JP4136869B2 - Welded joint construction and welded joint structure of steel columns capable of energy absorption - Google Patents

Welded joint construction and welded joint structure of steel columns capable of energy absorption Download PDF

Info

Publication number
JP4136869B2
JP4136869B2 JP2003331773A JP2003331773A JP4136869B2 JP 4136869 B2 JP4136869 B2 JP 4136869B2 JP 2003331773 A JP2003331773 A JP 2003331773A JP 2003331773 A JP2003331773 A JP 2003331773A JP 4136869 B2 JP4136869 B2 JP 4136869B2
Authority
JP
Japan
Prior art keywords
steel
column
steel pipe
diaphragm
damper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003331773A
Other languages
Japanese (ja)
Other versions
JP2005097924A (en
Inventor
耕一 下野
洋文 金子
徹 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003331773A priority Critical patent/JP4136869B2/en
Publication of JP2005097924A publication Critical patent/JP2005097924A/en
Application granted granted Critical
Publication of JP4136869B2 publication Critical patent/JP4136869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構法および溶接継手構造の技術分野に属し、更に云えば、エネルギー吸収部材(ダンパー板)を用い、建築物が地震や風により水平力を受けた場合に、軸圧縮力、及び剪断力に耐えつつ、引張応力を前記エネルギー吸収部材で吸収して応答を低減させるようにエネルギー吸収が可能な鉄骨柱の溶接継手構法および溶接継手構造に関する。   The present invention belongs to a technical field of a welded joint construction method and a welded joint structure by metal touch of a steel column of a steel structure building. More specifically, the present invention uses an energy absorbing member (damper plate), and the building is horizontal due to an earthquake or wind. Steel column welded joint structure and welded joint structure capable of absorbing energy so as to reduce the response by absorbing the tensile stress with the energy absorbing member while resisting axial compression force and shearing force when subjected to force About.

従来、鉄骨造建築物の柱継手部は、3層程度を一節として製作する方法が多く実用に供されている。その接合構法には溶接接合や高力ボルト摩擦接合等による剛接継手等が実施されている。   Conventionally, there are many methods of manufacturing a column joint portion of a steel structure building with about three layers as one section. As the joint construction method, a rigid joint by welding, high-strength bolt friction, or the like is used.

例えば、特許文献1の「角形鋼管柱相互の剛接合構造」には、当て板を上下の角型鋼管柱にわたり接合部の表面および裏面の各々にあてがい、特殊構造のワンサイドボルトによって剛接合した構成が開示されている。これは上記の高力ボルト摩擦接合の一種に分類される。   For example, in Patent Document 1, “Rectangular Steel Tubular Columns Rigidly Connected Structures”, a backing plate is applied to each of the front and back surfaces of the joint portion across the upper and lower rectangular steel tube columns, and rigidly joined by one-side bolts with a special structure. A configuration is disclosed. This is classified as a kind of the above high strength bolt friction joint.

特許文献2の「上下鉄骨柱の接合構造」には、上下の鉄骨柱間に接合金物を介在させ、上下の鉄骨柱と接合金物との溶接接合や高力ボルト摩擦接合で強固に接合した構成が開示されている。   The "joint structure of upper and lower steel columns" in Patent Document 2 is a structure in which a joint metal is interposed between the upper and lower steel columns and is firmly joined by welding joint between the upper and lower steel columns and the joint metal or high-strength bolt friction joint Is disclosed.

一般的にフランジ継手と称される技術として、特許文献3の「鋼管柱の継手構造」には、柱として接続される上位の管体の端部に予めフランジを設け、その外周面を半割金物で挟み、スリーブによって強固に締め付けるフランジ継手が開示されている。   As a technique generally referred to as a flange joint, the “joint structure of a steel pipe column” in Patent Document 3 is provided with a flange in advance at the end of the upper pipe connected as a column, and its outer peripheral surface is halved. A flange joint is disclosed which is sandwiched between hardware and tightened firmly by a sleeve.

建物の主要構造部材にエネルギー吸収部材を取り付けた例として、特許文献4の「柱梁接合構造」は、H形鋼梁端のフランジにカバープレートを付けた構成が開示されている。H形鋼梁のフランジの左右両面に、三角形板状の極低降伏点鋼材(エネルギー吸収部材)から成るプレート又はカバープレートを水平に添設して柱に溶接接合することにより、H形鋼梁との接合部が補強され、地震時におけるH形鋼梁に対する変形追随性能が向上し、H形鋼梁がプレート又はカバープレートと共に地震時の履歴エネルギーを吸収する構成が開示されている。   As an example in which an energy absorbing member is attached to a main structural member of a building, a “column beam joint structure” in Patent Document 4 discloses a configuration in which a cover plate is attached to a flange of an H-shaped steel beam end. By attaching a plate or cover plate made of triangular plate-like ultra-low yield point steel (energy absorbing member) horizontally on both the left and right sides of the flange of the H-shaped steel beam and welding it to the column, the H-shaped steel beam A structure is disclosed in which the joint portion is strengthened, the deformation following performance of the H-shaped steel beam at the time of an earthquake is improved, and the H-shaped steel beam absorbs the hysteresis energy at the time of the earthquake together with the plate or the cover plate.

また、本出願人による特願2002−86353の「エネルギー吸収部材を有する柱継手」は、例えば、図11に示すように、下位の鉄骨柱110の上側のダイアフラム111の上面に垂直上向きに立てその下端部をダイアフラム111と溶接接合されたエネルギー吸収部材112(ダンパー板)の内側へ上位の鉄骨柱113が差し入れられ、該上位の鉄骨柱113とダイアフラム111とは当接状態(メタルタッチ)とされている。そして、エネルギー吸収部材112(ダンパー板)の上部を上位の鉄骨柱113と溶接接合により緊密に連結されている。   Further, the “column joint having an energy absorbing member” of Japanese Patent Application No. 2002-86353 by the present applicant is, for example, as shown in FIG. 11, standing vertically upward on the upper surface of the diaphragm 111 on the upper side of the lower steel column 110. The upper steel column 113 is inserted inside the energy absorbing member 112 (damper plate) whose lower end is welded to the diaphragm 111, and the upper steel column 113 and the diaphragm 111 are brought into contact with each other (metal touch). ing. The upper part of the energy absorbing member 112 (damper plate) is tightly coupled to the upper steel column 113 by welding.

