JP2020143430A - Joint structure of square steel pipe column - Google Patents

Joint structure of square steel pipe column Download PDF

Info

Publication number
JP2020143430A
JP2020143430A JP2019038391A JP2019038391A JP2020143430A JP 2020143430 A JP2020143430 A JP 2020143430A JP 2019038391 A JP2019038391 A JP 2019038391A JP 2019038391 A JP2019038391 A JP 2019038391A JP 2020143430 A JP2020143430 A JP 2020143430A
Authority
JP
Japan
Prior art keywords
corner
pillar member
column member
column
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019038391A
Other languages
Japanese (ja)
Inventor
井上 智晶
Tomoaki Inoue
智晶 井上
丹羽 直幹
Naomiki Niwa
直幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2019038391A priority Critical patent/JP2020143430A/en
Publication of JP2020143430A publication Critical patent/JP2020143430A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

To form a square steel pipe column by axially butting an upper column member and a lower column member separated from each other and joining them without depending on welding, and to prevent loss of compressive force due to contact between corner members while generating compressive force acting on a corner member arranged inside an outer ring most effectively on the column.SOLUTION: Recessed grooves 22, 32 are formed in the circumferential direction at least in corner parts 21, 31 at positions spaced apart from the abutment surfaces 2a, 3a of an upper column member 2 and a lower column member 3, respectively; a corner members 4 in contact with the outer peripheral surfaces of the upper column member 2 and the lower column member 3 are arranged at the respective corner parts 21, 31 of the upper column member 2 and the lower column member 3 which are butted against each other, while axially straddling both recessed grooves 22, 32 of the upper column member 2 and the lower column member 3; an outer ring 5 continued in the circumferential direction of the upper column member 2 and the lower column member 3 and capable of bearing tensile force is arranged on the outer peripheral side of all the corner members 4.SELECTED DRAWING: Figure 1

Description

本発明は互いに分離している上柱部材と下柱部材が軸方向に突き合わせられ、溶接に依らずに接合されて角形鋼管柱を構成する角形鋼管柱の継手構造に関するものである。 The present invention relates to a joint structure of a square steel pipe column in which an upper column member and a lower column member separated from each other are abutted in the axial direction and joined without depending on welding to form a square steel pipe column.

軸方向に突き合わせられ、接合されて鋼管柱(柱部材)を構成する上柱部材と下柱部材は分離している状態で現場に搬入され、現場で溶接されて接合されることが一般的である。この上下柱部材の突き合わせ状態での溶接時の施工誤差を軽減する上では、各柱部材の外周に予め溶接されていた鋼材間にプレートを跨設して位置決めをする作業が必要になる(特許文献1参照)。 It is common that the upper column member and the lower column member, which are butted in the axial direction and joined to form a steel pipe column (column member), are brought into the site in a separated state and then welded and joined at the site. is there. In order to reduce the construction error during welding of the upper and lower column members in the butted state, it is necessary to straddle a plate between the steel materials previously welded to the outer periphery of each column member for positioning (patented). Reference 1).

互いに突き合わせられる柱状部材を溶接に依らずに接合する方法として、円筒形状の杭部材(柱状部材)の端部間に内リングと外リングを跨設し、外リングの内周面に付けられた傾斜を利用して外リングの配置に伴い、外リングから内リングにその中心側に向かう力を及ぼし、両杭部材を接合する方法がある(特許文献2参照)。 As a method of joining columnar members that are abutted against each other without welding, an inner ring and an outer ring are straddled between the ends of a cylindrical pile member (columnar member) and attached to the inner peripheral surface of the outer ring. There is a method of joining both pile members by applying a force from the outer ring to the inner ring toward the center side with the arrangement of the outer ring by utilizing the inclination (see Patent Document 2).

この方法は柱状部材の外周面が円筒形状であることに着目し、内リングの外周面と外リングの内周面を柱状部材の軸線(柱状部材の表面)に対して傾斜させることで、楔効果を利用して外リングから内リングに柱状部材の中心向きの力を作用させている。内リング外周面と外リング内周面が柱状部材の軸線に対して傾斜することで、外リングを内リングの外周面に外接させながら、柱状部材の軸方向に移動させるときに、外リングは内リングから周方向の引張力を受ける。一方、内リングは外リングから反力の圧縮力を受け、柱状部材が内リングから圧縮力の合力としての、中心側へ向かう腹圧力を受ける。 This method focuses on the fact that the outer peripheral surface of the columnar member has a cylindrical shape, and by inclining the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring with respect to the axis of the columnar member (the surface of the columnar member), a wedge is used. Utilizing the effect, a force toward the center of the columnar member is applied from the outer ring to the inner ring. By inclining the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring with respect to the axis of the columnar member, the outer ring is moved in the axial direction of the columnar member while circumscribing the outer ring to the outer peripheral surface of the inner ring. Receives a circumferential tensile force from the inner ring. On the other hand, the inner ring receives the compressive force of the reaction force from the outer ring, and the columnar member receives the abdominal pressure toward the center side as the resultant force of the compressive force from the inner ring.

腹圧力は圧縮力の合力であるから、2方向の圧縮力が角度をなして作用するとき、合力は2方向のベクトルが形成する平行四辺形の対角線分になるため、柱状部材を軸に直交する断面で見たときの1/4円弧の区間に着目すれば、この区間に生じる合力は正方形の対角線分の大きさになる。従って柱状部材が円筒断面の場合、内リングに作用する圧縮力を最も有効に柱状部材に生じさせるには、1/4円弧区間が周方向に均等に配置された全周(円周)分の内リングを配置することが合理的になる。 Since the abdominal pressure is the resultant force of the compressive forces, when the compressive forces in the two directions act at an angle, the resultant force becomes the diagonal line of the parallelogram formed by the vectors in the two directions, so that the columnar member is orthogonal to the axis. Focusing on the section of the 1/4 arc when viewed in the cross section, the resultant force generated in this section is the size of the diagonal line of the square. Therefore, when the columnar member has a cylindrical cross section, in order to most effectively generate the compressive force acting on the inner ring on the columnar member, the 1/4 arc section is evenly arranged in the circumferential direction for the entire circumference (circumference). It becomes rational to place the inner ring.

但し、内リングは圧縮力を受けることで、周方向に収縮しようとするから、周方向に連続していれば、柱状部材に腹圧力を与えることができないため、周方向には切り離されていることが必要である(段落0020)。 However, since the inner ring tries to contract in the circumferential direction by receiving a compressive force, if it is continuous in the circumferential direction, it is not possible to apply abdominal pressure to the columnar member, so that the inner ring is separated in the circumferential direction. It is necessary (paragraph 0020).

