JP7238479B2 - Condensate treatment equipment - Google Patents

Condensate treatment equipment Download PDF

Info

Publication number
JP7238479B2
JP7238479B2 JP2019039219A JP2019039219A JP7238479B2 JP 7238479 B2 JP7238479 B2 JP 7238479B2 JP 2019039219 A JP2019039219 A JP 2019039219A JP 2019039219 A JP2019039219 A JP 2019039219A JP 7238479 B2 JP7238479 B2 JP 7238479B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
condensed water
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039219A
Other languages
Japanese (ja)
Other versions
JP2020143593A (en
Inventor
征二 松田
康夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2019039219A priority Critical patent/JP7238479B2/en
Publication of JP2020143593A publication Critical patent/JP2020143593A/en
Application granted granted Critical
Publication of JP7238479B2 publication Critical patent/JP7238479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、凝縮水処理装置、特に車両に搭載される凝縮水処理装置に関する。 The present invention relates to a condensed water treatment device, and more particularly to a condensed water treatment device mounted on a vehicle.

従来、内燃機関の吸気に含まれる水分が凝縮し、吸気通路に凝縮水が生成されることが知られている。特に、低圧排気循環装置および吸気冷却装置(インタークーラ)を備える内燃機関では、排気ガスが吸気通路に循環される。循環された排気ガスが吸気冷却装置によって冷却されることで凝縮水が生成され、生成された凝縮水が吸気冷却装置の下流に滞留する。 2. Description of the Related Art Conventionally, it is known that water contained in intake air of an internal combustion engine is condensed and condensed water is generated in an intake passage. Especially in an internal combustion engine with a low-pressure exhaust gas recirculation system and an intake air cooling system (intercooler), the exhaust gas is circulated to the intake passage. Condensed water is generated by cooling the circulated exhaust gas by the intake air cooling device, and the generated condensed water stays downstream of the intake air cooling device.

また、凝縮水を処理するための凝縮水処理装置が知られている(例えば特許文献1および特許文献2参照)。特許文献1の凝縮水処理装置は、凝縮水貯蔵タンクと排気通路とを連通するバイパス通路を備える。凝縮水処理装置は、内燃機関の停止後に電動過給機を駆動することで、凝縮水貯蔵タンク内の凝縮水を、バイパス通路を介して排気通路に排出させる。これにより、凝縮水が排気通路で処理される。また、特許文献2の凝縮水処理装置では、吸気通路に付着した凝縮水を内燃機関に均等に分配して内燃機関で燃焼させ、凝縮水処理装置が凝縮水を処理する。 A condensed water treatment device for treating condensed water is also known (see, for example, Patent Documents 1 and 2). The condensed water treatment device of Patent Literature 1 includes a bypass passage that communicates between the condensed water storage tank and the exhaust passage. The condensed water treatment device drives the electric supercharger after the internal combustion engine stops to discharge the condensed water in the condensed water storage tank to the exhaust passage through the bypass passage. Thereby, the condensed water is treated in the exhaust passage. Further, in the condensed water treatment device of Patent Document 2, the condensed water adhering to the intake passage is evenly distributed to the internal combustion engine and burned in the internal combustion engine, and the condensed water treatment device treats the condensed water.

特開2014-74356号公報JP 2014-74356 A 特開2018-168783号公報JP 2018-168783 A

しかし、特許文献1の凝縮水処理装置では、凝縮水を排気通路に排出するため、排気通路に凝縮水が付着するという問題がある。また、凝縮水には排気ガス成分などが含まれるため、これら成分が排気ガスに含まれて排出されると排気浄化性能を損なうという問題がある。一方、特許文献2の凝縮水処理装置のように、凝縮水を内燃機関で燃焼させて処理する場合、凝縮水が処理可能な内燃機関の運転状態でなければ、内燃機関の排気浄化性能および出力性能を損なう原因となる。 However, in the condensed water treatment device of Patent Document 1, since the condensed water is discharged to the exhaust passage, there is a problem that the condensed water adheres to the exhaust passage. In addition, since the condensed water contains exhaust gas components and the like, there is a problem that exhaust purification performance is impaired when these components are contained in the exhaust gas and discharged. On the other hand, when the condensed water is treated by burning it in an internal combustion engine, as in the condensed water treatment device of Patent Document 2, if the operating state of the internal combustion engine is not such that the condensed water can be treated, the exhaust gas purification performance and output of the internal combustion engine It causes performance loss.

本発明の課題は、内燃機関の排気浄化性能および出力性能を損なうことなく、凝縮水を処理できる凝縮水処理装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a condensed water treatment apparatus capable of treating condensed water without impairing exhaust purification performance and output performance of an internal combustion engine.

本発明に係る凝縮水処理装置は、車両に搭載される内燃機関の凝縮水を処理する装置である。凝縮水処理装置は、算出部と、指示部と、制御部と、を備える。算出部は、内燃機関の吸気通路に生成された凝縮水量を算出する。指示部は、内燃機関の停止を指示する。制御部は、指示部によって内燃機関の停止が指示された場合に、算出部で算出した凝縮水量に応じて、内燃機関の回転数を可変させて凝縮水を内燃機関で燃焼処理したのち内燃機関を停止する。 A condensed water treatment apparatus according to the present invention is an apparatus for treating condensed water of an internal combustion engine mounted on a vehicle. The condensed water treatment device includes a calculator, an indicator, and a controller. The calculator calculates the amount of condensed water generated in the intake passage of the internal combustion engine. The instruction unit instructs to stop the internal combustion engine. When the instructing unit instructs to stop the internal combustion engine, the control unit varies the rotation speed of the internal combustion engine according to the amount of condensed water calculated by the calculating unit, burns the condensed water in the internal combustion engine, and then to stop.

この凝縮水処理装置では、内燃機関の出力が要求されていない状態で、内燃機関を運転し凝縮水を燃焼させることができる。内燃機関に出力が要求されていなければ、内燃機関は凝縮水を燃焼させるために最適な運転状態にできる。この結果、内燃機関の出力性能、排気浄化性能を損なうことなく、凝縮水を処理できる。また、制御部は、凝縮水量に応じて内燃機関の回転数を可変させる。これにより、凝縮水量に応じて内燃機関の運転時間を調整できる。 In this condensed water treatment device, the internal combustion engine can be operated and the condensed water can be burned while the output of the internal combustion engine is not requested. If no power is being demanded of the internal combustion engine, the internal combustion engine can be brought into optimum operating conditions to burn the condensate. As a result, the condensed water can be treated without impairing the output performance and exhaust purification performance of the internal combustion engine. Also, the control unit varies the rotation speed of the internal combustion engine according to the amount of condensed water. Thereby, the operating time of the internal combustion engine can be adjusted according to the amount of condensed water.

制御部は、凝縮水量が多くなるほど内燃機関の回転数を高くしてもよい。 The controller may increase the rotational speed of the internal combustion engine as the amount of condensed water increases.

内燃機関の回転数が高いほど、内燃機関が凝縮水を処理する能力が高くなる。この構成によれば、凝縮水量が多いほど、内燃機関が凝縮水を処理する能力が高くなる。これにより、内燃機関が凝縮水を処理する時間が長くなることを抑制できる。 The higher the rpm of the internal combustion engine, the greater the ability of the internal combustion engine to handle condensate. According to this configuration, the greater the amount of condensed water, the higher the ability of the internal combustion engine to process the condensed water. As a result, it is possible to prevent the internal combustion engine from increasing the time it takes to process the condensed water.

凝縮水処理装置は、内燃機関の温度を検知する温度検知部をさらに備えてもよい。制御部は、内燃機関の温度が高くなるほど、内燃機関の回転数を高くしてもよい。 The condensed water treatment device may further include a temperature detector that detects the temperature of the internal combustion engine. The controller may increase the rotational speed of the internal combustion engine as the temperature of the internal combustion engine increases.

この構成によれば、内燃機関の温度が高いほど、内燃機関の回転数を高くし、内燃機関が単位時間あたりに処理できる凝縮水量を多くする。この結果、より短時間で凝縮水を処理できる。 According to this configuration, the higher the temperature of the internal combustion engine, the higher the rotational speed of the internal combustion engine and the larger the amount of condensed water that can be processed by the internal combustion engine per unit time. As a result, the condensed water can be treated in a shorter time.