特許第2702882号公報Japanese Patent No. 2702882 特公平7−81314号公報Japanese Examined Patent Publication No. 7-81314 特開平8−144384号公報JP-A-8-144384 特開2000−273971号公報JP 2000-273971 A

上記特許文献1〜3に開示された溶接接合や高力ボルト摩擦接合等による剛接継手およびフランジ継手は、柱相互間を強固に緊結することが出来る。しかし、地震や風等で柱継手部に生じる応力に関しては殆どそのエネルギーを吸収することが出来ないという問題点がある。   Rigid joints and flange joints such as weld joints and high-strength bolt friction joints disclosed in Patent Documents 1 to 3 can tightly bond between columns. However, there is a problem that almost no energy can be absorbed with respect to the stress generated in the column joint due to an earthquake or wind.

特許文献4に開示された発明は、エネルギー吸収部材をH形鋼梁に取り付けた構成であり、柱継手部に生じる応力は低減できない。   The invention disclosed in Patent Document 4 has a configuration in which the energy absorbing member is attached to the H-shaped steel beam, and the stress generated in the column joint portion cannot be reduced.

特願2002−86353の発明は、上位の鉄骨柱113の下端をダイアフラム111の上面へメタルタッチの状態で載せるが、図11に拡大して示すように、エネルギー吸収部材112(ダンパー板)をダイアフラム111と完全溶け込み溶接した際に溶接ビードが大きくはみ出なさいように施工することは非常に難しく、はみ出た場合にはガウジングで削る必要が生じ、上位の鉄骨柱113の完全なメタルタッチを実現し難いという問題がある。また、エネルギー吸収部材112の下端をダイアフラム111の上面へ溶接接合するにあたり、エネルギー吸収部材112の接合位置及び垂直姿勢を正確に保ち難く、溶接作業が面倒で精度を得がたいという問題点もある。   In the invention of Japanese Patent Application No. 2002-86353, the lower end of the upper steel column 113 is placed on the upper surface of the diaphragm 111 in a metal touch state. As shown in an enlarged view in FIG. 11, the energy absorbing member 112 (damper plate) is attached to the diaphragm. It is very difficult to construct so that the weld bead protrudes greatly when welded completely with 111, and if it protrudes, it will be necessary to grind it and it will be difficult to achieve a complete metal touch of the upper steel column 113 There is a problem. Further, when the lower end of the energy absorbing member 112 is welded and joined to the upper surface of the diaphragm 111, it is difficult to accurately maintain the joining position and vertical posture of the energy absorbing member 112, and the welding work is troublesome and it is difficult to obtain accuracy.

本発明の目的は、端的に云えば、上記特願2002−86353に係る発明の問題点を解決すること、即ち、エネルギー吸収部材(ダンパー板)の下端とダイアフラムとの溶接ビードがメタルタッチの障害とならず、しかも、溶接の品質を向上させ、且つ、エネルギー吸収部材の接合位置及び垂直姿勢の正確さ、精度を出し易い構成に改良した鉄骨柱の溶接継手構法および溶接継手構造を提供することにある。   In short, the object of the present invention is to solve the problems of the invention according to Japanese Patent Application No. 2002-86353, that is, the weld bead between the lower end of the energy absorbing member (damper plate) and the diaphragm is an obstacle to metal touch. Furthermore, the present invention provides a steel column welded joint construction method and welded joint structure that improve the welding quality, and improve the construction of the joining position and vertical posture of the energy absorbing member so that the accuracy and precision can be easily obtained. It is in.

本発明の次の目的は、メタルタッチとする上下の鉄骨柱の断面が食い違わないように位置決め機能を兼ねる剪断抵抗部材を用いた溶接継手構法および溶接継手構造を提供することにある。   It is another object of the present invention to provide a welded joint construction method and welded joint structure using a shear resistance member that also serves as a positioning function so that the cross sections of the upper and lower steel columns used as a metal touch do not conflict.

上記した課題を解決するための手段として、請求項1に記載した発明に係るエネルギー吸収が可能な鉄骨柱の溶接継手構法は、
鉄骨造建築物の鋼管柱のメタルタッチによる溶接継手構法において、
柱脚のダイアフラム3の上面における柱の芯々位置に短い中継ぎ鋼管4を配置し、その外周に鋼材から成るエネルギー吸収用の複数のダンパー板5を垂直上向きに立て、ダンパー板5とダイアフラム3とは完全溶け込み溶接を行い、中継ぎ鋼管4とダイアフラム3も溶接接合を行う工程と、
上位の鋼管柱6を前記ダンパー板5の内側へ差し入れてその下端を前記中継ぎ鋼管の上端へメタルタッチの状態で載せ、各ダンパー板5の上部を上位の鋼管柱6と溶接で緊結する工程とから成ることを特徴とする。
As means for solving the above-described problems, a welded joint construction method for a steel column capable of absorbing energy according to the invention described in claim 1 is:
In the welded joint construction method by the metal touch of the steel pipe column of the steel structure building,
A short intermediate steel pipe 4 is arranged at the center position of the column on the upper surface of the column base diaphragm 3, and a plurality of damper plates 5 for absorbing energy made of steel material are set up vertically on the outer periphery. The damper plate 5 and the diaphragm 3 are A process in which complete penetration welding is performed, and the intermediate steel pipe 4 and the diaphragm 3 are also welded and joined,
Inserting the upper steel pipe column 6 into the inside of the damper plate 5 and placing the lower end of the upper steel pipe column 6 on the upper end of the intermediate steel pipe in a metal touch state, and bonding the upper portion of each damper plate 5 to the upper steel pipe column 6 by welding; It is characterized by comprising.

請求項2に記載した発明は、請求項1に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法において、
中継ぎ鋼管4の内周面に沿って垂直に立ち上がる剪断抵抗部材8を同中継ぎ鋼管4の上端面よりも高く突き出させ、剪断抵抗部材8は中継ぎ鋼管4の内周面及びダイアフラム3と溶接等で接合して設置し、上位の鋼管柱6は前記ダンパー板5と剪断抵抗部材8との間へ差し入れてその下端を前記中継ぎ鋼管4の上にメタルタッチの状態で載せることを特徴とする。
The invention described in claim 2 is a welded joint construction method for a steel column capable of absorbing energy according to claim 1,
The shear resistance member 8 rising vertically along the inner peripheral surface of the intermediate steel pipe 4 is protruded higher than the upper end surface of the intermediate steel pipe 4, and the shear resistance member 8 is welded to the inner peripheral surface of the intermediate steel pipe 4 and the diaphragm 3. The upper steel pipe column 6 is inserted between the damper plate 5 and the shear resistance member 8 and the lower end thereof is placed on the intermediate steel pipe 4 in a metal touch state.