特開平4−327397号公報(請求項1、段落0012〜0016、図1〜図3)JP-A-4-327397 (Claim 1, paragraphs 0012 to 0016, FIGS. 1 to 3) 実用新案登録第3180610号公報(請求項1、段落0018〜0020、図1、図2)Utility Model Registration No. 3180610 (Claim 1, paragraphs 0018 to 0020, FIGS. 1, 2)

このように内リングは周方向に分割されている必要があるが、柱状部材が円筒形状である場合には、上記のように分割された内リング材は全体では柱状部材の外周を周回する長さを持つことが最も効率的である。 In this way, the inner ring needs to be divided in the circumferential direction, but when the columnar member has a cylindrical shape, the inner ring material divided as described above has a length that orbits the outer circumference of the columnar member as a whole. It is most efficient to have a cylinder.

しかしながら、内リング材が周方向に分離しながらも、全体では柱状部材の外周を周回すれば、各内リング材が外リングから圧縮力を受けたときに隣接する内リング材同士が接触する可能性があり、接触すれば、内リング材からの圧縮力を柱状部材に十分に作用させることができなくなる。また例えば柱状部材が鋼管である場合に、使用状態で熱膨張し得る可能性のある部位に使用されたときに、熱膨張により隣接する内リング材が互いに接触する可能性が高まり、腹圧力の損失が生じ易くなる。 However, even if the inner ring material is separated in the circumferential direction, if the inner ring material orbits the outer circumference of the columnar member as a whole, adjacent inner ring materials can come into contact with each other when each inner ring material receives a compressive force from the outer ring. If they come into contact with each other, the compressive force from the inner ring material cannot be sufficiently applied to the columnar member. Further, for example, when the columnar member is a steel pipe, when it is used in a part where thermal expansion may occur in the used state, the possibility that adjacent inner ring materials come into contact with each other due to thermal expansion increases, and the abdominal pressure increases. Loss is likely to occur.

本発明は上記背景より、特許文献2の内リングに作用する圧縮力を最も有効に柱状部材に生じさせながら、接触による圧縮力の損失を生じさせない構造の角形鋼管柱の継手構造を提案するものである。 Based on the above background, the present invention proposes a joint structure of a square steel pipe column having a structure in which the compressive force acting on the inner ring of Patent Document 2 is most effectively generated in the columnar member, but the loss of the compressive force due to contact is not generated. Is.

請求項1に記載の角形鋼管柱の継手構造は、断面上の隅角部の表面が曲面をなし、軸方向に互いに突き合わせられ、接合されて角形鋼管柱を構成する上柱部材と下柱部材からなる角形鋼管柱の継手構造であり、
前記上柱部材と前記下柱部材の互いに突き合わせられる突き合わせ面からそれぞれ距離を置いた位置の、少なくとも前記各隅角部に凹溝が周方向に形成され、
互いに突き合わせられた前記上柱部材と前記下柱部材の断面上の前記各隅角部に、前記上柱部材と前記下柱部材の前記両凹溝に軸方向に跨りながら、前記上柱部材と前記下柱部材の外周面に接触するコーナー材が配置され、
前記全コーナー材の外周側に、前記上柱部材と前記下柱部材の周方向に連続し、引張力を負担可能な外リングが配置され、
前記外リングが前記上柱部材側、もしくは前記下柱部材側から双方の前記突き合わせ面に向けて移動し、前記外リングの内周面が前記コーナー材の外周面に密着していることを構成要件とする。
In the joint structure of the square steel pipe column according to claim 1, the surface of the corner portion on the cross section has a curved surface, is abutted against each other in the axial direction, and is joined to form the upper column member and the lower column member. It is a joint structure of square steel pipe columns consisting of
A concave groove is formed in the circumferential direction at least at each corner of the upper column member and the lower column member at a position separated from the abutting surface of the lower column member.
With the upper pillar member and the upper pillar member while straddling the upper pillar member and the both concave grooves of the lower pillar member in the axial direction at each corner portion on the cross section of the upper pillar member and the lower pillar member butted against each other. A corner member that comes into contact with the outer peripheral surface of the lower pillar member is arranged.
On the outer peripheral side of all the corner members, an outer ring that is continuous in the circumferential direction of the upper pillar member and the lower pillar member and can bear a tensile force is arranged.
The outer ring moves from the upper pillar member side or the lower pillar member side toward both of the abutting surfaces, and the inner peripheral surface of the outer ring is in close contact with the outer peripheral surface of the corner material. Make it a requirement.

「断面上の隅角部の表面が曲面をなし」とは、柱自体は角形鋼管であるものの、材軸に直交する平面で切断したときの断面で見たときに、隅角部の表面が半径方向外周側へ向かって凸の曲面形状に形成されていることを言う。角形鋼管には隅角部は4箇所あり、各隅角部の表面は1/4円弧の形状をしているから、全隅角部の表面側にコーナー材が配置され、全コーナー材が外リングから圧縮力を受ければ、角形鋼管が全コーナー材から受ける断面上の中心に向かう力(腹圧力)は円形鋼管が受ける力と同等になる。 "The surface of the corner on the cross section has a curved surface" means that the pillar itself is a square steel pipe, but when viewed in the cross section when cut on a plane orthogonal to the material axis, the surface of the corner is It means that it is formed in a curved surface shape that is convex toward the outer peripheral side in the radial direction. The square steel pipe has four corners, and the surface of each corner has a 1/4 arc shape, so the corner material is placed on the surface side of all corners, and all corner materials are outside. When a compressive force is received from the ring, the force (abdominal pressure) toward the center on the cross section received by the square steel pipe from all the corner members becomes equal to the force received by the circular steel pipe.

このことは、条件が同一であれば、中心に向かう力が円形鋼管が受ける力と同じ大きさになることである。「条件が同一」とは外リングに与えられる張力が同一であることを言う。柱は角形鋼管であるから、隅角部以外の部分は平坦な形状をしている。図2−(a)、(b)に示すように角形鋼管柱1が隅角部21、31にコーナー材4から中心に向かう力を受けるとき、隅角部21、31以外の平坦状の部分には周方向に引張力が作用する。隅角部表面の曲率(曲率半径)の大きさ、あるいは角形鋼管の寸法に対する曲率半径の比率は任意である。 This means that, under the same conditions, the force toward the center is the same as the force received by the circular steel pipe. "Same conditions" means that the tension applied to the outer ring is the same. Since the columns are square steel pipes, the parts other than the corners have a flat shape. As shown in FIGS. 2- (a) and 2- (b), when the square steel pipe column 1 receives a force toward the center from the corner members 4 at the corners 21 and 31, flat portions other than the corners 21 and 31. A tensile force acts in the circumferential direction. The magnitude of the curvature (radius of curvature) on the surface of the corner, or the ratio of the radius of curvature to the dimension of the square steel pipe is arbitrary.