指示部は、内燃機関を自動で停止させる自動停止指示を行ってもよい。制御部は、停止が自動停止か否か判断してもよい。制御部は、停止が自動停止の場合は、内燃機関の回転数を可変させて凝縮水を内燃機関で燃焼処理してもよい。 The instruction unit may issue an automatic stop instruction to automatically stop the internal combustion engine. The control unit may determine whether the stop is an automatic stop. When the stop is an automatic stop, the control unit may change the rotational speed of the internal combustion engine to burn the condensed water in the internal combustion engine.

内燃機関が自動停止する場合は、内燃機関が再始動する場合も温帯状態で始動する。このため、内燃機関の停止前に内燃機関で燃焼させた凝縮水の影響を受けて、内燃機関が始動不良となる可能性が低い。この構成によれば、指示部から自動停止指示を受けた制御部が、内燃機関の回転数を制御しながら凝縮水を処理する。これにより、吸気通路に滞留した凝縮水を積極的に処理することができる。 If the internal combustion engine is automatically stopped, it will also start in temperate conditions when the internal combustion engine is restarted. Therefore, there is a low possibility that the internal combustion engine will fail to start due to the influence of the condensed water burned in the internal combustion engine before the internal combustion engine is stopped. According to this configuration, the control section that receives the automatic stop instruction from the instruction section treats the condensed water while controlling the rotation speed of the internal combustion engine. As a result, the condensed water remaining in the intake passage can be actively treated.

凝縮水処理装置は、内燃機関に吸入される吸気を冷却する吸気冷却装置をさらに備えてもよい。制御部は、凝縮水を処理する場合に、冷却装置の出口温度を所定温度範囲となるように制御してもよい。 The condensed water treatment device may further include an intake air cooling device for cooling intake air taken into the internal combustion engine. The controller may control the outlet temperature of the cooling device to be within a predetermined temperature range when treating the condensed water.

この構成によれば、凝縮水が生成されやすい吸気冷却装置出口の温度を管理することができる。これにより、凝縮水が蒸発しやすい状態を維持できる。この結果、内燃機関に凝縮水を吸入しやすくなり、凝縮水を燃焼させやすくなる。 According to this configuration, it is possible to manage the temperature of the intake air cooling device outlet where condensed water is likely to be generated. As a result, a state in which condensed water can easily evaporate can be maintained. As a result, the condensed water is easily drawn into the internal combustion engine, and the condensed water is easily burned.

本発明に係る凝縮水処理装置は、内燃機関の出力性能、排気浄化性能を損なうことなく、凝縮水を処理できる。 The condensed water treatment device according to the present invention can treat condensed water without impairing the output performance and exhaust purification performance of the internal combustion engine.

本発明の凝縮水処理装置のシステム図。1 is a system diagram of a condensed water treatment apparatus of the present invention; FIG. 本発明の凝縮水処理装置を車両に搭載した場合の図。The figure at the time of mounting the condensed water treatment apparatus of this invention on a vehicle. 本発明の凝縮水処理装置のフローチャート。4 is a flow chart of the condensed water treatment apparatus of the present invention; 本発明の凝縮水処理装置の吸気冷却装置の温度管理のフローチャート。4 is a flow chart of temperature control of the intake air cooling device of the condensed water treatment device of the present invention.

以下、本発明の実施形態について、図面を参照しながら説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、凝縮水処理装置1は、内燃機関2と、吸気通路4と、排気通路6と、過給機8と、低圧排気循環装置10と、吸気冷却装置(インタークーラ(以下、ICと記すことがある))12と、エンジン水冷装置14と、IC水冷装置16と、発電機18と、蓄電池20と、を備える。また、凝縮水処理装置1は、算出部22と、指示部24と、制御部26と、エンジン水温検知部(温度検知部の一例)27と、外気温度検知部28と、充電率検知部30と、を備える。本実施形態では、算出部22と、指示部24および制御部26は、ECU(Electrоnic Control Unit)32に記録されたソフトウェアによって実現される機能構成である。 As shown in FIG. 1, the condensed water treatment device 1 includes an internal combustion engine 2, an intake passage 4, an exhaust passage 6, a supercharger 8, a low-pressure exhaust circulation device 10, an intake air cooling device (intercooler (hereinafter referred to as , IC)) 12 , an engine water cooling device 14 , an IC water cooling device 16 , a generator 18 , and a storage battery 20 . The condensed water treatment device 1 also includes a calculation unit 22, an instruction unit 24, a control unit 26, an engine water temperature detection unit (an example of a temperature detection unit) 27, an outside air temperature detection unit 28, and a charging rate detection unit 30. And prepare. In the present embodiment, the calculation unit 22 , the instruction unit 24 and the control unit 26 are functional configurations realized by software recorded in an ECU (Electronic Control Unit) 32 .

内燃機関2は、シリンダヘッド202と、複数の気筒Nが配置されるシリンダブロック204と、気筒N内を摺動するピストン206と、燃料噴射装置208と、インテークマニホールド210と、エキゾーストマニホールド212と、スロットルバルブ214と、を有する。内燃機関2は、ピストン206、シリンダヘッド202、および気筒Nとで、燃焼室216を形成する。また、燃料噴射装置208は、燃焼室216に直接燃料を噴射する。インテークマニホールド210は、内燃機関2の各吸気ポート(図示せず)に空気を供給する。スロットルバルブ214は、インテークマニホールド210に供給する吸気量を調整する。スロットルバルブ214は、ECU32に電気的に接続される。 The internal combustion engine 2 includes a cylinder head 202, a cylinder block 204 in which a plurality of cylinders N are arranged, a piston 206 sliding inside the cylinders N, a fuel injection device 208, an intake manifold 210, an exhaust manifold 212, and a throttle valve 214 . The internal combustion engine 2 forms a combustion chamber 216 with the piston 206, the cylinder head 202, and the cylinder N. As shown in FIG. Fuel injector 208 also injects fuel directly into combustion chamber 216 . An intake manifold 210 supplies air to each intake port (not shown) of the internal combustion engine 2 . Throttle valve 214 adjusts the amount of intake air supplied to intake manifold 210 . Throttle valve 214 is electrically connected to ECU 32 .

本実施形態では、内燃機関2は、直噴ガソリンエンジンを用いて説明するが、これに限定されるものではなく、ディーゼルエンジンでもよい。図2に示すように、内燃機関2は、車両Cの前方に位置するエンジンルーム内に収められる。本実施形態では、車両Cが停止する場合、もしくは、停止する直前に内燃機関2の運転を停止する、アイドルストップ機能付きの車両である。なお、本実施形態では、図2の矢印Fが示す方向を車両前方と称し、反対を車両後方と称する。 In this embodiment, the internal combustion engine 2 is explained using a direct injection gasoline engine, but it is not limited to this, and a diesel engine may be used. As shown in FIG. 2, the internal combustion engine 2 is housed in an engine room located in front of the vehicle C. As shown in FIG. In this embodiment, the vehicle has an idle stop function that stops the operation of the internal combustion engine 2 when the vehicle C stops or just before it stops. In this embodiment, the direction indicated by arrow F in FIG. 2 is referred to as the vehicle front, and the opposite direction is referred to as the vehicle rear.

吸気通路4は、図1に示すように、内燃機関2のスロットルバルブ214を介してインテークマニホールド210に接続され、内燃機関2の複数の気筒Nに吸気を供給する。吸気通路4は、エアクリーナ402を有する。エアクリーナ402は、内燃機関2に吸入する空気中の埃を濾過する。なお、本実施形態では、吸気通路4のエアクリーナ402側を、吸気通路の上流と称し、内燃機関2側を下流と称する。 The intake passage 4 is connected to an intake manifold 210 via a throttle valve 214 of the internal combustion engine 2 and supplies intake air to a plurality of cylinders N of the internal combustion engine 2, as shown in FIG. The intake passage 4 has an air cleaner 402 . The air cleaner 402 filters dust in the air taken into the internal combustion engine 2 . In this embodiment, the air cleaner 402 side of the intake passage 4 is referred to as upstream of the intake passage, and the internal combustion engine 2 side is referred to as downstream.