請求項3に記載した発明は、請求項1又は2に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法において、
中継ぎ鋼管4は、上位の鋼管柱6の下端部を所要の長さ、少なくともスラブ7の厚さL以上の長さTに切断して製作し、その切断面を上向きにしてダイアフラム3の上面に設置することを特徴とする。
Invention of Claim 3 in the welded joint construction method of the steel column in which the energy absorption as described in Claim 1 or 2 is possible,
The intermediate steel pipe 4 is manufactured by cutting the lower end portion of the upper steel pipe column 6 to a required length, at least a length T equal to or greater than the thickness L of the slab 7, with the cut surface facing upward on the upper surface of the diaphragm 3. It is characterized by installing.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法において、
中継ぎ鋼管4の外周面に位置する各ダンパー板5の外周を取り巻く環状のタイバンド9を仮止め状態に設置し、各ダンパー板5を締め付けて拘束した後、前記タイバンドで各ダンパー板5の上部を上位の鋼管柱6と溶接で緊結することを特徴とする。
Invention of Claim 4 in the welded joint construction method of the steel column in which the energy absorption as described in any one of Claims 1-3 is possible,
An annular tie band 9 that surrounds the outer periphery of each damper plate 5 located on the outer peripheral surface of the intermediate steel pipe 4 is set in a temporarily fixed state, and each damper plate 5 is tightened and restrained. The upper part is tightly connected to the upper steel pipe column 6 by welding.

請求項5に記載した発明に係るエネルギー吸収が可能な鉄骨柱の溶接継手構造は、
鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構造であって、
柱脚のダイアフラム3の上面における柱の芯々位置に短い中継ぎ鋼管4が配置され、その外周に鋼材から成る複数のダンパー板5が垂直上向きに立てられ、ダンパー板5とダイアフラム3とは完全溶け込み溶接が行なわれ、中継ぎ鋼管4とダイアフラム3も溶接接合されていること、
上位の鋼管柱6は前記ダンパー板5の内側へ差し入れてその下端が前記中継ぎ鋼管4の上端へメタルタッチの状態で載せられ、各ダンパー板5の上部が上位の鋼管柱6と溶接で緊結されていることを特徴とする。
The welded joint structure of a steel column capable of absorbing energy according to the invention described in claim 5 is:
It is a welded joint structure by metal touch of a steel column of a steel structure building,
A short intermediate steel pipe 4 is arranged at the center of the column on the upper surface of the column base diaphragm 3, and a plurality of damper plates 5 made of steel are erected vertically upward on the outer periphery, and the damper plate 5 and the diaphragm 3 are completely melt welded. The welded steel pipe 4 and the diaphragm 3 are also welded together,
The upper steel pipe column 6 is inserted into the inside of the damper plate 5 and the lower end thereof is placed in a metal touch state on the upper end of the intermediate steel tube 4, and the upper portion of each damper plate 5 is fastened to the upper steel pipe column 6 by welding. It is characterized by.

請求項6に記載した発明に係るエネルギー吸収が可能な鉄骨柱の溶接継手構造は、
鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構造であって、
鉄骨柱脚のダイアフラム30の上面における柱の芯々位置に、H形鋼で成る鉄骨柱と同形・同大の短い中継ぎ鋼材40が配置され、そのフランジ及びウエブの外周面に鋼材から成るダンパー板50a、50bが垂直上向きに立てられ、前記各ダンパー板50a、50bとダイアフラム30とは完全溶け込み溶接が行わされ、中継ぎ鋼材40とダイアフラム30も溶接接合されていること、
H形鋼で成る上位の鉄骨柱は前記各ダンパー板50a、50bの内側へ差し入れてその下端を前記中継ぎ鋼材40の上端へメタルタッチの状態に載せられ、各ダンパー板50a、50bの上部が上位の鉄骨柱60と溶接で緊結されていることを特徴とする。
The welded joint structure of a steel column capable of absorbing energy according to the invention described in claim 6 is:
It is a welded joint structure by metal touch of a steel column of a steel structure building,
A short intermediate steel member 40 having the same shape and the same size as the steel column made of H-shaped steel is disposed at the center of the column on the upper surface of the diaphragm 30 of the steel column base, and a damper plate 50a made of steel is formed on the outer peripheral surface of the flange and web. , 50b stands vertically upward, the damper plates 50a, 50b and the diaphragm 30 are completely melt-welded, and the intermediate steel member 40 and the diaphragm 30 are also welded together.
The upper steel column made of H-shaped steel is inserted inside the damper plates 50a and 50b and the lower ends thereof are placed in a metal touch state on the upper ends of the intermediate steel members 40, and the upper portions of the damper plates 50a and 50b are upper. The steel column 60 is tightly connected by welding.

請求項1〜6に記載した発明に係るエネルギー吸収が可能な鉄骨柱の溶接継手構法および溶接継手構造によれば、ダイアフラムと上位の鋼管柱又はH形鋼で成る鉄骨柱との間に中継ぎ鋼管又は中継ぎ鋼材が介在するため、ダンパー板の下端とダイアフラムとの溶接ビードがメタルタッチの障害となることが無く、また、中継ぎ鋼管がダンパー板の溶接時に裏当金としての役目をするほか、位置決めゲージとしての作用、効果も発揮してダンパー板の接合位置及び垂直姿勢の正確さ、精度を高めることに寄与する。
請求項3のように、前記中継ぎ鋼管又は中継ぎ鋼材を、上位の鋼管柱又はH形鋼で成る鉄骨柱の下端部を切断したものにすると、メタルタッチ面の整合性の精度を確実に得られる。更に、中継ぎ鋼管又は中継ぎ鋼材をスラブの厚さ以上の長さ(高さ)にすると、コンクリートスラブの打設工程に影響を与えない。
請求項2のように、鋼管柱又は鉄骨柱のメタルタッチ面に剪断抵抗部材がダボの如くに突き出されると、柱断面をメタルタッチの状態で載せる作業時の水平力や柱材軸回りの捻り力による食い違いやガタを発生させない位置決めの機能を兼ね、上下の鋼管柱又はH形鋼で成る鉄骨柱の建て方作業を効率よく行うことができる。また、剪断外力に対する抵抗が大きくなり、ダンパーの剪断に対する負担を軽減できる。一方、地震時の引張応力にはダンパー板が抵抗し、その塑性変形によってエネルギーが吸収され、地震応答を低減する制震効果が得られる。
According to the welded joint construction method and welded joint structure of a steel column capable of absorbing energy according to the inventions described in claims 1 to 6, the intermediate steel pipe between the diaphragm and the upper steel pipe column or the steel column made of H-shaped steel Or, because the intermediate steel material is interposed, the weld bead between the lower end of the damper plate and the diaphragm does not interfere with the metal touch, and the intermediate steel pipe serves as a backing metal when welding the damper plate. It also acts as a gauge and contributes to improving the accuracy and precision of the damper plate joining position and vertical posture.
As in claim 3, when the intermediate steel pipe or the intermediate steel material is obtained by cutting the lower end portion of the upper steel pipe column or the steel column made of H-shaped steel, the accuracy of the consistency of the metal touch surface can be obtained with certainty. . Furthermore, if the length of the intermediate steel pipe or the intermediate steel material is set to a length (height) greater than the thickness of the slab, the concrete slab placing process is not affected.
As in claim 2, when the shear resistance member is projected like a dowel on the metal touch surface of a steel pipe column or steel column, the horizontal force or the column material axis around the column cross-section is placed in a metal touch state. It also serves as a positioning function that does not cause discrepancies or play due to torsional force, and can efficiently perform the construction work of the upper and lower steel pipe columns or steel columns made of H-shaped steel. Moreover, resistance to the shearing external force is increased, and the load on the shearing of the damper can be reduced. On the other hand, the damper plate resists the tensile stress at the time of earthquake, and the energy is absorbed by the plastic deformation, and the seismic control effect that reduces the seismic response is obtained.

柱脚のダイアフラム3の上面における柱の芯々位置に短い中継ぎ鋼管4を配置し、その外周に鋼材から成る複数のダンパー板5を垂直上向きに立て、ダンパー板5とダイアフラム3とは完全溶け込み溶接を行い、中継ぎ鋼管4とダイアフラム3も溶接接合を行う。
上位の鋼管柱6を前記ダンパー板5の内側へ差し入れてその下端を前記中継ぎ鋼管4の上端へメタルタッチの状態で載せ、各ダンパー板5の上部を上位の鋼管柱6と溶接で緊結する。
中継ぎ鋼管4の内周面に沿って垂直に立ち上がる剪断抵抗部材8を同中継ぎ鋼管4の上端面よりも高く突き出させ、剪断抵抗部材8は中継ぎ鋼管4の内周面又は(及び)ダイアフラム3と溶接で接合して設置し、上位の鋼管柱6は前記ダンパー板5と剪断抵抗部材8との間へ差し入れてその下端を前記中継ぎ鋼管4の上にメタルタッチの状態で載せる。
中継ぎ鋼管4は、上位の鋼管柱6の下端部を所要の長さ、少なくともスラブの厚さL以上の長さTに切断して製作し、その切断面を上向きにしてダイアフラム3の上面に設置する。
A short intermediate steel pipe 4 is arranged in the center of the column on the upper surface of the column base diaphragm 3, and a plurality of damper plates 5 made of steel are set vertically upward on the outer periphery, and the damper plate 5 and the diaphragm 3 are completely melt welded. The intermediate steel pipe 4 and the diaphragm 3 are also welded.
The upper steel pipe column 6 is inserted into the damper plate 5 and the lower end thereof is placed on the upper end of the intermediate steel tube 4 in a metal touch state, and the upper portion of each damper plate 5 is fastened to the upper steel pipe column 6 by welding.
The shear resistance member 8 rising vertically along the inner peripheral surface of the intermediate steel pipe 4 is protruded higher than the upper end surface of the intermediate steel pipe 4, and the shear resistance member 8 is connected to the inner peripheral surface of the intermediate steel pipe 4 and / or the diaphragm 3. The upper steel pipe column 6 is inserted between the damper plate 5 and the shear resistance member 8 and the lower end thereof is placed on the intermediate steel pipe 4 in a metal touch state.
The intermediate steel pipe 4 is manufactured by cutting the lower end of the upper steel pipe column 6 to a required length, at least a length T equal to or greater than the thickness L of the slab, and installed on the upper surface of the diaphragm 3 with the cut surface facing upward. To do.

図1〜8は、請求項1〜5に記載した発明に係る溶接継手構法および溶接継手構造の施工手順の要点を順に示している。先ず、図1は、下方から立ち上がってきた下位の鋼管柱1の上端の梁接合位置に、鉄骨梁2のフランジと整合する配置で上下(柱脚及び柱頭)のダイアフラム3、3が設けられ、これらに鉄骨梁2がそれぞれ接合されている。そして、ダイアフラム3と溶接で接合している。柱脚のダイアフラム3の上面における柱の芯々位置に短い中継ぎ鋼管4を配置し、その後、前記中継ぎ鋼管4の外周面に、鋼材から成るエネルギー吸収用の複数のダンパー板5…が垂直上向きに立てられ、前記中継ぎ鋼管4の外周面へ密接に当てがって、ダンパー板5の下端部とダイアフラム3の上面とを完全溶け込み溶接により緊結した段階を示している。図1の拡大図が示すように、前記中継ぎ鋼管4はダンパー板5の溶接時の裏当金としての役目をするほか、前記ダンパー板5の位置決めの所謂ゲージとしての作用、効果も発揮する。よってダンパー板5の接合位置及び垂直姿勢の正確さ、精度の向上が図れる。   FIGS. 1-8 has shown the principal of the construction procedure of the welded joint construction method and welded joint structure based on the invention described in Claims 1-5 in order. First, FIG. 1 is provided with upper and lower (column base and column head) diaphragms 3 and 3 in an arrangement matching the flange of the steel beam 2 at the beam joint position at the upper end of the lower steel pipe column 1 rising from below. The steel beam 2 is joined to each of them. And it is joined to the diaphragm 3 by welding. A short intermediate steel pipe 4 is arranged at the center of the column on the upper surface of the diaphragm 3 of the column base, and then a plurality of energy absorbing damper plates 5 made of steel stands vertically upward on the outer peripheral surface of the intermediate steel pipe 4. It shows a stage in which the lower end portion of the damper plate 5 and the upper surface of the diaphragm 3 are brought into close contact with the outer peripheral surface of the intermediate steel pipe 4 by complete penetration welding. As shown in the enlarged view of FIG. 1, the intermediate steel pipe 4 serves as a backing metal when the damper plate 5 is welded, and also exhibits an action and effect as a so-called gauge for positioning the damper plate 5. Therefore, the accuracy and accuracy of the joining position and vertical posture of the damper plate 5 can be improved.

図1はまた、中継ぎ鋼管4の内周面に沿って垂直に立ち上がる剪断抵抗部材8を同中継ぎ鋼管4の上端面よりも十分突き出させ、剪断抵抗部材8は中継ぎ鋼管4の内周面(及びダイアフラム3)と溶接等で強固に接合して設置された状態も示している。   FIG. 1 also shows that the shear resistance member 8 rising vertically along the inner peripheral surface of the intermediate steel pipe 4 protrudes sufficiently from the upper end surface of the intermediate steel pipe 4, and the shear resistance member 8 is Also shown is a state where the diaphragm 3) and the diaphragm 3) are firmly joined by welding or the like.

前記中継ぎ鋼管4は、上位の鋼管柱6のメタルタッチによる継ぎ足しを実現するための柱体で、好ましくは上位の鋼管柱6の下端部を所要の長さ、具体的には、少なくとも下位の鋼管柱1の上に追って打設されるコンクリートのスラブ7の厚さL以上の長さ(高さ)Tに切断して製作し、その切断面を上向きにしてダイアフラム3の上面に設置する。すると、中継ぎ鋼管4と上位の鋼管柱6の切断面形状は略同形状となり、メタルタッチ面の整合性の精度は確実に得られる。とりわけ、図2に示すように切断断面を波形状や山谷形状、矩形波形状等として水平力に耐える効果を持たせる形状で実施する場合に好適である。勿論、中継ぎ鋼管4は他の方法で製作したものを使用することもできる。また、前記中継ぎ鋼管4をスラブ7の厚さL以上の長さ(高さ)Tであることは、スラブ7が打設されていても、上位の鋼管柱6とダンパー板5の溶接作業がスラブ7の打設工程に影響を与えない。   The intermediate steel pipe 4 is a column body for realizing the addition of the upper steel pipe column 6 by metal touch. Preferably, the lower end portion of the upper steel pipe column 6 has a required length, specifically, at least the lower steel pipe. The concrete slab 7 to be cast on the pillar 1 is cut into a length (height) T equal to or greater than the thickness L, and is installed on the upper surface of the diaphragm 3 with its cut surface facing upward. Then, the cut surface shapes of the intermediate steel pipe 4 and the upper steel pipe column 6 become substantially the same shape, and the accuracy of the consistency of the metal touch surface can be reliably obtained. In particular, as shown in FIG. 2, it is suitable when the cut section is implemented in a shape that can withstand the horizontal force, such as a wave shape, a mountain-valley shape, a rectangular wave shape, or the like. Of course, the intermediate steel pipe 4 can be made by other methods. Further, the fact that the intermediate steel pipe 4 has a length (height) T equal to or greater than the thickness L of the slab 7 means that the welding operation of the upper steel pipe column 6 and the damper plate 5 is possible even when the slab 7 is driven. The slab 7 placement process is not affected.

次に図3は、図1の状態から上位の鋼管柱6を前記ダンパー板5と剪断抵抗部材8との間へ、差し入れてその下端を前記中継ぎ鋼管4の上にメタルタッチの状態に載せて、各ダンパー板5…の上部を上位の鋼管柱6と溶接で緊結した段階を示す。   Next, FIG. 3 shows that the upper steel pipe column 6 is inserted between the damper plate 5 and the shear resistance member 8 from the state of FIG. 1 and the lower end thereof is placed on the intermediate steel pipe 4 in a metal touch state. The upper part of each damper plate 5 ... is shown in a stage where the upper steel pipe column 6 is joined by welding.

図4は、図3のように各ダンパー板5の溶接による緊結が終了した後に、各ダンパー板5の外周を取り巻く環状のタイバンド9をダイアフラム3の上面へ配置し(A図)各ダンパー板5を拘束するように仮止めしておく。各ダンパー板5の上部を上位の鋼管柱6と溶接で緊結した後に、各ダンパー板5の拘束に適切な位置へタイバンド9を配置して締め付けて本設状態に拘束した状態(B図)を示している(請求項4記載の発明)。   FIG. 4 shows a state in which an annular tie band 9 that surrounds the outer periphery of each damper plate 5 is arranged on the upper surface of the diaphragm 3 after the completion of the fastening of each damper plate 5 as shown in FIG. 3 (FIG. 4A). Temporarily fix 5 to restrain. After the upper part of each damper plate 5 is tightly connected to the upper steel pipe column 6 by welding, the tie band 9 is placed at an appropriate position for restraining each damper plate 5 and tightened to restrain the main plate (FIG. B) (Invention of claim 4).

図5A、Bはタイバンド9の異なる構成例を示している。
図5Aは、上位の鋼管柱6及び中継ぎ鋼管4が円形断面の場合で、当然のことながらダンパー板5も円弧状とされている。タイバンド9は、円を直径線方向に二分割したに等しい一対のバンド9a、9bを組み合わせ、それぞれの両端の端部板をボルト・ナットによる締結機構10で結合して締め付けた構成の例を示している。
5A and 5B show different configuration examples of the tie band 9.
FIG. 5A shows a case where the upper steel pipe column 6 and the intermediate steel pipe 4 have a circular cross section, and of course, the damper plate 5 also has an arc shape. The tie band 9 is an example of a configuration in which a pair of bands 9a and 9b equal to a circle divided into two in the diameter line direction are combined, and end plates at both ends are coupled and tightened by a fastening mechanism 10 using bolts and nuts. Show.

図5Bは、上位の鋼管柱6及び中継ぎ鋼管4が角形断面の場合で、ダンパー板5も四辺に沿う平板形状とされている。タイバンド9は、四角形を対角線方向に二分割したに等しい一対のバンド9a、9bを組み合わせ、それぞれの両端の端部板をボルト・ナットによる締結機構10で結合して締め付けた構成の例を示している。   FIG. 5B shows a case where the upper steel pipe column 6 and the intermediate steel pipe 4 have a square cross section, and the damper plate 5 has a flat plate shape along four sides. The tie band 9 is an example of a configuration in which a pair of bands 9a and 9b equal to a quadrilateral divided into two in a diagonal direction are combined, and end plates at both ends are coupled and tightened by a fastening mechanism 10 using bolts and nuts. ing.

上記のように、ダンパー板5の外周面をタイバンド9で取り巻き締め付けて拘束すると、メタルタッチ面の水平方向のズレを防止するだけでなく、ダンパー板5の面外変形を拘束することが可能となる。   As described above, when the outer peripheral surface of the damper plate 5 is wound and restrained by the tie band 9, it is possible not only to prevent horizontal displacement of the metal touch surface but also to restrain out-of-plane deformation of the damper plate 5. It becomes.

ところで、中層以上の鉄骨造建築物の建設において、鉄骨柱は一般的に3層程度を一節として製作される。図6はそのような場合の実施例を示している。
即ち、図6中の点線円11、12は上述した構成で上下の鋼管柱1、6を予め工場等においてエネルギー吸収用のダンパー板5を用い溶接により緊結する。そして、点線円13の接合箇所においては、工場で予め前記中継ぎ鋼管4とダンパー板5とを下位の鋼管柱1の上側のダイアフラム3へ溶接接合し、前記タイバンド9でその外周面を締め付けて安定化し現地に搬入する。
By the way, in the construction of a steel structure building having a middle layer or higher, a steel column is generally manufactured with about three layers as one section. FIG. 6 shows an embodiment in such a case.
That is, the dotted circles 11 and 12 in FIG. 6 have the above-described configuration, and the upper and lower steel pipe columns 1 and 6 are previously joined together by welding using a damper plate 5 for energy absorption in a factory or the like. At the joining point of the dotted circle 13, the intermediate steel pipe 4 and the damper plate 5 are welded and joined to the upper diaphragm 3 of the lower steel pipe column 1 in advance at the factory, and the outer peripheral surface is tightened with the tie band 9. Stabilize and carry on site.

次に、図7、8は、上記剪断抵抗部材8の異なる構成の例を示している。
先ず、図7A、Bに示す剪断抵抗部材8aは、角断面の鋼材を所要の長さに切断して製作した4本の剪断抵抗部材8aを先行して、角断面の中継ぎ鋼管4における四隅相当の位置へ対角線方向に且つ、前記中継鋼材4の上端面よりも高く突き出すように配置し、その下端部を柱脚のダイアフラム3と全周溶接している。その後に差し込まれダイアフラム3と全周溶接した中継ぎ鋼管4とも、剪断抵抗部材8aの各接点が連続溶接されて、水平力を分担可能に強固に緊結されている。勿論、溶接以外の接合手段で実施することも可能である。
Next, FIGS. 7 and 8 show examples of different configurations of the shear resistance member 8.
First, the shear resistance member 8a shown in FIGS. 7A and 7B is equivalent to the four corners of the cross section of the steel pipe 4 in the cross section, preceded by four shear resistance members 8a manufactured by cutting a steel material having a square section into a required length. It arrange | positions so that it may protrude in a diagonal direction to the position of this, and the upper end surface of the said relay steel material 4 higher, and the lower end part is welded to the diaphragm 3 of a column base all around. The joint steel pipe 4 inserted after that and welded all around the diaphragm 3 is also tightly bonded so that the horizontal force can be shared by continuously welding the respective contacts of the shear resistance member 8a. Of course, it is also possible to carry out by a joining means other than welding.

他の構成例として図8A、Bに示す剪断抵抗部材8bは、中継ぎ鋼管4を先行してダイアフラム3と全周溶接した後に、中継ぎ鋼管4の内周に内接する径の角鋼管(又は鋼管柱6を切って利用することもできる。)を所要の長さに切断し、さらに、縦に4分割(内接できる鋼管があればそのままでも良い。)し且つ、中継ぎ鋼管4の内法幅より小さくなるように切断代を決定した剪断抵抗材8bを、前記中継ぎ鋼管4の中へ組み入れて、再び四角形に組み立てて、前記縦の分割線を相互に連続溶接して再び一個の角管に完成して水平力を抵抗する構成とされている。勿論、図8同様に中継鋼材4の上端面よりも高く突き出す配置とされている。前記剪断抵抗部材8bの下端を柱脚のダイアフラム3と溶接接合することも必要に応じて行う。   8A and 8B, a shear resistance member 8b shown in FIGS. 8A and 8B is a square steel pipe (or a steel pipe column having a diameter inscribed in the inner circumference of the intermediate steel pipe 4 after the intermediate steel pipe 4 is first welded to the diaphragm 3 in advance. 6) can be cut to the required length, and further divided into 4 parts vertically (if there is a steel pipe that can be inscribed, it can be left as it is), and from the inner width of the intermediate steel pipe 4 The shear resistance material 8b whose cutting allowance is determined to be small is incorporated into the intermediate steel pipe 4 and assembled again into a quadrangle, and the vertical dividing lines are continuously welded to each other to complete a single square pipe again. Thus, it is configured to resist horizontal force. Of course, it is the arrangement | positioning protruded higher than the upper end surface of the relay steel material 4 similarly to FIG. If necessary, the lower end of the shear resistance member 8b is welded to the diaphragm 3 of the column base.

図9、10は請求項6に記載した発明に係るエネルギー吸収が可能な鉄骨柱の溶接継手構法および溶接継手構造の第二の実施例を示している。
この実施例は、上述した請求項1〜5に係る実施例と略同様の溶接継手構法および溶接継手構造であるが、鉄骨柱としてH形の開放断面材に好適な実施例を示す。以下、相違点のみ記載し全符号の説明は省略する。
9 and 10 show a second embodiment of the welded joint construction method and welded joint structure of a steel column capable of absorbing energy according to the invention described in claim 6.
This embodiment is a welded joint construction method and welded joint structure substantially the same as the embodiment according to claims 1 to 5 described above, but shows an embodiment suitable for an H-shaped open section material as a steel column. Hereinafter, only differences will be described, and description of all symbols will be omitted.

本実施例は、上述した図1〜8に係る実施形態と比して、図9に示すように、鉄骨柱脚のダイアフラム30の上面における柱の芯々位置に、H形鋼で成る鉄骨柱と同形・同大の短い中継ぎ鋼材40を配置し、フランジ及びウエブの外周に鋼材から成るエネルギー吸収用のダンパー板50a、50bを前記中継ぎ鋼材40へそれぞれ垂直上向きで密接に当てがい、各ダンパー板50a、50bはそれぞれ、下端部をダイアフラム3の上面とを完全溶け込み溶接により緊結している。   Compared with the embodiment according to FIGS. 1 to 8 described above, the present example has a steel column made of H-shaped steel at the center position of the column on the upper surface of the diaphragm 30 of the steel column base, as shown in FIG. A short intermediate steel material 40 of the same shape and the same size is disposed, and energy absorbing damper plates 50a and 50b made of steel materials are closely applied to the intermediate steel material 40 vertically upwardly to the outer periphery of the flange and the web, respectively. , 50b, the lower end portion of the diaphragm 3 and the upper surface of the diaphragm 3 are completely welded together by welding.

また、前記中継ぎ鋼材40の内壁面に沿って垂直に立ち上がる剪断抵抗部材80として、図10に示すように、アングル材を使用し、中継ぎ鋼材40における四隅相当の位置、ウエブのダンパー板50bを阻害しない配置で、その下端部をダイアフラム30と全周溶接し、ダイアフラム30と全周溶接した中継ぎ鋼管40の内壁面とも、剪断抵抗部材80の各接点が連続溶接している。前記剪断抵抗部材80はチャンネル等を用いることもできる。仮に、エネルギー吸収用のウエブのダンパー板50bが剪断抵抗を十分に望み得る精度を有する場合には、前記剪断抵抗部材80は不要としても実施可能である。   Further, as shown in FIG. 10, an angle member is used as the shear resistance member 80 rising vertically along the inner wall surface of the intermediate steel member 40, and the positions corresponding to the four corners of the intermediate steel member 40 and the web damper plate 50b are obstructed. In such an arrangement, the lower end of the shearing member 80 is continuously welded to the inner wall surface of the intermediate steel pipe 40 that is welded to the diaphragm 30 at its lower end and is welded to the diaphragm 30. The shear resistance member 80 may be a channel or the like. If the damper plate 50b of the energy absorbing web has sufficient accuracy that the shear resistance can be sufficiently expected, the shear resistance member 80 can be implemented even if not necessary.

本発明に係るエネルギー吸収が可能な鋼管柱の溶接接合継手の建て方直前の段階を示した立面図である。It is the elevation which showed the stage just before the construction of the welded joint of the steel pipe column which can absorb energy concerning the present invention. 中継ぎ鋼管の異なる構成例を示した立面図である。It is the elevation which showed the example of a different structure of a joint steel pipe. 本発明に係るエネルギー吸収が可能な鋼管柱の溶接接合継手の完成段階を示す立面図である。It is an elevation view which shows the completion stage of the welded joint of the steel pipe column which can absorb energy based on this invention. 柱継手の接合箇所へ鋼製のタイバンドを取り巻くように設けた立面図である。It is the elevation which was provided so that the steel tie band might be surrounded to the junction location of a column joint. AとBはタイバンドの異なる構成例を示す平面図である。A and B are plan views showing different configuration examples of tie bands. 3層一節の鉄骨柱についての本発明の実施例を示した立面図である。It is the elevation which showed the Example of this invention about the steel frame pillar of 3 layers 1 node. A、Bは剪断抵抗部材の異なる構成例を示した平面図と立面図である。A and B are the top view and elevation which showed the example of a different structure of a shear resistance member. A、Bは剪断抵抗部材の異なる構成例を示した平面図と立面図であるA and B are the top view and elevation which showed the example of a different structure of a shear resistance member. 本発明に係るエネルギー吸収が可能な鋼管柱の溶接接合継手の第二実施例の立面図ある。It is an elevational view of a second embodiment of a welded joint of steel pipe columns capable of absorbing energy according to the present invention. 第二実施例の剪断抵抗部材の構成例を示した平面図である。It is the top view which showed the structural example of the shear resistance member of 2nd Example. 従来の鋼管柱の継手の実施例を示した立面図である。It is the elevation which showed the Example of the coupling of the conventional steel pipe pillar.

符号の説明Explanation of symbols

1 上位の鋼管柱
10 H形鋼で成る 上位の鉄骨柱
3、30 ダイアフラム
4 中継ぎ鋼管
40 中継ぎ鋼材
5、50a、50b ダンパー板
6 上位の鋼管柱
60 H形鋼の下位の鉄骨柱
7、70 スラブ
8、80 剪断抵抗部材
9、90 タイバンド
L、l スラブの厚さ
T、t 中継ぎ鋼管の長さ
DESCRIPTION OF SYMBOLS 1 Upper steel pipe column 10 Upper steel column which consists of H-shaped steel 3, 30 Diaphragm 4 Intermediate steel pipe 40 Intermediate steel material 5, 50a, 50b Damper plate
6 Upper steel pipe column 60 Lower steel column of H-shaped steel 7, 70 Slab 8, 80 Shear resistance member 9, 90 Tie band L, l Thickness of slab T, t Length of intermediate steel pipe

Claims (6)

鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構法において、
柱脚のダイアフラムの上面における柱の芯々位置に短い中継ぎ鋼管を配置し、その外周に鋼材から成るエネルギー吸収用の複数のダンパー板を垂直上向きに立て、ダンパー板とダイアフラムとは完全溶け込み溶接を行い、中継ぎ鋼管とダイアフラムも溶接接合を行う工程と、
上位の鋼管柱を前記ダンパー板の内側へ差し入れてその下端を前記中継ぎ鋼管の上端へメタルタッチの状態で載せ、各ダンパー板の上部を上位の鋼管柱と溶接で緊結する工程とから成ることを特徴とする、エネルギー吸収が可能な鉄骨柱の溶接継手構法。
In the welded joint construction method by metal touch of the steel column of the steel structure building,
A short intermediate steel pipe is placed at the center of the column on the top of the column base diaphragm, and a plurality of damper plates made of steel for energy absorption are placed vertically upward on the outer circumference, and the damper plate and the diaphragm are completely melt welded. , The process of welding and joining the steel pipe and diaphragm,
The upper steel pipe column is inserted into the inside of the damper plate, the lower end thereof is placed in a metal touch state on the upper end of the intermediate steel tube, and the upper portion of each damper plate is joined to the upper steel pipe column by welding. A welded joint construction method for steel columns that can absorb energy.
中継ぎ鋼管の内周面に沿って垂直に立ち上がる剪断抵抗部材を同中継ぎ鋼管の上端面よりも高く突き出させ、剪断抵抗部材は中継ぎ鋼管の内周面又はダイアフラムと溶接で接合して設置し、上位の鋼管柱は前記ダンパー板と剪断抵抗部材との間へ差し入れてその下端を前記中継ぎ鋼管の上にメタルタッチの状態で載せる工程を含むことを特徴とする、請求項1に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法。   The shear resistance member that rises vertically along the inner peripheral surface of the intermediate steel pipe protrudes higher than the upper end surface of the intermediate steel pipe, and the shear resistance member is installed by welding to the inner peripheral surface or diaphragm of the intermediate steel pipe. 2. The energy absorption according to claim 1, further comprising a step of inserting the lower end of the steel pipe column between the damper plate and the shear resistance member and placing the lower end of the steel pipe column on the intermediate steel pipe in a metal touch state. Possible steel column welded joint construction method. 中継ぎ鋼管は、上位の鋼管柱の下端部を所要の長さ、少なくともスラブの厚さ以上の長さに切断して製作し、その切断面を上向きにしてダイアフラムの上面に設置する工程を含むことを特徴とする、請求項1又は2に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法。   The spliced steel pipe is manufactured by cutting the lower end of the upper steel pipe column to the required length, at least the length of the slab thickness, and installing it on the upper surface of the diaphragm with the cut surface facing upward The welded joint construction method for steel columns capable of absorbing energy according to claim 1 or 2, characterized in that. 中継ぎ鋼管の外周面に位置する各ダンパー板の外周を取り巻く環状のタイバンドを仮止め状態に設置し、各ダンパー板の上部を上位の鉄骨柱と溶接で緊結した後に、前記タイバンドで各ダンパー板を締め付けて拘束する工程を含むことを特徴とする、請求項1〜3のいずれか一に記載したエネルギー吸収が可能な鉄骨柱の溶接継手構法。   An annular tie band that surrounds the outer periphery of each damper plate located on the outer peripheral surface of the intermediate steel pipe is temporarily installed, and the upper part of each damper plate is fastened to the upper steel column by welding. The welding joint construction method for a steel column capable of energy absorption according to any one of claims 1 to 3, further comprising a step of tightening and restraining the plate. 鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構造であって、
柱脚のダイアフラムの上面における柱の芯々位置に短い中継ぎ鋼管が配置され、その外周に鋼材から成る複数のダンパー板が垂直上向きに立てられ、ダンパー板とダイアフラムとは完全溶け込み溶接が行なわれ、中継ぎ鋼管とダイアフラムも溶接接合されていること、
上位の鋼管柱は前記ダンパー板の内側へ差し入れてその下端を前記中継ぎ鋼管の上端へメタルタッチの状態で載せられ、各ダンパー板の上部が上位の鋼管柱と溶接で緊結されていることを特徴とする、エネルギー吸収が可能な鉄骨柱の溶接継手構造。
It is a welded joint structure by metal touch of a steel column of a steel structure building,
A short intermediate steel pipe is placed at the center of the column on the upper surface of the column base diaphragm, and a plurality of damper plates made of steel are erected vertically upward on the outer periphery, and the damper plate and the diaphragm are completely melt welded. The steel pipe and diaphragm are also welded together,
The upper steel pipe column is inserted into the inside of the damper plate and the lower end thereof is placed on the upper end of the intermediate steel pipe in a metal touch state, and the upper part of each damper plate is tightly connected to the upper steel pipe column by welding. And a steel column welded joint structure capable of absorbing energy.
鉄骨造建築物の鉄骨柱のメタルタッチによる溶接継手構造であって、
鉄骨柱脚のダイアフラムの上面における柱の芯々位置に、H形鋼で成る鉄骨柱と同形・同大の短い中継ぎ鋼材が配置され、そのフランジ及びウエブの外周面に鋼材から成るダンパー板が垂直上向きに立てられ、前記各ダンパー板とダイアフラムとは完全溶け込み溶接が行われ、中継ぎ鋼材とダイアフラムも溶接接合されていること、
H形鋼で成る上位の鉄骨柱は前記各ダンパー板の内側へ差し入れてその下端を前記中継ぎ鋼材の上端へメタルタッチの状態で載せられ、各ダンパー板の上部が上位の鉄骨柱と溶接で緊結されていることを特徴とする、エネルギー吸収が可能な鉄骨柱の溶接継手構造。
It is a welded joint structure by metal touch of a steel column of a steel structure building,
A short intermediate steel material of the same shape and size as the steel column made of H-shaped steel is arranged at the center of the column on the upper surface of the diaphragm of the steel column base, and the damper plate made of steel is vertically upward on the outer peripheral surface of the flange and web Each of the damper plates and the diaphragm are completely melted and welded, and the intermediate steel material and the diaphragm are also welded,
The upper steel column made of H-shaped steel is inserted into the inside of each damper plate and its lower end is placed in the metal touch state on the upper end of the intermediate steel material, and the upper portion of each damper plate is tightly connected to the upper steel column by welding. A welded joint structure of steel columns capable of absorbing energy, characterized in that
JP2003331773A 2003-09-24 2003-09-24 Welded joint construction and welded joint structure of steel columns capable of energy absorption Expired - Fee Related JP4136869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331773A JP4136869B2 (en) 2003-09-24 2003-09-24 Welded joint construction and welded joint structure of steel columns capable of energy absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331773A JP4136869B2 (en) 2003-09-24 2003-09-24 Welded joint construction and welded joint structure of steel columns capable of energy absorption

Publications (2)

Publication Number Publication Date
JP2005097924A JP2005097924A (en) 2005-04-14
JP4136869B2 true JP4136869B2 (en) 2008-08-20

Family

ID=34460337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331773A Expired - Fee Related JP4136869B2 (en) 2003-09-24 2003-09-24 Welded joint construction and welded joint structure of steel columns capable of energy absorption

Country Status (1)

Country Link
JP (1) JP4136869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8266912B2 (en) 2008-09-16 2012-09-18 General Electric Company Reusable weld joint for syngas fuel nozzles
CN106499218A (en) * 2016-11-24 2017-03-15 东台银信钢结构工程有限公司 A kind of novel light steel construction sheet material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101735A (en) * 1985-10-28 1987-05-12 清水建設株式会社 Connection structure of steel pipe pillar
JPH09302941A (en) * 1996-05-14 1997-11-25 Takenaka Komuten Co Ltd Steel-pipe column equipped with detachable erection piece and joint method thereof
JPH11117569A (en) * 1997-10-17 1999-04-27 Sumitomo Metal Ind Ltd Steel-made vibration control damper
JP2002242303A (en) * 2001-02-21 2002-08-28 Ohbayashi Corp Joint construction method for steel-pipe column
JP2002294866A (en) * 2001-04-03 2002-10-09 Shimizu Corp Joint structure of steel pipe column
JP2003213796A (en) * 2002-01-17 2003-07-30 Ohbayashi Corp Joint method and joint structure of square steel pipe members

Also Published As

Publication number Publication date
JP2005097924A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
KR100516332B1 (en) Steel structure equipped with connection damper
JP4129423B2 (en) Bolt joint construction method and joint structure of steel columns using energy absorbing members
JPH09256461A (en) Non-welded column and beam joint structure for capital
JP2006052612A (en) Column-beam joint structure for building
JP2006316611A (en) Column and beam joint structure
JP2002146921A (en) Steel pipe structure
JP4136869B2 (en) Welded joint construction and welded joint structure of steel columns capable of energy absorption
JP4664484B2 (en) Steel beam-to-column connection with vibration control mechanism
JP3444797B2 (en) Connection method between steel pipe columns and steel beams
JPH05311738A (en) Post-beam connecting structure
JPH11324399A (en) Shearing yield type steel damper
JP3772259B2 (en) Column joint with energy absorbing member
JP3956744B2 (en) STRUCTURE CONTAINING JOIN OF PILLAR AND BEAM, ITS JOINING METHOD, AND STRUCTURE MANUFACTURING METHOD
JP4011499B2 (en) Joint structure of steel column and steel beam
JP2003105856A (en) Split t-shaped joint metal, and structure of jointing between column and beam
JP2004308168A (en) Beam-column connection core and beam-column connecting structure
JP3690395B2 (en) Joint structure of support pile and structure
JP2006132144A (en) Baseplate with vertical rib for column-beam connection part
JP7211915B2 (en) Seismic reinforcement structure
JP4030689B2 (en) Joint structure of steel pipe column and brace member
JP2567437Y2 (en) Column-beam joint hardware
JP4851191B2 (en) Anti-buckling structure for braces in steel frames
JP2003253758A (en) Beam-column joint monolithic method of steel framed structure
JPH07331744A (en) Column-beam joint structure using one-side bolt
JP2008111249A (en) Method and structure for climping connection of precast concrete beam-column joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees