JP2020143592A - Condensed water treatment device - Google Patents
Condensed water treatment device Download PDFInfo
- Publication number
- JP2020143592A JP2020143592A JP2019039218A JP2019039218A JP2020143592A JP 2020143592 A JP2020143592 A JP 2020143592A JP 2019039218 A JP2019039218 A JP 2019039218A JP 2019039218 A JP2019039218 A JP 2019039218A JP 2020143592 A JP2020143592 A JP 2020143592A
- Authority
- JP
- Japan
- Prior art keywords
- condensed water
- internal combustion
- combustion engine
- control unit
- stop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 204
- 238000002485 combustion reaction Methods 0.000 claims abstract description 140
- 238000001816 cooling Methods 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 59
- 238000010926 purge Methods 0.000 description 35
- 239000000498 cooling water Substances 0.000 description 16
- 238000000746 purification Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 239000000446 fuel Substances 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000001629 suppression Effects 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910005580 NiCd Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、凝縮水処理装置、特に車両に搭載される凝縮水処理装置に関する。 The present invention relates to a condensed water treatment device, particularly a condensed water treatment device mounted on a vehicle.
従来、内燃機関の吸気に含まれる水分が凝縮し、吸気通路に凝縮水が生成され、その凝縮水が滞留することが知られている。特に、低圧排気循環装置および吸気冷却装置(インタークーラ)を備える内燃機関では、排気ガスが吸気通路に循環される。循環された排気ガスが吸気冷却装置によって冷却されることで凝縮水が生成され、生成された凝縮水が吸気冷却装置の下流に滞留する。 Conventionally, it is known that water contained in the intake air of an internal combustion engine is condensed, condensed water is generated in an intake passage, and the condensed water stays there. In particular, in an internal combustion engine provided with a low-pressure exhaust gas recirculation device and an intake air cooling device (intercooler), exhaust gas is circulated in the intake passage. The circulated exhaust gas is cooled by the intake air cooling device to generate condensed water, and the generated condensed water stays downstream of the intake air cooling device.
また、凝縮水を処理するための凝縮水処理装置が知られている(例えば特許文献1および特許文献2参照)。特許文献1の凝縮水処理装置は、凝縮水貯蔵タンクと排気通路とを連通するバイパス通路を備える。凝縮水処理装置は、内燃機関の停止後に電動過給機を駆動することで、凝縮水貯蔵タンク内の凝縮水を、バイパス通路を介して排気通路に排出させる。これにより、凝縮水が排気通路で処理される。また、特許文献2の凝縮水処理装置では、吸気通路に付着した凝縮水を内燃機関に均等に分配して内燃機関で燃焼させ、凝縮水処理装置が凝縮水を処理する。 Further, a condensed water treatment apparatus for treating condensed water is known (see, for example, Patent Document 1 and Patent Document 2). The condensed water treatment device of Patent Document 1 includes a bypass passage that connects the condensed water storage tank and the exhaust passage. The condensed water treatment device drives the electric supercharger after the internal combustion engine is stopped, so that the condensed water in the condensed water storage tank is discharged to the exhaust passage through the bypass passage. As a result, the condensed water is treated in the exhaust passage. Further, in the condensed water treatment apparatus of Patent Document 2, the condensed water adhering to the intake passage is evenly distributed to the internal combustion engine and burned in the internal combustion engine, and the condensed water treatment apparatus treats the condensed water.
しかし、特許文献1の凝縮水処理装置では、凝縮水を排気通路に排出するため、排気通路に凝縮水が付着するという問題がある。また、凝縮水には排気ガス成分などが含まれるため、これら成分が排気ガスに含まれて排出されると排気浄化性能が損なうという問題がある。一方、特許文献2の凝縮水処理装置のように、凝縮水を内燃機関で燃焼させて処理する場合、凝縮水が処理可能な内燃機関の運転状態でなければ、内燃機関の排気浄化性能および出力性能を損なう原因となる。 However, in the condensed water treatment apparatus of Patent Document 1, since the condensed water is discharged to the exhaust passage, there is a problem that the condensed water adheres to the exhaust passage. Further, since the condensed water contains an exhaust gas component and the like, there is a problem that the exhaust purification performance is impaired if these components are contained in the exhaust gas and discharged. On the other hand, when the condensed water is burned and processed by the internal combustion engine as in the condensed water treatment device of Patent Document 2, the exhaust gas purification performance and output of the internal combustion engine are not good unless the condensed water is in an operating state where the internal combustion engine can be treated. It causes a loss of performance.
本発明の課題は、内燃機関の排気浄化性能および出力性能を損なうことなく、凝縮水を処理できる凝縮水処理装置を提供することにある。 An object of the present invention is to provide a condensed water treatment apparatus capable of treating condensed water without impairing the exhaust gas purification performance and output performance of an internal combustion engine.
本発明に係る凝縮水処理装置は、車両に搭載される内燃機関の凝縮水を処理する装置である。凝縮水処理装置は、算出部と、指示部と、制御部と、を備える。算出部は、内燃機関の吸気通路に生成された凝縮水量を算出する。指示部は、内燃機関の停止を指示する。制御部は、指示部が内燃機関の停止を指示した場合に、算出部で算出した凝縮水量が所定量以上の場合は、内燃機関を所定期間運転させ、凝縮水を内燃機関で燃焼させて処理する。 The condensed water treatment device according to the present invention is a device for treating condensed water of an internal combustion engine mounted on a vehicle. The condensed water treatment device includes a calculation unit, an instruction unit, and a control unit. The calculation unit calculates the amount of condensed water generated in the intake passage of the internal combustion engine. The instruction unit instructs the internal combustion engine to stop. When the instruction unit instructs the internal combustion engine to stop, if the amount of condensed water calculated by the calculation unit is equal to or greater than a predetermined amount, the control unit operates the internal combustion engine for a predetermined period and burns the condensed water in the internal combustion engine for processing. To do.
この凝縮水処理装置では、指示部から内燃機関を停止する指示があった場合に、凝縮水量が所定量以上であれば、凝縮水を内燃機関で燃焼させて処理する。すなわち、内燃機関の出力が要求されていない状態で、内燃機関を運転し凝縮水を燃焼させることができる。内燃機関に出力が要求されていなければ、内燃機関を、凝縮水を燃焼させるために最適な運転状態にできる。この結果、内燃機関の出力性能、排気浄化性能を損なうことなく、凝縮水を処理できる。 In this condensed water treatment device, when the instruction unit instructs to stop the internal combustion engine, if the amount of condensed water is a predetermined amount or more, the condensed water is burned by the internal combustion engine for treatment. That is, the internal combustion engine can be operated to burn the condensed water in a state where the output of the internal combustion engine is not required. If the internal combustion engine is not required to output, the internal combustion engine can be put into an optimum operating state for burning condensed water. As a result, the condensed water can be treated without impairing the output performance and the exhaust gas purification performance of the internal combustion engine.
凝縮水処理装置は、内燃機関に吸入される吸気を冷却する吸気冷却装置をさらに備えてもよい。制御部は、凝縮水を処理する場合に、吸気冷却装置の出口温度が所定温度範囲となるように制御してもよい。 The condensed water treatment device may further include an intake air cooling device for cooling the intake air sucked into the internal combustion engine. When processing the condensed water, the control unit may control the outlet temperature of the intake air cooling device to be within a predetermined temperature range.
この構成によれば、凝縮水が生成されやすい吸気冷却装置の出口温度を、凝縮水が蒸発しやすい温度に管理することができる。これにより、凝縮水が蒸発しやすい状態を維持できる。この結果、内燃機関に凝縮水を吸入しやすくなり、凝縮水を燃焼させやすくなる。 According to this configuration, the outlet temperature of the intake air cooling device in which condensed water is likely to be generated can be controlled to a temperature at which condensed water is likely to evaporate. As a result, it is possible to maintain a state in which the condensed water easily evaporates. As a result, the condensed water is easily sucked into the internal combustion engine, and the condensed water is easily burned.
指示部は、内燃機関を自動で停止させる自動停止指示を行ってもよい。制御部は、停止が自動停止か否か判断し、停止が自動停止と判断した場合は、算出された凝縮水量が第1所定量よりも多いか否かを判断してもよい。制御部は、凝縮水量が第1所定量よりも多い場合、凝縮水を処理してもよい。制御部は、停止が自動停止と異なる場合は、第1所定量よりも小さい第2所定量の場合に凝縮水を処理してもよい。 The instruction unit may give an automatic stop instruction to automatically stop the internal combustion engine. The control unit may determine whether or not the stop is an automatic stop, and if the stop is an automatic stop, determine whether or not the calculated amount of condensed water is larger than the first predetermined amount. When the amount of condensed water is larger than the first predetermined amount, the control unit may treat the condensed water. When the stop is different from the automatic stop, the control unit may treat the condensed water when the stop is a second predetermined amount smaller than the first predetermined amount.
内燃機関が自動停止する場合は、内燃機関が再始動する場合も内燃機関が十分に温められた温度状態となる。このため、温度差が発生し難く、吸気通路内での凝縮水の生成が抑制されやすい。このような状況であれば、内燃機関の運転を減らすることが好ましい。これにより燃料消費量が削減できる。一方、内燃機関が自動停止と異なる停止(例えばキーオフ指示による停止)をする場合は、内燃機関が次回冷態状態で始動するか否か判断ができない。蓄積した凝縮水量が多い場合、次回始動が困難になることもある。 When the internal combustion engine automatically stops, the internal combustion engine is in a sufficiently warmed temperature state even when the internal combustion engine is restarted. Therefore, a temperature difference is unlikely to occur, and the generation of condensed water in the intake passage is likely to be suppressed. In such a situation, it is preferable to reduce the operation of the internal combustion engine. This can reduce fuel consumption. On the other hand, when the internal combustion engine stops differently from the automatic stop (for example, stops by a key-off instruction), it cannot be determined whether or not the internal combustion engine will start in the cold state next time. If the amount of condensed water accumulated is large, it may be difficult to start the next time.