吸気温度センサ(外気温度検知部)28は、エアクリーナ402の下流に備えられ、車両Cの吸気温度(外気温度)が計測される。また、エアクリーナ402の下流には、湿度センサ29が備えられ、吸気の湿度が計測される。吸気温度センサ(外気温度検知部)28および湿度センサ29は、ECU32に電気的に接続される。 An intake air temperature sensor (outside air temperature detector) 28 is provided downstream of the air cleaner 402 and measures the intake air temperature of the vehicle C (outside air temperature). A humidity sensor 29 is provided downstream of the air cleaner 402 to measure the humidity of the intake air. An intake air temperature sensor (outside air temperature detector) 28 and a humidity sensor 29 are electrically connected to the ECU 32 .

排気通路6は、内燃機関2のエキゾーストマニホールド212に接続され、内燃機関2の排気を排出する。本実施形態では、排気通路6のエキゾーストマニホールド212側を排気通路の上流と称し、反対側を下流と称する。後述する過給機8のタービン下流には、排気ガスを浄化する排気浄化触媒602が設けられる。排気浄化触媒602の上流および下流には、排気ガス中の酸素濃度を計測する空燃比センサ604aおよび604bが設けられる。空燃比センサ604aおよび604bはECU32に電気的に接続される。 The exhaust passage 6 is connected to an exhaust manifold 212 of the internal combustion engine 2 and discharges exhaust gas from the internal combustion engine 2 . In this embodiment, the exhaust manifold 212 side of the exhaust passage 6 is referred to as upstream of the exhaust passage, and the opposite side is referred to as downstream. An exhaust purification catalyst 602 for purifying exhaust gas is provided downstream of the turbine of the supercharger 8, which will be described later. Upstream and downstream of the exhaust purification catalyst 602, air-fuel ratio sensors 604a and 604b for measuring the oxygen concentration in the exhaust gas are provided. Air-fuel ratio sensors 604 a and 604 b are electrically connected to ECU 32 .

過給機8は、内燃機関2の排気ガスを利用して内燃機関2に吸い込まれる吸気を過給する装置である。過給機8は、図示しないタービンと、タービンと同軸上に配置されたコンプレッサと、タービンに流入する排気ガスの量を調整するウェストゲートバルブを有する。タービンは、排気通路6の排気浄化触媒602の上流に配置される。コンプレッサは、吸気通路4のエアクリーナ402の下流に配置される。 The supercharger 8 is a device that supercharges the intake air drawn into the internal combustion engine 2 using the exhaust gas of the internal combustion engine 2 . The supercharger 8 has a turbine (not shown), a compressor arranged coaxially with the turbine, and a wastegate valve for adjusting the amount of exhaust gas flowing into the turbine. The turbine is arranged upstream of the exhaust purification catalyst 602 in the exhaust passage 6 . The compressor is arranged downstream of the air cleaner 402 in the intake passage 4 .

低圧排気循環装置10は、内燃機関2から排出される排気ガスを、吸気通路4に循環する循環装置である。低圧排気循環装置10は、排気循環通路102と、排気循環バルブ104と、排気循環ガス冷却部106と、差圧センサ108と、排気循環ガス温度センサ110と、を有する。排気循環通路102は、排気通路6のタービン下流と、吸気通路4のコンプレッサ上流に接続される。 The low-pressure exhaust gas circulation device 10 is a circulation device that circulates the exhaust gas discharged from the internal combustion engine 2 to the intake passage 4 . The low-pressure exhaust circulation device 10 has an exhaust circulation passage 102 , an exhaust circulation valve 104 , an exhaust circulation gas cooling section 106 , a differential pressure sensor 108 , and an exhaust circulation gas temperature sensor 110 . The exhaust circulation passage 102 is connected to the exhaust passage 6 downstream of the turbine and the intake passage 4 upstream of the compressor.

排気循環バルブ104は、排気循環通路102上の吸気通路4との接続部近傍に配置され、吸気通路4に供給する排気循環ガスの量を調整する。差圧センサ108は、排気循環バルブ104の上流および下流の圧力を計測する。排気循環ガス温度センサ110は、排気循環通路102の排気循環ガス冷却部106よりも吸気通路4側に配置され、排気循環ガスの温度を計測する。排気循環バルブ104、差圧センサ108、および排気循環ガス温度センサ110は、ECU32と電気的に接続される。排気循環ガス冷却部106は、排気循環通路102に流れる排気循環ガスを冷却する。本実施形態では、排気循環ガス冷却部106は、エンジン水冷装置14の冷却水が供給され熱交換によって排気循環ガスを冷却する。 The exhaust circulation valve 104 is arranged on the exhaust circulation passage 102 in the vicinity of the connection with the intake passage 4 and adjusts the amount of the exhaust circulation gas supplied to the intake passage 4 . A differential pressure sensor 108 measures pressure upstream and downstream of the exhaust circulation valve 104 . The exhaust circulation gas temperature sensor 110 is arranged closer to the intake passage 4 than the exhaust circulation gas cooling section 106 of the exhaust circulation passage 102, and measures the temperature of the exhaust circulation gas. Exhaust circulation valve 104 , differential pressure sensor 108 , and exhaust circulation gas temperature sensor 110 are electrically connected to ECU 32 . The exhaust circulation gas cooling unit 106 cools the exhaust circulation gas flowing through the exhaust circulation passage 102 . In this embodiment, the exhaust circulation gas cooling unit 106 is supplied with the cooling water of the engine water cooling device 14 and cools the exhaust circulation gas by heat exchange.

吸気冷却装置12は、過給機8によって過給された吸気を冷却する装置である。本実施形態では、吸気冷却装置12は、水冷式のインタークーラであり、インタークーラ内部に冷却水が通る通路が設けることで、過給した吸気の熱を冷却水によって熱交換し冷却する。吸気冷却装置12は、吸気通路4の過給機8の下流で、スロットルバルブ214の上流に配置される。 The intake air cooling device 12 is a device that cools the intake air supercharged by the supercharger 8 . In this embodiment, the intake air cooling device 12 is a water-cooled intercooler, and a passage through which cooling water passes is provided inside the intercooler, so that the heat of the supercharged intake air is heat-exchanged with the cooling water and cooled. The intake air cooling device 12 is arranged downstream of the supercharger 8 in the intake passage 4 and upstream of the throttle valve 214 .

図2に示すように、吸気冷却装置12は、内燃機関2の上方に配置され、車両Cの後方に設けられた過給機8から、上方を向けられた第1吸気通路4aに接続される。また、吸気冷却装置12は、車両Cの前方に設けれたスロットルバルブ214から、上方へ向けて延設された第2吸気通路4bに接続される。吸気冷却装置12は、温度センサ1204を有する。温度センサ1204は、吸気冷却装置12の温度を計測する。温度センサ1204は、ECU32と電気的に接続される。 As shown in FIG. 2, the intake air cooling device 12 is arranged above the internal combustion engine 2 and is connected to a first intake passage 4a facing upward from a supercharger 8 provided at the rear of the vehicle C. . The intake air cooling device 12 is connected to a second intake passage 4b extending upward from a throttle valve 214 provided in front of the vehicle C. As shown in FIG. The intake air cooler 12 has a temperature sensor 1204 . A temperature sensor 1204 measures the temperature of the intake air cooling device 12 . Temperature sensor 1204 is electrically connected to ECU 32 .

図1に示すように、エンジン水冷装置14は、内燃機関2を冷却するための装置である。エンジン水冷装置14は、第1水路1402と、第1ラジエタ1404と、第1ウォータポンプ1406と、第1ファン1408aと、第2ファン1408bと、エンジン水温検知部27と、を有する。 As shown in FIG. 1 , the engine water cooling device 14 is a device for cooling the internal combustion engine 2 . The engine water cooling device 14 has a first water passage 1402, a first radiator 1404, a first water pump 1406, a first fan 1408a, a second fan 1408b, and an engine water temperature detector 27.