「全コーナー材が外リングから圧縮力を受けること」は具体的には、コーナー材の外周面に上柱部材から下柱部材にかけて上柱部材の中心側から外周側へ向かう傾斜、もしくはそれとは逆向きの傾斜が付けられると同時に、外リングの内周面にも上柱部材から下柱部材にかけて上柱部材の中心側から外周側へ向かう傾斜、もしくはそれとは逆向きの傾斜が付けられることにより可能になる。 "All corner materials receive compressive force from the outer ring" is specifically the inclination of the outer peripheral surface of the corner material from the upper pillar member to the lower pillar member from the center side to the outer peripheral side of the upper pillar member, or what is it? At the same time that the outer ring is inclined in the opposite direction, the inner peripheral surface of the outer ring is also inclined from the center side to the outer peripheral side of the upper pillar member from the upper pillar member to the lower pillar member, or in the opposite direction. Makes it possible.

「コーナー材の外周面に上柱部材から下柱部材にかけて上柱部材の中心側から外周側へ向かう傾斜、もしくはそれとは逆向きの傾斜が付けられ」とは、コーナー材4の外周面が上柱部材2から下柱部材3にかけて鉛直面に対し、上柱部材2の中心側と外周側のいずれかの向きに傾斜することを言う。このコーナー材4外周面の傾斜は外リング5の内周面に付けられる傾斜と同一向きである。 "The outer peripheral surface of the corner material is inclined from the center side to the outer peripheral side of the upper pillar member from the upper pillar member to the lower pillar member, or an inclination in the opposite direction" means that the outer peripheral surface of the corner material 4 is on the upper side. It means that the upper pillar member 2 is inclined from the pillar member 2 to the lower pillar member 3 in either the central side or the outer peripheral side with respect to the vertical plane. The inclination of the outer peripheral surface of the corner member 4 is the same as the inclination attached to the inner peripheral surface of the outer ring 5.

外リング5はその内周面が上柱部材2と下柱部材3の表面から遠い側、図1−(a)に示す例では下側から下向きに、コーナー材4の外周面の回りに、上柱部材2と下柱部材3の突き合わせ面2a、3aに向かって差し込まれる(打ち込まれる)。外リング5は上柱部材2と下柱部材3の周方向に連続するが、内周面の傾斜は少なくともコーナー材4がある区間(部分)に形成されていればよい。 The inner peripheral surface of the outer ring 5 is on the side far from the surfaces of the upper pillar member 2 and the lower pillar member 3, from the lower side to the lower side in the example shown in FIG. 1- (a), around the outer peripheral surface of the corner member 4. It is inserted (drived) toward the abutting surfaces 2a and 3a of the upper pillar member 2 and the lower pillar member 3. The outer ring 5 is continuous in the circumferential direction of the upper pillar member 2 and the lower pillar member 3, but the inclination of the inner peripheral surface may be formed at least in a section (part) where the corner member 4 is present.

外リング5の差し込みの結果、外リング5内周面の上柱部材2と下柱部材3の表面に近い側が上柱部材2と下柱部材3の表面に接近する。これに伴い、外リング5の内周面がコーナー材4の外周面を上柱部材2の中心側に向けて圧縮力を及ぼし、上柱部材2と下柱部材3には図2−(a)、(c)に示すように隅角部21、31から中心に向かう腹圧力を受ける。外リング5がコーナー材4に圧縮力を及ぼすとき、外リング5にはコーナー材4から反力として周方向の引張力を受け、伸長する、または伸長しようとする。 As a result of inserting the outer ring 5, the side of the inner peripheral surface of the outer ring 5 near the surface of the upper pillar member 2 and the lower pillar member 3 approaches the surfaces of the upper pillar member 2 and the lower pillar member 3. Along with this, the inner peripheral surface of the outer ring 5 exerts a compressive force on the outer peripheral surface of the corner member 4 toward the center side of the upper pillar member 2, and the upper pillar member 2 and the lower pillar member 3 are subjected to FIG. 2- (a). ), As shown in (c), abdominal pressure is received from the corners 21 and 31 toward the center. When the outer ring 5 exerts a compressive force on the corner member 4, the outer ring 5 receives a tensile force in the circumferential direction as a reaction force from the corner member 4, and stretches or tries to stretch.

以上のように互いに接合されて角形鋼管柱1を構成する上柱部材2と下柱部材3の隅角部21、31の表面に、上柱部材2と下柱部材3の外周面に接触するコーナー材4を配置し、全コーナー材4の外周側に、上柱部材2と下柱部材3の周方向に連続する外リング5を配置し、外リング5の内周面をコーナー材4の外周面に密着させることで、全隅角部21、31のコーナー材4に外リング5から圧縮力を付与することが可能になる。同時に、角形鋼管柱1は円形鋼管の全周に内リングが配置されたときに円形鋼管が受ける力と同等の、断面上の中心に向かう力(腹圧力)を全コーナー材4から受けることが可能になる。 As described above, the surfaces of the corner portions 21 and 31 of the upper column member 2 and the lower column member 3 which are joined to each other to form the square steel tube column 1 come into contact with the outer peripheral surfaces of the upper column member 2 and the lower column member 3. The corner material 4 is arranged, and the outer ring 5 continuous in the circumferential direction of the upper pillar member 2 and the lower pillar member 3 is arranged on the outer peripheral side of all the corner material 4, and the inner peripheral surface of the outer ring 5 is the corner material 4. By bringing it into close contact with the outer peripheral surface, it becomes possible to apply a compressive force from the outer ring 5 to the corner material 4 of all the corner portions 21 and 31. At the same time, the square steel pipe column 1 can receive a force (abdominal pressure) toward the center on the cross section from all the corner members 4, which is equivalent to the force received by the circular steel pipe when the inner ring is arranged all around the circular steel pipe. It will be possible.