この構成によれば、第1所定量は第2所定量より大きい。すなわち、同一の凝縮水量が蓄積している場合、第1所定量まで凝縮水を処理する時間は、第2所定量まで凝縮水を処理する時間よりも短い。これにより、内燃機関が自動停止する場合は、内燃機関が自動停止と異なる停止をする場合に比べて、凝縮水を処理するために必要な燃料消費を削減できる。一方、内燃機関が自動停止と異なる停止をする場合は、吸気通路内に蓄積された凝縮水量を、自動停止する場合に比べて減らすことで、次回内燃機関を始動する場合に、安定して始動できる。 According to this configuration, the first predetermined amount is larger than the second predetermined amount. That is, when the same amount of condensed water is accumulated, the time for treating the condensed water up to the first predetermined amount is shorter than the time for treating the condensed water up to the second predetermined amount. As a result, when the internal combustion engine automatically stops, the fuel consumption required for processing the condensed water can be reduced as compared with the case where the internal combustion engine stops differently from the automatic stop. On the other hand, when the internal combustion engine stops differently from the automatic stop, the amount of condensed water accumulated in the intake passage is reduced as compared with the case of the automatic stop, so that the internal combustion engine will start stably the next time it is started. it can.
凝縮水処理装置は、車両の外気温度を検知する外気温度検知部をさらに備えてもよい。制御部は、指示部から内燃機関の停止を指示された場合に、外気温度を取得し、外気温度に応じて第2所定量を可変させてもよい。 The condensed water treatment device may further include an outside air temperature detecting unit that detects the outside air temperature of the vehicle. When the control unit is instructed to stop the internal combustion engine by the instruction unit, the control unit may acquire the outside air temperature and change the second predetermined amount according to the outside air temperature.
この構成によれば、内燃機関の停止時の外気温度に応じて、第2所定量を可変することできる。すなわち、内燃機関の停止時の外気温度から、次回内燃機関が始動する場合の内燃機関の温度を推定し、この温度に応じて吸気通路に滞留する凝縮水量を調整できる。これにより、内燃機関が次回始動する場合に、安定して始動できる。 According to this configuration, the second predetermined amount can be changed according to the outside air temperature when the internal combustion engine is stopped. That is, the temperature of the internal combustion engine when the internal combustion engine is started next time can be estimated from the outside air temperature when the internal combustion engine is stopped, and the amount of condensed water staying in the intake passage can be adjusted according to this temperature. As a result, the internal combustion engine can be started stably the next time it is started.
凝縮水処理装置は、蓄電池と、充電率検知部と、をさらに備えてもよい。蓄電池は、車両に電力を供給する。充電率検知部は、蓄電池の充電率を検知する。制御部は、充電率に応じて内燃機関の運転状態を可変させてもよい。 The condensed water treatment device may further include a storage battery and a charge rate detection unit. The storage battery supplies electric power to the vehicle. The charge rate detection unit detects the charge rate of the storage battery. The control unit may change the operating state of the internal combustion engine according to the charging rate.
この構成によれば、蓄電池の充電率が低いほど、内燃機関を高出力で運転することができる。すなわち、蓄電池の充電率が低いほど、単位時間あたりの凝縮水を燃焼させる量を多くすることができる。これにより、短時間で凝縮水の処理が完了するとともに、この間に充電することができる。この結果、短時間で燃料消費も無駄にすることなく、凝縮水が処理できる。 According to this configuration, the lower the charge rate of the storage battery, the higher the output of the internal combustion engine can be operated. That is, the lower the charge rate of the storage battery, the larger the amount of condensate water burned per unit time. As a result, the treatment of condensed water is completed in a short time, and charging can be performed during this period. As a result, condensed water can be treated in a short time without wasting fuel consumption.
制御部は、凝縮水を処理する場合に、蓄電池を充電してもよい。 The control unit may charge the storage battery when processing the condensed water.
この構成によれば、凝縮水を処理する場合に発生する内燃機関の出力によって充電することができる。これにより、燃料消費が無駄になることを回避できる。 According to this configuration, charging can be performed by the output of an internal combustion engine generated when treating condensed water. As a result, it is possible to avoid wasting fuel consumption.
本発明に係る凝縮水処理装置は、内燃機関の出力性能、排気浄化性能を損なうことなく、凝縮水を処理できる。 The condensed water treatment apparatus according to the present invention can treat condensed water without impairing the output performance and exhaust gas purification performance of the internal combustion engine.
以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1に示すように、凝縮水処理装置1は、内燃機関2と、吸気通路4と、排気通路6と、過給機8と、低圧排気循環装置10と、吸気冷却装置(インタークーラ(以下、ICと記すことがある))12と、第1水冷装置14と、第2水冷装置16と、発電機18と、蓄電池20と、を備える。また、凝縮水処理装置1は、算出部22と、指示部24と、制御部26と、外気温度検知部28と、充電率検知部30と、を備える。本実施形態では、算出部22と、指示部24および制御部26は、ECU(Electrоnic Control Unit)32に記録されたソフトウェアによって実現される機能構成である。 As shown in FIG. 1, the condensed water treatment device 1 includes an internal combustion engine 2, an intake passage 4, an exhaust passage 6, a supercharger 8, a low-pressure exhaust gas circulation device 10, and an intake cooling device (intercooler (hereinafter referred to as an intercooler)). , IC)) 12, a first water cooling device 14, a second water cooling device 16, a generator 18, and a storage battery 20. Further, the condensed water treatment device 1 includes a calculation unit 22, an instruction unit 24, a control unit 26, an outside air temperature detection unit 28, and a charge rate detection unit 30. In the present embodiment, the calculation unit 22, the instruction unit 24, and the control unit 26 have a functional configuration realized by software recorded in the ECU (Electrоnic Control Unit) 32.
内燃機関2は、シリンダヘッド202と、複数の気筒Nが配置されるシリンダブロック204と、気筒N内を摺動するピストン206と、燃料噴射装置208と、インテークマニホールド210と、エキゾーストマニホールド212と、スロットルバルブ214と、を有する。内燃機関2は、ピストン206、シリンダヘッド202、および気筒Nで、燃焼室216を形成する。また、燃料噴射装置208は、燃焼室216に直接燃料を噴射する。インテークマニホールド210は、内燃機関2の各吸気ポート(図示せず)に空気を供給する。スロットルバルブ214は、インテークマニホールド210に供給する吸気量を調整する。スロットルバルブ214は、ECU32に電気的に接続される。 The internal combustion engine 2 includes a cylinder head 202, a cylinder block 204 in which a plurality of cylinders N are arranged, a piston 206 sliding in the cylinder N, a fuel injection device 208, an intake manifold 210, an exhaust manifold 212, and the like. It has a throttle valve 214 and. The internal combustion engine 2 forms a combustion chamber 216 with a piston 206, a cylinder head 202, and a cylinder N. Further, the fuel injection device 208 injects fuel directly into the combustion chamber 216. The intake manifold 210 supplies air to each intake port (not shown) of the internal combustion engine 2. The throttle valve 214 adjusts the amount of intake air supplied to the intake manifold 210. The throttle valve 214 is electrically connected to the ECU 32.
本実施形態では、内燃機関2は、直噴ガソリンエンジンを用いて説明するが、これに限定されるものではなく、ディーゼルエンジンでもよい。図2に示すように、内燃機関2は、車両Cの前方に位置するエンジンルーム内に収められる。本実施形態では、車両Cは、内燃機関2で発電した電力を、蓄電池20(図1参照)を介して駆動用モータ(図示せず)に供給するハイブリッド車両である。なお、本実施形態では、図2の矢印Fが示す方向を車両前方と称し、反対を車両後方と称する。 In the present embodiment, the internal combustion engine 2 will be described using a direct injection gasoline engine, but the present invention is not limited to this, and a diesel engine may be used. As shown in FIG. 2, the internal combustion engine 2 is housed in an engine room located in front of the vehicle C. In the present embodiment, the vehicle C is a hybrid vehicle that supplies the electric power generated by the internal combustion engine 2 to a drive motor (not shown) via a storage battery 20 (see FIG. 1). In the present embodiment, the direction indicated by the arrow F in FIG. 2 is referred to as the front of the vehicle, and the opposite is referred to as the rear of the vehicle.
吸気通路4は、図1に示すように、内燃機関2のスロットルバルブ214を介してインテークマニホールド210に接続され、内燃機関2の複数の気筒Nに吸気を供給する。吸気通路4は、エアクリーナ402を有する。エアクリーナ402は、内燃機関2に吸入する空気中の埃を濾過する。なお、本実施形態では、吸気通路4のエアクリーナ402側を、吸気通路の上流と称し、内燃機関2側を下流と称する。 As shown in FIG. 1, the intake passage 4 is connected to the intake manifold 210 via the throttle valve 214 of the internal combustion engine 2 to supply intake air to a plurality of cylinders N of the internal combustion engine 2. The intake passage 4 has an air cleaner 402. The air cleaner 402 filters dust in the air sucked into the internal combustion engine 2. In the present embodiment, the air cleaner 402 side of the intake passage 4 is referred to as an upstream of the intake passage, and the internal combustion engine 2 side is referred to as a downstream.