第1水路1402は、内燃機関2のシリンダヘッド202から第1ラジエタ1404、および排気循環ガス冷却部106を経由して、内燃機関2のシリンダブロック204へと戻る水路である。第1ラジエタ1404は、第1水路1402に設けられ、内燃機関2のエンジン冷却水路(図1第1水路1402の破線参照)などを通過し熱せられた冷却水を冷却する。また、図2に示すように、第1ラジエタ1404は車両Cの前方に設けられ、車両Cの前方からの外気が当たることで、外気と冷却水との間で熱交換を行い、冷却水を冷却する。第1ファン1408aおよび第2ファン1408bは、第1ラジエタ1404の車両Cの後方に設けれ、車両Cの前方の外気を引き込む。本実施形態では、第1ファン1408aおよび第2ファン1408bは、モータによって駆動される電動ファンであり、ECU32と電気的に接続される(図1参照)。 The first water passage 1402 is a water passage that returns from the cylinder head 202 of the internal combustion engine 2 to the cylinder block 204 of the internal combustion engine 2 via the first radiator 1404 and the exhaust circulation gas cooling section 106 . The first radiator 1404 is provided in the first water passage 1402 and cools the cooling water that has passed through the engine cooling water passage of the internal combustion engine 2 (see the dashed line of the first water passage 1402 in FIG. 1) and the like. Further, as shown in FIG. 2, the first radiator 1404 is provided in front of the vehicle C, and is exposed to outside air from the front of the vehicle C, thereby exchanging heat between the outside air and the cooling water. Cooling. The first fan 1408a and the second fan 1408b are provided behind the vehicle C in the first radiator 1404, and draw outside air in front of the vehicle C. As shown in FIG. In this embodiment, the first fan 1408a and the second fan 1408b are electric fans driven by a motor and electrically connected to the ECU 32 (see FIG. 1).

図1に示すように、第1ウォータポンプ1406は、第1水路1402上、または、内燃機関2のエンジン冷却水路上のいずれかの場所に設けられ、第1水路1402の冷却水を循環させる。本実施形態では、第1ウォータポンプ1406は内燃機関2のクランクシャフトから動力を得て回転する機械式ポンプである。しかし、第1ウォータポンプ1406は、電動式のポンプであってもよい。 As shown in FIG. 1 , the first water pump 1406 is provided either on the first water passage 1402 or on the engine cooling water passage of the internal combustion engine 2 and circulates the cooling water in the first water passage 1402 . In this embodiment, the first water pump 1406 is a mechanical pump that receives power from the crankshaft of the internal combustion engine 2 and rotates. However, first water pump 1406 may be an electrically driven pump.

エンジン水温検知部27は、第1水路1402の内燃機関2内の通路(図1第1水路1402の破線参照)設けられ、内燃機関2の水温を検知する。エンジン水温検知部27は、ECU32と電気的に接続される。 The engine water temperature detection unit 27 is provided in a passage inside the internal combustion engine 2 of the first water passage 1402 (see the dashed line of the first water passage 1402 in FIG. 1) and detects the water temperature of the internal combustion engine 2 . The engine water temperature detector 27 is electrically connected to the ECU 32 .

IC水冷装置16は、吸気冷却装置12を冷却するための装置である。IC水冷装置16は、第2水路1602と、第2ラジエタ1604と、第2ウォータポンプ1606と、IC水温検知部1608と、を有する。 The IC water cooling device 16 is a device for cooling the intake air cooling device 12 . The IC water cooling device 16 has a second water channel 1602 , a second radiator 1604 , a second water pump 1606 and an IC water temperature detector 1608 .

第2水路1602は、吸気冷却装置12から第2ラジエタ1604を経由して、吸気冷却装置12へと戻る水路である。第2ラジエタ1604は、第2水路1602に設けられ、吸気冷却装置12を通過し熱せられた冷却水を冷却する。また、図2に示すように、第2ラジエタ1604は、車両Cの第1ラジエタ1404よりも前方に設けられ、車両Cの前方からの外気が当たることで、外気と冷却水との間で熱交換を行い、冷却水を冷却する。なお、第2水路1602は、過給機8を経由し冷却してもよい。 A second water channel 1602 is a water channel that returns from the intake air cooling device 12 to the intake air cooling device 12 via the second radiator 1604 . A second radiator 1604 is provided in a second water passage 1602 and cools the cooling water that has passed through the intake air cooling device 12 and is heated. In addition, as shown in FIG. 2, the second radiator 1604 is provided forward of the first radiator 1404 of the vehicle C, and is exposed to outside air from the front of the vehicle C, thereby generating heat between the outside air and the cooling water. Replace and cool the cooling water. In addition, the second water passage 1602 may be cooled via the supercharger 8 .

図1に示すように、第2ウォータポンプ1606は、第2水路1602に設けられ、第2水路1602の冷却水を循環させる電動式のポンプである。IC水温検知部1608は、第2水路1602上に設けられ、第2水路1602の冷却水温度を計測する。IC水温検知部1608は、ECU32と電気的に接続される。 As shown in FIG. 1, the second water pump 1606 is an electric pump that is provided in the second water channel 1602 and circulates the cooling water in the second water channel 1602 . IC water temperature detector 1608 is provided on second water channel 1602 and measures the temperature of cooling water in second water channel 1602 . IC water temperature detector 1608 is electrically connected to ECU 32 .

発電機18は、内燃機関2のクランクシャフトに補機ベルト1801を介して接続され、内燃機関2によって駆動されることで発電する。本実施形態では、発電機18は蓄電池20を充電するオルタネータである。しかし、発電機18は、車両Cがハイブリッド車両の場合は、駆動用モータに電力を供給するジェネレータであってもよい。また、発電機18は、発電するとともに内燃機関2を始動させる回転電機(モータ・ジェネレータ)であってもよい。 The generator 18 is connected to the crankshaft of the internal combustion engine 2 via an accessory belt 1801 and is driven by the internal combustion engine 2 to generate electricity. In this embodiment, generator 18 is an alternator that charges storage battery 20 . However, if the vehicle C is a hybrid vehicle, the generator 18 may be a generator that supplies electric power to the drive motor. Alternatively, the generator 18 may be a rotating electrical machine (motor generator) that generates power and starts the internal combustion engine 2 .

蓄電池20は、発電機18で発電された電力を蓄えるとともに、ECU32などの機器に電力を供給する。蓄電池20は、リチウムイオン電池、ニッカド電池などからなり、発電機18と電気的に接続される。蓄電池20は、駆動用モータに電力を供給する駆動用バッテリであってもよく、この場合は、内燃機関2に駆動されるジェネレータと電気的に接続される。 The storage battery 20 stores electric power generated by the generator 18 and supplies electric power to devices such as the ECU 32 . The storage battery 20 is composed of a lithium ion battery, a nickel-cadmium battery, or the like, and is electrically connected to the generator 18 . The storage battery 20 may be a drive battery that supplies electric power to the drive motor, and in this case, is electrically connected to a generator driven by the internal combustion engine 2 .

充電率検知部30は、蓄電池20に設けられる。本実施形態では、充電率検知部30は、蓄電池20の端子電圧を検知することで、蓄電池20の充電率をECU32で算出する。なお、充電率は、充電率検知部30で検出した電圧に基づいてECU32で推定してもよい。 The charging rate detector 30 is provided in the storage battery 20 . In the present embodiment, the charging rate detector 30 detects the terminal voltage of the storage battery 20 to calculate the charging rate of the storage battery 20 by the ECU 32 . Note that the charging rate may be estimated by the ECU 32 based on the voltage detected by the charging rate detection unit 30 .

次にECU32に記録されるソフトウェアによって実現される機能構成について説明する。ECU32は、実際には、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成される。ECU32は、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、凝縮水処理装置1が、所望の運転状態となるように各種装置を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 Next, a functional configuration realized by software recorded in the ECU 32 will be described. The ECU 32 is actually configured by a microcomputer including an arithmetic unit, a memory, an input/output buffer, and the like. The ECU 32 controls various devices so that the condensed water treatment device 1 is in a desired operating state based on signals from each sensor and various devices, as well as maps and programs stored in memory. Various controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuits).

算出部22は、各種装置を制御するために必要な演算を行うソフトウェアによって実現される機能構成である。算出部22は、少なくとも、内燃機関2の吸気通路4に生成された凝縮水量を算出する。より具体的には、算出部22は、吸入空気量および湿度センサ29で検出した湿度から、吸気中に含まれる水分量を算出する。また、算出部22は、差圧センサ108で検出した差圧から、排気循環ガス量を算出し、排気循環ガスに含まれる水分量を算出する。一方で、算出部22は、吸気冷却装置12の温度センサ1204の温度から、吸気冷却装置12における出口付近におけるIC出口温度Ticを取得し、温度変化を算出する。 The calculator 22 is a functional configuration implemented by software that performs calculations necessary for controlling various devices. The calculator 22 calculates at least the amount of condensed water generated in the intake passage 4 of the internal combustion engine 2 . More specifically, the calculator 22 calculates the amount of water contained in the intake air from the amount of intake air and the humidity detected by the humidity sensor 29 . Further, the calculation unit 22 calculates the amount of exhaust circulation gas from the differential pressure detected by the differential pressure sensor 108, and calculates the amount of water contained in the exhaust circulation gas. On the other hand, the calculation unit 22 obtains the IC outlet temperature Tic near the outlet of the intake air cooling device 12 from the temperature of the temperature sensor 1204 of the intake air cooling device 12, and calculates the temperature change.