一方、内リングが円形鋼管の外周を周回する場合のように、隣接する隅角部21、21(31、31)に配置されるコーナー材4、4同士の接触が起こらないため、中心に向かう力(腹圧力)の損失が生じることはない。特に角形鋼管柱1が使用状態で熱膨張し得る可能性のある部位に使用され、コーナー材4が周方向に熱膨張することがあった場合にも、隣接するコーナー材4、4が互いに接触する可能性がないため、熱膨張による腹圧力の損失も生じない。 On the other hand, unlike the case where the inner ring goes around the outer circumference of the circular steel pipe, the corner members 4 and 4 arranged at the adjacent corners 21, 21 (31, 31) do not come into contact with each other, so that the inner ring goes toward the center. There is no loss of force (abdominal pressure). In particular, even when the square steel pipe column 1 is used in a portion where thermal expansion may occur in the used state and the corner member 4 may thermally expand in the circumferential direction, the adjacent corner members 4 and 4 come into contact with each other. Since there is no possibility of this, there is no loss of abdominal pressure due to thermal expansion.

「少なくとも各隅角部に凹溝が周方向に形成され」とは、上柱部材2と下柱部材3を軸方向に(断面で)見たときの少なくとも隅角部21(31)の区間に、凹溝22(32)が周方向に連続して形成されることを言う。「少なくとも」とは、コーナー材4が配置される区間である隅角部21(31)の区間にのみ凹溝22(32)が形成されればよいことを言い、上柱部材2と下柱部材3の周方向(全周)に周回(連続)して形成されることもある。 "At least a concave groove is formed in each corner portion in the circumferential direction" means a section of at least the corner portion 21 (31) when the upper column member 2 and the lower column member 3 are viewed axially (in a cross section). In addition, it is said that the concave groove 22 (32) is continuously formed in the circumferential direction. “At least” means that the concave groove 22 (32) needs to be formed only in the section of the corner portion 21 (31) where the corner member 4 is arranged, and the upper column member 2 and the lower column It may be formed so as to orbit (continuously) in the circumferential direction (entire circumference) of the member 3.

コーナー材4は互いに突き合わせられた上柱部材2と下柱部材3の断面上の各隅角部21、31に、上柱部材2と下柱部材3の両凹溝22、32に軸方向に跨って配置される。請求項1における「上柱部材2の突き合わせ面2a」は上柱部材2の下端面であり、「下柱部材3の突き合わせ面3a」は下柱部材3の上端面である。 The corner members 4 are axially formed in the corner portions 21 and 31 on the cross section of the upper pillar member 2 and the lower pillar member 3 but are abutted against each other, and in the concave grooves 22 and 32 of the upper pillar member 2 and the lower pillar member 3. It is placed across. The "butting surface 2a of the upper pillar member 2" in claim 1 is the lower end surface of the upper pillar member 2, and the "butting surface 3a of the lower pillar member 3" is the upper end surface of the lower pillar member 3.

ここで、図1−(a)、図2−(a)、(b)に示すようにコーナー材4の凸部41の突き合わせ面2a、3a側の側面42と、この側面42が接触する凹溝22、32の側面23、33が凹溝22、32側から突き合わせ面2a、3a側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられていれば(請求項2)、コーナー材4が外リング5から断面上の中心側へ向かう力を受けたときに、コーナー材4から上柱部材2と下柱部材3に、双方を互いに密着させようとする力を作用させることが可能になる。 Here, as shown in FIGS. 1- (a), 2- (a), and (b), the side surface 42 on the butt surface 2a and 3a side of the convex portion 41 of the corner member 4 and the concave surface 42 in contact with the side surface 42. The side surfaces 23 and 33 of the grooves 22 and 32 are inclined from the concave groove 22 and 32 sides toward the abutting surfaces 2a and 3a from the center side to the outer peripheral side on the cross section of the upper pillar member 2 and the lower pillar member 3. If so (claim 2), when the corner member 4 receives a force from the outer ring 5 toward the center side on the cross section, both of the corner member 4 are brought into close contact with each other to the upper pillar member 2 and the lower pillar member 3. It becomes possible to apply the force to make it work.

凸部41は凹溝22、32に上柱部材2と下柱部材3の外周側から中心側へ嵌合するか、嵌合に近い状態で納まる。このとき、凸部41の側面42と凹溝22、32の側面23、33は上柱部材2と下柱部材3の軸方向に互いに係合し合い、側面42は側面23には鉛直方向下向きに係合し、側面33には鉛直方向上向きに係合する。 The convex portion 41 fits into the concave grooves 22 and 32 from the outer peripheral side to the center side of the upper pillar member 2 and the lower pillar member 3, or fits in a state close to fitting. At this time, the side surface 42 of the convex portion 41 and the side surfaces 23 and 33 of the concave grooves 22 and 32 are engaged with each other in the axial direction of the upper pillar member 2 and the lower pillar member 3, and the side surface 42 faces the side surface 23 vertically downward. And engages the side surface 33 vertically upward.

コーナー材4が外リング5から断面上の中心側へ向かう力を受けたとき、凸部41の突き合わせ面2a、3a側の側面42からはその面に垂直な力が上柱部材2と下柱部材3に作用する。上柱部材2に作用する力は鉛直方向下向きの成分を持ち、下柱部材3に作用する力は上向きの成分を持つから、凸部41からは上柱部材2と下柱部材3を互いに軸方向に密着させようとする力(圧縮力)を作用させることができる。この効果を発揮させる上では、コーナー材4の凸部41の側面42が凹溝22、32の突き合わせ面2a、3a側の側面42に接触する状態にあることが適切である。 When the corner member 4 receives a force from the outer ring 5 toward the center side on the cross section, a force perpendicular to the surface is applied to the upper column member 2 and the lower column from the side surface 42 on the abutting surface 2a and 3a side of the convex portion 41. It acts on the member 3. Since the force acting on the upper column member 2 has a vertically downward component and the force acting on the lower column member 3 has an upward component, the upper column member 2 and the lower column member 3 are pivoted to each other from the convex portion 41. A force (compressive force) that tries to bring them into close contact with each other can be applied. In order to exert this effect, it is appropriate that the side surface 42 of the convex portion 41 of the corner member 4 is in contact with the side surface 42 on the butt surface 2a and 3a side of the concave grooves 22 and 32.