吸気温度センサ(外気温度検知部)28は、エアクリーナ402の下流に備えられ、車両Cの吸気温度(外気温度)が計測される。また、エアクリーナ402の下流には、湿度センサ29が備えられ、吸気の湿度が計測される。吸気温度センサ(外気温度検知部)28および湿度センサ29は、ECU32に電気的に接続される。 The intake air temperature sensor (outside air temperature detection unit) 28 is provided downstream of the air cleaner 402, and the intake air temperature (outside air temperature) of the vehicle C is measured. Further, a humidity sensor 29 is provided downstream of the air cleaner 402 to measure the humidity of the intake air. The intake air temperature sensor (outside air temperature detection unit) 28 and the humidity sensor 29 are electrically connected to the ECU 32.
排気通路6は、内燃機関2のエキゾーストマニホールド212に接続され、内燃機関2の排気を排出する。本実施形態では、排気通路6のエキゾーストマニホールド212側を排気通路の上流と称し、反対側を下流と称する。後述する過給機8のタービン下流には、排気ガスを浄化する排気浄化触媒602が設けられる。排気浄化触媒602の上流および下流には、排気ガス中の酸素濃度を計測する空燃比センサ604aおよび604bが設けられる。空燃比センサ604aおよび604bはECU32に電気的に接続される。 The exhaust passage 6 is connected to the exhaust manifold 212 of the internal combustion engine 2 and exhausts the exhaust gas of the internal combustion engine 2. In the present embodiment, the exhaust manifold 212 side of the exhaust passage 6 is referred to as an upstream of the exhaust passage, and the opposite side is referred to as a downstream. An exhaust purification catalyst 602 for purifying exhaust gas is provided downstream of the turbine of the supercharger 8 described later. Air-fuel ratio sensors 604a and 604b for measuring the oxygen concentration in the exhaust gas are provided upstream and downstream of the exhaust gas purification catalyst 602. The air-fuel ratio sensors 604a and 604b are electrically connected to the ECU 32.
過給機8は、内燃機関2の排気ガスを利用して内燃機関2に吸い込まれる吸気を加圧する装置である。過給機8は、図示しないタービンと、タービンと同軸上に配置されたコンプレッサと、タービンに流入する排気ガスの量を調整するウェストゲートバルブを有する。タービンは、排気通路6の排気浄化触媒602の上流に配置される。コンプレッサは、吸気通路4のエアクリーナ402の下流に配置される。 The supercharger 8 is a device that pressurizes the intake air sucked into the internal combustion engine 2 by using the exhaust gas of the internal combustion engine 2. The turbocharger 8 includes a turbine (not shown), a compressor arranged coaxially with the turbine, and a wastegate valve for adjusting the amount of exhaust gas flowing into the turbine. The turbine is arranged upstream of the exhaust purification catalyst 602 in the exhaust passage 6. The compressor is arranged downstream of the air cleaner 402 in the intake passage 4.
低圧排気循環装置10は、内燃機関2から排出される排気ガスを、吸気通路4に循環する循環装置である。低圧排気循環装置10は、排気循環通路102と、排気循環バルブ104と、排気循環ガス冷却部106と、差圧センサ108と、排気循環ガス温度センサ110と、を有する。排気循環通路102は、排気通路6のタービン下流と、吸気通路4のコンプレッサ上流に接続される。 The low-pressure exhaust gas recirculation device 10 is a circulation device that circulates the exhaust gas discharged from the internal combustion engine 2 in the intake passage 4. The low-pressure exhaust circulation device 10 includes an exhaust circulation passage 102, an exhaust circulation valve 104, an exhaust circulation gas cooling unit 106, a differential pressure sensor 108, and an exhaust circulation gas temperature sensor 110. The exhaust circulation passage 102 is connected to the downstream side of the turbine in the exhaust passage 6 and the upstream side of the compressor in the intake passage 4.
排気循環バルブ104は、排気循環通路102上の吸気通路4との接続部近傍に配置され、吸気通路4に供給する排気循環ガスの量を調整する。差圧センサ108は、排気循環バルブ104の上流および下流の圧力を計測する。排気循環ガス温度センサ110は、排気循環通路102の排気循環ガス冷却部106よりも吸気通路4側に配置され、排気循環ガスの温度を計測する。排気循環バルブ104、差圧センサ108、および排気循環ガス温度センサ110は、ECU32と電気的に接続される。排気循環ガス冷却部106は、排気循環通路102に流れる排気循環ガスを冷却する。本実施形態では、排気循環ガス冷却部106は、後述する第1水冷装置14の冷却水が供給され熱交換によって排気循環ガスを冷却する。 The exhaust gas recirculation valve 104 is arranged near the connection portion with the intake passage 4 on the exhaust circulation passage 102, and adjusts the amount of the exhaust circulation gas supplied to the intake passage 4. The differential pressure sensor 108 measures the pressure upstream and downstream of the exhaust gas recirculation valve 104. The exhaust gas recirculation gas temperature sensor 110 is arranged on the intake passage 4 side of the exhaust gas recirculation gas cooling unit 106 of the exhaust gas recirculation passage 102, and measures the temperature of the exhaust gas circulation gas. The exhaust gas recirculation valve 104, the differential pressure sensor 108, and the exhaust gas recirculation gas temperature sensor 110 are electrically connected to the ECU 32. The exhaust gas circulation gas cooling unit 106 cools the exhaust gas circulation gas flowing through the exhaust gas circulation passage 102. In the present embodiment, the exhaust gas recirculation gas cooling unit 106 is supplied with the cooling water of the first water cooling device 14, which will be described later, and cools the exhaust gas recirculation gas by heat exchange.
吸気冷却装置12は、過給機8によって過給された吸気を冷却する装置である。本実施形態では、吸気冷却装置12は、水冷式のインタークーラであり、インタークーラ内部に冷却水が通る通路が設けることで、過給した吸気の熱を冷却水によって熱交換し冷却する。吸気冷却装置12は、吸気通路4の過給機8の下流で、スロットルバルブ214の上流に配置される。 The intake air cooling device 12 is a device that cools the intake air supercharged by the supercharger 8. In the present embodiment, the intake air cooling device 12 is a water-cooled intercooler, and by providing a passage through which the cooling water passes inside the intercooler, the supercharged intake air heat is exchanged by the cooling water to be cooled. The intake air cooling device 12 is arranged downstream of the supercharger 8 in the intake passage 4 and upstream of the throttle valve 214.
図2に示すように、吸気冷却装置12は、内燃機関2の上方に配置され、車両Cの後方に設けられた過給機8から、上方を向けられた第1吸気通路4aに接続される。また、吸気冷却装置12は、車両Cの前方に設けれたインテークマニホールド210から、上方へ向けて延設された第2吸気通路4bに接続される。図1に示すように、吸気冷却装置12は、温度センサ1204を有する。温度センサ1204は、吸気冷却装置12の温度を計測する。温度センサ1204は、ECU32と電気的に接続される。 As shown in FIG. 2, the intake air cooling device 12 is arranged above the internal combustion engine 2 and is connected to a first intake passage 4a facing upward from a supercharger 8 provided behind the vehicle C. .. Further, the intake air cooling device 12 is connected to the second intake passage 4b extending upward from the intake manifold 210 provided in front of the vehicle C. As shown in FIG. 1, the intake air cooling device 12 has a temperature sensor 1204. The temperature sensor 1204 measures the temperature of the intake air cooling device 12. The temperature sensor 1204 is electrically connected to the ECU 32.
第1水冷装置14は、内燃機関2を冷却するための装置である。第1水冷装置14は、第1水路1402と、第1ラジエタ1404と、第1ウォータポンプ1406と、第1ファン1408aと、第2ファン1408bと、第1水温センサ1410と、を有する。 The first water cooling device 14 is a device for cooling the internal combustion engine 2. The first water cooling device 14 includes a first water channel 1402, a first radiator 1404, a first water pump 1406, a first fan 1408a, a second fan 1408b, and a first water temperature sensor 1410.
第1水路1402は、内燃機関2のシリンダヘッド202から第1ラジエタ1404、および排気循環ガス冷却部106を経由(図示せず)して、内燃機関2のシリンダブロック204へと戻る水路である。第1ラジエタ1404は、第1水路1402に設けられ、内燃機関2のエンジン冷却水路(図1第1水路1402の破線参照)などを通過し熱せられた冷却水を冷却する。また、図2に示すように、第1ラジエタ1404は車両Cの前方に設けられ、車両Cの前方からの外気が当たることで、外気と冷却水との間で熱交換を行い、冷却水を冷却する。第1ファン1408aおよび第2ファン1408bは、第1ラジエタ1404の車両Cの後方に設けれ、車両Cの前方の外気を引き込む。本実施形態では、第1ファン1408aおよび第2ファン1408bは、モータによって駆動される電動ファンであり、ECU32と電気的に接続される(図1参照)。 The first water channel 1402 is a water channel that returns from the cylinder head 202 of the internal combustion engine 2 to the cylinder block 204 of the internal combustion engine 2 via the first radiator 1404 and the exhaust gas recirculation gas cooling unit 106 (not shown). The first radiator 1404 is provided in the first water channel 1402, passes through an engine cooling water channel of the internal combustion engine 2 (see the broken line in the first water channel 1402 in FIG. 1), and cools the heated cooling water. Further, as shown in FIG. 2, the first radiator 1404 is provided in front of the vehicle C, and when the outside air from the front of the vehicle C hits, heat exchange is performed between the outside air and the cooling water, and the cooling water is supplied. Cooling. The first fan 1408a and the second fan 1408b are provided behind the vehicle C of the first radiator 1404 and draw in the outside air in front of the vehicle C. In the present embodiment, the first fan 1408a and the second fan 1408b are electric fans driven by a motor and are electrically connected to the ECU 32 (see FIG. 1).
図1に示すように、第1ウォータポンプ1406は、第1水路1402上、または、内燃機関2のエンジン冷却水路上のいずれかの場所に設けられ、第1水路1402の冷却水を循環させる。本実施形態では、第1ウォータポンプ1406は内燃機関2のクランクシャフトから動力を得て回転する機械式ポンプである。しかし、第1ウォータポンプ1406は、電動式のポンプであってもよい。第1水温センサ1410は、第1水路1402上に設けられ、第1水路1402の冷却水温度を計測する。第1水温センサ1410は、ECU32と電気的に接続される。 As shown in FIG. 1, the first water pump 1406 is provided either on the first water channel 1402 or on the engine cooling water channel of the internal combustion engine 2, and circulates the cooling water in the first water channel 1402. In the present embodiment, the first water pump 1406 is a mechanical pump that rotates by receiving power from the crankshaft of the internal combustion engine 2. However, the first water pump 1406 may be an electric pump. The first water temperature sensor 1410 is provided on the first water channel 1402 and measures the cooling water temperature of the first water channel 1402. The first water temperature sensor 1410 is electrically connected to the ECU 32.
第2水冷装置16は、吸気冷却装置12を冷却するための装置である。第2水冷装置16は、第2水路1602と、第2ラジエタ1604と、第2ウォータポンプ1606と、第2水温センサ1608と、を有する。 The second water cooling device 16 is a device for cooling the intake air cooling device 12. The second water cooling device 16 includes a second water channel 1602, a second radiator 1604, a second water pump 1606, and a second water temperature sensor 1608.
第2水路1602は、吸気冷却装置12から第2ラジエタ1604を経由して、吸気冷却装置12へと戻る水路である。第2ラジエタ1604は、第2水路1602に設けられ、吸気冷却装置12を通過し熱せられた冷却水を冷却する。また、図2に示すように、第2ラジエタ1604は、車両Cの第1ラジエタ1404よりも前方に設けられ、車両Cの前方からの外気が当たることで、外気と冷却水との間で熱交換を行い、冷却水を冷却する。なお、第2水路1602は、過給機8を経由し冷却してもよい。 The second water channel 1602 is a water channel that returns from the intake air cooling device 12 to the intake air cooling device 12 via the second radiator 1604. The second radiator 1604 is provided in the second water channel 1602 and passes through the intake air cooling device 12 to cool the heated cooling water. Further, as shown in FIG. 2, the second radiator 1604 is provided in front of the first radiator 1404 of the vehicle C, and is exposed to the outside air from the front of the vehicle C to generate heat between the outside air and the cooling water. Replace and cool the cooling water. The second water channel 1602 may be cooled via the supercharger 8.
図1に示すように、第2ウォータポンプ1606は、第2水路1602に設けられ、第2水路1602の冷却水を循環させる電動式のポンプである。第2水温センサ1608は、第2水路1602上に設けられ、第2水路1602の冷却水温度を計測する。第2水温センサ1608は、ECU32と電気的に接続される。 As shown in FIG. 1, the second water pump 1606 is an electric pump provided in the second water channel 1602 and circulates the cooling water of the second water channel 1602. The second water temperature sensor 1608 is provided on the second water channel 1602 and measures the cooling water temperature of the second water channel 1602. The second water temperature sensor 1608 is electrically connected to the ECU 32.
発電機18は、内燃機関2のクランクシャフトに接続され、内燃機関2によって駆動されることで発電する。本実施形態では、発電機18は車両Cの駆動用電池を充電する、または、図示しない車両Cの駆動用モータに電力を供給するジェネレータである。しかし、発電機18は、車両Cの補助バッテリを充電するオルタネータであってもよい。また、発電機18は、発電するとともに内燃機関2を始動させる回転電機(モータ・ジェネレータ)であってもよい。 The generator 18 is connected to the crankshaft of the internal combustion engine 2 and is driven by the internal combustion engine 2 to generate electricity. In the present embodiment, the generator 18 is a generator that charges the drive battery of the vehicle C or supplies electric power to the drive motor of the vehicle C (not shown). However, the generator 18 may be an alternator that charges the auxiliary battery of the vehicle C. Further, the generator 18 may be a rotary electric machine (motor generator) that generates electricity and starts the internal combustion engine 2.
蓄電池20は、発電機18で発電された電力を蓄えるとともに、車両Cに電力を供給する。蓄電池20は、リチウムイオン電池、ニッカド電池などからなり、発電機18と電気的に接続される。本実施形態では、蓄電池20は、車両Cの駆動用電池であり、図示しない車両Cの駆動用モータと電気的に接続され、駆動用モータに電力を供給する。しかし、蓄電池20は、補助バッテリであってもよく、この場合は、内燃機関2に駆動されるオルタネータと電気的に接続される。 The storage battery 20 stores the electric power generated by the generator 18 and supplies the electric power to the vehicle C. The storage battery 20 includes a lithium ion battery, a NiCd battery, and the like, and is electrically connected to the generator 18. In the present embodiment, the storage battery 20 is a drive battery for the vehicle C, and is electrically connected to a drive motor for the vehicle C (not shown) to supply electric power to the drive motor. However, the storage battery 20 may be an auxiliary battery, in which case it is electrically connected to an alternator driven by the internal combustion engine 2.
充電率検知部30は、蓄電池20に設けられる。本実施形態では、充電率検知部30は、蓄電池20の端子電圧を検知することで、蓄電池20の充電率をECU32で算出する。なお、充電率は、充電率検知部30で検出した電圧に基づいてECU32で推定してもよい。 The charge rate detection unit 30 is provided in the storage battery 20. In the present embodiment, the charge rate detection unit 30 detects the terminal voltage of the storage battery 20 to calculate the charge rate of the storage battery 20 by the ECU 32. The charge rate may be estimated by the ECU 32 based on the voltage detected by the charge rate detection unit 30.
次にECU32に記録されるソフトウェアによって実現される機能構成について説明する。ECU32は、実際には、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成される。ECU32は、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、凝縮水処理装置1が、所望の運転状態となるように各種装置を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 Next, the functional configuration realized by the software recorded in the ECU 32 will be described. The ECU 32 is actually composed of a microcomputer including an arithmetic unit, a memory, an input / output buffer, and the like. The ECU 32 controls various devices so that the condensed water treatment device 1 is in a desired operating state based on signals from each sensor and various devices, as well as maps and programs stored in the memory. Note that various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits).
算出部22は、算出部22は、各種装置を制御するために必要な演算を行うソフトウェアによって実現される機能構成である。算出部22は、少なくとも、内燃機関2の吸気通路4に生成された凝縮水量を算出する。より具体的には、算出部22は、吸入空気量および湿度センサ29で検出した湿度から、吸気中に含まれる水分量を算出する。また、算出部22は、差圧センサ108で検出した差圧から、排気循環ガス量を算出し、排気循環ガスに含まれる水分量を算出する。一方で、算出部22は、吸気冷却装置12の温度センサ1204の温度から、吸気冷却装置12における出口付近におけるIC出口温度Ticを取得し、温度変化を算出する。 The calculation unit 22 has a functional configuration realized by software that performs calculations necessary for controlling various devices. The calculation unit 22 calculates at least the amount of condensed water generated in the intake passage 4 of the internal combustion engine 2. More specifically, the calculation unit 22 calculates the amount of water contained in the intake air from the amount of intake air and the humidity detected by the humidity sensor 29. Further, the calculation unit 22 calculates the amount of exhaust gas recirculation gas from the differential pressure detected by the differential pressure sensor 108, and calculates the amount of water contained in the exhaust gas recirculation gas. On the other hand, the calculation unit 22 acquires the IC outlet temperature Tic near the outlet of the intake air cooling device 12 from the temperature of the temperature sensor 1204 of the intake air cooling device 12 and calculates the temperature change.
吸気に含まれる水分量、および排気循環ガスに含まれる水分量に対し、吸気冷却装置12の出口付近における温度が露点温度を下回った場合、これら水分は凝縮水として生成され吸気冷却装置12の出口付近に滞留する。すなわち、算出部22は、内燃機関2の運転中に露点温度を下回った時間を算出することによって、吸気通路4の吸気冷却装置12の出口付近に生成された凝縮水推定積算量Vrを算出できる。この凝縮水推定積算量Vrが、算出部22で算出された凝縮水量の一例である。 When the temperature near the outlet of the intake air cooling device 12 is lower than the dew point temperature with respect to the amount of water contained in the intake air and the amount of water contained in the exhaust circulating gas, these moistures are generated as condensed water and are generated as condensed water at the outlet of the intake air cooling device 12. Stay in the vicinity. That is, the calculation unit 22 can calculate the estimated integrated amount Vr of condensed water generated near the outlet of the intake air cooling device 12 of the intake passage 4 by calculating the time when the dew point temperature is lowered during the operation of the internal combustion engine 2. .. This estimated integrated amount of condensed water Vr is an example of the amount of condensed water calculated by the calculation unit 22.
なお、吸気中の水分の露点温度は、吸気冷却装置12の吸気出口付近における温度と吸気の湿度と関連づけてマップ化してECU32に記憶してもよい。また、排気循環ガス中の露点温度は、吸気冷却装置12の吸気出口付近における温度と排気循環ガス量と関連づけてマップ化してECU32に記憶してもよい。これにより、マップ上の露点温度を下回った時間と、吸入空気量および排気循環ガス量から容易に凝縮水推定積算量Vrを算出できる。 The dew point temperature of the moisture in the intake air may be mapped in association with the temperature near the intake outlet of the intake air cooling device 12 and the humidity of the intake air and stored in the ECU 32. Further, the dew point temperature in the exhaust gas recirculation gas may be mapped and stored in the ECU 32 in relation to the temperature near the intake outlet of the intake air cooling device 12 and the amount of the exhaust gas recirculation gas. As a result, the estimated integrated amount of condensed water Vr can be easily calculated from the time when the dew point temperature on the map is lowered and the amount of intake air and the amount of exhaust gas circulation gas.
指示部24は、内燃機関2の制御に関する指示を受け取り、制御部26へ送信するソフトウェアによって実現される機能構成である。指示部24は、内燃機関2の自動停止条件が成立した場合に、制御部26へ自動停止指示を送信する。また、指示部24は、イグニッションスイッチがオフ(キーオフ)された場合に、制御部26へ内燃機関2を停止させる指示を送信する。指示部24は、このほか各種装置を制御するために必要な指示を、制御部26へ送信する。 The instruction unit 24 is a functional configuration realized by software that receives an instruction regarding control of the internal combustion engine 2 and transmits it to the control unit 26. The instruction unit 24 transmits an automatic stop instruction to the control unit 26 when the automatic stop condition of the internal combustion engine 2 is satisfied. Further, the instruction unit 24 transmits an instruction to stop the internal combustion engine 2 to the control unit 26 when the ignition switch is turned off (key off). The instruction unit 24 also transmits instructions necessary for controlling various devices to the control unit 26.
制御部26は、各種装置を制御するためのソフトウェアによって実現される機能構成である。制御部26は、各種センサの値を取得するとともに、算出部22の算出結果、指示部24の指示に従って、各種装置を制御する。 The control unit 26 has a functional configuration realized by software for controlling various devices. The control unit 26 acquires the values of various sensors and controls various devices according to the calculation result of the calculation unit 22 and the instruction of the instruction unit 24.
次に、図3から図5のフローチャートを用いて本発明の制御部26の制御手順について説明する。 Next, the control procedure of the control unit 26 of the present invention will be described with reference to the flowcharts of FIGS. 3 to 5.
<自動停止時のフローチャート>
図3に示すように、制御部26は、指示部24から内燃機関2の停止指示を受けたか否かを判断する(S1)。制御部26は指示部24から内燃機関2の停止指示を受けたと判断した場合(S1 Yes)は、停止が自動停止か否か判断する(S2)。すなわち、指示部24が、内燃機関2を自動で停止させる自動停止指示を行った否かを判断する。ここで、指示部24が内燃機関2を自動で停止する場合とは、車両Cの駆動用モータによって車両Cを走行させる場合、または、車両Cが停止中の場合などであり、かつ、内燃機関2および排気浄化触媒602が暖機完了している場合などである。すなわち、内燃機関2を停止させる種々の条件が成立した場合である。また、指示部24は、これら条件が成立しなくなった場合、内燃機関2を再始動するように制御部26に指示する。すなわち、内燃機関2は、自動停止から再始動する場合は、暖機を行わない。
<Flowchart at automatic stop>
As shown in FIG. 3, the control unit 26 determines whether or not a stop instruction for the internal combustion engine 2 has been received from the instruction unit 24 (S1). When the control unit 26 determines that the instruction unit 24 has received an instruction to stop the internal combustion engine 2 (S1 Yes), it determines whether or not the stop is an automatic stop (S2). That is, it is determined whether or not the instruction unit 24 has given an automatic stop instruction to automatically stop the internal combustion engine 2. Here, the case where the indicator 24 automatically stops the internal combustion engine 2 is the case where the vehicle C is driven by the drive motor of the vehicle C, the case where the vehicle C is stopped, and the like, and the internal combustion engine. 2 and the exhaust gas purification catalyst 602 have been warmed up. That is, it is a case where various conditions for stopping the internal combustion engine 2 are satisfied. Further, the instruction unit 24 instructs the control unit 26 to restart the internal combustion engine 2 when these conditions are no longer satisfied. That is, the internal combustion engine 2 does not warm up when restarting from the automatic stop.
制御部26は、停止が自動停止と判断した場合(S2 Yes)は、算出部22で算出した凝縮水推定積算量Vrが第1所定量V1以上か否かを判断する(S3)。制御部26は、凝縮水推定積算量Vrが第1所定量V1以上の場合と判断した場合(S3 Yes)は、充電率検知部30から充電率(SOC:State of Charge)を取得し、充電率が所定充電率B1以下か否か判断する(S4)。 When the control unit 26 determines that the stop is an automatic stop (S2 Yes), the control unit 26 determines whether or not the estimated integrated amount of condensed water Vr calculated by the calculation unit 22 is equal to or greater than the first predetermined amount V1 (S3). When the control unit 26 determines that the estimated integrated amount of condensed water Vr is the first predetermined amount V1 or more (S3 Yes), the control unit 26 acquires the charge rate (SOC: System of Charge) from the charge rate detection unit 30 and charges the battery. It is determined whether or not the rate is equal to or less than the predetermined charge rate B1 (S4).
制御部26は、充電率が所定充電率B1以下と判断した場合(S4 Yes)は、凝縮水を内燃機関2で燃焼させて処理する高負荷の凝縮水パージ運転(S5)を、短時間で行う。このとき、制御部26は、排気循環バルブ104を閉じ、排気循環を停止する(S5)。これにより、排気循環ガスに含まれる水分によって凝縮水が生成されることを抑制する。また、制御部26は、第1ファン1408aおよび第2ファン1408bの回転制御を行うことで、吸気冷却装置12の吸気出口付近のIC出口温度Ticが所定温度範囲となるように吸気冷却装置12の温度管理を行う(S5および図5参照)。これにより、凝縮水の蒸発を促す。さらに、制御部26は、凝縮水パージ運転中に発電機18で発電し、発電した電力を蓄電池20に充電するチャージモードにする(S5)。これにより、凝縮水パージ運転中の燃料消費を有効に利用できる。 When the control unit 26 determines that the charging rate is equal to or less than the predetermined charging rate B1 (S4 Yes), the control unit 26 performs a high-load condensed water purging operation (S5) in a short time by burning the condensed water in the internal combustion engine 2 for processing. Do. At this time, the control unit 26 closes the exhaust circulation valve 104 and stops the exhaust circulation (S5). This suppresses the generation of condensed water due to the moisture contained in the exhaust gas. Further, the control unit 26 controls the rotation of the first fan 1408a and the second fan 1408b so that the IC outlet temperature Tic near the intake outlet of the intake cooling device 12 is within a predetermined temperature range of the intake cooling device 12. Temperature control is performed (see S5 and FIG. 5). This promotes the evaporation of condensed water. Further, the control unit 26 sets the charge mode in which the generator 18 generates electric power during the condensed water purging operation and the generated electric power is charged to the storage battery 20 (S5). As a result, fuel consumption during the condensed water purge operation can be effectively utilized.
ここで、内燃機関2を高負荷で運転するとは、発電機18による負荷を高く設定し、内燃機関2のエンジン回転数がアイドル回転数よりも高い回転数で運転することである。内燃機関2を高負荷で運転することで、単位時間あたりの内燃機関2で燃焼できる凝縮水の量が増加する。これにより、短時間で凝縮水が処理できる。また、発電機18の負荷を上げて発電量を増加させるため、単位時間あたりに蓄電池20を充電できる電力が増加する。これにより、蓄電池20を素早く充電できる。 Here, operating the internal combustion engine 2 with a high load means that the load by the generator 18 is set high and the engine speed of the internal combustion engine 2 is operated at a speed higher than the idle speed. By operating the internal combustion engine 2 with a high load, the amount of condensed water that can be burned by the internal combustion engine 2 per unit time increases. As a result, condensed water can be treated in a short time. Further, since the load of the generator 18 is increased to increase the amount of power generation, the electric power that can charge the storage battery 20 per unit time increases. As a result, the storage battery 20 can be charged quickly.
制御部26は、指示部24から内燃機関2を自動で再始動させる指示がないと判断した場合(S6 No)は、第1所定時間T1が経過すると(S7 Yes)、処理をスタート(S1)に戻す。制御部26は、第1所定時間T1が経過していないと判断した場合(S7 No)は、凝縮水パージ運転(S5)を継続する。また、制御部26は、内燃機関2の停止指示がないと判断した場合(S1 No)、凝縮水推定積算量Vrが第1所定量V1よりも小さいと判断した場合(S3 No)、および再始動指示があったと判断した場合(S6 Yes)は、処理をスタートに戻す。 When the control unit 26 determines that there is no instruction from the instruction unit 24 to automatically restart the internal combustion engine 2 (S6 No), when the first predetermined time T1 elapses (S7 Yes), the process starts (S1). Return to. When the control unit 26 determines that the first predetermined time T1 has not elapsed (S7 No), the control unit 26 continues the condensed water purging operation (S5). Further, when the control unit 26 determines that there is no stop instruction for the internal combustion engine 2 (S1 No), when it determines that the estimated integrated amount of condensed water Vr is smaller than the first predetermined amount V1 (S3 No), and again. When it is determined that the start instruction has been given (S6 Yes), the process is returned to the start.
一方、制御部26は、充電率(SOC)が所定充電率B1より大きいと判断した場合(S4 No)は、通常の凝縮水パージ運転(S8)を行う。このとき、制御部26は、S8では、S5と同様に、排気循環バルブ104を閉じ、排気循環を停止する。また、吸気冷却装置12の温度管理を行う(S8および図5参照)。しかし、制御部26は、通常の凝縮水パージ運転では、内燃機関2に無負荷、または、発電機18が蓄電池20をわずかに充電できる程度の負荷をかけて運転する。すなわち、制御部26は、通常の凝縮水パージ運転では、高負荷で凝縮水パージ運転を行うよりもエンジン回転数が低い運転を行う。これにより、凝縮水パージ運転中の車両Cの乗員に違和感を与えることを抑制できる。 On the other hand, when the control unit 26 determines that the charge rate (SOC) is larger than the predetermined charge rate B1 (S4 No), the control unit 26 performs a normal condensed water purge operation (S8). At this time, in S8, the control unit 26 closes the exhaust circulation valve 104 and stops the exhaust circulation, as in S5. In addition, the temperature of the intake air cooling device 12 is controlled (see S8 and FIG. 5). However, in the normal condensed water purging operation, the control unit 26 operates the internal combustion engine 2 with no load or with a load such that the generator 18 can slightly charge the storage battery 20. That is, in the normal condensed water purging operation, the control unit 26 operates at a lower engine speed than in the condensed water purging operation with a high load. As a result, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle C during the condensed water purge operation.