吸気に含まれる水分量、および排気循環ガスに含まれる水分量に対し、吸気冷却装置12の出口付近における温度が露点温度を下回った場合、これら水分は凝縮水として吸気冷却装置12の出口付近に滞留する。すなわち、算出部22は、内燃機関2の運転中に露点温度を下回った時間を算出することによって、吸気通路4の吸気冷却装置12の出口付近に生成された凝縮水推定積算量Vrを算出できる。この凝縮水推定積算量Vrが、算出部22で算出された凝縮水量の一例である。 When the temperature near the outlet of the intake air cooling device 12 falls below the dew point temperature relative to the amount of water contained in the intake air and the amount of water contained in the exhaust circulating gas, the moisture is condensed in the vicinity of the outlet of the intake air cooling device 12. Stay. That is, the calculation unit 22 can calculate the estimated integrated amount Vr of condensed water generated near the outlet of the intake air cooling device 12 in the intake passage 4 by calculating the time during which the internal combustion engine 2 is operating and the dew point temperature is below. . This estimated integrated amount of condensed water Vr is an example of the amount of condensed water calculated by the calculator 22 .

なお、吸気中の水分の露点温度は、吸気冷却装置12の出口付近における温度と吸気の湿度と関連づけてマップ化してECU32に記憶してもよい。また、排気循環ガス中の露点温度は、吸気冷却装置12の出口付近における温度と排気循環ガス量と関連づけてマップ化してECU32に記憶してもよい。これにより、マップ上の露点温度を下回った時間と、吸入空気量および排気循環ガス量から容易に凝縮水推定積算量Vrを算出できる。 Note that the dew point temperature of the moisture in the intake air may be stored in the ECU 32 as a map in association with the temperature near the outlet of the intake air cooling device 12 and the humidity of the intake air. Further, the dew point temperature in the exhaust circulating gas may be stored in the ECU 32 as a map in association with the temperature near the outlet of the intake air cooling device 12 and the amount of the exhaust circulating gas. As a result, the estimated integrated amount of condensed water Vr can be easily calculated from the time the dew point temperature is below the dew point temperature on the map, the amount of intake air, and the amount of circulating exhaust gas.

指示部24は、内燃機関2の制御に関する指示を受け取り、制御部26へ送信するソフトウェアによって実現される機能構成である。指示部24は、内燃機関2の自動停止条件が成立した場合に、制御部26へ自動停止指示を送信する。また、指示部24は、イグニッションスイッチがオフ(キーオフ)された場合に、制御部26へ内燃機関2を停止させる指示を送信する。指示部24は、このほか各種装置を制御するために必要な指示を、制御部26へ送信する。 The instruction unit 24 is a functional configuration implemented by software that receives instructions regarding control of the internal combustion engine 2 and transmits the instructions to the control unit 26 . The instruction unit 24 transmits an automatic stop instruction to the control unit 26 when a condition for automatically stopping the internal combustion engine 2 is satisfied. Further, the instruction unit 24 transmits an instruction to stop the internal combustion engine 2 to the control unit 26 when the ignition switch is turned off (key off). The instruction unit 24 also transmits instructions necessary for controlling various devices to the control unit 26 .

制御部26は、各種装置を制御するためのソフトウェアによって実現される機能構成である。制御部26は、各種センサの値を取得するとともに、算出部22の算出結果、指示部24の指示に従って、各種装置を制御する。 The control unit 26 is a functional configuration realized by software for controlling various devices. The control unit 26 acquires values of various sensors, and controls various devices according to the calculation result of the calculation unit 22 and the instruction of the instruction unit 24 .

次に、図3および図4のフローチャートを用いて本発明の制御部26の制御手順について説明する。 Next, the control procedure of the control section 26 of the present invention will be described with reference to the flow charts of FIGS. 3 and 4. FIG.

<自動停止時のフローチャート>
図3に示すように、制御部26は、指示部24から内燃機関2の自動停止指示を受けたか否かを判断する(S1)。ここで、指示部24が内燃機関2を自動で停止する場合とは、車両Cが停止中または停止直前の場合などで、かつ、内燃機関2および排気浄化触媒602が、自動停止可能な程度に暖機完了している場合など、内燃機関2を停止させる条件が種々成立した場合である。また、指示部24は、これら条件が成立しなくなった場合、内燃機関2を再始動するように制御部26に指示する。すなわち、内燃機関2は、自動停止から再始動する場合は、暖機を行わない。
<Flowchart for automatic stop>
As shown in FIG. 3, the control unit 26 determines whether or not an instruction to automatically stop the internal combustion engine 2 has been received from the instruction unit 24 (S1). Here, the case where the instruction unit 24 automatically stops the internal combustion engine 2 means that the vehicle C is stopping or is about to stop, and that the internal combustion engine 2 and the exhaust purification catalyst 602 are capable of automatically stopping. This is the case when various conditions for stopping the internal combustion engine 2 are satisfied, such as when the warm-up is completed. Further, the instruction unit 24 instructs the control unit 26 to restart the internal combustion engine 2 when these conditions are no longer satisfied. That is, the internal combustion engine 2 does not warm up when restarting from an automatic stop.

制御部26は、指示部24から内燃機関2の自動停止指示を受けた場合(S1 Yes)は、すなわち停止が自動停止の場合は、算出部22で算出した凝縮水推定積算量Vrが第1所定量V1以上か否かを判断する(S2)。制御部26は、凝縮水推定積算量Vrが第1所定量V1以上と判断した場合(S2 Yes)は、エンジン水温検知部27から内燃機関2のエンジン水温Twを取得し、エンジン水温Twが所定水温Tw1以上か否か判断する(S3)。 When the control unit 26 receives an instruction to automatically stop the internal combustion engine 2 from the instruction unit 24 (S1 Yes), that is, when the stop is an automatic stop, the estimated integrated amount of condensed water Vr calculated by the calculation unit 22 is set to the first It is determined whether or not it is equal to or greater than a predetermined amount V1 (S2). When the control unit 26 determines that the estimated integrated amount of condensed water Vr is equal to or greater than the first predetermined amount V1 (Yes in S2), the control unit 26 acquires the engine water temperature Tw of the internal combustion engine 2 from the engine water temperature detection unit 27, and the engine water temperature Tw reaches the predetermined value. It is determined whether or not the water temperature is equal to or higher than Tw1 (S3).

ここで、内燃機関2のエンジン水温Twが所定水温Tw1よりも高い状態とは、内燃機関2が十分に暖機された状態を示す。すなわち、制御部26が、内燃機関2が十分暖機された後に、指示部24から自動停止の指示がされた状態である。このような状態では、凝縮水が蒸発しやすく、気体状態となって吸気に含まれる凝縮水量も増加する。これにより、吸気に液体状態の凝縮水が含まれる可能性が低くなる。この結果、ウォータハンマなどによって内燃機関2を損傷する可能性も低減する。 Here, the state in which the engine water temperature Tw of the internal combustion engine 2 is higher than the predetermined water temperature Tw1 indicates a state in which the internal combustion engine 2 is sufficiently warmed up. That is, the control unit 26 is in a state where the instruction unit 24 has issued an automatic stop instruction after the internal combustion engine 2 has been sufficiently warmed up. In such a state, the condensed water easily evaporates and becomes gaseous, increasing the amount of condensed water contained in the intake air. This reduces the likelihood that the intake air will contain condensed water in a liquid state. As a result, the possibility of damage to the internal combustion engine 2 due to water hammer or the like is also reduced.

制御部26は、エンジン水温Twが所定水温Tw1以上であると判断した場合(S3 Yes)は、凝縮水を内燃機関2で燃焼させて処理する凝縮水パージ運転を、高回転で行う(S4)。このとき、制御部26は、排気循環バルブ104を閉じ、排気循環を停止する。これにより、排気循環ガスに含まれる水分によって凝縮水が生成されることを抑制する。また、制御部26は、第1ファン1408aおよび第2ファン1408bの回転制御を行うことで、吸気冷却装置12の出口付近のIC出口温度Ticが所定温度範囲となるように吸気冷却装置12の温度管理を行う(図4参照)。これにより、凝縮水の蒸発を促す。 When the control unit 26 determines that the engine water temperature Tw is equal to or higher than the predetermined water temperature Tw1 (Yes in S3), the condensed water purge operation is performed at high speed (S4). . At this time, the control unit 26 closes the exhaust circulation valve 104 to stop exhaust circulation. This suppresses the formation of condensed water due to the moisture contained in the exhaust circulation gas. In addition, the control unit 26 controls the rotation of the first fan 1408a and the second fan 1408b to control the temperature of the intake air cooling device 12 so that the IC outlet temperature Tic in the vicinity of the exit of the intake air cooling device 12 falls within a predetermined temperature range. management (see Figure 4). This promotes evaporation of condensed water.

ここで、内燃機関2を高回転で運転するとは、発電機18による負荷を高く設定し、内燃機関2のエンジン回転数がアイドル回転数よりも高い回転数で運転することである。内燃機関2を高回転で運転することで、単位時間あたりの内燃機関2で燃焼できる凝縮水の量が増加する。これにより、短時間で凝縮水が処理できる。 Here, operating the internal combustion engine 2 at high speed means setting the load of the generator 18 high and operating the internal combustion engine 2 at a higher engine speed than the idle speed. By operating the internal combustion engine 2 at high speed, the amount of condensed water that can be burned in the internal combustion engine 2 per unit time increases. Thereby, the condensed water can be treated in a short time.

制御部26は、指示部24から内燃機関2を自動で再始動させる指示がないと判断した場合(S5 No)は、第1所定時間T1が経過すると(S6 Yes)、処理をスタートに戻す。制御部26は、第1所定時間T1が経過していないと判断した場合(S6 No)は、凝縮水パージ運転を継続する。制御部26は、内燃機関2を自動で再始動させる指示があった場合(S5 Yes)は、処理をスタートに戻す。また、制御部26は、内燃機関2の自動停止指示がないと判断した場合(S1 No)は、凝縮水のパージ運転を行わずに、処理をスタートに戻す。 If the control unit 26 determines that there is no instruction to automatically restart the internal combustion engine 2 from the instruction unit 24 (S5 No), the process returns to the start after the first predetermined time T1 has elapsed (S6 Yes). If the controller 26 determines that the first predetermined time T1 has not elapsed (S6 No), it continues the condensed water purge operation. If the controller 26 receives an instruction to automatically restart the internal combustion engine 2 (S5 Yes), it returns the process to the start. Further, when the control unit 26 determines that there is no instruction to automatically stop the internal combustion engine 2 (S1 No), the control unit 26 returns the process to the start without performing the condensed water purge operation.

一方、制御部26は、凝縮水推定積算量Vrが第1所定量V1より小さいと判断した場合(S2 No)は、凝縮水推定積算量Vrが第1所定量V1未満かつ第2所定量V2以上か否か判断する(S11)。ここで第2所定量V2は、第1所定量V1より少ない量である。制御部26は、凝縮水推定積算量Vrが第1所定量V1未満で、かつ、第2所定量V2以上と判断した場合(S11 Yes)は、凝縮水を内燃機関2で燃焼させて処理する凝縮水パージ運転を、低回転で行う(S12)。このとき、制御部26が排気循環を停止し、吸気冷却装置12の温度管理を行うことは、S4と同様である。 On the other hand, when the controller 26 determines that the estimated integrated amount of condensed water Vr is smaller than the first predetermined amount V1 (S2 No), the estimated integrated amount of condensed water Vr is less than the first predetermined amount V1 and the second predetermined amount V2. It is determined whether or not the above is satisfied (S11). Here, the second predetermined amount V2 is an amount smaller than the first predetermined amount V1. When the control unit 26 determines that the estimated integrated amount of condensed water Vr is less than the first predetermined amount V1 and is equal to or greater than the second predetermined amount V2 (S11 Yes), the condensed water is burned in the internal combustion engine 2 and processed. A condensed water purge operation is performed at a low rotation speed (S12). At this time, the control unit 26 stops exhaust gas circulation and controls the temperature of the intake air cooling device 12, as in S4.

制御部26は、指示部24から内燃機関2を自動で再始動させる指示がなければ(S13 No)、第2所定時間T2が経過すると(S14 Yes)、処理をスタートに戻す。制御部26は、第2所定時間T2が経過していないと判断した場合(S14 No)は、凝縮水パージ運転を継続する。制御部26は、内燃機関2を自動で再始動させる指示があった場合(S13 Yes)は、処理をスタートに戻す。また、制御部26は、凝縮水推定積算量Vrが第2所定量V2未満と判断した場合(S11 No)は、凝縮水パージ運転を行わずに、処理をスタートに戻す。 If there is no instruction to automatically restart the internal combustion engine 2 from the instruction unit 24 (S13 No), the control unit 26 returns the process to the start after the second predetermined time T2 has elapsed (S14 Yes). If the controller 26 determines that the second predetermined time T2 has not elapsed (S14 No), it continues the condensed water purge operation. If an instruction to automatically restart the internal combustion engine 2 is given (S13 Yes), the control unit 26 returns the process to the start. Further, when the control unit 26 determines that the estimated integrated amount of condensed water Vr is less than the second predetermined amount V2 (S11 No), the control unit 26 returns the process to the start without performing the condensed water purge operation.

制御部26は、エンジン水温Twが所定水温Tw1未満であると判断した場合(S3 No)は、凝縮水を内燃機関2で燃焼させて処理する凝縮水パージ運転を、低回転で行う(S12)。ここで、内燃機関2のエンジン水温Twが所定水温Tw1未満の状態とは、指示部24から、アイドルストップのために自動停止の指示はあるものの、内燃機関2が凝縮水を蒸発可能な程度に暖機されていない状態を示す。このような状態では、凝縮水の蒸発が十分促されず、吸気に液体状態の凝縮水が含まれる可能性がある。このため、制御部26は、エンジン水温Twが所定水温Tw1未満の場合は、低回転で凝縮水パージ運転を行うことで、凝縮水が液体状態で内燃機関2に供給されることを抑制する。 When the control unit 26 determines that the engine water temperature Tw is lower than the predetermined water temperature Tw1 (S3 No), the condensed water purge operation, in which the condensed water is treated by burning it in the internal combustion engine 2, is performed at a low rotation speed (S12). . Here, the state in which the engine water temperature Tw of the internal combustion engine 2 is less than the predetermined water temperature Tw1 means that the internal combustion engine 2 can evaporate the condensed water even though the instruction unit 24 has issued an automatic stop instruction for idle stop. Indicates a non-warmed state. In such a state, evaporation of the condensed water is not promoted sufficiently, and the intake air may contain the condensed water in a liquid state. Therefore, when the engine water temperature Tw is lower than the predetermined water temperature Tw1, the control unit 26 performs the condensed water purge operation at a low speed to prevent the condensed water from being supplied to the internal combustion engine 2 in a liquid state.

このように、制御部26は、凝縮水推定積算量Vrに応じて、内燃機関2の回転数を可変させることで、凝縮水パージ運転の時間が調整し、乗員に違和感を与えることを抑制している。さらに、制御部26は、凝縮水推定積算量Vrが多くなるほど、内燃機関2の回転数を高くする。これにより、単位時間あたりの処理できる縮水量が増え、凝縮水パージ運転が長くなることを抑制できる。 In this way, the control unit 26 adjusts the time of the condensed water purge operation by varying the rotational speed of the internal combustion engine 2 according to the estimated integrated amount of condensed water Vr, thereby suppressing discomfort to the occupant. ing. Furthermore, the controller 26 increases the rotation speed of the internal combustion engine 2 as the estimated integrated amount Vr of condensed water increases. As a result, the amount of condensed water that can be treated per unit time is increased, and it is possible to prevent the condensed water purge operation from becoming long.

<吸気冷却装置の温度管理のフローチャート>
次に、吸気冷却装置12の温度管理処理の制御手順について説明する。
<Flow chart of temperature control of intake air cooling device>
Next, a control procedure for temperature management processing of the intake air cooling device 12 will be described.

図4に示すように、吸気冷却装置12の温度管理処理では、制御部26は、凝縮水パージ運転中か否かを判断する(S201)。制御部26は、凝縮水パージ運転中あると判断した場合(S201 Yes)は、吸気冷却装置12のIC出口温度Ticが第1所定温度Tic1以下か否か判断する(S202)。制御部26は、IC出口温度Ticが第1所定温度Tic1以下であると判断した場合(S202 Yes)は、第1ファン1408aおよび第2ファン1408bの回転抑制を行い、IC出口温度Ticが上昇するようにファン抑制制御(S203)を行う。より具体的には、第1ファン1408aおよび第2ファン1408bの回転数を抑制するか、または、第1ファン1408a、および第2ファン1408bのいずれか一方だけを回転させる。いずれにせよ、制御部26は、吸気冷却装置12によって吸気が冷却されないように、第1ファン1408a、および第2ファン1408bの少なくともいずれかを制御する。 As shown in FIG. 4, in the temperature management process for the intake air cooling device 12, the controller 26 determines whether or not the condensed water purge operation is being performed (S201). When the controller 26 determines that the condensed water purge operation is being performed (S201 Yes), it determines whether the IC outlet temperature Tic of the intake air cooling device 12 is equal to or lower than the first predetermined temperature Tic1 (S202). When the control unit 26 determines that the IC outlet temperature Tic is equal to or lower than the first predetermined temperature Tic1 (Yes in S202), the control unit 26 suppresses the rotation of the first fan 1408a and the second fan 1408b, thereby increasing the IC outlet temperature Tic. Fan suppression control (S203) is performed as described above. More specifically, the rotational speeds of first fan 1408a and second fan 1408b are suppressed, or only one of first fan 1408a and second fan 1408b is rotated. In any case, control unit 26 controls at least one of first fan 1408a and second fan 1408b so that intake air is not cooled by intake air cooling device 12 .

制御部26は、IC出口温度Ticが第1所定温度Tic1以下ではないと判断した場合(S202 No)、および、ファン抑制制御(S203)が開始された場合は、IC出口温度Ticが第2所定温度Tic2以上か否か判断する(S204)。ここで、第2所定温度Tic2は第1所定温度Tic1よりも高い温度である。制御部26は、IC出口温度Ticが第2所定温度Tic2以上であると判断した場合(S204 Yes)は、ファン抑制制御を解除し(S205)、再び第1ファン1408aおよび第2ファン1408bを回転させて吸気冷却装置12を水冷する。これにより、制御部26は、過度に温まった吸気によって内燃機関2の出力性能、排気浄化性能が損なうを抑制する。 When the control unit 26 determines that the IC outlet temperature Tic is not equal to or lower than the first predetermined temperature Tic1 (No in S202) and when the fan suppression control (S203) is started, the IC outlet temperature Tic reaches the second predetermined temperature Tic. It is determined whether or not the temperature is equal to or higher than the temperature Tic2 (S204). Here, the second predetermined temperature Tic2 is a temperature higher than the first predetermined temperature Tic1. When the control unit 26 determines that the IC outlet temperature Tic is equal to or higher than the second predetermined temperature Tic2 (S204 Yes), it cancels the fan suppression control (S205), and rotates the first fan 1408a and the second fan 1408b again. and the intake air cooling device 12 is water-cooled. As a result, the control unit 26 prevents deterioration of the output performance and exhaust purification performance of the internal combustion engine 2 due to excessively warmed intake air.

制御部26は、IC出口温度Ticが第2所定温度Tic2未満であると判断した場合(S204 No)は、S202の前に処理を戻す。また、制御部26は、ファン抑制制御が解除された場合、および凝縮水パージ運転中でない場合は(S201 No)、スタートに処理を戻す。 When the control unit 26 determines that the IC outlet temperature Tic is lower than the second predetermined temperature Tic2 (S204 No), the process returns to before S202. Further, when the fan suppression control is canceled and when the condensed water purge operation is not being performed (S201 No), the control unit 26 returns the process to the start.

以上説明した通り、本発明に係る凝縮水処理装置1は、内燃機関2の出力性能、排気浄化性能を損なうことなく、凝縮水量に応じて短時間で、凝縮水を処理できる。本発明に係る凝縮水処理装置1であれば、凝縮水量が所定量を超えた場合は、燃焼させて処理する。これにより、図2に示すように、内燃機関2の上方に吸気冷却装置12を配置する構造であっても、凝縮水が内燃機関2に流れ込み、内燃機関2の出力性能、および排気浄化性能を損なうことを抑制できる。 As described above, the condensed water treatment device 1 according to the present invention can treat the condensed water in a short period of time according to the amount of condensed water without impairing the output performance and exhaust purification performance of the internal combustion engine 2 . With the condensed water treatment apparatus 1 according to the present invention, when the amount of condensed water exceeds a predetermined amount, it is treated by burning. As a result, as shown in FIG. 2, even with a structure in which the intake air cooling device 12 is arranged above the internal combustion engine 2, the condensed water flows into the internal combustion engine 2, and the output performance and exhaust purification performance of the internal combustion engine 2 are improved. Damage can be suppressed.

<他の実施形態>
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. In particular, multiple modifications described herein can be arbitrarily combined as required.

(a)本実施形態では、凝縮水パージ運転時間を第1所定時間T1および第2所定時間T2としたタイマー制御を例に説明したが、本発明はこれに限定されるものではない。凝縮水パージ運転時間は、凝縮水推定積算量Vrなどに基づいて設定すればよく、凝縮水推定積算量Vrなどから凝縮水パージ運転時間を算出してもよい。すなわち、凝縮水パージ運転は所定期間行われればよい。 (a) In the present embodiment, timer control in which the condensed water purge operation time is the first predetermined time T1 and the second predetermined time T2 has been described as an example, but the present invention is not limited to this. The condensed water purge operation time may be set based on the estimated integrated amount of condensed water Vr or the like, or the condensed water purge operation time may be calculated from the estimated integrated amount of condensed water Vr or the like. That is, the condensed water purge operation should be performed for a predetermined period.

(b)本実施形態では、吸気冷却装置12の温度を管理する制御の一例として、第1ファン1408aおよび第2ファン1408bの回転抑制をあげたが、本発明はこれに限定されるものではない。吸気冷却装置12の温度を管理するために、第2ウォータポンプ1606の回転を抑制し、あるいは、停止することで、吸気冷却装置12に流れる冷却水の流れを抑制して、吸気冷却装置12の温度を制御してもよい。 (b) In the present embodiment, suppression of rotation of the first fan 1408a and the second fan 1408b is given as an example of control for managing the temperature of the intake air cooling device 12, but the present invention is not limited to this. . In order to control the temperature of the intake air cooling device 12 , the rotation of the second water pump 1606 is suppressed or stopped, thereby suppressing the flow of the cooling water flowing through the intake air cooling device 12 . Temperature may be controlled.

(c)本実施形態では、凝縮水推定積算量Vrが第1所定量V1以上の場合、および、第1所定量V1未満かつ第2所定量V2以上の場合に、凝縮水パージ運転を行う例について説明したが、凝縮水パージ運転を行う凝縮水推定積算量Vrは、これに限定されない。すなわち、凝縮水推定積算量Vrに応じて、凝縮水パージ運転を行う場合の内燃機関2の回転数を細かく設定してもよい。より具体的は、例えば、凝縮水推定積算量Vrに応じて、凝縮水パージ運転を行う場合の内燃機関2の回転数を記録したマップをECU32に記憶させ、このマップに基づいて凝縮水パージ運転を行ってもよい。 (c) In the present embodiment, the condensed water purge operation is performed when the estimated integrated amount of condensed water Vr is greater than or equal to the first predetermined amount V1, and when it is less than the first predetermined amount V1 and greater than or equal to the second predetermined amount V2. , but the estimated integrated amount Vr of condensed water for performing the condensed water purge operation is not limited to this. That is, the rotational speed of the internal combustion engine 2 when performing the condensed water purge operation may be finely set according to the estimated integrated amount of condensed water Vr. More specifically, for example, a map that records the rotational speed of the internal combustion engine 2 when the condensed water purge operation is performed is stored in the ECU 32 according to the estimated integrated amount of condensed water Vr, and the condensed water purge operation is performed based on this map. may be performed.

(d)本実施形態では、内燃機関2の温度を検知する一例として、エンジン水温検知部27によって内燃機関2の水温検知する例を用いて説明したが、本発明はこれに限定されない。内燃機関2の温度は、油温や吸気温度などから検知してもよい。また、これら温度から内燃機関2の温度を推定してもよい。 (d) In the present embodiment, as an example of detecting the temperature of the internal combustion engine 2, the water temperature of the internal combustion engine 2 is detected by the engine water temperature detection unit 27, but the present invention is not limited to this. The temperature of the internal combustion engine 2 may be detected from oil temperature, intake air temperature, or the like. Also, the temperature of the internal combustion engine 2 may be estimated from these temperatures.

(e)本実施形態では、制御部26は、内燃機関2のエンジン水温Twが所定水温Tw1以上の場合に、凝縮水パージ運転を高回転で行い、所定水温Tw1未満の場合に、凝縮水パージ運転を低回転で行う例を用いて説明したが、本発明はこれに限定されない。例えば、制御部26は、エンジン水温Twの高さに応じて、凝縮水パージ運転における内燃機関2の回転数をリニアに高くしてもよい。すなわち、制御部26は、内燃機関2の温度が高くなるほど、凝縮水パージ運転における内燃機関2の回転数を高くすればよい。 (e) In this embodiment, the control unit 26 performs the condensed water purge operation at high speed when the engine water temperature Tw of the internal combustion engine 2 is equal to or higher than the predetermined water temperature Tw1, and performs the condensed water purge operation when the water temperature Tw is less than the predetermined water temperature Tw1. Although the example in which the operation is performed at a low rotation speed has been described, the present invention is not limited to this. For example, the control unit 26 may linearly increase the rotational speed of the internal combustion engine 2 in the condensed water purge operation according to the engine water temperature Tw. That is, the controller 26 should increase the rotational speed of the internal combustion engine 2 in the condensed water purge operation as the temperature of the internal combustion engine 2 increases.

1:凝縮水処理装置,2:内燃機関,4:吸気通路,12:吸気冷却装置
20:蓄電池,22:算出部,24:指示部,26:制御部
27:エンジン水温検知部(温度検知部)
Vr:凝縮水推定積算量(凝縮水量),C:車両,Tic:IC出口温度,
Tw:エンジン水温,V1:第1所定値,V2:第2所定値
1: condensed water treatment device, 2: internal combustion engine, 4: intake passage, 12: intake air cooling device 20: storage battery, 22: calculation unit, 24: instruction unit, 26: control unit 27: engine water temperature detection unit (temperature detection unit )
Vr: estimated integrated amount of condensed water (amount of condensed water), C: vehicle, Tic: IC outlet temperature,
Tw: engine water temperature, V1: first predetermined value, V2: second predetermined value

Claims (5)

車両に搭載される内燃機関の凝縮水を処理する凝縮水処理装置であって、
前記内燃機関の吸気通路に生成された凝縮水量を算出する算出部と、
前記内燃機関の停止を指示する指示部と、
前記指示部によって前記内燃機関の停止が指示された場合に、前記算出部で算出した凝縮水量に応じて、前記内燃機関の回転数を可変させて前記凝縮水を前記内燃機関で燃焼処理したのち前記内燃機関を停止する制御部と、
を備える、凝縮水処理装置。
A condensed water treatment device for treating condensed water of an internal combustion engine mounted on a vehicle,
a calculation unit that calculates the amount of condensed water generated in the intake passage of the internal combustion engine;
an instruction unit that instructs to stop the internal combustion engine;
When the instructing unit instructs to stop the internal combustion engine, the speed of rotation of the internal combustion engine is varied according to the amount of condensed water calculated by the calculating unit, and the condensed water is burned in the internal combustion engine. a control unit that stops the internal combustion engine;
a condensate treatment device.
前記制御部は、前記凝縮水量が多くなるほど前記内燃機関の回転数を高くする、
請求項1に記載の凝縮水処理装置。
The control unit increases the rotational speed of the internal combustion engine as the amount of condensed water increases.
The condensed water treatment device according to claim 1.
前記内燃機関の温度を検知する温度検知部をさらに備え、
前記制御部は、前記内燃機関の温度が高くなるほど、前記内燃機関の回転数を高くする、
請求項1または2に記載の凝縮水処理装置。
Further comprising a temperature detection unit that detects the temperature of the internal combustion engine,
The control unit increases the rotation speed of the internal combustion engine as the temperature of the internal combustion engine increases.
The condensed water treatment device according to claim 1 or 2.
前記指示部は、前記内燃機関を自動で停止させる自動停止指示を行い、
前記制御部は、前記停止が自動停止か否か判断し、前記停止が自動停止の場合は、前記内燃機関の回転数を可変させて前記凝縮水を前記内燃機関で燃焼処理する、
請求項1から3のいずれか1項に記載の凝縮水処理装置。
The instruction unit performs an automatic stop instruction to automatically stop the internal combustion engine,
The control unit determines whether the stop is an automatic stop, and if the stop is an automatic stop, varies the rotation speed of the internal combustion engine and burns the condensed water in the internal combustion engine.
A condensed water treatment apparatus according to any one of claims 1 to 3.
前記内燃機関の吸入空気を冷却する冷却装置をさらに備え、
前記制御部は、前記凝縮水を処理する場合に、前記冷却装置の出口温度を所定温度範囲となるように制御する、
請求項1から4のいずれか1項に記載の凝縮水処理装置。
Further comprising a cooling device for cooling intake air of the internal combustion engine,
The control unit controls the outlet temperature of the cooling device to be within a predetermined temperature range when treating the condensed water.
A condensed water treatment apparatus according to any one of claims 1 to 4.
JP2019039219A 2019-03-05 2019-03-05 Condensate treatment equipment Active JP7238479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039219A JP7238479B2 (en) 2019-03-05 2019-03-05 Condensate treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039219A JP7238479B2 (en) 2019-03-05 2019-03-05 Condensate treatment equipment

Publications (2)

Publication Number Publication Date
JP2020143593A JP2020143593A (en) 2020-09-10
JP7238479B2 true JP7238479B2 (en) 2023-03-14

Family

ID=72353506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039219A Active JP7238479B2 (en) 2019-03-05 2019-03-05 Condensate treatment equipment

Country Status (1)

Country Link
JP (1) JP7238479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023050281A (en) * 2021-09-30 2023-04-11 ダイキン工業株式会社 Refrigerant processing device and refrigerant processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121574A (en) 2008-11-21 2010-06-03 Toyota Motor Corp Control device for internal combustion engine
JP2020062931A (en) 2018-10-16 2020-04-23 トヨタ自動車株式会社 vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121574A (en) 2008-11-21 2010-06-03 Toyota Motor Corp Control device for internal combustion engine
JP2020062931A (en) 2018-10-16 2020-04-23 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP2020143593A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US10302048B2 (en) Methods and systems for controlling air flow paths in an engine
CN107420234B (en) Method and system for controlling air flow path in engine
US10941721B2 (en) Method and system for exhaust gas recirculation and heat recovery
JP6327199B2 (en) Low water temperature cooling device for internal combustion engine
JP5577943B2 (en) Internal combustion engine
JP2008232031A (en) Exhaust heat recovery device
JP3658970B2 (en) Internal combustion engine having a combustion heater
JP5308626B2 (en) Cooling system failure diagnosis device for internal combustion engine
WO2015141149A1 (en) Egr control device
JP3714495B2 (en) Internal combustion engine control device
JP7238479B2 (en) Condensate treatment equipment
JP4115237B2 (en) diesel engine
JP2009074430A (en) Failure diagnosis device and failure diagnosis method
JPH10288063A (en) Idling control device for hybrid engine
JP7268404B2 (en) Condensate treatment equipment
JP2020019397A (en) Control device
JP6670266B2 (en) Engine equipment
RU2522948C2 (en) Control over automotive engine automatic outage
JP2016183583A (en) Control device of internal combustion engine
JP2007326464A (en) Control device of hybrid vehicle
JP5195668B2 (en) Engine cooling system
JP2005256641A (en) Cooling control device for internal combustion engine
JP6539192B2 (en) Engine control device
JP6245318B1 (en) Engine control device
JP2004044507A (en) Controlling equipment of electric motor fan mounted inside vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R151 Written notification of patent or utility model registration

Ref document number: 7238479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151