互いに接合されて角形鋼管柱を構成する上柱部材と下柱部材の隅角部の表面に、上柱部材と下柱部材の外周面に接触するコーナー材を配置し、全コーナー材の外周側に外リングを配置し、外リングの内周面をコーナー材の外周面に密着させるため、全隅角部のコーナー材に外リングから圧縮力を付与することができる。併せて角形鋼管柱に、円形鋼管の全周に内リングが配置されたときに円形鋼管が受ける力と同等の、断面上の中心に向かう力(腹圧力)を全コーナー材から付与することができる。 Corner members that come into contact with the outer peripheral surfaces of the upper and lower column members are arranged on the surfaces of the corners of the upper and lower column members that are joined to each other to form a square steel tube column, and the outer peripheral side of all the corner members. Since the outer ring is arranged in the outer ring and the inner peripheral surface of the outer ring is brought into close contact with the outer peripheral surface of the corner material, a compressive force can be applied to the corner material at all corners from the outer ring. At the same time, a force (abdominal pressure) toward the center on the cross section, which is equivalent to the force received by the circular steel pipe when the inner ring is arranged on the entire circumference of the circular steel pipe, can be applied to the square steel pipe column from all corner materials. it can.

また内リングが円形鋼管の外周を周回する場合のように、隣接する隅角部のコーナー材同士の接触が起こらないため、中心に向かう力が損失することはない。特に角形鋼管柱が使用状態で熱膨張し得る可能性のある部位に使用され、コーナー材が熱膨張することがあった場合にも、隣接するコーナー材が互いに接触する可能性がないため、熱膨張による腹圧力の損失も生じない。 Further, unlike the case where the inner ring goes around the outer circumference of the circular steel pipe, the corner members at the adjacent corners do not come into contact with each other, so that the force toward the center is not lost. In particular, when a square steel pipe column is used in a part where thermal expansion may occur in use, and even if the corner members may thermally expand, adjacent corner members are unlikely to come into contact with each other. There is no loss of abdominal pressure due to swelling.

(a)は角形鋼管柱を構成する上柱部材と下柱部材をコーナー材と外リングを用いて接合した様子を示した縦断面図、(b)は(a)のx−x線断面図である。(A) is a vertical sectional view showing a state in which an upper column member and a lower column member constituting a square steel pipe column are joined by using a corner member and an outer ring, and (b) is a sectional view taken along line xx of (a). Is. (a)は図1−(a)の拡大図、(b)は図1−(b)の凹溝部分の拡大図、(c)は(a)に示すコーナー材の凸部の側面と凹溝の突き合わせ面側の側面との間に生じる力の様子を示した(a)の拡大図である。(A) is an enlarged view of FIG. 1- (a), (b) is an enlarged view of the concave groove portion of FIG. 1- (b), and (c) is a side surface and a concave portion of the convex portion of the corner material shown in (a). It is an enlarged view of (a) which showed the state of the force generated with the side surface of the groove on the butt surface side. (a)は上柱部材と下柱部材の隅角部の区間にのみ、コーナー材を配置した場合の例を示した水平断面図、(b)は隅角部から平坦な区間にまでコーナー材を配置した場合の例を示した水平断面図、(c)は隅角部の中央部寄りの区間にのみ、コーナー材を配置した場合の例を示した水平断面図である。(A) is a horizontal cross-sectional view showing an example in which the corner material is arranged only in the corner portion of the upper pillar member and the lower pillar member, and (b) is the corner material from the corner portion to the flat section. Is a horizontal cross-sectional view showing an example when the corner members are arranged, and (c) is a horizontal cross-sectional view showing an example when the corner material is arranged only in the section near the center of the corner portion. 柱・梁架構を構成する梁(梁部材)の端部曲げモーメントが均一になるように、上柱部材と下柱部材の接合位置を設定した場合の曲げモーメントを示した分布図である。It is a distribution map which showed the bending moment when the joint position of the upper column member and the lower column member is set so that the end bending moment of the beam (beam member) which constitutes a column / beam frame becomes uniform.

図1は断面上の隅角部21、31の表面が曲面をなし、軸方向に互いに突き合わせられ、接合されて角形鋼管柱1を構成する上柱部材2と下柱部材3からなる角形鋼管柱の継手構造の具体例を示す。上柱部材2と下柱部材3には図1−(b)に示すように隅角部21(31)の表面が1/4円弧を形成する角形鋼管が使用される。図1−(b)、図2−(c)は上柱部材2の水平断面図であるため、ここには上柱部材2の隅角部21のみが見えているが、上柱部材2の隅角部21と同一位置に下柱部材3の隅角部31がある。 FIG. 1 shows a square steel pipe column composed of an upper column member 2 and a lower column member 3 in which the surfaces of the corner portions 21 and 31 on the cross section form a curved surface, are abutted against each other in the axial direction, and are joined to form a square steel pipe column 1. A specific example of the joint structure of the above is shown. As shown in FIG. 1- (b), square steel pipes are used for the upper column member 2 and the lower column member 3 so that the surface of the corner portion 21 (31) forms a 1/4 arc. Since FIGS. 1- (b) and 2- (c) are horizontal cross-sectional views of the upper pillar member 2, only the corner portion 21 of the upper pillar member 2 is visible here, but the upper pillar member 2 The corner portion 31 of the lower pillar member 3 is located at the same position as the corner portion 21.

上柱部材2と下柱部材3の突き合わせ面2a、3aである上柱部材2の下端面と下柱部材3の上端面から、突き合わせ面2a、3aの反対側へ距離を置いた位置の、少なくとも各隅角部21、31に凹溝22、32が周方向に形成される。凹溝21、31は上柱部材2と下柱部材3の軸方向には、凹溝22、32に入り込むコーナー材4の凸部41の少なくとも一部が納まる程度の幅を持つ。「少なくとも」とはコーナー材4の厚さ方向には必ずしも凸部41の全体が納まる必要がないことの意味である。コーナー材4は図1−(a)に示すように上柱部材2の凹溝22と下柱部材3の凹溝32との間に跨って設置されるため、少なくとも両凹溝22、32に跨る幅を持ち、コーナー材4の凸部41は幅方向両側位置の2箇所に形成される。 A position at a position at a distance from the lower end surface of the upper pillar member 2 and the upper end surface of the lower pillar member 3, which are the abutting surfaces 2a and 3a of the upper pillar member 2 and the lower pillar member 3, to the opposite sides of the abutting surfaces 2a and 3a. Recessed grooves 22 and 32 are formed in at least the corner portions 21 and 31 in the circumferential direction. The concave grooves 21 and 31 have a width such that at least a part of the convex portion 41 of the corner member 4 entering the concave grooves 22 and 32 can be accommodated in the axial direction of the upper pillar member 2 and the lower pillar member 3. “At least” means that the entire convex portion 41 does not necessarily have to fit in the thickness direction of the corner member 4. As shown in FIG. 1- (a), the corner member 4 is installed so as to straddle between the concave groove 22 of the upper pillar member 2 and the concave groove 32 of the lower pillar member 3, and therefore, at least in both concave grooves 22 and 32. It has a straddling width, and the convex portions 41 of the corner member 4 are formed at two positions on both sides in the width direction.

凹溝22、32の突き合わせ面2a、3a側の側面23、33には、凹溝22、32側から突き合わせ面2a、3a側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられることもある。その場合、コーナー材4の内周面の、両凹溝22、32に対応した凸部41、41の、突き合わせ面2a、3a側の側面42にも、凹溝22、32側から突き合わせ面2a、3a側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられる。 The side surfaces 23 and 33 on the butt surfaces 2a and 3a of the recessed grooves 22 and 32 have the center on the cross section of the upper pillar member 2 and the lower pillar member 3 from the concave groove 22 and 32 side to the butt surface 2a and 3a side. It may be sloped from the side to the outer circumference. In that case, on the inner peripheral surface of the corner material 4, the side surfaces 42 on the butt surface 2a and 3a side of the convex portions 41 and 41 corresponding to the both concave grooves 22 and 32 also have the butt surface 2a from the concave groove 22 and 32 side. The upper pillar member 2 and the lower pillar member 3 are inclined from the central side to the outer peripheral side on the cross section toward the 3a side.

互いに突き合わせられた上柱部材2と下柱部材3の断面上の各隅角部21、31に、上柱部材2と下柱部材3の両凹溝22、32に軸方向に跨りながら、上柱部材2と下柱部材3の外周面に接触するコーナー材4が配置される。この全コーナー材4の外周側に、上柱部材2と下柱部材3の周方向に連続し、引張力を負担可能な外リング5が配置される。外リング5は全コーナー材4の外周面に密着することで、各コーナー材4の両凸部41、41を凹溝22、32に入り込ませるため、少なくとも上柱部材2と下柱部材3に跨る幅を持つ。具体的には図1−(a)に示すようにコーナー材4の両凸部41、41に跨る程度の幅を持つことが適切である。 The upper pillar member 2 and the lower pillar member 3 are abutted against each other at the corners 21 and 31 on the cross section of the upper pillar member 2 and the lower pillar member 3 while straddling the both concave grooves 22 and 32 of the upper pillar member 2 and the lower pillar member 3 in the axial direction. A corner member 4 that comes into contact with the outer peripheral surfaces of the pillar member 2 and the lower pillar member 3 is arranged. On the outer peripheral side of all the corner members 4, an outer ring 5 that is continuous in the circumferential direction of the upper pillar member 2 and the lower pillar member 3 and can bear a tensile force is arranged. The outer ring 5 is brought into close contact with the outer peripheral surfaces of all the corner members 4 so that the two convex portions 41 and 41 of each corner member 4 enter the concave grooves 22 and 32, so that at least the upper pillar member 2 and the lower pillar member 3 are in contact with each other. Has a width to straddle. Specifically, as shown in FIG. 1- (a), it is appropriate to have a width that straddles the two convex portions 41, 41 of the corner member 4.

コーナー材4の外周面には上柱部材2から下柱部材3にかけて上柱部材2の中心側から外周側へ向かう傾斜、もしくはそれとは逆向きの傾斜が付けられる。これに接触する外リング5の内周面にも上柱部材2から下柱部材3にかけて上柱部材2の中心側から外周側へ向かう傾斜、もしくはそれとは逆向きの、コーナー材4外周面と同じ向きの傾斜が付けられる。図1、図2に示す例ではコーナー材4の外周面と外リング5の内周面に、上柱部材2から下柱部材3にかけて上柱部材2の中心側から外周側へ向かう傾斜が付けられた場合の例を示している。 The outer peripheral surface of the corner member 4 is inclined from the upper pillar member 2 to the lower pillar member 3 from the center side to the outer peripheral side of the upper pillar member 2 or in the opposite direction. The inner peripheral surface of the outer ring 5 in contact with the outer ring 5 also has an inclination from the center side to the outer peripheral side of the upper pillar member 2 from the upper pillar member 2 to the lower pillar member 3, or the outer peripheral surface of the corner member 4 in the opposite direction. It is sloped in the same direction. In the examples shown in FIGS. 1 and 2, the outer peripheral surface of the corner member 4 and the inner peripheral surface of the outer ring 5 are inclined from the center side to the outer peripheral side of the upper pillar member 2 from the upper pillar member 2 to the lower pillar member 3. An example is shown when this is done.

図1−(a)に示す上柱部材2と下柱部材3の突き合わせ面2a、3aが互いに接触(密着)した状態からは、外リング5が上柱部材2側、もしくは下柱部材3側から双方の突き合わせ面2a、3aに向けて移動させられる。そのまま外リング5の内周面がコーナー材4の外周面に密着することにより外リング5がコーナー材4に圧縮力を及ぼし、図2−(b)に示すように上柱部材2と下柱部材3が隅角部21、31から中心側へ腹圧力を受けた状態で互いに接合される。外リング5の移動にはアクチュエータやハンマー等の道具が使用される。 From the state where the abutting surfaces 2a and 3a of the upper pillar member 2 and the lower pillar member 3 shown in FIG. 1- (a) are in contact with each other (close contact), the outer ring 5 is on the upper pillar member 2 side or the lower pillar member 3 side. Is moved toward both abutting surfaces 2a and 3a. As the inner peripheral surface of the outer ring 5 is in close contact with the outer peripheral surface of the corner material 4, the outer ring 5 exerts a compressive force on the corner material 4, and as shown in FIG. 2- (b), the upper pillar member 2 and the lower pillar The members 3 are joined to each other in a state of receiving abdominal pressure from the corner portions 21 and 31 toward the center side. Tools such as actuators and hammers are used to move the outer ring 5.

図1、図2に示す例では外リング5が上柱部材2側から双方の突き合わせ面2a、3aに向けて移動させられることにより外リング5の内周面がコーナー材4の外周面を図2−(a)に示すように上柱部材2と下柱部材3の中心側へ押圧し、(b)に示すように上柱部材2と下柱部材3の各隅角部21、31から腹圧力を作用させる。同時に外リング5には周方向に引張力が作用し、上柱部材2と下柱部材3の周方向には圧縮力が作用する。外リング5のコーナー材4への密着の結果、上柱部材2と下柱部材3は主に軸方向圧縮力と水平せん断力が伝達される状態に接合される。 In the example shown in FIGS. 1 and 2, the outer ring 5 is moved from the upper column member 2 side toward both abutting surfaces 2a and 3a, so that the inner peripheral surface of the outer ring 5 is the outer peripheral surface of the corner member 4. 2-Press to the center side of the upper pillar member 2 and the lower pillar member 3 as shown in (a), and from the corners 21 and 31 of the upper pillar member 2 and the lower pillar member 3 as shown in (b). Apply abdominal pressure. At the same time, a tensile force acts on the outer ring 5 in the circumferential direction, and a compressive force acts on the upper column member 2 and the lower column member 3 in the circumferential direction. As a result of the outer ring 5 coming into close contact with the corner member 4, the upper column member 2 and the lower column member 3 are joined so that the axial compressive force and the horizontal shear force are mainly transmitted.