制御部26は、指示部24から内燃機関2を自動で再始動させる指示がないと判断した場合(S9 No)は、第2所定時間T2が経過すると(S10 Yes)、処理をスタートに戻す。制御部26は、第2所定時間T2が経過していない場合は(S10 No)、通常の凝縮水パージ運転(S8)を継続する。ここで、通常の凝縮水パージ運転では、高負荷で凝縮水パージ運転を行うよりも、単位時間あたりに燃焼できる凝縮水量が少ない。すなわち、第2所定時間T2は第1所定時間T1よりも長くなる。制御部26は、再始動指示があった場合は(S9 Yes)、処理をスタートに戻す。 When the control unit 26 determines that there is no instruction from the instruction unit 24 to automatically restart the internal combustion engine 2 (S9 No), the process returns to the start when the second predetermined time T2 elapses (S10 Yes). If the second predetermined time T2 has not elapsed (S10 No), the control unit 26 continues the normal condensed water purging operation (S8). Here, in the normal condensed water purging operation, the amount of condensed water that can be burned per unit time is smaller than that in the condensed water purging operation with a high load. That is, the second predetermined time T2 is longer than the first predetermined time T1. When the restart instruction is given (S9 Yes), the control unit 26 returns the process to the start.
このように、制御部26は、充電率に応じて内燃機関2の運転状態を可変させることで、凝縮水パージ運転中の燃料消費を有効利用と、乗員に違和感を与えることを抑制することを両立できる。 In this way, the control unit 26 changes the operating state of the internal combustion engine 2 according to the charge rate to effectively utilize the fuel consumption during the condensed water purging operation and suppress the feeling of discomfort to the occupants. It is compatible.
<キーオフ時のフローチャート>
次に、指示部24が、自動停止と異なるキーオフによって内燃機関2を停止させる場合の、制御部26の制御フローについて説明する。図3に示すように、制御部26は、自動停止と異なる場合は(S2 No)、図4に示すキーオフ(S11)へ処理を進める。
<Flowchart at key-off>
Next, the control flow of the control unit 26 when the instruction unit 24 stops the internal combustion engine 2 by a key-off different from the automatic stop will be described. As shown in FIG. 3, the control unit 26 proceeds to the key-off (S11) shown in FIG. 4 when it is different from the automatic stop (S2 No).
図4に示すように、キーオフによって内燃機関2が停止されると、制御部26は、指示部24から内燃機関2の停止指示を受けた場合の、外気温度Tоを取得する。制御部26は、外気温度Tоを取得すると、外気温度Tоが第1所定外気温度Tо1以上か否かを判断する(S101)。制御部26は、外気温度Toが第1所定外気温度Tо1以上と判断した場合(S101 Yes)は、凝縮水推定積算量Vrが第2所定量V2以上か否かを判断する(S102)。ここで第1所定外気温度To1は、例えば内燃機関2が次回始動時に、温帯始動となる温度である。また、第2所定量V2は、第1所定量V1よりも小さい。内燃機関2をキーオフ状態から始動させるときは、キーオフ状態の継続時間によっては内燃機関2が冷え、暖機を要することもある。このとき、凝縮水が内燃機関2に流入すると、内燃機関2の始動を安定して行えないこともある。このため、第2所定量V2を第1所定量V1よりも小さくすることで、キーオフによる内燃機関2の停止時おいて、自動停止時よりも吸気通路4に滞留した凝縮水を減らすことができる。 As shown in FIG. 4, when the internal combustion engine 2 is stopped by the key-off, the control unit 26 acquires the outside air temperature Tо when the instruction unit 24 gives an instruction to stop the internal combustion engine 2. When the control unit 26 acquires the outside air temperature Tо, it determines whether or not the outside air temperature Tо is equal to or higher than the first predetermined outside air temperature Tо1 (S101). When the control unit 26 determines that the outside air temperature To is the first predetermined outside air temperature Tо1 or more (S101 Yes), the control unit 26 determines whether or not the estimated integrated amount of condensed water Vr is the second predetermined amount V2 or more (S102). Here, the first predetermined outside air temperature To1 is, for example, a temperature at which the internal combustion engine 2 will start in a temperate zone when it is started next time. Further, the second predetermined amount V2 is smaller than the first predetermined amount V1. When the internal combustion engine 2 is started from the key-off state, the internal combustion engine 2 may be cooled and warmed up depending on the duration of the key-off state. At this time, if the condensed water flows into the internal combustion engine 2, the internal combustion engine 2 may not be started stably. Therefore, by making the second predetermined amount V2 smaller than the first predetermined amount V1, it is possible to reduce the amount of condensed water accumulated in the intake passage 4 when the internal combustion engine 2 is stopped due to key-off, as compared with when the internal combustion engine 2 is automatically stopped. ..
制御部26は、凝縮水推定積算量Vrが第2所定量V2以上と判断した場合(S102 Yes)は、凝縮水パージ運転(S103)を行う。このときの凝縮水パージ運転は図3のS8と同様であるため、説明を省略する。一方、制御部26は、凝縮水推定積算量Vrが第2所定量V2以下と判断した場合(S102 No)は、処理をスタートに戻す。制御部26は、凝縮水パージ運転は第3所定時間T3が経過する(S104 Yes)と、処理をスタートに戻す。制御部26は、第3所定時間T3が経過していないと判断した場合(S104 No)は、凝縮水パージ運転(S103)を継続する。 When the control unit 26 determines that the estimated accumulated amount of condensed water Vr is the second predetermined amount V2 or more (S102 Yes), the control unit 26 performs the condensed water purge operation (S103). Since the condensed water purging operation at this time is the same as in S8 of FIG. 3, the description thereof will be omitted. On the other hand, when the control unit 26 determines that the estimated integrated amount of condensed water Vr is the second predetermined amount V2 or less (S102 No), the process returns to the start. The control unit 26 returns the process to the start of the condensed water purging operation when the third predetermined time T3 elapses (S104 Yes). When the control unit 26 determines that the third predetermined time T3 has not elapsed (S104 No), the control unit 26 continues the condensed water purging operation (S103).
制御部26は、外気温度Toが第1所定外気温度Tо1より小さいと判断した場合(S101 No)は、外気温度Toが第1所定外気温度To1より小さく第2所定外気温度To2以上か否かを判断する(S105)。制御部26は、外気温度Toが第1所定外気温度To1より小さく第2所定外気温度To2以上と判断した場合(S105 Yes)は、凝縮水推定積算量Vrが第3所定量V3以上か否かを判断する(S106)。ここで、第2所定外気温度To2は、例えば内燃機関2が次回始動時に、冷間始動となる温度である。また、第3所定量V3は第2所定量V2よりも小さい値である。すなわち、第1所定外気温度To1よりも小さく第2所定外気温度To2以上の場合は、凝縮水が生成されやすい温度範囲となる。このような状況でキーオフによって内燃機関2が停止した場合は、吸気冷却装置12に残った吸気から凝縮水が生成されやすい。このため、第3所定量V3を第2所定量V2よりも小さくすることで、この温度領域での内燃機関2の停止時において、吸気通路4に滞留した凝縮水を減らすことができる。この結果、キーオフ後に内燃機関2を始動する場合に始動動作が安定する。 When the control unit 26 determines that the outside air temperature To is smaller than the first predetermined outside air temperature Tо1 (S101 No), the control unit 26 determines whether or not the outside air temperature To is smaller than the first predetermined outside air temperature To1 and equal to or higher than the second predetermined outside air temperature To2. Judgment (S105). When the control unit 26 determines that the outside air temperature To is smaller than the first predetermined outside air temperature To1 and is equal to or higher than the second predetermined outside air temperature To2 (S105 Yes), whether or not the estimated integrated amount of condensed water Vr is the third predetermined amount V3 or more. Is determined (S106). Here, the second predetermined outside air temperature To2 is, for example, a temperature at which the internal combustion engine 2 is cold-started at the next start. Further, the third predetermined amount V3 is a value smaller than the second predetermined amount V2. That is, when the temperature is smaller than the first predetermined outside air temperature To1 and equal to or higher than the second predetermined outside air temperature To2, the temperature range is such that condensed water is likely to be generated. When the internal combustion engine 2 is stopped by the key-off in such a situation, condensed water is likely to be generated from the intake air remaining in the intake air cooling device 12. Therefore, by making the third predetermined amount V3 smaller than the second predetermined amount V2, the condensed water accumulated in the intake passage 4 can be reduced when the internal combustion engine 2 is stopped in this temperature region. As a result, the starting operation becomes stable when the internal combustion engine 2 is started after the key is turned off.
制御部26は、凝縮水推定積算量Vrが第3所定量V3以上と判断した場合(S106 Yes)は、凝縮水パージ運転を行う(S107)。このときの凝縮水パージ運転も図3のS8と同様であるため、説明を省略する。一方、制御部26は、凝縮水推定積算量Vrが第3所定量V3以下と判断した場合(S106 No)は、処理をスタートに戻す。制御部26は、凝縮水パージ運転が第4所定時間T4経過したと判断すると(S108 Yes)、処理をスタートに戻す。制御部26は、第4所定時間T4が経過していない判断した場合(S108 No)は、凝縮水パージ運転(S107)を継続する。 When the control unit 26 determines that the estimated integrated amount of condensed water Vr is the third predetermined amount V3 or more (S106 Yes), the control unit 26 performs the condensed water purge operation (S107). Since the condensed water purging operation at this time is the same as in S8 of FIG. 3, the description thereof will be omitted. On the other hand, when the control unit 26 determines that the estimated integrated amount of condensed water Vr is the third predetermined amount V3 or less (S106 No), the process returns to the start. When the control unit 26 determines that the condensed water purging operation has elapsed T4 for the fourth predetermined time (S108 Yes), the control unit 26 returns the process to the start. When the control unit 26 determines that the fourth predetermined time T4 has not elapsed (S108 No), the control unit 26 continues the condensed water purging operation (S107).
制御部26は、外気温度Toが第2所定外気温度Tо2より小さいと判断した場合(S105 No)は、凝縮水パージ運転を行う(S109)。ここで、第2所定外気温度To2よりも小さい温度は、例えば内燃機関2が次回始動時に、極冷間始動となる温度である。このような温度領域では、吸気冷却装置12の凝縮水が凍結することがある。凝縮水がスロットルバルブ214に付着した状態で凍結すると、内燃機関2の始動不良の原因となる。このため、制御部26は、この温度領域では、凝縮水推定積算量Vrに関わらず凝縮水パージ運転をする。制御部26は、凝縮水パージ運転は第5所定時間T5が経過したと判断した場合(S110 Yes)は、処理をスタートに戻す。制御部26は、第5所定時間T5が経過していないと判断した場合(S110 No)は、凝縮水パージ運転(S109)を継続する。なお、第3所定時間T3から第5所定時間T5は、同一時間であってもよいし、凝縮水推定積算量Vrに応じて各所定時間を可変させてもよい。 When the control unit 26 determines that the outside air temperature To is smaller than the second predetermined outside air temperature Tо2 (S105 No), the control unit 26 performs a condensed water purge operation (S109). Here, the temperature smaller than the second predetermined outside air temperature To2 is, for example, a temperature at which the internal combustion engine 2 will be extremely cold started at the next start. In such a temperature range, the condensed water of the intake air cooling device 12 may freeze. If the condensed water freezes while adhering to the throttle valve 214, it causes a start failure of the internal combustion engine 2. Therefore, the control unit 26 performs the condensed water purging operation in this temperature region regardless of the estimated integrated amount of condensed water Vr. When the control unit 26 determines that the fifth predetermined time T5 has elapsed in the condensed water purging operation (S110 Yes), the control unit 26 returns the process to the start. When the control unit 26 determines that the fifth predetermined time T5 has not elapsed (S110 No), the control unit 26 continues the condensed water purging operation (S109). The third predetermined time T3 to the fifth predetermined time T5 may be the same time, or each predetermined time may be varied according to the estimated integrated amount of condensed water Vr.
このように制御部26は、外気温度Tоに応じて第2所定量V2を第3所定量V3に可変させることで、キーオフ状態から内燃機関2を始動させる場合に、凝縮水によって始動安定性が損なわれることを抑制する。 In this way, the control unit 26 changes the second predetermined amount V2 to the third predetermined amount V3 according to the outside air temperature Tо, so that when the internal combustion engine 2 is started from the key-off state, the starting stability is improved by the condensed water. Suppress being damaged.
<吸気冷却装置の温度管理のフローチャート>
次に、吸気冷却装置12の温度管理処理の制御手順について説明する。
<Flowchart of temperature control of intake air cooling device>
Next, the control procedure of the temperature control process of the intake air cooling device 12 will be described.
図5に示すように、吸気冷却装置12の温度管理処理では、制御部26は、凝縮水パージ運転中か否かを判断する(S201)。制御部26は、凝縮水パージ運転中あると判断した場合(S201 Yes)は、吸気冷却装置12のIC出口温度Ticが第1所定温度Tic1以下か否か判断する(S202)。制御部26は、IC出口温度Ticが第1所定温度Tic1以下であると判断した場合(S202 Yes)は、第1ファン1408aおよび第2ファン1408bの回転抑制を行い、IC出口温度Ticが上昇するようにファン抑制制御(S203)を行う。より具体的には、第1ファン1408aおよび第2ファン1408bの回転数を抑制するか、または、第1ファン1408a、および第2ファン1408bのいずれか一方だけを回転させる。いずれにせよ、制御部26は、吸気冷却装置12によって吸気が冷却されないように、第1ファン1408a、および第2ファン1408bの少なくともいずれかを制御する。 As shown in FIG. 5, in the temperature control process of the intake air cooling device 12, the control unit 26 determines whether or not the condensed water purging operation is in progress (S201). When the control unit 26 determines that the condensed water purging operation is in progress (S201 Yes), the control unit 26 determines whether or not the IC outlet temperature Tic of the intake air cooling device 12 is equal to or lower than the first predetermined temperature Tic1 (S202). When the control unit 26 determines that the IC outlet temperature Tic is equal to or lower than the first predetermined temperature Tic1 (S202 Yes), the control unit 26 suppresses the rotation of the first fan 1408a and the second fan 1408b, and the IC outlet temperature Tic rises. The fan suppression control (S203) is performed as described above. More specifically, the rotation speeds of the first fan 1408a and the second fan 1408b are suppressed, or only one of the first fan 1408a and the second fan 1408b is rotated. In any case, the control unit 26 controls at least one of the first fan 1408a and the second fan 1408b so that the intake air is not cooled by the intake air cooling device 12.
制御部26は、IC出口温度Ticが第1所定温度Tic1以下ではないと判断した場合(S202 No)、および、ファン抑制制御(S203)が開始された場合はIC出口温度Ticが第2所定温度Tic2以上か否か判断する(S204)。ここで、第2所定温度Tic2は、第1所定温度Tic1よりも高い温度である。制御部26は、IC出口温度Ticが第2所定温度Tic2以上であると判断した場合(S204 Yes)は、ファン抑制制御を解除し(S205)、再び第1ファン1408aおよび第2ファン1408bを回転させて吸気冷却装置12を水冷する。これにより、制御部26は、過度に温まった吸気によって内燃機関2の出力性能、排気浄化性能が損なうことを抑制する。 When the control unit 26 determines that the IC outlet temperature Tic is not equal to or lower than the first predetermined temperature Tic1 (S202 No), and when the fan suppression control (S203) is started, the IC outlet temperature Tic is the second predetermined temperature. It is determined whether or not it is Tic2 or higher (S204). Here, the second predetermined temperature Tic2 is a temperature higher than the first predetermined temperature Tic1. When the control unit 26 determines that the IC outlet temperature Tic is equal to or higher than the second predetermined temperature Tic2 (S204 Yes), the control unit 26 releases the fan suppression control (S205) and rotates the first fan 1408a and the second fan 1408b again. The intake cooling device 12 is water-cooled. As a result, the control unit 26 suppresses that the output performance and the exhaust gas purification performance of the internal combustion engine 2 are impaired by the excessively warm intake air.
制御部26は、IC出口温度Ticが第2所定温度Tic2未満であると判断した場合(S204 No)は、S202の前に処理を戻す。また、制御部26は、ファン抑制制御が解除された場合、および、凝縮水パージ運転中でない場合は(S201 No)、スタートに処理を戻す。 When the control unit 26 determines that the IC outlet temperature Tic is lower than the second predetermined temperature Tic2 (S204 No), the processing is returned before S202. Further, the control unit 26 returns the process to the start when the fan suppression control is released and when the condensed water purging operation is not in progress (S201 No.).
以上説明した通り、本発明に係る凝縮水処理装置1は、内燃機関2の出力性能、排気浄化性能を損なうことなく、凝縮水を処理できる。また、本発明に係る凝縮水処理装置1であれば、凝縮水量が所定量を超えた場合は、燃焼させて処理する。これにより、図2に示すように、内燃機関2の上方に吸気冷却装置12を配置する構造であっても、凝縮水が内燃機関2に流れ込み、内燃機関2の出力性能、および排気浄化性能を損なうことを抑制できる。 As described above, the condensed water treatment device 1 according to the present invention can treat condensed water without impairing the output performance and the exhaust gas purification performance of the internal combustion engine 2. Further, in the case of the condensed water treatment apparatus 1 according to the present invention, when the amount of condensed water exceeds a predetermined amount, it is burned and treated. As a result, as shown in FIG. 2, even if the intake cooling device 12 is arranged above the internal combustion engine 2, the condensed water flows into the internal combustion engine 2, and the output performance and the exhaust purification performance of the internal combustion engine 2 are improved. It is possible to suppress the loss.
<他の実施形態>
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. In particular, the plurality of modifications described in the present specification can be arbitrarily combined as required.
(a)本実施形態では、凝縮水パージ運転時間を第1所定時間T1から第5所定時間T5としたタイマー制御を例に説明したが、本発明はこれに限定されるものではない。凝縮水パージ運転時間は、凝縮水推定積算量Vrなどに基づいて設定すればよく、凝縮水の推定積算量Vrなどから凝縮水パージ運転時間を算出してもよい。すなわち、凝縮水パージ運転は所定期間行われればよい。 (A) In the present embodiment, the timer control in which the condensed water purging operation time is set from the first predetermined time T1 to the fifth predetermined time T5 has been described as an example, but the present invention is not limited thereto. The condensed water purge operation time may be set based on the estimated integrated amount of condensed water Vr or the like, and the condensed water purge operation time may be calculated from the estimated integrated amount of condensed water Vr or the like. That is, the condensed water purging operation may be performed for a predetermined period.
(b)本実施形態では、吸気冷却装置12の温度を管理する制御の一例として、第1ファン1408aおよび第2ファン1408bの回転抑制をあげたが、本発明はこれに限定されるものではない。吸気冷却装置12の温度を管理するために、第2ウォータポンプ1606の回転を抑制し、あるいは、停止することで、吸気冷却装置12に流れる冷却水の流れを抑制して、吸気冷却装置12の温度を制御してもよい。 (B) In the present embodiment, as an example of control for controlling the temperature of the intake air cooling device 12, rotation suppression of the first fan 1408a and the second fan 1408b has been given, but the present invention is not limited thereto. .. In order to control the temperature of the intake air cooling device 12, the rotation of the second water pump 1606 is suppressed or stopped to suppress the flow of the cooling water flowing through the intake air cooling device 12, and the intake cooling device 12 The temperature may be controlled.
