc2-Rt1 × I2
I2 = a × I1 (a is the amplification factor of the photocoupler 42 transistor)
It becomes. Note that Vbuf = Vin.
 次に、上記の各式を用いて出力電圧Vbufの式を書き換えると、
  Vbuf=Vcc2-Rt1×a×I1
      =Vcc2-(Rt1/Rf2)×a×(Vo-Vf)
      =Vcc2-(Rt1/Rf2)×a×(Voffset-Rf1×I-Vf)
となる。
Next, rewriting the expression of the output voltage Vbuf using the above expressions,
Vbuf = Vcc2-Rt1 × a × I1
= Vcc2− (Rt1 / Rf2) × a × (Vo−Vf)
= Vcc2− (Rt1 / Rf2) × a × (Voffset−Rf1 × I−Vf)
It becomes.
 上記Vbufの式において、電流Iは正弦波であり、電流I以外の要素は固定値である。したがって、Vbuf(=Vin)は、結合容量CL3を流れる全体電流Iと同じ周波数の正弦波となる。 In the above Vbuf equation, the current I is a sine wave, and elements other than the current I are fixed values. Therefore, Vbuf (= Vin) is a sine wave having the same frequency as the entire current I flowing through the coupling capacitor CL3.
  (第1および第2電極電圧取得回路61,62の動作)
 図6は、第1電極電圧取得回路61および第2電極電圧取得回路62の動作を説明する回路図である。
(Operations of the first and second electrode voltage acquisition circuits 61 and 62)
FIG. 6 is a circuit diagram for explaining the operation of the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62.
 一方、電圧計測装置1において、計算部23がスイッチSW1,SW2をオンにすると(第1接続状態および第2接続状態)、図6に示すように、第1電極電圧取得回路61では破線にて示す経路にて電流が流れ、第2電極電圧取得回路62では一点鎖線にて示す経路にて電流が流れる。第1電極電圧取得回路61はV11を取得するものであり、第2電極電圧取得回路62はV12を取得するものである。 On the other hand, in the voltage measuring apparatus 1, when the calculation unit 23 turns on the switches SW1 and SW2 (first connection state and second connection state), as shown in FIG. In the second electrode voltage acquisition circuit 62, a current flows along a path indicated by a one-dot chain line. The first electrode voltage acquisition circuit 61 acquires V11, and the second electrode voltage acquisition circuit 62 acquires V12.
 具体的には、計算部23によりスイッチSW1がオンにされることにより、第1電極21から、抵抗R11、スイッチSW1、およびアース接続された計測電線11を経て第1電極21に至るループにて電流が流れる。また、計算部23によりスイッチSW2がオンにされることにより、第2電極22から、抵抗R12、スイッチSW2、およびアース接続された計測電線11を経て第2電極22に至るループにて電流が流れる。 Specifically, when the switch SW1 is turned on by the calculation unit 23, in a loop from the first electrode 21 to the first electrode 21 via the resistor R11, the switch SW1, and the measurement wire 11 connected to the ground. Current flows. Further, when the switch SW2 is turned on by the calculation unit 23, a current flows in a loop from the second electrode 22 to the second electrode 22 via the resistor R12, the switch SW2, and the measurement wire 11 connected to the ground. .
 第1電極電圧取得回路61では、計測電圧VLにより第1電極21に電圧V11が誘起され、この電圧V11は、演算増幅器33およびA/D変換器34を経て計算部24に入力される。同様に、第2電極電圧取得回路62では、計測電圧VLにより第2電極22に電圧V12が誘起され、この電圧V12は、演算増幅器35およびA/D変換器36を経て計算部24に入力される。 In the first electrode voltage acquisition circuit 61, a voltage V11 is induced in the first electrode 21 by the measurement voltage VL, and this voltage V11 is input to the calculation unit 24 via the operational amplifier 33 and the A / D converter 34. Similarly, in the second electrode voltage acquisition circuit 62, a voltage V12 is induced on the second electrode 22 by the measurement voltage VL, and this voltage V12 is input to the calculation unit 24 via the operational amplifier 35 and the A / D converter 36. The
  (計算部24の動作)
 計算部24は、まず、容量検出電圧取得回路64から入力された電圧Vinおよび電圧V2から、第1電極21と計測電線11の心線との結合容量CL1、および第2電極22と計測電線11の心線との結合容量CL2を算出する。この場合、計算部24は、図7に示す回路に基づいて、結合容量CL1と結合容量CL2との合成容量CLを求める。図7は、図3に示した容量検出電圧取得回路64の等価回路である。
(Operation of the calculation unit 24)
First, the calculation unit 24 uses the voltage Vin and the voltage V2 input from the capacitance detection voltage acquisition circuit 64, the coupling capacitance CL1 between the first electrode 21 and the core of the measurement wire 11, and the second electrode 22 and the measurement wire 11. The coupling capacitance CL2 with the core wire is calculated. In this case, the calculation unit 24 obtains a combined capacitance CL of the coupling capacitance CL1 and the coupling capacitance CL2 based on the circuit shown in FIG. FIG. 7 is an equivalent circuit of the capacitance detection voltage acquisition circuit 64 shown in FIG.
 図7において、合成容量CLと抵抗R2とは直列接続であるから、図7の回路のインピーダンスZの絶対値は、式(1)のようになる。
Figure JPOXMLDOC01-appb-M000001
 電圧V2は、合成容量CLと抵抗R2とで電圧Vinを分圧した場合の抵抗R2の両端の電圧であるから、式(2)のようになる。
Figure JPOXMLDOC01-appb-M000002
 式(2)を合成容量CLで整理すると、式(3)のようになる。
Figure JPOXMLDOC01-appb-M000003
 また、合成容量CLと結合容量CL1および結合容量CL2には、式(4)の関係がある。
Figure JPOXMLDOC01-appb-M000004
 次に、計算部24は、第1電極電圧取得回路61から入力された電圧V11、および第2電極電圧取得回路62から入力された電圧V12から、結合容量CL1と結合容量CL2との比を算出する。図8は、図6に示した第1電極電圧取得回路61の等価回路、図9は、図6に示した第2電極電圧取得回路62の等価回路である。
In FIG. 7, since the composite capacitor CL and the resistor R2 are connected in series, the absolute value of the impedance Z of the circuit of FIG. 7 is expressed by Expression (1).
Figure JPOXMLDOC01-appb-M000001
Since the voltage V2 is a voltage at both ends of the resistor R2 when the voltage Vin is divided by the combined capacitor CL and the resistor R2, the equation (2) is obtained.
Figure JPOXMLDOC01-appb-M000002
When formula (2) is arranged by combined capacitance CL, formula (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
Further, the combined capacitance CL, the coupling capacitance CL1, and the coupling capacitance CL2 have the relationship of the formula (4).
Figure JPOXMLDOC01-appb-M000004
Next, the calculation unit 24 calculates the ratio between the coupling capacitance CL1 and the coupling capacitance CL2 from the voltage V11 input from the first electrode voltage acquisition circuit 61 and the voltage V12 input from the second electrode voltage acquisition circuit 62. To do. FIG. 8 is an equivalent circuit of the first electrode voltage acquisition circuit 61 shown in FIG. 6, and FIG. 9 is an equivalent circuit of the second electrode voltage acquisition circuit 62 shown in FIG.
 図8において、結合容量CL1と抵抗R11とは直列接続であるから、図8の回路のインピーダンスZの絶対値は、式(5)のようになる。
Figure JPOXMLDOC01-appb-M000005
 電圧V11は、結合容量CL1と抵抗R11とで計測電圧VLを分圧した場合の抵抗R11の両端の電圧であるから、式(6)のようになる。
Figure JPOXMLDOC01-appb-M000006
 図9の回路は図8の回路と同じ構成であるから、電圧12は、電圧11と同様にして、式(7)のようになる。
Figure JPOXMLDOC01-appb-M000007
 また、式(6)を計測電圧VLについて整理すると、式(8)のようになる。
Figure JPOXMLDOC01-appb-M000008
 式(6)および(7)から、R11=R12として、V12/V11とすると、未知数であるVLを消すことができ、式(9)のようになる。
Figure JPOXMLDOC01-appb-M000009
 次に、計算部24は、下記の計算により、計測電圧VLを求める。まず、入力された電圧V2から、式(3)により合成容量CLを算出する。次に、算出した合成容量CLおよび式(4)から、結合容量CL2を算出する。この場合の結合容量CL2の計算は次のようになる。
In FIG. 8, since the coupling capacitor CL1 and the resistor R11 are connected in series, the absolute value of the impedance Z of the circuit of FIG. 8 is expressed by Equation (5).
Figure JPOXMLDOC01-appb-M000005
Since the voltage V11 is a voltage across the resistor R11 when the measurement voltage VL is divided by the coupling capacitor CL1 and the resistor R11, the voltage V11 is expressed by Equation (6).
Figure JPOXMLDOC01-appb-M000006
Since the circuit in FIG. 9 has the same configuration as the circuit in FIG. 8, the voltage 12 is expressed by Equation (7) in the same manner as the voltage 11.
Figure JPOXMLDOC01-appb-M000007
Further, when formula (6) is arranged for the measurement voltage VL, formula (8) is obtained.
Figure JPOXMLDOC01-appb-M000008
From Equations (6) and (7), if R11 = R12 and V12 / V11, the unknown VL can be eliminated, and Equation (9) is obtained.
Figure JPOXMLDOC01-appb-M000009
Next, the calculation part 24 calculates | requires measurement voltage VL by the following calculation. First, the combined capacitance CL is calculated from the input voltage V2 by the equation (3). Next, the coupling capacity CL2 is calculated from the calculated combined capacity CL and Expression (4). The calculation of the coupling capacitance CL2 in this case is as follows.
  CL2=(1-CL)/(CL-1)×CL1
 次に、算出したCL2を式(9)に代入すると、未知数が結合容量CL1のみとなり、結合容量CL1を算出することができる。次に、算出した結合容量CL1を式(8)に代入して、計測電圧VLを算出する。
CL2 = (1-CL) / (CL-1) × CL1
Next, when the calculated CL2 is substituted into the equation (9), the unknown amount becomes only the coupling capacitance CL1, and the coupling capacitance CL1 can be calculated. Next, the measured coupling voltage CL1 is substituted into the equation (8) to calculate the measurement voltage VL.
 上記のように、電圧計測装置1では、計算部23によりスイッチSW1,SW2がオフにされた場合に、容量検出電圧取得回路64が形成され、計算部23によりスイッチSW1,SW2がオンにされた場合に、第1電極電圧取得回路61および第2電極電圧取得回路62が形成される。さらに、容量検出電圧取得回路64と第1~第3電極電圧取得回路61~63とは電気的に互いに絶縁されている。 As described above, in the voltage measuring apparatus 1, when the switches SW1 and SW2 are turned off by the calculation unit 23, the capacitance detection voltage acquisition circuit 64 is formed, and the switches SW1 and SW2 are turned on by the calculation unit 23. In this case, the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62 are formed. Further, the capacitance detection voltage acquisition circuit 64 and the first to third electrode voltage acquisition circuits 61 to 63 are electrically insulated from each other.
 したがって、容量検出電圧取得回路64では、計測電圧VLによって第3電極23に誘起された信号(注入信号)が第2電極22に注入され、第3電極23からは、第2電極22への注入信号によって第1電極21に誘起された電圧V2のみを取り出すことができる。また、第1電極電圧取得回路61および第2電極電圧取得回路62では、それぞれ計測電圧VLによって第1電極21に誘起される電圧V11、および計測電圧VLによって第2電極22に誘起される電圧V12を取り出すことができる。計算部24は、電圧Vinおよび電圧V2に基づいて計測電線11の心線と第1電極21および第2電極22との間の結合容量CL1、CL2を求める。さらに、計算部24は、これら結合容量CL1,CL2、電圧V11および電圧V12から計測電圧VLを求める。 Therefore, in the capacitance detection voltage acquisition circuit 64, a signal (injection signal) induced in the third electrode 23 by the measurement voltage VL is injected into the second electrode 22, and from the third electrode 23, injection into the second electrode 22 is performed. Only the voltage V2 induced in the first electrode 21 by the signal can be taken out. In the first electrode voltage acquisition circuit 61 and the second electrode voltage acquisition circuit 62, the voltage V11 induced in the first electrode 21 by the measurement voltage VL and the voltage V12 induced in the second electrode 22 by the measurement voltage VL, respectively. Can be taken out. The calculation unit 24 obtains coupling capacitances CL1 and CL2 between the core wire of the measurement electric wire 11 and the first electrode 21 and the second electrode 22 based on the voltage Vin and the voltage V2. Further, the calculation unit 24 obtains the measurement voltage VL from the coupling capacitors CL1 and CL2, the voltage V11, and the voltage V12.
 これにより、電圧計測装置1では、電圧V2を得るために、混合波を分離する手段を必要とせず、分離精度による計測値誤差が生じることがない。したがって、電圧計測装置1では、計測電圧VLを簡単な構成にて正確に計測することができる。 Thereby, in order to obtain the voltage V2, the voltage measuring device 1 does not require a means for separating the mixed wave, and a measurement value error due to separation accuracy does not occur. Therefore, the voltage measuring apparatus 1 can accurately measure the measurement voltage VL with a simple configuration.
 〔電圧計測装置1の実体的な形態例〕
 図10は、電圧計測装置1の実体的な形態例を示す縦断面図、図11は図10に示した検出ユニットの斜視図である。なお、図4および図5に示した構成は、他の実施の形態の電圧計測装置についても同様である。
[Substantial form of voltage measuring apparatus 1]
FIG. 10 is a longitudinal sectional view showing a substantial form of the voltage measuring apparatus 1, and FIG. 11 is a perspective view of the detection unit shown in FIG. The configurations shown in FIGS. 4 and 5 are the same for the voltage measuring devices of the other embodiments.
 図10に示すように、電圧計測装置1は、検出ユニット141と計算部24とを備えている。検出ユニット141は、上筐体部143と下筐体部144とに分離された筐体部142を備えている。上筐体部143と下筐体部144とはヒンジ145によって連結され、上筐体部143は下筐体部144に対して開閉可能となっている。また、筐体部142の内面には、シールド板146が設けられている。 As shown in FIG. 10, the voltage measurement device 1 includes a detection unit 141 and a calculation unit 24. The detection unit 141 includes a housing part 142 separated into an upper housing part 143 and a lower housing part 144. The upper housing part 143 and the lower housing part 144 are connected by a hinge 145, and the upper housing part 143 can be opened and closed with respect to the lower housing part 144. A shield plate 146 is provided on the inner surface of the housing 142.
 下筐体部144の上面部には、第2電極22および第3電極23が配置され、上筐体部143の下面部には、第2電極22と対向して第1電極21が配置されている。これら第1電極21、第2電極22および第3電極23は、円筒を縦割りした形状の半円筒形に形成されている。したがって、下筐体部144に対して上筐体部143を閉じた場合に、第1電極21と第2電極22とにより円筒が形成され、計測電線11の周りに第1~第3電極21~23を配置できるようになっている。なお、図10において、符号12は計測電線11の心線、符号13は計測電線11の絶縁被覆を示している。 The second electrode 22 and the third electrode 23 are disposed on the upper surface portion of the lower housing portion 144, and the first electrode 21 is disposed on the lower surface portion of the upper housing portion 143 so as to face the second electrode 22. ing. The first electrode 21, the second electrode 22, and the third electrode 23 are formed in a semi-cylindrical shape in which a cylinder is vertically divided. Therefore, when the upper housing part 143 is closed with respect to the lower housing part 144, a cylinder is formed by the first electrode 21 and the second electrode 22, and the first to third electrodes 21 are formed around the measurement wire 11. To 23 can be arranged. In FIG. 10, reference numeral 12 denotes a core wire of the measurement electric wire 11, and reference numeral 13 denotes an insulation coating of the measurement electric wire 11.
 なお、検出ユニット141における第1~第3電極21~23の配置形態については、上記のものに限定されず、下筐体部144に対して上筐体部143を閉じた場合に、計測電線11の周りに第1~第3電極21~23を配置できるようになっていればよい。 Note that the arrangement form of the first to third electrodes 21 to 23 in the detection unit 141 is not limited to the above, and the measurement electric wire is obtained when the upper casing 143 is closed with respect to the lower casing 144. It is only necessary that the first to third electrodes 21 to 23 can be arranged around 11.
 下筐体部144の内部には、検出回路基板147が配置されている。検出回路基板147には、図1に示した電圧計測装置1における第1~第3電極21~23および計算部24以外の回路が設けられている。検出回路基板147は、下筐体部144に設けられたコネクタ148、およびケーブル149を介して筐体部142の外部に配置される計算部24と接続されている。 A detection circuit board 147 is arranged inside the lower housing part 144. The detection circuit board 147 is provided with circuits other than the first to third electrodes 21 to 23 and the calculation unit 24 in the voltage measuring apparatus 1 shown in FIG. The detection circuit board 147 is connected to the calculation unit 24 disposed outside the housing unit 142 via the connector 148 provided in the lower housing unit 144 and the cable 149.
 なお、図1および図10に示した電圧計測装置1は、計測電線11が単層2線の場合には1セット使用される。また、計測電線11が三相3線の場合には3セット使用される。 The voltage measuring device 1 shown in FIGS. 1 and 10 is used in one set when the measuring wire 11 is a single-layer two-wire. Moreover, when the measurement electric wire 11 is a three-phase three-wire, three sets are used.
 また、本実施の形態では、計測電線11の電圧(計測電圧)VLを第3電極23を介して、第1電極21および第2電極22に印加する構成とした。しかしながら、これに代えて、計測電線11と独立した交流電圧発生源(周波数が1kHz以下)から第1電極21よび第2電極22に電圧を印加し、電圧Vinおよび電圧V2を取得してもよい。この場合、交流電圧発生源による交流電圧は、計測電線11の電圧(計測電圧)VLの周波数に近い方が好ましく、例えば200Hz以下であればなお好ましい。交流電圧発生源は、演算増幅器38の出力端子から交流を発生するようにして、GND2に接地されるように接続すればよい。この場合、第3電極23、演算増幅器37、フォトカプラ42および電源電圧Vcc2(Vcc2を供給する電源)は不要となる。 In the present embodiment, the voltage (measurement voltage) VL of the measurement wire 11 is applied to the first electrode 21 and the second electrode 22 via the third electrode 23. However, instead of this, a voltage may be applied to the first electrode 21 and the second electrode 22 from an AC voltage generation source (frequency is 1 kHz or less) independent of the measuring wire 11 to obtain the voltage Vin and the voltage V2. . In this case, the AC voltage generated by the AC voltage generation source is preferably close to the frequency of the voltage (measurement voltage) VL of the measuring wire 11, and is more preferably, for example, 200 Hz or less. The AC voltage generation source may be connected to the GND 2 so as to generate AC from the output terminal of the operational amplifier 38. In this case, the third electrode 23, the operational amplifier 37, the photocoupler 42, and the power supply voltage Vcc2 (power supply that supplies Vcc2) are not required.
 また、本実施の形態では、計算部24がスイッチSW1,SW2をオンオフ制御する構成としたが、スイッチSW1,SW2は、外部から制御されてもよい。この場合、計算部24は、スイッチSW1,SW2のオンオフ制御に関する情報(どのタイミングでオンにし、どのタイミングでオフにするかの情報)を得て適切なタイミングにて電圧を取得する。 In the present embodiment, the calculation unit 24 is configured to turn on and off the switches SW1 and SW2, but the switches SW1 and SW2 may be controlled from the outside. In this case, the calculation unit 24 obtains information on the on / off control of the switches SW1 and SW2 (information on which timing is turned on and at which timing is turned off), and acquires the voltage at an appropriate timing.
 〔まとめ〕
 本発明の電圧計測装置は、電線の交流電圧を電線の絶縁被覆を通して計測する電圧計測装置において、前記絶縁被覆の周りに配置される第1電極および第2電極と、前記第1電極を前記電線のグランドと共通の第1のグランドに電気的に接続させた第1接続状態と接続させない第1非接続状態とに切り替える第1切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第1電極に誘起される第1電極電圧を、前記第1切替部が前記第1接続状態であるときに取得し得る第1の電圧取得回路と、前記第2電極を前記第1のグランドに電気的に接続させた第2接続状態と接続させない第2非接続状態とに切り替える第2切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第2電極に誘起される第2電極電圧を、前記第2切替部が前記第2接続状態であるときに取得し得る第2の電圧取得回路と、前記第1のグランドと絶縁されている第2のグランドに接地され、前記第1切替部が前記第1非接続状態であり、かつ前記第2切替部が前記第2非接続状態であるときに、注入電圧を前記第2電極に供給することにより前記第1電極に誘起された電圧を容量検出電圧として取得し得る容量検出電圧取得回路と、前記第1電極電圧、前記第2電極電圧、前記注入電圧および前記容量検出電圧から前記電線の電圧を求める演算部とを備えている構成である。
[Summary]
The voltage measuring device of the present invention is a voltage measuring device that measures an AC voltage of an electric wire through an insulating coating of the electric wire, and the first electrode and the second electrode arranged around the insulating coating, and the first electrode is connected to the electric wire. A first switching unit that switches between a first connection state that is electrically connected to a first ground common to the first ground and a first non-connection state that is not connected, and is grounded to the first ground, and the AC A first voltage acquisition circuit capable of acquiring a first electrode voltage induced in the first electrode by a voltage when the first switching unit is in the first connection state; and A second switching unit that switches between a second connection state that is electrically connected to the ground and a second non-connection state that is not connected, and is grounded to the first ground and connected to the second electrode by the AC voltage Induced second electrode A second voltage acquisition circuit that can acquire a pressure when the second switching unit is in the second connection state, and a second ground that is insulated from the first ground, and the first When the switching unit is in the first disconnected state and the second switching unit is in the second disconnected state, the switching unit is induced in the first electrode by supplying an injection voltage to the second electrode. A capacitance detection voltage acquisition circuit that can acquire a voltage as a capacitance detection voltage; and a calculation unit that calculates the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage. It is a configuration.
 上記の構成によれば、第1の電圧取得回路は、電線のグランドと共通の第1のグランドに接地されている。第1の電圧取得回路は、第1切替部が第1電極を第1のグランドに電気的に接続させた第1接続状態であるときに、交流電圧によって第1電極に誘起される第1電極電圧を取得する。第2の電圧取得回路は、第1のグランドに接地されている。第2の電圧取得回路は、第2切替部が第2電極を第1のグランドに電気的に接続させた第2接続状態であるときに、交流電圧によって第2電極に誘起される第2電極電圧を取得する。容量検出電圧取得回路は、第1のグランドと絶縁されている第2のグランドに接地されている。容量検出電圧取得回路は、第1切替部が第1電極を第1のグランドに電気的に接続させない第1非接続状態であり、かつ第2切替部が第2電極を第1のグランドに電気的に接続させない第2非接続状態であるときに、注入電圧を第2電極に供給することにより第1電極に誘起された電圧を容量検出電圧として取得する。演算部は、第1電極電圧、第2電極電圧、注入電圧および容量検出電圧から電線の電圧を求める。 According to the above configuration, the first voltage acquisition circuit is grounded to the first ground common to the ground of the electric wire. The first voltage acquisition circuit includes a first electrode that is induced in the first electrode by an AC voltage when the first switching unit is in a first connection state in which the first electrode is electrically connected to the first ground. Get the voltage. The second voltage acquisition circuit is grounded to the first ground. The second voltage acquisition circuit includes a second electrode that is induced in the second electrode by an AC voltage when the second switching unit is in a second connection state in which the second electrode is electrically connected to the first ground. Get the voltage. The capacitance detection voltage acquisition circuit is grounded to a second ground that is insulated from the first ground. The capacitance detection voltage acquisition circuit is in a first non-connected state in which the first switching unit does not electrically connect the first electrode to the first ground, and the second switching unit electrically connects the second electrode to the first ground. In the second non-connected state in which the connection is not performed, the voltage induced in the first electrode is obtained as the capacitance detection voltage by supplying the injection voltage to the second electrode. The calculation unit obtains the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
 これにより、簡単な構成にて計測対象である電線の電圧を正確に計測することができる。 This makes it possible to accurately measure the voltage of the electric wire to be measured with a simple configuration.
 上記の電圧計測装置において、前記容量検出電圧取得回路は、前記電線の交流電圧と同じ周波数の交流の注入電圧を供給する構成としてもよい。 In the voltage measuring device, the capacitance detection voltage acquisition circuit may supply an AC injection voltage having the same frequency as the AC voltage of the electric wire.
 上記の構成によれば、容量検出電圧取得回路は、電線の交流電圧と同じ周波数の交流の注入電圧を第2電極に供給することにより第1電極に誘起された電圧を容量検出電圧として取得する。これにより、電線の交流電圧の周波数と注入電圧の周波数との違いに起因する電線の絶縁被覆の比誘電率の違いの影響を受けなくなり、電線の電圧を、温度や湿度の変化の影響を受けることなく、正確に計測することができる。 According to said structure, a capacity | capacitance detection voltage acquisition circuit acquires the voltage induced by the 1st electrode as a capacity | capacitance detection voltage by supplying the AC injection voltage of the same frequency as the AC voltage of an electric wire to a 2nd electrode. . As a result, it is no longer affected by the difference in the relative dielectric constant of the insulation of the wire due to the difference between the frequency of the AC voltage of the wire and the frequency of the injection voltage, and the voltage of the wire is affected by changes in temperature and humidity. Without being able to measure accurately.
 上記の電圧計測装置は、前記絶縁被覆の周りに配置される第3電極と、前記第1のグランドに接地され、前記交流電圧によって前記第3電極に誘起される第3電極電圧を取得する第3の電圧取得回路と、前記第3電極電圧に比例した電圧を前記注入電圧として前記容量検出電圧取得回路に与え、かつ前記第3の電圧取得回路と前記容量検出電圧取得回路とを絶縁している信号伝達部とを備えている構成としてもよい。 The voltage measuring device includes a third electrode disposed around the insulating coating, and a third electrode that is grounded to the first ground and that is induced in the third electrode by the AC voltage. A voltage proportional to the third electrode voltage is applied as the injection voltage to the capacitance detection voltage acquisition circuit, and the third voltage acquisition circuit and the capacitance detection voltage acquisition circuit are insulated from each other. It is good also as a structure provided with the signal transmission part.
 上記の構成によれば、第3の電圧取得回路は、交流電圧によって第3電極に誘起される第3電極電圧を取得する。信号伝達部は、第3電極電圧に比例した電圧を注入電圧として容量検出電圧取得回路に与え、かつ第1のグランドに接地されている第3の電圧取得回路と第2のグランドに接地されている容量検出電圧取得回路とを絶縁している。 According to the above configuration, the third voltage acquisition circuit acquires the third electrode voltage induced in the third electrode by the AC voltage. The signal transmission unit applies a voltage proportional to the third electrode voltage as an injection voltage to the capacitance detection voltage acquisition circuit, and is grounded to the third voltage acquisition circuit and the second ground that are grounded to the first ground. It is insulated from the capacitance detection voltage acquisition circuit.
 これにより、注入電圧の供給電源を別途備えることなく、第3の電圧取得回路から容量検出電圧取得回路に対して、電線の電圧と周波数が同じで、電線の電圧に比例した注入電圧を与えることができる。 Thus, the third voltage acquisition circuit provides the capacitance detection voltage acquisition circuit with the same voltage and frequency as those of the electric wire without providing a supply power supply for the injection voltage. Can do.
 上記の電圧計測装置において、前記信号伝達部はフォトカプラである構成としてもよい。 In the voltage measuring device, the signal transmission unit may be a photocoupler.
 上記の構成によれば、信号伝達部がフォトカプラであるので、信号伝達部を簡単かつ安価な構成とすることができる。 According to the above configuration, since the signal transmission unit is a photocoupler, the signal transmission unit can be configured simply and inexpensively.
 上記の電圧計測装置において、前記第3の電圧取得回路は、前記フォトカプラの発光ダイオードに接続され、交流電圧である前記第3電極電圧の極性が常に正極性となるように、前記第3電極電圧を嵩上げするオフセット回路を備えている構成としてもよい。 In the above voltage measuring device, the third voltage acquisition circuit is connected to the light-emitting diode of the photocoupler, and the third electrode is such that the polarity of the third electrode voltage that is an AC voltage is always positive. It is good also as a structure provided with the offset circuit which raises a voltage.
 上記の構成によれば、オフセット回路により、交流電圧である第3電極電圧は、極性が常に正極性となるように嵩上げされる。これにより、信号伝達部がフォトカプラである場合において、フォトカプラの発光ダイオードを適切に駆動し、フォトカプラによる良好な信号伝達機能を発揮させることができる。 According to the above configuration, the third electrode voltage, which is an AC voltage, is raised by the offset circuit so that the polarity is always positive. As a result, when the signal transmission unit is a photocoupler, the light-emitting diode of the photocoupler can be appropriately driven to exhibit a good signal transmission function by the photocoupler.
 上記の電圧計測装置において、前記容量検出電圧および前記注入電圧は、前記フォトカプラを介して前記演算部に入力されている構成としてもよい。 In the voltage measuring device, the capacitance detection voltage and the injection voltage may be input to the arithmetic unit via the photocoupler.
 上記の構成によれば、容量検出電圧および注入電圧は、フォトカプラを介して演算部に入力されているので、容量検出電圧取得回路と演算部との間に、第1のグランドに接地されている回路が存在していても、第1のグランドに接地されている回路と容量検出電圧取得回路との絶縁性を確保することができる。 According to the above configuration, since the capacitance detection voltage and the injection voltage are input to the calculation unit via the photocoupler, the capacitance detection voltage and the injection voltage are grounded to the first ground between the capacitance detection voltage acquisition circuit and the calculation unit. Even if a circuit is present, it is possible to ensure insulation between the circuit grounded to the first ground and the capacitance detection voltage acquisition circuit.
 上記の電圧計測装置において、前記演算部は、前記容量検出電圧および前記注入電圧から、前記電線の心線と前記第1電極および前記第2電極との間の各静電容量を求め、これら各静電容量、前記第1電極電圧および第2電極電圧から、前記電線の電圧を求める構成としてもよい。 In the voltage measuring apparatus, the calculation unit obtains each capacitance between the core wire of the electric wire and the first electrode and the second electrode from the capacitance detection voltage and the injected voltage, It is good also as a structure which calculates | requires the voltage of the said electric wire from an electrostatic capacitance, the said 1st electrode voltage, and a 2nd electrode voltage.
 上記の構成によれば、演算部は、第1電極電圧、第2電極電圧、注入電圧および容量検出電圧から電線の電圧を容易に求めることができる。 According to the above configuration, the calculation unit can easily obtain the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
 上記の電圧計測装置において、前記注入電圧は、周波数が1kHz以下である構成としてもよい。 In the voltage measuring device, the injection voltage may have a frequency of 1 kHz or less.
 上記の構成によれば、容量検出電圧取得回路は、周波数が電線の交流電圧の周波数に近い好適な注入電圧を第2電極へ供給することができる。 According to the above configuration, the capacitance detection voltage acquisition circuit can supply a suitable injection voltage whose frequency is close to the frequency of the AC voltage of the electric wire to the second electrode.
 本発明の電圧計測方法は、電線の交流電圧を電線の絶縁被覆を通して計測する電圧計測方法において、前記電線の絶縁被覆の周りに第1電極を配置し、前記第1電極を前記電線のグランドと共通の第1のグランドに電気的に接続させた状態として、前記交流電圧によって前記第1電極に誘起される第1電極電圧を取得する第1電極電圧取得工程と、前記電線の絶縁被覆の周りに第2電極を配置し、前記第2電極を前記第1のグランドに電気的に接続させた状態として、前記交流電圧によって前記第2電極に誘起される第2電極電圧を取得する第2電極電圧取得工程と、前記第1電極および前記第2電極を前記第1のグランドに電気的に接続させない状態とし、注入電圧を前記第2電極に供給することにより、前記第1のグランドと絶縁されている第2のグランドに接地された回路にて、前記第1電極に誘起された電圧を容量検出電圧として取得する容量検出電圧取得工程と、前記第1電極電圧、前記第2電極電圧、前記注入電圧および前記容量検出電圧から前記電線の電圧を求める演算工程とを備えていることを特徴としている。 The voltage measuring method of the present invention is a voltage measuring method for measuring an AC voltage of an electric wire through an insulating coating of the electric wire, wherein a first electrode is disposed around the insulating coating of the electric wire, and the first electrode is connected to a ground of the electric wire. A first electrode voltage acquisition step of acquiring a first electrode voltage induced in the first electrode by the AC voltage as a state of being electrically connected to a common first ground; A second electrode for obtaining a second electrode voltage induced in the second electrode by the AC voltage, with the second electrode disposed in a state where the second electrode is electrically connected to the first ground. In a voltage acquisition step, the first electrode and the second electrode are not electrically connected to the first ground, and an injection voltage is supplied to the second electrode, thereby being insulated from the first ground. A capacitance detection voltage acquisition step of acquiring a voltage induced at the first electrode as a capacitance detection voltage in a circuit grounded to the second ground, the first electrode voltage, the second electrode voltage, and the injection And a calculation step of obtaining the voltage of the electric wire from the voltage and the capacitance detection voltage.
 上記の構成によれば、上記の電圧計測装置と同様に、簡単な構成により計測対象である電線の電圧を正確に計測することができる。 According to the above configuration, the voltage of the wire to be measured can be accurately measured with a simple configuration, similar to the above voltage measuring device.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in the embodiments are also included. It is included in the technical scope of the present invention.
 本発明は、各種機器に供給されている商用電源等の交流電圧の測定機器として利用することができる。 The present invention can be used as an AC voltage measuring device such as a commercial power source supplied to various devices.
  1  電圧計測装置
 11  計測電線
 21  第1電極
 22  第2電極
 23  第3電極
 24  計算部(演算部)
 31  演算増幅器
 33  演算増幅器
 40  DCオフセット回路
 41  絶縁回路
 42  フォトカプラ(信号伝達部)
 43  絶縁回路
 44  電源回路
 61  第1電極電圧取得回路(第1の電圧取得回路)
 62  第2電極電圧取得回路(第2の電圧取得回路)
 63  第3電極電圧取得回路(第3の電圧取得回路)
 64  容量検出電圧取得回路
 V2  電圧(容量検出電圧)
V11  電圧(第1電極電圧)
V12  電圧(第2電極電圧)
Vin  電圧(注入電圧)
 VL  計測電圧
CL1  結合容量
CL2  結合容量
GND1 第1のグランド
GND2 第2のグランド
SW1  スイッチ(第1切替部)
SW2  スイッチ(第2切替部)
DESCRIPTION OF SYMBOLS 1 Voltage measuring device 11 Measurement electric wire 21 1st electrode 22 2nd electrode 23 3rd electrode 24 Calculation part (calculation part)
31 operational amplifier 33 operational amplifier 40 DC offset circuit 41 insulation circuit 42 photocoupler (signal transmission unit)
43 Insulation circuit 44 Power supply circuit 61 First electrode voltage acquisition circuit (first voltage acquisition circuit)
62 Second electrode voltage acquisition circuit (second voltage acquisition circuit)
63 Third electrode voltage acquisition circuit (third voltage acquisition circuit)
64 Capacitance detection voltage acquisition circuit V2 voltage (capacitance detection voltage)
V11 voltage (first electrode voltage)
V12 voltage (second electrode voltage)
Vin voltage (injection voltage)
VL Measurement voltage CL1 Coupling capacitor CL2 Coupling capacitor GND1 First ground GND2 Second ground SW1 Switch (first switching unit)
SW2 switch (second switching part)

Claims (9)

  1.  電線の交流電圧を電線の絶縁被覆を通して計測する電圧計測装置において、
     前記絶縁被覆の周りに配置される第1電極および第2電極と、
     前記第1電極を前記電線のグランドと共通の第1のグランドに電気的に接続させた第1接続状態と接続させない第1非接続状態とに切り替える第1切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第1電極に誘起される第1電極電圧を、前記第1切替部が前記第1接続状態であるときに取得し得る第1の電圧取得回路と、
     前記第2電極を前記第1のグランドに電気的に接続させた第2接続状態と接続させない第2非接続状態とに切り替える第2切替部を有し、前記第1のグランドに接地され、前記交流電圧によって前記第2電極に誘起される第2電極電圧を、前記第2切替部が前記第2接続状態であるときに取得し得る第2の電圧取得回路と、
     前記第1のグランドと絶縁されている第2のグランドに接地され、前記第1切替部が前記第1非接続状態であり、かつ前記第2切替部が前記第2非接続状態であるときに、注入電圧を前記第2電極に供給することにより前記第1電極に誘起された電圧を容量検出電圧として取得し得る容量検出電圧取得回路と、
     前記第1電極電圧、前記第2電極電圧、前記注入電圧および前記容量検出電圧から前記電線の電圧を求める演算部とを備えていることを特徴とする電圧計測装置。
    In a voltage measuring device that measures the AC voltage of a wire through the insulation of the wire,
    A first electrode and a second electrode disposed around the insulating coating;
    A first switching unit that switches between a first connection state in which the first electrode is electrically connected to a first ground common to the ground of the electric wire and a first non-connection state in which the first electrode is not connected; A first voltage acquisition circuit capable of acquiring a first electrode voltage grounded to ground and induced in the first electrode by the AC voltage when the first switching unit is in the first connection state;
    A second switching unit that switches between a second connection state in which the second electrode is electrically connected to the first ground and a second non-connection state in which the second electrode is not connected, and is grounded to the first ground; A second voltage acquisition circuit capable of acquiring a second electrode voltage induced in the second electrode by an AC voltage when the second switching unit is in the second connection state;
    When grounded to a second ground that is insulated from the first ground, the first switching unit is in the first non-connected state, and the second switching unit is in the second non-connected state A capacitance detection voltage acquisition circuit capable of acquiring a voltage induced in the first electrode by supplying an injection voltage to the second electrode as a capacitance detection voltage;
    A voltage measuring device comprising: an arithmetic unit that obtains the voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
  2.  前記容量検出電圧取得回路は、前記電線の交流電圧と同じ周波数の交流の注入電圧を供給することを特徴とする請求項1に記載の電圧計測装置。 The voltage measuring device according to claim 1, wherein the capacitance detection voltage acquisition circuit supplies an AC injection voltage having the same frequency as the AC voltage of the electric wire.
  3.  前記絶縁被覆の周りに配置される第3電極と、
     前記第1のグランドに接地され、前記交流電圧によって前記第3電極に誘起される第3電極電圧を取得する第3の電圧取得回路と、
     前記第3電極電圧に比例した電圧を前記注入電圧として前記容量検出電圧取得回路に与え、かつ前記第3の電圧取得回路と前記容量検出電圧取得回路とを絶縁している信号伝達部とを備えていることを特徴とする請求項2に記載の電圧計測装置。
    A third electrode disposed around the insulating coating;
    A third voltage acquisition circuit that is grounded to the first ground and acquires a third electrode voltage induced in the third electrode by the AC voltage;
    A signal transmission unit that applies a voltage proportional to the third electrode voltage as the injection voltage to the capacitance detection voltage acquisition circuit and insulates the third voltage acquisition circuit from the capacitance detection voltage acquisition circuit; The voltage measuring device according to claim 2, wherein
  4.  前記信号伝達部はフォトカプラであることを特徴とする請求項3に記載の電圧計測装置。 4. The voltage measuring device according to claim 3, wherein the signal transmission unit is a photocoupler.
  5.  前記第3の電圧取得回路は、前記フォトカプラの発光ダイオードに接続され、交流電圧である前記第3電極電圧の極性が常に正極性となるように、前記第3電極電圧を嵩上げするオフセット回路を備えていることを特徴とする請求項4に記載の電圧計測装置。 The third voltage acquisition circuit is connected to a light emitting diode of the photocoupler, and includes an offset circuit for raising the third electrode voltage so that the polarity of the third electrode voltage, which is an AC voltage, is always positive. The voltage measuring device according to claim 4, wherein the voltage measuring device is provided.
  6.  前記容量検出電圧および前記注入電圧は、前記フォトカプラを介して前記演算部に入力されていることを特徴とする請求項4に記載の電圧計測装置。 The voltage measuring device according to claim 4, wherein the capacitance detection voltage and the injection voltage are input to the arithmetic unit via the photocoupler.
  7.  前記演算部は、前記容量検出電圧および前記注入電圧から、前記電線の心線と前記第1電極および前記第2電極との間の各静電容量を求め、これら各静電容量、前記第1電極電圧および第2電極電圧から、前記電線の電圧を求めることを特徴とする請求項1から6のいずれか1項に記載の電圧計測装置。 The calculation unit obtains each capacitance between the core wire of the electric wire and the first electrode and the second electrode from the capacitance detection voltage and the injection voltage, and each of the capacitance, the first The voltage measuring device according to claim 1, wherein the voltage of the electric wire is obtained from an electrode voltage and a second electrode voltage.
  8.  前記注入電圧は、周波数が1kHz以下であることを特徴とする請求項1に記載の電圧計測装置。 The voltage measuring device according to claim 1, wherein the injection voltage has a frequency of 1 kHz or less.
  9.  電線の交流電圧を電線の絶縁被覆を通して計測する電圧計測方法において、
     前記電線の絶縁被覆の周りに第1電極を配置し、前記第1電極を前記電線のグランドと共通の第1のグランドに電気的に接続させた状態として、前記交流電圧によって前記第1電極に誘起される第1電極電圧を取得する第1電極電圧取得工程と、
     前記電線の絶縁被覆の周りに第2電極を配置し、前記第2電極を前記第1のグランドに電気的に接続させた状態として、前記交流電圧によって前記第2電極に誘起される第2電極電圧を取得する第2電極電圧取得工程と、
     前記第1電極および前記第2電極を前記第1のグランドに電気的に接続させない状態とし、注入電圧を前記第2電極に供給することにより、前記第1のグランドと絶縁されている第2のグランドに接地された回路にて、前記第1電極に誘起された電圧を容量検出電圧として取得する容量検出電圧取得工程と、
     前記第1電極電圧、前記第2電極電圧、前記注入電圧および前記容量検出電圧から前記電線の電圧を求める演算工程とを備えていることを特徴とする電圧計測方法。
    In the voltage measurement method that measures the AC voltage of the wire through the insulation of the wire,
    A first electrode is disposed around the insulation coating of the electric wire, and the first electrode is electrically connected to a first ground common to the electric wire ground, and the first electrode is connected to the first electrode by the AC voltage. A first electrode voltage acquisition step of acquiring an induced first electrode voltage;
    A second electrode which is induced in the second electrode by the AC voltage in a state where a second electrode is arranged around the insulation coating of the electric wire and the second electrode is electrically connected to the first ground. A second electrode voltage acquisition step of acquiring a voltage;
    The first electrode and the second electrode are not electrically connected to the first ground, and an injection voltage is supplied to the second electrode, so that the second electrode is insulated from the first ground. A capacitance detection voltage acquisition step of acquiring a voltage induced in the first electrode as a capacitance detection voltage in a circuit grounded to ground;
    A voltage measuring method comprising: a calculation step of obtaining a voltage of the electric wire from the first electrode voltage, the second electrode voltage, the injection voltage, and the capacitance detection voltage.
PCT/JP2015/055259 2014-05-26 2015-02-24 Voltage measurement device and voltage measurement method WO2015182187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-108060 2014-05-26
JP2014108060A JP6372164B2 (en) 2014-05-26 2014-05-26 Voltage measuring device and voltage measuring method

Publications (1)

Publication Number Publication Date
WO2015182187A1 true WO2015182187A1 (en) 2015-12-03

Family

ID=54698529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055259 WO2015182187A1 (en) 2014-05-26 2015-02-24 Voltage measurement device and voltage measurement method

Country Status (2)

Country Link
JP (1) JP6372164B2 (en)
WO (1) WO2015182187A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116044A (en) * 2016-11-11 2018-07-26 フルークコーポレイションFluke Corporation Non-contact voltage measurement system using multiple capacitors
CN110749770A (en) * 2019-06-25 2020-02-04 深圳市聚芯影像有限公司 Commercial power detection sampling circuit
TWI749941B (en) * 2020-12-08 2021-12-11 興城科技股份有限公司 Detecting device for abnormal coupled capacitance and detecting method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004364A (en) * 2016-06-30 2018-01-11 東日本旅客鉄道株式会社 Wind speed monitoring device
JP7263019B2 (en) * 2019-01-15 2023-04-24 キヤノン株式会社 Voltage detection device and image forming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682491A (en) * 1992-09-02 1994-03-22 Nissin Electric Co Ltd Simplified voltage measuring device
JP2006084380A (en) * 2004-09-17 2006-03-30 Yokogawa Electric Corp Noncontact voltage measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682491A (en) * 1992-09-02 1994-03-22 Nissin Electric Co Ltd Simplified voltage measuring device
JP2006084380A (en) * 2004-09-17 2006-03-30 Yokogawa Electric Corp Noncontact voltage measuring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116044A (en) * 2016-11-11 2018-07-26 フルークコーポレイションFluke Corporation Non-contact voltage measurement system using multiple capacitors
JP7199804B2 (en) 2016-11-11 2023-01-06 フルークコーポレイション Non-contact voltage measurement system using multiple capacitors
CN110749770A (en) * 2019-06-25 2020-02-04 深圳市聚芯影像有限公司 Commercial power detection sampling circuit
TWI749941B (en) * 2020-12-08 2021-12-11 興城科技股份有限公司 Detecting device for abnormal coupled capacitance and detecting method thereof

Also Published As

Publication number Publication date
JP6372164B2 (en) 2018-08-15
JP2015224886A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
WO2015182187A1 (en) Voltage measurement device and voltage measurement method
US10228395B2 (en) Non-contact voltage measurement device
US9778294B2 (en) Non-contact AC voltage measurement device
WO2015083618A1 (en) Contactless voltage measurement device and method
EP3143416A1 (en) A partial discharge acquisition system comprising a capacitive coupling electric field sensor
US9518889B2 (en) Water leakage detection device
JP2002055126A (en) Non-contact type voltage measuring method and device therefor
TW201830033A (en) Sensor subsystems for non-contact voltage measurement devices
JP2010025918A (en) Voltage detection device and line voltage detection device
WO2015178051A1 (en) Voltage measurement device and voltage measurement method
WO2016189864A1 (en) Probe and voltage measuring device using same
JP2006084380A (en) Noncontact voltage measuring system
KR20160088779A (en) Apparatus for measuring electrical characteristics
TWI490505B (en) Voltage measurement apparatus
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP4251961B2 (en) Non-contact voltage measuring device
WO2021090478A1 (en) Non-contact voltage observation device
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
JP2019191141A (en) Environment detection device
WO2021090479A1 (en) Measurement assistance device, non-contact voltage observation device, and non-contact voltage observation system
JP2020030165A (en) Common-mode voltage measuring apparatus and common-mode voltage measuring method
JP6354332B2 (en) Voltage measuring device and voltage measuring method
JP2004177310A (en) Dielectric loss tangent-measuring device and non-contact voltage measuring device using the same
WO2015125761A1 (en) Voltage measurement device, and voltage measurement method
JP2010256125A (en) Voltage detection apparatus and line voltage detecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798730

Country of ref document: EP

Kind code of ref document: A1