図2−(b)はコーナー材4の凸部41、41の各側面42が凹溝22、32の突き合わせ面2a、3a側の側面23、33に接触することで、コーナー材4から上柱部材2と下柱部材3に腹圧力を与えるときに、上柱部材2と下柱部材3を互いに軸方向に圧縮力を作用させるようにした場合の側面42と側面23、33の形成例を示す。凸部41の側面42と凹溝22、32の側面23、32には前記のように凹溝22、32側から突き合わせ面2a、3a側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられる。 In FIG. 2- (b), each side surface 42 of the convex portion 41, 41 of the corner material 4 comes into contact with the side surfaces 23, 33 on the butt surface 2a, 3a side of the concave groove 22, 32, so that the upper pillar is formed from the corner material 4. An example of forming the side surfaces 42, 23, and 33 in the case where the upper column member 2 and the lower column member 3 are made to apply a compressive force in the axial direction to each other when an abdominal pressure is applied to the member 2 and the lower column member 3. Shown. On the side surface 42 of the convex portion 41 and the side surfaces 23 and 32 of the concave grooves 22 and 32, the cross sections of the upper pillar member 2 and the lower pillar member 3 are formed from the concave groove 22 and 32 sides to the butt surfaces 2a and 3a as described above. A slope is added from the upper center side to the outer circumference side.

この例では上柱部材2側の凸部41の側面42に上柱部材2側から下柱部材3側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられ、下柱部材3側の凸部41の側面42に下柱部材3側から上柱部材2側へかけて上柱部材2と下柱部材3の断面上の中心側から外周側へ向かう傾斜が付けられる。 In this example, on the side surface 42 of the convex portion 41 on the upper pillar member 2 side, from the upper pillar member 2 side to the lower pillar member 3 side, the upper pillar member 2 and the lower pillar member 3 are directed from the central side to the outer peripheral side on the cross section. The side surface 42 of the convex portion 41 on the lower pillar member 3 side is inclined, and the upper pillar member 2 and the lower pillar member 3 are on the outer peripheral side from the center side on the cross section from the lower pillar member 3 side to the upper pillar member 2 side. There is a slope towards.

図3−(a)〜(c)は隅角部21(31)の表面に外接するコーナー材4の周長を変化させた場合の例を示す。(a)はコーナー材4の周長を隅角部21(31)の曲面区間の長さに等しくした場合の例を示す。この場合、コーナー材4の全長から腹圧力を隅角部21(31)の区間全体に作用させることができる。 FIGS. 3-(a) to 3 (c) show an example in which the peripheral length of the corner member 4 circumscribing the surface of the corner portion 21 (31) is changed. (A) shows an example in which the peripheral length of the corner member 4 is made equal to the length of the curved surface section of the corner portion 21 (31). In this case, the abdominal pressure can be applied to the entire section of the corner portion 21 (31) from the entire length of the corner member 4.

(b)はコーナー材4の周長を隅角部21(31)の曲面区間の長さより大きくした場合であり、コーナー材4は湾曲区間と直線区間を持つ。この場合、コーナー材4の湾曲区間からは隅角部21(31)の区間全体に腹圧力を作用させることができるが、直線区間には腹圧力を作用させる効果はない。(c)はコーナー材4の周長を隅角部21(31)の曲面区間の長さより短くした場合の例を示す。この場合、コーナー材4の全長から腹圧力を隅角部21(31)させることができるが、コーナー材4の両端からの圧力が隅角部21(31)に作用するため、上柱部材2と下柱部材3に局部的な応力を生じさせる可能性がある。 (B) is a case where the peripheral length of the corner member 4 is made larger than the length of the curved surface section of the corner portion 21 (31), and the corner member 4 has a curved section and a straight section. In this case, the abdominal pressure can be applied to the entire section of the corner portion 21 (31) from the curved section of the corner member 4, but the abdominal pressure is not applied to the straight section. (C) shows an example in which the peripheral length of the corner member 4 is shorter than the length of the curved surface section of the corner portion 21 (31). In this case, the abdominal pressure can be applied to the corner portion 21 (31) from the entire length of the corner member 4, but since the pressure from both ends of the corner member 4 acts on the corner portion 21 (31), the upper column member 2 And there is a possibility of causing local stress in the lower column member 3.

図4は上柱部材2と下柱部材3から構成される角形鋼管柱(柱部材)1と梁部材6からなる柱・梁架構に水平力が作用したときの角形鋼管柱1と梁部材6に生じる曲げモーメントの分布を示す。ここに示すように上柱部材2と下柱部材3の接合(継手)位置である突き合わせ面2a、3aで軸方向圧縮力と水平せん断力のみが伝達される状態に上柱部材2と下柱部材3が接合されていれば、嵌合部分には曲げモーメントが生じないため、曲げモーメントが0になるように設定することが可能になる。 FIG. 4 shows the square steel column 1 and the beam member 6 when a horizontal force is applied to the column / beam frame composed of the square steel column (column member) 1 composed of the upper column member 2 and the lower column member 3 and the beam member 6. The distribution of the bending moment generated in is shown. As shown here, the upper column member 2 and the lower column are in a state where only the axial compressive force and the horizontal shear force are transmitted at the butt surfaces 2a and 3a, which are the joints (joint) positions between the upper column member 2 and the lower column member 3. If the members 3 are joined, no bending moment is generated in the fitting portion, so that the bending moment can be set to 0.

図4に示す例は1階の角形鋼管柱1の柱脚部の曲げモーメントが0になり、2階の角形鋼管柱1の柱脚部寄りの位置の曲げモーメントが0になり、3階の角形鋼管柱1の柱脚部と柱頭部の中間部の曲げモーメントが0になるように各階での上柱部材2と下柱部材3の接合(継手)位置を設定した場合である。またこの例では梁部材6端部の太線で示した曲げモーメントが等しいため、梁部材6の形状、寸法等を標準化させることが可能になる。 In the example shown in FIG. 4, the bending moment of the column base of the square steel column 1 on the first floor becomes 0, the bending moment at the position near the column base of the square steel column 1 on the second floor becomes 0, and the bending moment on the third floor becomes 0. This is a case where the joint position of the upper column member 2 and the lower column member 3 is set on each floor so that the bending moment between the column base portion and the column head portion of the square steel tube column 1 becomes zero. Further, in this example, since the bending moments shown by the thick lines at the ends of the beam member 6 are the same, it is possible to standardize the shape, dimensions, and the like of the beam member 6.

1……角形鋼管柱(柱部材)、
2……上柱部材、21……隅角部、22……凹溝、23……側面、2a……突き合わせ面、
3……下柱部材、31……隅角部、32……凹溝、33……側面、3a……突き合わせ面、
4……コーナー材、41……凸部、42……側面、
5……外リング、
6……梁部材。
1 …… Square steel pipe column (column member),
2 ... Upper pillar member, 21 ... Corner, 22 ... Recessed groove, 23 ... Side, 2a ... Butt surface,
3 ... Lower pillar member, 31 ... Corner, 32 ... Recessed groove, 33 ... Side, 3a ... Butt surface,
4 …… Corner material, 41 …… Convex part, 42 …… Side surface,
5 …… Outer ring,
6 …… Beam member.

Claims (2)

断面上の隅角部の表面が曲面をなし、軸方向に互いに突き合わせられ、接合されて角形鋼管柱を構成する上柱部材と下柱部材からなる角形鋼管柱の継手構造であり、
前記上柱部材と前記下柱部材の互いに突き合わせられる突き合わせ面からそれぞれ距離を置いた位置の、少なくとも前記各隅角部に凹溝が周方向に形成され、
互いに突き合わせられた前記上柱部材と前記下柱部材の断面上の前記各隅角部に、前記上柱部材と前記下柱部材の前記両凹溝に軸方向に跨りながら、前記上柱部材と前記下柱部材の外周面に接触するコーナー材が配置され、
前記全コーナー材の外周側に、前記上柱部材と前記下柱部材の周方向に連続し、引張力を負担可能な外リングが配置され、
前記外リングが前記上柱部材側、もしくは前記下柱部材側から双方の前記突き合わせ面に向けて移動し、前記外リングの内周面が前記コーナー材の外周面に密着していることを特徴とする角形鋼管柱の継手構造。
It is a joint structure of a square steel pipe column composed of an upper column member and a lower column member, in which the surface of the corner portion on the cross section forms a curved surface, is abutted against each other in the axial direction, and is joined to form a square steel pipe column.
A concave groove is formed in the circumferential direction at least at each corner of the upper column member and the lower column member at a position separated from the abutting surface of the lower column member.
With the upper pillar member and the upper pillar member while straddling the upper pillar member and the both concave grooves of the lower pillar member in the axial direction at each corner portion on the cross section of the upper pillar member and the lower pillar member butted against each other. A corner member that comes into contact with the outer peripheral surface of the lower pillar member is arranged.
On the outer peripheral side of all the corner members, an outer ring that is continuous in the circumferential direction of the upper pillar member and the lower pillar member and can bear a tensile force is arranged.
The outer ring moves from the upper pillar member side or the lower pillar member side toward both of the abutting surfaces, and the inner peripheral surface of the outer ring is in close contact with the outer peripheral surface of the corner material. Joint structure of square steel pipe columns.
前記コーナー材の内周面の、前記両凹溝に対応した凸部の、前記突き合わせ面側の側面と、この側面が接触する前記凹溝の側面は前記凹溝側から前記突き合わせ面側へかけて前記上柱部材と前記下柱部材の断面上の中心側から外周側へ向かう傾斜が付けられていることを特徴とする請求項1に記載の角形鋼管柱の継手構造。 The side surface of the inner peripheral surface of the corner material, which corresponds to the two concave grooves, on the butt surface side and the side surface of the concave groove in contact with the side surface are hung from the concave groove side to the butt surface side. The joint structure for a square steel pipe column according to claim 1, wherein the upper column member and the lower column member are inclined from the central side to the outer peripheral side on the cross section.
JP2019038391A 2019-03-04 2019-03-04 Joint structure of square steel pipe column Pending JP2020143430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019038391A JP2020143430A (en) 2019-03-04 2019-03-04 Joint structure of square steel pipe column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038391A JP2020143430A (en) 2019-03-04 2019-03-04 Joint structure of square steel pipe column

Publications (1)

Publication Number Publication Date
JP2020143430A true JP2020143430A (en) 2020-09-10

Family

ID=72353353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038391A Pending JP2020143430A (en) 2019-03-04 2019-03-04 Joint structure of square steel pipe column

Country Status (1)

Country Link
JP (1) JP2020143430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496559B2 (en) 2022-07-11 2024-06-07 株式会社ユニテック Steel pipe member connection structure and steel pipe member connection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496559B2 (en) 2022-07-11 2024-06-07 株式会社ユニテック Steel pipe member connection structure and steel pipe member connection method

Similar Documents

Publication Publication Date Title
JP6703307B2 (en) Steel pipe joining method and joining structure
JP5754238B2 (en) Beam-column joint structure
JP2014080998A (en) Pipe fixing device
JP2017223071A (en) Joining method for and joined structure of steel member
JP2020143430A (en) Joint structure of square steel pipe column
JP2018204379A (en) Joint structure for steel material
JP6818510B2 (en) Column-beam joint structure
JP2008038367A (en) Disassemblable column/beam joint
JP2016183538A (en) Building structure and building structure fixation method
JP5127424B2 (en) Positioner face plate and core connection jig
JP4621570B2 (en) Pile fastening structure and fastener used therefor
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP6606037B2 (en) Frame-type pipe restraint support, frame-type pipe restraint support structure, and method of assembling frame-type pipe restraint support structure
JP2010106515A (en) Square steel pipe column
JP2020143535A (en) Joint structure of steel-pipe column
JP2008045284A (en) Joint part of free disassembly type column member
JP2004027740A (en) Joint structure of steel pipe for column member
JP3788799B2 (en) Joint structure of steel plate and deformed steel bar
JP7471996B2 (en) Steel piece for external diaphragm, column-beam joint structure and column-beam joint method
JP7357597B2 (en) Joint hardware, joint structure of deformed steel pipes, column-beam joint structure of deformed steel pipes, and joint structure of steel pipe columns
JP6888696B2 (en) Joint structure of steel members
JP2023167918A (en) Column structure
JP2004027741A (en) Joint structure of steel pipe for column member
JP4469300B2 (en) Bonded hardware
JP2009121091A (en) Column joint structure