(c)本実施形態では、制御部26が、外気温度Toに応じて第2所定量V2を可変させる一例として、外気温度Toが、第1所定外気温度To1未満かつ第2所定外気温度Tо2以上の場合に、第2所定量V2から第3所定量V3へ可変させる例について説明したが、本発明はこれに限定されるものではない。制御部26は、外気温度Toと、外気温度Tоに対応する所定量をより細かく可変させてもよい。また、第1所定外気温度To1よりも、凝縮水が生成され難い温度領域では第2所定量V2よりも多い所定量に可変させてもよい。 (C) In the present embodiment, as an example in which the control unit 26 changes the second predetermined amount V2 according to the outside air temperature To, the outside air temperature To is less than the first predetermined outside air temperature To1 and the second predetermined outside air temperature Tо2 or more. In this case, an example of varying the second predetermined amount V2 to the third predetermined amount V3 has been described, but the present invention is not limited thereto. The control unit 26 may finely change the outside air temperature To and the predetermined amount corresponding to the outside air temperature Tо. Further, the temperature may be changed to a predetermined amount larger than the second predetermined amount V2 in the temperature region where condensed water is less likely to be generated than the first predetermined outside air temperature To1.
(d)本実施形態では、制御部26が、充電率(SOC)に応じて内燃機関2の運転状態を可変させる一例として、充電率に応じて、高負荷の凝縮水パージ運転から通常の凝縮水パージ運転とに可変させる例を説明したが、本発明はこれに限定されるものではない。制御部26は、充電率に応じて、中負荷の凝縮水パージ運転など、充電率に応じた種々の運転状態に可変させればよい。 (D) In the present embodiment, as an example in which the control unit 26 changes the operating state of the internal combustion engine 2 according to the charging rate (SOC), the high-load condensed water purge operation is changed to the normal condensation according to the charging rate. Although the example of changing to the water purge operation has been described, the present invention is not limited to this. The control unit 26 may be changed to various operating states according to the charging rate, such as a medium-load condensed water purging operation, according to the charging rate.
1:凝縮水処理装置,2:内燃機関,4:吸気通路,12:吸気冷却装置
20:蓄電池,22:算出部,24:指示部,26:制御部
28:外気温度検知部,30:充電率検知部,B1:充電率,
Vr:凝縮水推定積算量(凝縮水量),C:車両,Tic:IC出口温度,
To:外気温度,V1:第1所定値
V2:第2所定値
1: Condensed water treatment device, 2: Internal combustion engine, 4: Intake passage, 12: Intake cooling device 20: Storage battery, 22: Calculation unit, 24: Indicator unit, 26: Control unit 28: Outside air temperature detection unit, 30: Charging Rate detector, B1: Charge rate,
Vr: Estimated integrated amount of condensed water (condensed water amount), C: Vehicle, Tic: IC outlet temperature,
To: outside air temperature, V1: first predetermined value V2: second predetermined value
Claims (6)
前記内燃機関の吸気通路に生成された凝縮水量を算出する算出部と、
前記内燃機関の停止を指示する指示部と、
前記指示部が前記内燃機関の停止を指示した場合に、前記算出部で算出した前記凝縮水量が所定量以上の場合は、前記内燃機関を所定期間運転させ、前記凝縮水を前記内燃機関で燃焼させて処理する制御部と、
を備える、凝縮水処理装置。 A condensed water treatment device that treats condensed water from an internal combustion engine mounted on a vehicle.
A calculation unit that calculates the amount of condensed water generated in the intake passage of the internal combustion engine, and
An instruction unit that instructs the stop of the internal combustion engine and
When the instruction unit instructs the internal combustion engine to stop, and the amount of condensed water calculated by the calculation unit is equal to or more than a predetermined amount, the internal combustion engine is operated for a predetermined period and the condensed water is burned by the internal combustion engine. The control unit that lets you process
Condensed water treatment device.
前記制御部は、前記凝縮水を処理する場合に、前記吸気冷却装置の出口温度が所定温度範囲となるように制御する、
請求項1に記載の凝縮水処理装置。 An intake air cooling device for cooling the intake air taken into the internal combustion engine is further provided.
The control unit controls the outlet temperature of the intake air cooling device to be within a predetermined temperature range when processing the condensed water.
The condensed water treatment apparatus according to claim 1.
前記制御部は、前記停止が自動停止か否か判断し、前記停止が自動停止と判断した場合は、算出された前記凝縮水量が第1所定量以上か否かを判断し、前記凝縮水量が前記第1所定量以上の場合に、前記凝縮水を処理し、前記停止が自動停止と異なる場合に、前記第1所定量よりも小さい第2所定量以上の場合に前記凝縮水を処理する、
請求項1または2に記載の凝縮水処理装置。 The instruction unit gives an automatic stop instruction to automatically stop the internal combustion engine.
The control unit determines whether or not the stop is an automatic stop, and if the stop is an automatic stop, determines whether or not the calculated amount of condensed water is equal to or greater than the first predetermined amount, and the amount of condensed water is determined. When the first predetermined amount or more, the condensed water is treated, and when the stop is different from the automatic stop, the condensed water is treated when the second predetermined amount is smaller than the first predetermined amount.
The condensed water treatment apparatus according to claim 1 or 2.
前記制御部は、前記指示部から前記内燃機関の停止を指示された場合に、前記外気温度を取得し、前記外気温度に応じて前記第2所定量を可変させる、請求項3に記載の凝縮水処理装置。 Further equipped with an outside air temperature detecting unit for detecting the outside air temperature of the vehicle,
The condensation according to claim 3, wherein the control unit acquires the outside air temperature and changes the second predetermined amount according to the outside air temperature when the instruction unit instructs to stop the internal combustion engine. Water treatment equipment.
前記蓄電池の充電率を検知する充電率検知部と、
をさらに備え、
前記制御部は、前記充電率に応じて前記内燃機関の運転状態を可変させる、
請求項1から4のいずれか1項に記載の凝縮水処理装置。 A storage battery that supplies electric power to the vehicle and
A charge rate detector that detects the charge rate of the storage battery,
With more
The control unit changes the operating state of the internal combustion engine according to the charging rate.
The condensed water treatment apparatus according to any one of claims 1 to 4.
請求項5のいずれか1項に記載の凝縮水処理装置。 The control unit charges the storage battery when processing the condensed water.
The condensed water treatment apparatus according to any one of claims 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019039218A JP7268404B2 (en) | 2019-03-05 | 2019-03-05 | Condensate treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019039218A JP7268404B2 (en) | 2019-03-05 | 2019-03-05 | Condensate treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020143592A true JP2020143592A (en) | 2020-09-10 |
JP7268404B2 JP7268404B2 (en) | 2023-05-08 |
Family
ID=72353474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019039218A Active JP7268404B2 (en) | 2019-03-05 | 2019-03-05 | Condensate treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7268404B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121574A (en) * | 2008-11-21 | 2010-06-03 | Toyota Motor Corp | Control device for internal combustion engine |
WO2015151484A1 (en) * | 2014-04-02 | 2015-10-08 | 株式会社デンソー | Egr system of internal-combustion engine |
JP2018044457A (en) * | 2016-09-12 | 2018-03-22 | 日産自動車株式会社 | Method for controlling engine and engine |
-
2019
- 2019-03-05 JP JP2019039218A patent/JP7268404B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121574A (en) * | 2008-11-21 | 2010-06-03 | Toyota Motor Corp | Control device for internal combustion engine |
WO2015151484A1 (en) * | 2014-04-02 | 2015-10-08 | 株式会社デンソー | Egr system of internal-combustion engine |
JP2018044457A (en) * | 2016-09-12 | 2018-03-22 | 日産自動車株式会社 | Method for controlling engine and engine |
Also Published As
Publication number | Publication date |
---|---|
JP7268404B2 (en) | 2023-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10302048B2 (en) | Methods and systems for controlling air flow paths in an engine | |
CN107420234B (en) | Method and system for controlling air flow path in engine | |
RU2673359C2 (en) | Method (options) and system to reduce charge air cooler condensation | |
US10125727B2 (en) | Internal combustion engine | |
JP2006226155A (en) | Supercharging assist control system | |
JP6327199B2 (en) | Low water temperature cooling device for internal combustion engine | |
US20170120756A1 (en) | Vehicle equipped with engine for driving a generator | |
CN111102060B (en) | Supercharged engine system and condensation control method thereof | |
JP3658970B2 (en) | Internal combustion engine having a combustion heater | |
JPH1182182A (en) | Exhaust gas recirculation system | |
JP3714495B2 (en) | Internal combustion engine control device | |
JP7238479B2 (en) | Condensate treatment equipment | |
WO2015141148A1 (en) | Internal combustion engine control device | |
JP2007002813A (en) | Exhaust control device for supercharged internal combustion engine | |
JP7268404B2 (en) | Condensate treatment equipment | |
JP2020019397A (en) | Control device | |
JP3695187B2 (en) | Combustion heater for internal combustion engine | |
JP6687902B2 (en) | Direct injection engine cooling system | |
JP6539192B2 (en) | Engine control device | |
JP6245318B1 (en) | Engine control device | |
JP7040128B2 (en) | Engine start control | |
JP3528637B2 (en) | Control device for combustion type heater for internal combustion engine | |
JPH0738653Y2 (en) | Engine cooling controller | |
JP2009156221A (en) | Engine starting device | |
JP2003056419A (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230404 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7268404 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |