JP2020142219A - Micro bubble generating nozzle - Google Patents

Micro bubble generating nozzle Download PDF

Info

Publication number
JP2020142219A
JP2020142219A JP2019042459A JP2019042459A JP2020142219A JP 2020142219 A JP2020142219 A JP 2020142219A JP 2019042459 A JP2019042459 A JP 2019042459A JP 2019042459 A JP2019042459 A JP 2019042459A JP 2020142219 A JP2020142219 A JP 2020142219A
Authority
JP
Japan
Prior art keywords
diameter
flow path
axial direction
peripheral surface
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019042459A
Other languages
Japanese (ja)
Other versions
JP7249819B2 (en
Inventor
敏治 鷹取
Toshiharu Takatori
敏治 鷹取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Can Co Ltd
Original Assignee
Universal Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Can Corp filed Critical Universal Can Corp
Priority to JP2019042459A priority Critical patent/JP7249819B2/en
Publication of JP2020142219A publication Critical patent/JP2020142219A/en
Application granted granted Critical
Publication of JP7249819B2 publication Critical patent/JP7249819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Nozzles (AREA)

Abstract

To provide a micro bubble generating nozzle which can suppress an outer shape in a compact size while simplifying a structure.SOLUTION: A micro bubble generating nozzle includes a cylindrical body 11 which has a central axis O and extends in an axial direction of the central axis O, an interior body 12 arranged inside the cylindrical body 11, and a flow channel 15 formed inside the cylindrical body 11. The flow channel 15 includes an inflow side flow channel part 30 positioned on an end part at one side of the cylindrical body 11 in the axial direction, an outflow side flow channel part 31 positioned on an end part at the other side of the cylindrical body 11 in the axial direction, a micro bubble generating flow channel part 32 positioned between the inflow side flow channel part 30 and the outflow side flow channel part 31 in the axial direction. The micro bubble generating flow channel part 32 is formed of an inner circumferential surface of the cylindrical body 11 and an outer circumferential surface of the interior body 12. The micro bubble generating flow channel part 32 includes an enlarged-diameter flow channel part 32a of which a diameter is enlarged toward the other side in the axial direction, and a reduced-diameter flow channel part 32 which is arranged at the other side of the enlarged-diameter flow channel part 32a and communicates with the enlarged-diameter flow channel part 32a and of which a diameter is reduced toward the other side in the axial direction.SELECTED DRAWING: Figure 2

Description

本発明は、マイクロバブル発生ノズルに関する。 The present invention relates to a microbubble generating nozzle.

マイクロバブル発生ノズルは、液体が流通する管の端部等に設けられる。マイクロバブル発生ノズルは、内部を流れる液体中にマイクロバブルを発生させる。マイクロバブルを含む液体は、例えば洗浄効果などの機能を有する。
従来、例えば特許文献1のファインバブル発生装置が知られている。このファインバブル発生装置は、筒体の貫通孔が、筒体の長手方向に進むに従い周方向にねじれて、螺旋状に延びている。
The micro-bubble generating nozzle is provided at the end of a pipe through which liquid flows. The micro-bubble generation nozzle generates micro-bubbles in the liquid flowing inside. The liquid containing microbubbles has a function such as a cleaning effect.
Conventionally, for example, the fine bubble generator of Patent Document 1 is known. In this fine bubble generator, the through hole of the tubular body is twisted in the circumferential direction as it advances in the longitudinal direction of the tubular body, and extends spirally.

特許第6312768号公報Japanese Patent No. 6312768

従来のマイクロバブル発生ノズルは、構造を簡素化しつつ外形をコンパクトに抑える点において、改善の余地があった。 The conventional micro-bubble generating nozzle has room for improvement in that the outer shape is kept compact while simplifying the structure.

上記事情に鑑み、本発明は、構造を簡素化しつつ外形をコンパクトに抑えることができるマイクロバブル発生ノズルを提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a micro-bubble generating nozzle capable of keeping the outer shape compact while simplifying the structure.

本発明の一つの態様は、液体が流通する管に設けられるマイクロバブル発生ノズルであって、中心軸を有し、前記中心軸の軸方向に延びる筒体と、前記筒体の内部に配置される内装体と、前記筒体の内部に形成される流路と、を備え、前記流路は、前記筒体の軸方向一方側の端部に位置する流入側流路部と、前記筒体の軸方向他方側の端部に位置する流出側流路部と、軸方向において前記流入側流路部と前記流出側流路部との間に位置し、前記流入側流路部および前記流出側流路部と連通するマイクロバブル発生流路部と、を有し、前記マイクロバブル発生流路部は、前記筒体の内周面と、前記内装体の外周面とにより形成され、前記マイクロバブル発生流路部は、軸方向他方側へ向かうに従い拡径する拡径流路部と、前記拡径流路部の軸方向他方側に配置されて前記拡径流路部と連通し、軸方向他方側へ向かうに従い縮径する縮径流路部と、を有する。 One aspect of the present invention is a microbubble generating nozzle provided in a tube through which a liquid flows, which has a central axis and is arranged inside the tubular body and a tubular body extending in the axial direction of the central axis. The internal body and the flow path formed inside the cylinder are provided, and the flow path includes an inflow side flow path portion located at one end of the cylinder in the axial direction and the cylinder. An outflow side flow path portion located at the other end in the axial direction, and an inflow side flow path portion and the outflow side flow path portion located between the inflow side flow path portion and the outflow side flow path portion in the axial direction. It has a micro bubble generation flow path portion that communicates with a side flow path portion, and the micro bubble generation flow path portion is formed by an inner peripheral surface of the cylinder body and an outer peripheral surface of the interior body, and the micro is formed. The bubble generation flow path portion is arranged on the other side of the diameter-expanded flow path portion in the axial direction and communicates with the diameter-expanded flow path portion so as to increase the diameter toward the other side in the axial direction. It has a diameter-reduced flow path portion that shrinks in diameter toward the direction.

このマイクロバブル発生ノズルでは、マイクロバブル発生流路部が、拡径流路部と縮径流路部とを有する。このため液体が、マイクロバブル発生流路部を拡径流路部から縮径流路部へと流れることにより、流路内の液体の圧力が変化したり液体に遠心力が作用するなどして、液体中にマイクロバブルが発生する。 In this micro-bubble generation nozzle, the micro-bubble generation flow path portion has a diameter-expanded flow path portion and a diameter-reduction flow path portion. For this reason, the liquid flows through the micro-bubble generation flow path from the enlarged-diameter flow path to the reduced-diameter flow path, so that the pressure of the liquid in the flow path changes or centrifugal force acts on the liquid, resulting in the liquid. Micro bubbles are generated inside.

本発明では、従来の構造のように流路を螺旋状に形成することなく、構造を簡素化しつつマイクロバブルを発生させることができる。このため、マイクロバブル発生ノズルの製造が容易である。また従来の構造に比べて、本発明では、特に軸方向の全長を小さく抑えることが容易である。したがって、マイクロバブル発生ノズルの外形をコンパクトに抑えることができる。 In the present invention, it is possible to generate microbubbles while simplifying the structure without forming the flow path in a spiral shape as in the conventional structure. Therefore, it is easy to manufacture the micro-bubble generating nozzle. Further, as compared with the conventional structure, in the present invention, it is easy to keep the total length in the axial direction particularly small. Therefore, the outer shape of the micro-bubble generating nozzle can be suppressed to be compact.

上記マイクロバブル発生ノズルにおいて、前記マイクロバブル発生流路部は、前記中心軸回りの周方向に延びる環状であることが好ましい。 In the micro-bubble generation nozzle, the micro-bubble generation flow path portion preferably has an annular shape extending in the circumferential direction around the central axis.

この場合、マイクロバブル発生流路部の構造をより簡素化でき、マイクロバブル発生ノズルの製造がより容易となる。 In this case, the structure of the micro-bubble generation flow path portion can be further simplified, and the manufacture of the micro-bubble generation nozzle becomes easier.

上記マイクロバブル発生ノズルにおいて、前記筒体は、前記筒体の内周面の一部を構成し、軸方向他方側へ向かうに従い拡径する拡径内周面部と、前記筒体の内周面の一部を構成し、前記拡径内周面部の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する縮径内周面部と、を有し、前記内装体は、前記内装体の外周面の一部を構成し、軸方向他方側へ向かうに従い拡径する拡径外周面部と、前記内装体の外周面の一部を構成し、前記拡径外周面部の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する縮径外周面部と、を有し、前記拡径流路部は、前記拡径内周面部と、前記拡径外周面部とにより形成され、前記縮径流路部は、前記縮径内周面部と、前記縮径外周面部とにより形成されることが好ましい。 In the micro bubble generation nozzle, the cylinder forms a part of the inner peripheral surface of the cylinder, and the diameter-expanded inner peripheral surface portion whose diameter increases toward the other side in the axial direction and the inner peripheral surface of the cylinder. The interior body comprises a diameter-reduced inner peripheral surface portion which is arranged on the other side in the axial direction of the diameter-expanded inner peripheral surface portion and whose diameter is reduced toward the other side in the axial direction. A part of the outer peripheral surface of the body is formed and the diameter is expanded toward the other side in the axial direction, and a part of the outer peripheral surface of the interior body is formed and the other side of the outer peripheral surface in the axial direction is formed. The diameter-expanded flow path portion is formed by the diameter-expanded inner peripheral surface portion and the diameter-expanded outer peripheral surface portion, and has a diameter-reduced outer peripheral surface portion that is arranged in the above and decreases in diameter toward the other side in the axial direction. The reduced diameter flow path portion is preferably formed by the reduced diameter inner peripheral surface portion and the reduced diameter outer peripheral surface portion.

この場合、液体が拡径流路部から縮径流路部へと流れることにより、流路内の液体に圧力の変化や遠心力を安定して作用させることができ、液体中にマイクロバブルがより安定して発生する。 In this case, since the liquid flows from the enlarged diameter channel portion to the reduced diameter channel portion, the pressure change and the centrifugal force can be stably applied to the liquid in the flow path, and the microbubbles are more stable in the liquid. Occurs.

上記マイクロバブル発生ノズルにおいて、前記拡径内周面部は、軸方向に沿って凹凸形状が繰り返される第1拡径凹凸部を有し、前記拡径外周面部は、軸方向に沿って凹凸形状が繰り返される第2拡径凹凸部を有することが好ましい。 In the micro-bubble generating nozzle, the diameter-expanded inner peripheral surface portion has a first diameter-expanded concave-convex portion in which a concave-convex shape is repeated along the axial direction, and the enlarged-diameter outer peripheral surface portion has a concave-convex shape along the axial direction. It is preferable to have a second enlarged uneven portion that is repeated.

この場合、拡径流路部を形成する拡径内周面部と拡径外周面部とが、それぞれ軸方向に凹凸形状が繰り返される部分を有するので、拡径流路部の内部を流れる液体に、圧力の変化や遠心力をより作用させやすくすることができる。また、拡径流路部の断面形状および断面積が、軸方向の各位置で変化する。このため、拡径流路部を流れる液体に、マイクロバブルがより安定して発生しやすい。 In this case, since the enlarged inner peripheral surface portion and the enlarged outer peripheral surface portion forming the enlarged diameter flow path portion each have a portion in which the uneven shape is repeated in the axial direction, the liquid flowing inside the enlarged diameter flow path portion is subjected to pressure. It is possible to make it easier for changes and centrifugal forces to act. Further, the cross-sectional shape and cross-sectional area of the enlarged diameter flow path portion change at each position in the axial direction. Therefore, microbubbles are more likely to be generated more stably in the liquid flowing through the enlarged flow path portion.

上記マイクロバブル発生ノズルにおいて、前記第1拡径凹凸部の凸部と、前記第2拡径凹凸部の凸部とが、互いに対向して配置され、前記第1拡径凹凸部の凹部と、前記第2拡径凹凸部の凹部とが、互いに対向して配置されることが好ましい。 In the micro-bubble generating nozzle, the convex portion of the first diameter-expanded uneven portion and the convex portion of the second diameter-expanded concave-convex portion are arranged so as to face each other, and the concave portion of the first diameter-expanded concave-convex portion and the concave portion. It is preferable that the recesses of the second diameter-expanded uneven portion are arranged so as to face each other.

この場合、拡径流路部の断面形状および断面積が、軸方向の各位置でより大きく変化する。したがって、拡径流路部を流れる液体に、マイクロバブルがより安定して発生させられる。 In this case, the cross-sectional shape and cross-sectional area of the enlarged diameter flow path portion change more greatly at each position in the axial direction. Therefore, microbubbles are more stably generated in the liquid flowing through the expanded flow path portion.

上記マイクロバブル発生ノズルにおいて、前記縮径内周面部は、軸方向に沿って凹凸形状が繰り返される第1縮径凹凸部を有し、前記縮径外周面部は、軸方向に沿って凹凸形状が繰り返される第2縮径凹凸部を有することが好ましい。 In the micro-bubble generating nozzle, the reduced-diameter inner peripheral surface portion has a first reduced-diameter concavo-convex portion in which a concavo-convex shape is repeated along the axial direction, and the reduced-diameter outer peripheral surface portion has a concavo-convex shape along the axial direction. It is preferable to have a second reduced-diameter uneven portion that is repeated.

この場合、縮径流路部を形成する縮径内周面部と縮径外周面部とが、それぞれ軸方向に凹凸形状が繰り返される部分を有するので、縮径流路部の内部を流れる液体に、圧力の変化や遠心力をより作用させやすくすることができる。また、縮径流路部の断面形状および断面積が、軸方向の各位置で変化する。このため、縮径流路部を流れる液体に、マイクロバブルがより安定して発生しやすい。 In this case, since the reduced-diameter inner peripheral surface portion and the reduced-diameter outer peripheral surface portion forming the reduced-diameter flow path portion each have a portion in which the concave-convex shape is repeated in the axial direction, pressure is applied to the liquid flowing inside the reduced-diameter flow path portion. It is possible to make it easier for changes and centrifugal forces to act. Further, the cross-sectional shape and cross-sectional area of the reduced diameter flow path portion change at each position in the axial direction. Therefore, microbubbles are more likely to be generated more stably in the liquid flowing through the reduced diameter flow path portion.

上記マイクロバブル発生ノズルにおいて、前記第1縮径凹凸部の凸部と、前記第2縮径凹凸部の凸部とが、互いに対向して配置され、前記第1縮径凹凸部の凹部と、前記第2縮径凹凸部の凹部とが、互いに対向して配置されることが好ましい。 In the micro-bubble generating nozzle, the convex portion of the first reduced-diameter concavo-convex portion and the convex portion of the second reduced-diameter concavo-convex portion are arranged so as to face each other, and the concave portion of the first reduced-diameter concavo-convex portion and the concave portion. It is preferable that the recesses of the second reduced diameter uneven portion are arranged so as to face each other.

この場合、縮径流路部の断面形状および断面積が、軸方向の各位置でより大きく変化する。したがって、縮径流路部を流れる液体に、マイクロバブルがより安定して発生させられる。 In this case, the cross-sectional shape and cross-sectional area of the reduced-diameter flow path portion change more greatly at each position in the axial direction. Therefore, microbubbles are more stably generated in the liquid flowing through the reduced diameter flow path portion.

上記マイクロバブル発生ノズルにおいて、前記流入側流路部は、前記流入側流路部のうち軸方向他方側の端部に位置して前記マイクロバブル発生流路部と繋がる複数の接続流路部を有し、複数の前記接続流路部は、前記中心軸回りの周方向に等ピッチで配列することが好ましい。 In the micro-bubble generation nozzle, the inflow-side flow path portion is located at the end of the inflow-side flow path portion on the other side in the axial direction, and has a plurality of connection flow path portions connected to the micro-bubble generation flow path portion. It is preferable that the plurality of connection flow path portions are arranged at equal pitches in the circumferential direction around the central axis.

この場合、流入側流路部の複数の接続流路部からマイクロバブル発生流路部へと、液体が周方向均等に分散されて流入する。したがって、マイクロバブル発生流路部を流れる液体に、マイクロバブルを周方向均等に発生させることができる。 In this case, the liquid is evenly dispersed in the circumferential direction and flows into the microbubble generation flow path from the plurality of connection flow paths of the inflow side flow path. Therefore, the microbubbles can be generated evenly in the circumferential direction in the liquid flowing through the microbubble generation flow path portion.

上記マイクロバブル発生ノズルにおいて、前記流出側流路部は、前記マイクロバブル発生流路部と繋がる複数の噴出流路部を有し、複数の前記噴出流路部は、前記中心軸回りの周方向に等ピッチで配列することが好ましい。 In the micro-bubble generation nozzle, the outflow side flow path portion has a plurality of ejection flow path portions connected to the micro-bubble generation flow path portion, and the plurality of ejection flow path portions are in the circumferential direction around the central axis. It is preferable to arrange them at equal pitches.

この場合、マイクロバブル発生流路部から流出側流路部の複数の噴出流路部へと、液体が周方向均等に分散されて流入する。したがって、マイクロバブルを含む液体を、複数の噴出流路部からシャワー状に周方向均等に噴出させることができる。 In this case, the liquid is evenly dispersed and flows into the plurality of ejection flow paths from the microbubble generation flow path to the outflow side flow path. Therefore, the liquid containing the microbubbles can be evenly ejected in the circumferential direction from a plurality of ejection flow paths in a shower shape.

本発明の一つの態様のマイクロバブル発生ノズルによれば、構造を簡素化しつつ外形をコンパクトに抑えることができる。 According to the micro-bubble generating nozzle of one aspect of the present invention, the outer shape can be kept compact while simplifying the structure.

本発明の一実施形態のマイクロバブル発生ノズルを示す正面図である。It is a front view which shows the microbubble generation nozzle of one Embodiment of this invention. 図1のII-II断面を示す側断面図(縦断面図)である。It is a side sectional view (vertical sectional view) which shows the II-II cross section of FIG. 本発明の一実施形態のマイクロバブル発生ノズルを示す背面図である。It is a back view which shows the microbubble generation nozzle of one Embodiment of this invention.

本発明の一実施形態のマイクロバブル発生ノズル10について、図面を参照して説明する。
本実施形態のマイクロバブル発生ノズル10は、液体が流通する図示しない管(配管)に設けられる。具体的に、マイクロバブル発生ノズル10は、管の下流側の端部や蛇口、管の途中(管の端部以外の部分)等に設けられる。マイクロバブル発生ノズル10は、例えば製缶工場において、用水が流通する管に設けられ、管の一部を構成する。マイクロバブル発生ノズル10は、例えば樹脂製である。
The micro-bubble generating nozzle 10 according to the embodiment of the present invention will be described with reference to the drawings.
The micro-bubble generating nozzle 10 of the present embodiment is provided in a pipe (piping) (not shown) through which a liquid flows. Specifically, the micro-bubble generating nozzle 10 is provided at the downstream end of the pipe, the faucet, the middle of the pipe (a portion other than the end of the pipe), and the like. The micro-bubble generating nozzle 10 is provided in a pipe through which water flows, for example, in a can manufacturing factory, and constitutes a part of the pipe. The micro-bubble generating nozzle 10 is made of, for example, resin.

図1〜図3に示すように、マイクロバブル発生ノズル10は、中心軸Oを有し、中心軸Oの軸方向に延びる筒体11と、内装体12と、連結筒13と、シール部材14と、筒体11の内部に形成される流路15と、を備える。
液体は、筒体11の中心軸Oが延びる方向において、筒体11の一方側の端部から他方側の端部へ向けて、流路15の内部を流通する。
As shown in FIGS. 1 to 3, the micro-bubble generating nozzle 10 has a central axis O, and has a tubular body 11 extending in the axial direction of the central axis O, an interior body 12, a connecting cylinder 13, and a seal member 14. And a flow path 15 formed inside the tubular body 11.
The liquid flows through the inside of the flow path 15 from one end of the cylinder 11 to the other end in the direction in which the central axis O of the cylinder 11 extends.

本実施形態では、筒体11の中心軸Oが延びる方向を軸方向と呼ぶ。軸方向のうち、筒体11の流路15内を流れる液体の上流側を軸方向一方側と呼び、下流側を軸方向他方側と呼ぶ。本実施形態では軸方向一方側が、図2における右側であり、軸方向他方側が、図2における左側である。
中心軸Oに直交する方向を径方向と呼ぶ。径方向のうち、中心軸Oに接近する方向を径方向内側と呼び、中心軸Oから離れる方向を径方向外側と呼ぶ。
中心軸O回りに周回する方向を周方向と呼ぶ。
In the present embodiment, the direction in which the central axis O of the tubular body 11 extends is referred to as an axial direction. Of the axial directions, the upstream side of the liquid flowing in the flow path 15 of the tubular body 11 is referred to as one axial side, and the downstream side is referred to as the other axial direction. In this embodiment, one side in the axial direction is the right side in FIG. 2, and the other side in the axial direction is the left side in FIG.
The direction orthogonal to the central axis O is called the radial direction. Of the radial directions, the direction approaching the central axis O is called the radial inner side, and the direction away from the central axis O is called the radial outer side.
The direction of orbiting around the central axis O is called the circumferential direction.

筒体11は、外筒16と、上流側内筒17と、下流側内筒18と、ノズルキャップ19と、を有する。
外筒16は、中心軸Oを中心として軸方向に延びる多段筒状である。外筒16は、小径筒部16aと、大径筒部16bと、環状板部16cと、環状凹部16eと、を有する。
The tubular body 11 has an outer cylinder 16, an upstream inner cylinder 17, a downstream inner cylinder 18, and a nozzle cap 19.
The outer cylinder 16 has a multi-stage tubular shape extending in the axial direction about the central axis O. The outer cylinder 16 has a small diameter cylinder portion 16a, a large diameter cylinder portion 16b, an annular plate portion 16c, and an annular recess 16e.

小径筒部16aは、軸方向に延びる円筒状である。小径筒部16aは、外筒16のうち軸方向一方側の端部に位置する。小径筒部16aは、小径筒部16aの外周面に、管接続ねじ部16dを有する。小径筒部16aは、管接続ねじ部16dを用いて、図示しない管の端部等に接続される。 The small-diameter tubular portion 16a has a cylindrical shape extending in the axial direction. The small diameter cylinder portion 16a is located at one end of the outer cylinder 16 on one side in the axial direction. The small-diameter tubular portion 16a has a pipe connecting screw portion 16d on the outer peripheral surface of the small-diameter tubular portion 16a. The small diameter tubular portion 16a is connected to an end portion of a pipe (not shown) or the like by using a pipe connecting screw portion 16d.

大径筒部16bは、軸方向に延びる円筒状である。大径筒部16bは、外筒16のうち軸方向一方側の端部以外の部分に位置する。大径筒部16bの外径は、小径筒部16aの外径よりも大きい。大径筒部16bの内径は、小径筒部16aの内径よりも大きい。大径筒部16bは、大径筒部16bの内周面の軸方向他方側の端部に、雌ねじ部16fを有する。 The large-diameter tubular portion 16b has a cylindrical shape extending in the axial direction. The large-diameter cylinder portion 16b is located at a portion of the outer cylinder 16 other than the end portion on one side in the axial direction. The outer diameter of the large diameter tubular portion 16b is larger than the outer diameter of the small diameter tubular portion 16a. The inner diameter of the large diameter cylinder portion 16b is larger than the inner diameter of the small diameter cylinder portion 16a. The large-diameter tubular portion 16b has a female screw portion 16f at the end on the other side of the inner peripheral surface of the large-diameter tubular portion 16b in the axial direction.

環状板部16cは、中心軸Oを中心とする円環板状であり、一対の板面が軸方向を向く。環状板部16cの各板面は、中心軸Oに垂直な方向に拡がる平面状である。環状板部16cの内周部は、小径筒部16aの軸方向他方側の端部と接続する。環状板部16cの外周部は、大径筒部16bの軸方向一方側の端部と接続する。 The annular plate portion 16c has an annular plate shape centered on the central axis O, and a pair of plate surfaces face in the axial direction. Each plate surface of the annular plate portion 16c has a planar shape extending in a direction perpendicular to the central axis O. The inner peripheral portion of the annular plate portion 16c is connected to the end portion on the other side in the axial direction of the small diameter tubular portion 16a. The outer peripheral portion of the annular plate portion 16c is connected to the end portion on one side in the axial direction of the large diameter tubular portion 16b.

環状凹部16eは、小径筒部16aの内周面と、環状板部16cの軸方向他方側を向く板面とが接続する角部に配置される。環状凹部16eは、小径筒部16aの内周面のうち、軸方向他方側の端部に位置する。環状凹部16eは、小径筒部16aの内周面から径方向外側に窪み、周方向に延びる。環状凹部16eは、環状板部16cの軸方向他方側を向く板面のうち、径方向内側の端部に位置する。環状凹部16eは、環状板部16cの軸方向他方側を向く板面から軸方向一方側に窪み、周方向に延びる。環状凹部16eは、中心軸Oを中心とする円形環状である。 The annular recess 16e is arranged at a corner where the inner peripheral surface of the small diameter tubular portion 16a and the plate surface of the annular plate portion 16c facing the other side in the axial direction are connected. The annular recess 16e is located at the end of the inner peripheral surface of the small-diameter tubular portion 16a on the other side in the axial direction. The annular recess 16e is recessed radially outward from the inner peripheral surface of the small diameter tubular portion 16a and extends in the circumferential direction. The annular recess 16e is located at the inner end in the radial direction of the plate surface of the annular plate 16c facing the other side in the axial direction. The annular recess 16e is recessed in the axial direction from the plate surface of the annular plate portion 16c facing the other side in the axial direction, and extends in the circumferential direction. The annular recess 16e is a circular ring centered on the central axis O.

上流側内筒17は、中心軸Oを中心として軸方向に延びる筒状である。上流側内筒17は、外筒16の内部に配置される。上流側内筒17は、大径筒部16b内に嵌合する。上流側内筒17の外径は、軸方向に沿って略一定である。上流側内筒17の内径は、軸方向他方側へ向かうに従い段階的に拡径する。上流側内筒17の軸方向一方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。上流側内筒17の軸方向一方側を向く端面は、環状板部16cの軸方向他方側を向く板面と接触する。上流側内筒17の軸方向他方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。 The upstream inner cylinder 17 has a tubular shape extending in the axial direction about the central axis O. The upstream inner cylinder 17 is arranged inside the outer cylinder 16. The upstream inner cylinder 17 is fitted in the large diameter cylinder portion 16b. The outer diameter of the upstream inner cylinder 17 is substantially constant along the axial direction. The inner diameter of the inner cylinder 17 on the upstream side gradually increases toward the other side in the axial direction. The end face of the upstream inner cylinder 17 facing one side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O. The end surface of the upstream inner cylinder 17 facing one side in the axial direction comes into contact with the plate surface of the annular plate portion 16c facing the other side in the axial direction. The end face of the upstream inner cylinder 17 facing the other side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O.

上流側内筒17は、上流側内筒17の内周面に拡径内周面部20を有する。すなわち筒体11は、筒体11の内周面の一部を構成する拡径内周面部20を有する。拡径内周面部20は、上流側内筒17の内周面の全周にわたって配置される。拡径内周面部20は、軸方向他方側へ向かうに従い拡径する。 The upstream inner cylinder 17 has a diameter-expanded inner peripheral surface portion 20 on the inner peripheral surface of the upstream inner cylinder 17. That is, the tubular body 11 has a diameter-expanded inner peripheral surface portion 20 that forms a part of the inner peripheral surface of the tubular body 11. The enlarged inner peripheral surface portion 20 is arranged over the entire inner peripheral surface of the upstream inner cylinder 17. The diameter of the inner peripheral surface portion 20 is increased toward the other side in the axial direction.

拡径内周面部20は、軸方向に沿って凹凸形状が繰り返される第1拡径凹凸部21を有する。第1拡径凹凸部21は、複数の凸部21aと、複数の凹部21bと、を有する。図2に示す中心軸Oに沿う断面視(縦断面視)において、凸部21aと凹部21bとは、第1拡径凹凸部21に交互に並んで配置される。 The diameter-expanded inner peripheral surface portion 20 has a first diameter-expanded concave-convex portion 21 in which the concave-convex shape is repeated along the axial direction. The first diameter-expanded concave-convex portion 21 has a plurality of convex portions 21a and a plurality of concave portions 21b. In the cross-sectional view (longitudinal cross-sectional view) along the central axis O shown in FIG. 2, the convex portions 21a and the concave portions 21b are alternately arranged side by side on the first enlarged diameter uneven portion 21.

下流側内筒18は、中心軸Oを中心として軸方向に延びる筒状である。下流側内筒18は、外筒16の内部に配置される。下流側内筒18は、大径筒部16b内に嵌合する。下流側内筒18の外径は、軸方向に沿って略一定である。下流側内筒18の内径は、軸方向他方側へ向かうに従い段階的に縮径する。下流側内筒18の軸方向一方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。下流側内筒18の軸方向一方側を向く端面は、上流側内筒17の軸方向他方側を向く端面と接触する。下流側内筒18の軸方向他方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。 The downstream inner cylinder 18 has a tubular shape extending in the axial direction about the central axis O. The downstream inner cylinder 18 is arranged inside the outer cylinder 16. The downstream inner cylinder 18 is fitted in the large diameter cylinder portion 16b. The outer diameter of the downstream inner cylinder 18 is substantially constant along the axial direction. The inner diameter of the downstream inner cylinder 18 is gradually reduced toward the other side in the axial direction. The end face of the downstream inner cylinder 18 facing one side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O. The end face of the downstream inner cylinder 18 facing one side in the axial direction comes into contact with the end face of the upstream inner cylinder 17 facing the other side in the axial direction. The end face of the downstream inner cylinder 18 facing the other side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O.

下流側内筒18は、軸方向他方側を向く端面にシール溝18aを有する。シール溝18aは、下流側内筒18の軸方向他方側を向く端面から軸方向一方側に窪み、周方向に延びる。シール溝18aは、中心軸Oを中心とする円形環状である。 The downstream inner cylinder 18 has a seal groove 18a on an end surface facing the other side in the axial direction. The seal groove 18a is recessed in the axial direction from the end face of the downstream inner cylinder 18 facing the other side in the axial direction, and extends in the circumferential direction. The seal groove 18a is a circular ring centered on the central axis O.

下流側内筒18は、下流側内筒18の内周面に縮径内周面部22を有する。すなわち筒体11は、筒体11の内周面の一部を構成する縮径内周面部22を有する。縮径内周面部22は、下流側内筒18の内周面の全周にわたって配置される。縮径内周面部22は、拡径内周面部20の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する。 The downstream inner cylinder 18 has a reduced diameter inner peripheral surface portion 22 on the inner peripheral surface of the downstream inner cylinder 18. That is, the tubular body 11 has a reduced diameter inner peripheral surface portion 22 that forms a part of the inner peripheral surface of the tubular body 11. The reduced diameter inner peripheral surface portion 22 is arranged over the entire inner peripheral surface of the downstream inner cylinder 18. The reduced diameter inner peripheral surface portion 22 is arranged on the other side in the axial direction of the expanded inner peripheral surface portion 20, and the diameter is reduced toward the other side in the axial direction.

縮径内周面部22は、軸方向に沿って凹凸形状が繰り返される第1縮径凹凸部23を有する。第1縮径凹凸部23は、複数の凸部23aと、複数の凹部23bと、を有する。図2に示す縦断面視において、凸部23aと凹部23bとは、第1縮径凹凸部23に交互に並んで配置される。 The reduced-diameter inner peripheral surface portion 22 has a first reduced-diameter uneven portion 23 in which the concave-convex shape is repeated along the axial direction. The first reduced-diameter concavo-convex portion 23 has a plurality of convex portions 23a and a plurality of concave portions 23b. In the vertical cross-sectional view shown in FIG. 2, the convex portions 23a and the concave portions 23b are alternately arranged side by side on the first reduced diameter uneven portion 23.

ノズルキャップ19は、中心軸Oを中心とする略柱状または略板状である。ノズルキャップ19は、キャップ本体部19aと、突出部19bと、嵌合軸19cと、噴出孔19dと、を有する。 The nozzle cap 19 has a substantially columnar shape or a substantially plate shape centered on the central axis O. The nozzle cap 19 has a cap main body portion 19a, a protruding portion 19b, a fitting shaft 19c, and a ejection hole 19d.

キャップ本体部19aは、中心軸Oを中心とする略円板状である。キャップ本体部19aの軸方向一方側を向く板面は、中心軸Oに垂直な方向に拡がる平面状である。キャップ本体部19aの軸方向一方側を向く板面は、下流側内筒18の軸方向他方側を向く端面と接触する。キャップ本体部19aは、キャップ本体部19aの外周面に雄ねじ部19eを有する。雄ねじ部19eは、大径筒部16bの雌ねじ部16fとねじ止めされる。 The cap body 19a has a substantially disk shape centered on the central axis O. The plate surface of the cap body 19a facing one side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O. The plate surface of the cap body 19a facing one side in the axial direction comes into contact with the end surface of the inner cylinder 18 on the downstream side facing the other side in the axial direction. The cap main body 19a has a male screw portion 19e on the outer peripheral surface of the cap main body 19a. The male threaded portion 19e is screwed to the female threaded portion 16f of the large diameter tubular portion 16b.

突出部19bは、キャップ本体部19aの軸方向他方側を向く板面から軸方向他方側に突出する。突出部19bは、中心軸Oを中心とする略円錐状であり、軸方向に延びる。突出部19bは、軸方向他方側へ向かうに従い外径が小さくなる。突出部19bは、噴出孔19dの軸方向他方側の開口部よりも、軸方向他方側に突出する。 The projecting portion 19b projects from the plate surface of the cap body 19a facing the other side in the axial direction to the other side in the axial direction. The protruding portion 19b has a substantially conical shape centered on the central axis O and extends in the axial direction. The outer diameter of the protruding portion 19b decreases toward the other side in the axial direction. The protruding portion 19b protrudes to the other side in the axial direction from the opening on the other side in the axial direction of the ejection hole 19d.

嵌合軸19cは、キャップ本体部19aの軸方向一方側を向く板面から軸方向一方側に突出する。嵌合軸19cは、中心軸Oを中心とする円柱状であり、軸方向に延びる。 The fitting shaft 19c projects from the plate surface of the cap body 19a facing one side in the axial direction to one side in the axial direction. The fitting shaft 19c has a columnar shape centered on the central shaft O and extends in the axial direction.

噴出孔19dは、ノズルキャップ19を軸方向に貫通する。噴出孔19dは、円孔状である。噴出孔19dは、軸方向一方側の開口部と、軸方向他方側の開口部と、を有する。噴出孔19dの軸方向一方側の開口部は、嵌合軸19cよりも径方向外側に位置する。噴出孔19dの軸方向一方側の開口部は、軸方向一方側へ向かうに従い拡径する。噴出孔19dの軸方向他方側の開口部は、突出部19bの径方向外側に位置する。
噴出孔19dは、ノズルキャップ19に複数設けられる。複数の噴出孔19dは、中心軸O回りの周方向に等ピッチで配列する。本実施形態では噴出孔19dが、周方向に互いに等間隔をあけて12個配列する。
The ejection hole 19d penetrates the nozzle cap 19 in the axial direction. The ejection hole 19d has a circular hole shape. The ejection hole 19d has an opening on one side in the axial direction and an opening on the other side in the axial direction. The opening on one side of the ejection hole 19d in the axial direction is located radially outside the fitting shaft 19c. The opening on one side of the ejection hole 19d in the axial direction expands in diameter toward one side in the axial direction. The opening on the other side of the ejection hole 19d in the axial direction is located radially outside the protrusion 19b.
A plurality of ejection holes 19d are provided in the nozzle cap 19. The plurality of ejection holes 19d are arranged at equal pitches in the circumferential direction around the central axis O. In this embodiment, 12 ejection holes 19d are arranged at equal intervals in the circumferential direction.

内装体12は、筒体11の内部に配置される。内装体12は、上流側内筒17および下流側内筒18の径方向内側に配置される。内装体12は、中心軸Oを中心とする略柱状または略板状である。内装体12は、軸方向の両端部から中央部へ向かうに従い外径が大きくなる。内装体12の軸方向一方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。内装体12の軸方向他方側を向く端面は、中心軸Oに垂直な方向に拡がる平面状である。内装体12の軸方向他方側を向く端面は、キャップ本体部19aの軸方向一方側を向く板面と接触する。 The interior body 12 is arranged inside the tubular body 11. The interior body 12 is arranged inside the upstream inner cylinder 17 and the downstream inner cylinder 18 in the radial direction. The interior body 12 has a substantially columnar shape or a substantially plate shape centered on the central axis O. The outer diameter of the interior body 12 increases from both end portions in the axial direction toward the center portion. The end face of the interior body 12 facing one side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O. The end face of the interior body 12 facing the other side in the axial direction is a flat surface extending in a direction perpendicular to the central axis O. The end face of the interior body 12 facing the other side in the axial direction comes into contact with the plate surface of the cap body 19a facing the other side in the axial direction.

内装体12は、拡径外周面部24と、縮径外周面部25と、突起部12aと、嵌合穴12bと、環状溝部12cと、を有する。
拡径外周面部24は、内装体12の外周面のうち、軸方向一方側の部分を構成する。すなわち拡径外周面部24は、内装体12の外周面の一部を構成する。拡径外周面部24は、内装体12の外周面のうち軸方向一方側の部分において、周方向の全周にわたって配置される。拡径外周面部24は、軸方向他方側へ向かうに従い拡径する。拡径外周面部24は、拡径内周面部20と隙間をあけて対向配置される。
The interior body 12 has an expanded outer peripheral surface portion 24, a reduced diameter outer peripheral surface portion 25, a protruding portion 12a, a fitting hole 12b, and an annular groove portion 12c.
The enlarged diameter outer peripheral surface portion 24 constitutes a portion on one side in the axial direction of the outer peripheral surface of the interior body 12. That is, the enlarged outer peripheral surface portion 24 constitutes a part of the outer peripheral surface of the interior body 12. The enlarged diameter outer peripheral surface portion 24 is arranged on one side of the outer peripheral surface of the interior body 12 in the axial direction over the entire circumference in the circumferential direction. The diameter of the outer peripheral surface portion 24 is increased toward the other side in the axial direction. The enlarged diameter outer peripheral surface portion 24 is arranged so as to face the enlarged diameter inner peripheral surface portion 20 with a gap.

拡径外周面部24は、軸方向に沿って凹凸形状が繰り返される第2拡径凹凸部26を有する。第2拡径凹凸部26は、複数の凸部26aと、複数の凹部26bと、を有する。図2に示す縦断面視において、凸部26aと凹部26bとは、第2拡径凹凸部26に交互に並んで配置される。
第1拡径凹凸部21の凸部21aと、第2拡径凹凸部26の凸部26aとは、互いに対向して配置される。第1拡径凹凸部21の凹部21bと、第2拡径凹凸部26の凹部26bとは、互いに対向して配置される。
The diameter-expanded outer peripheral surface portion 24 has a second diameter-expanded concave-convex portion 26 in which the concave-convex shape is repeated along the axial direction. The second diameter-expanded concave-convex portion 26 has a plurality of convex portions 26a and a plurality of concave portions 26b. In the vertical cross-sectional view shown in FIG. 2, the convex portions 26a and the concave portions 26b are alternately arranged side by side on the second enlarged diameter uneven portion 26.
The convex portion 21a of the first diameter-expanded concave-convex portion 21 and the convex portion 26a of the second diameter-expanded concave-convex portion 26 are arranged so as to face each other. The recess 21b of the first diameter-expanded uneven portion 21 and the recess 26b of the second diameter-expanded uneven portion 26 are arranged so as to face each other.

縮径外周面部25は、内装体12の外周面のうち、軸方向他方側の部分を構成する。すなわち縮径外周面部25は、内装体12の外周面の一部を構成する。縮径外周面部25は、内装体12の外周面のうち軸方向他方側の部分において、周方向の全周にわたって配置される。縮径外周面部25は、拡径外周面部24の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する。縮径外周面部25は、縮径内周面部22と隙間をあけて対向配置される。 The reduced diameter outer peripheral surface portion 25 constitutes a portion of the outer peripheral surface of the interior body 12 on the other side in the axial direction. That is, the reduced diameter outer peripheral surface portion 25 constitutes a part of the outer peripheral surface of the interior body 12. The reduced diameter outer peripheral surface portion 25 is arranged on the other side of the outer peripheral surface of the interior body 12 in the axial direction over the entire circumference in the circumferential direction. The reduced diameter outer peripheral surface portion 25 is arranged on the other side in the axial direction of the expanded outer peripheral surface portion 24, and the diameter is reduced toward the other side in the axial direction. The reduced diameter outer peripheral surface portion 25 is arranged to face the reduced diameter inner peripheral surface portion 22 with a gap.

縮径外周面部25は、軸方向に沿って凹凸形状が繰り返される第2縮径凹凸部27を有する。第2縮径凹凸部27は、複数の凸部27aと、複数の凹部27bと、を有する。図2に示す縦断面視において、凸部27aと凹部27bとは、第2縮径凹凸部27に交互に並んで配置される。
第1縮径凹凸部23の凸部23aと、第2縮径凹凸部27の凸部27aとは、互いに対向して配置される。第1縮径凹凸部23の凹部23bと、第2縮径凹凸部27の凹部27bとは、互いに対向して配置される。
The reduced-diameter outer peripheral surface portion 25 has a second reduced-diameter concavo-convex portion 27 in which the concave-convex shape is repeated along the axial direction. The second reduced-diameter concavo-convex portion 27 has a plurality of convex portions 27a and a plurality of concave portions 27b. In the vertical cross-sectional view shown in FIG. 2, the convex portions 27a and the concave portions 27b are alternately arranged side by side on the second reduced diameter uneven portion 27.
The convex portion 23a of the first reduced-diameter concavo-convex portion 23 and the convex portion 27a of the second reduced-diameter concavo-convex portion 27 are arranged so as to face each other. The recess 23b of the first reduced-diameter concavo-convex portion 23 and the recess 27b of the second reduced-diameter concavo-convex portion 27 are arranged so as to face each other.

突起部12aは、内装体12の軸方向一方側を向く端面から軸方向一方側に突出する。突起部12aは、中心軸Oを中心とする略円錐状であり、軸方向に延びる。突起部12aは、軸方向一方側へ向かうに従い外径が小さくなる。 The protruding portion 12a projects from the end surface of the interior body 12 facing one side in the axial direction to one side in the axial direction. The protrusion 12a has a substantially conical shape centered on the central axis O, and extends in the axial direction. The outer diameter of the protruding portion 12a becomes smaller toward one side in the axial direction.

嵌合穴12bは、内装体12の軸方向他方側を向く端面から軸方向一方側に窪む。嵌合穴12bは、中心軸Oを中心とする円孔状であり、軸方向に延びる。嵌合穴12b内には、嵌合軸19cが嵌合する。 The fitting hole 12b is recessed from the end face of the interior body 12 facing the other side in the axial direction to one side in the axial direction. The fitting hole 12b has a circular hole shape centered on the central axis O and extends in the axial direction. The fitting shaft 19c is fitted in the fitting hole 12b.

環状溝部12cは、内装体12の軸方向一方側を向く端面から軸方向他方側に窪み、周方向に延びる。環状溝部12cは、中心軸Oを中心とする円形環状である。環状溝部12cは、突起部12aよりも径方向外側に位置する。環状溝部12cは、環状凹部16eの軸方向他方側に位置し、環状凹部16eと軸方向に間隔をあけて対向する。 The annular groove portion 12c is recessed from the end surface of the interior body 12 facing one side in the axial direction to the other side in the axial direction, and extends in the circumferential direction. The annular groove portion 12c is a circular ring centered on the central axis O. The annular groove portion 12c is located radially outside the protrusion 12a. The annular groove portion 12c is located on the other side of the annular recess 16e in the axial direction and faces the annular recess 16e at a distance in the axial direction.

連結筒13は、中心軸Oを中心として軸方向に延びる円筒状である。連結筒13は、筒体11と内装体12とを連結する。連結筒13の軸方向一方側の端部は、環状凹部16e内に嵌合する。本実施形態では、連結筒13の軸方向一方側の端部が、上流側内筒17の軸方向一方側の端部の径方向内側にも嵌合する。連結筒13の軸方向他方側の端部は、環状溝部12cに嵌合する。 The connecting cylinder 13 has a cylindrical shape extending in the axial direction about the central axis O. The connecting cylinder 13 connects the cylinder 11 and the interior body 12. One end of the connecting cylinder 13 in the axial direction is fitted in the annular recess 16e. In the present embodiment, the end portion on one side in the axial direction of the connecting cylinder 13 is also fitted to the inside in the radial direction of the end portion on one side in the axial direction of the upstream inner cylinder 17. The end of the connecting cylinder 13 on the other side in the axial direction fits into the annular groove portion 12c.

連結筒13は、連結筒13の周壁を径方向に貫通する接続孔13aを有する。接続孔13aは、連結筒13に複数設けられる。複数の接続孔13aは、中心軸O回りの周方向に等ピッチで配列する。本実施形態では接続孔13aが、周方向に互いに等間隔をあけて12個配列する。 The connecting cylinder 13 has a connecting hole 13a that penetrates the peripheral wall of the connecting cylinder 13 in the radial direction. A plurality of connection holes 13a are provided in the connecting cylinder 13. The plurality of connection holes 13a are arranged at equal pitches in the circumferential direction around the central axis O. In the present embodiment, 12 connection holes 13a are arranged at equal intervals in the circumferential direction.

シール部材14は、中心軸Oを中心とする円形環状である。シール部材14は、例えばOリング等の弾性部材である。シール部材14は、シール溝18aに配置される。シール部材14は、キャップ本体部19aの軸方向一方側を向く板面と接触する。 The seal member 14 has a circular ring shape centered on the central axis O. The seal member 14 is an elastic member such as an O-ring. The seal member 14 is arranged in the seal groove 18a. The seal member 14 comes into contact with the plate surface of the cap body 19a facing one side in the axial direction.

流路15は、筒体11の内部に配置され、筒体11を軸方向に貫通する。流路15には、不図示の管から液体が流入する。液体は、流路15内を軸方向一方側の端部から軸方向他方側の端部へ向けて流れる。
流路15は、筒体11の軸方向一方側の端部に位置する流入側流路部30と、筒体11の軸方向他方側の端部に位置する流出側流路部31と、軸方向において流入側流路部30と流出側流路部31との間に位置し、流入側流路部30および流出側流路部31と連通するマイクロバブル発生流路部32と、を有する。
The flow path 15 is arranged inside the tubular body 11 and penetrates the tubular body 11 in the axial direction. Liquid flows into the flow path 15 from a tube (not shown). The liquid flows in the flow path 15 from one end in the axial direction to the other end in the axial direction.
The flow path 15 includes an inflow side flow path portion 30 located at one end of the tubular body 11 in the axial direction, an outflow side flow path portion 31 located at the other end of the tubular body 11 in the axial direction, and a shaft. It has a microbubble generation flow path portion 32 that is located between the inflow side flow path portion 30 and the outflow side flow path portion 31 in the direction and communicates with the inflow side flow path portion 30 and the outflow side flow path portion 31.

流入側流路部30は、小径筒部16aの内周面と、連結筒13の内周面および接続孔13aと、内装体12の軸方向一方側を向く端面および突起部12aと、により形成される。流入側流路部30は、流入側流路部30のうち軸方向他方側の端部に位置してマイクロバブル発生流路部32と繋がる複数の接続流路部30aを有する。各接続流路部30aは、各接続孔13aにより形成される。複数の接続流路部30aは、中心軸O回りの周方向に等ピッチで配列する。本実施形態では接続流路部30aが、周方向に互いに等間隔をあけて12個配列する。 The inflow side flow path portion 30 is formed by an inner peripheral surface of the small diameter cylinder portion 16a, an inner peripheral surface of the connecting cylinder 13 and a connection hole 13a, and an end surface and a protrusion 12a facing one side in the axial direction of the interior body 12. Will be done. The inflow side flow path portion 30 has a plurality of connection flow path portions 30a located at the end on the other side in the axial direction of the inflow side flow path portion 30 and connected to the microbubble generation flow path portion 32. Each connection flow path portion 30a is formed by each connection hole 13a. The plurality of connection flow path portions 30a are arranged at equal pitches in the circumferential direction around the central axis O. In this embodiment, 12 connecting flow path portions 30a are arranged at equal intervals in the circumferential direction.

流出側流路部31は、マイクロバブル発生流路部32と繋がる複数の噴出流路部31aを有する。各噴出流路部31aは、各噴出孔19dにより形成される。複数の噴出流路部31aは、中心軸O回りの周方向に等ピッチで配列する。本実施形態では噴出流路部31aが、周方向に互いに等間隔をあけて12個配列する。 The outflow side flow path portion 31 has a plurality of ejection flow path portions 31a connected to the microbubble generation flow path portion 32. Each ejection flow path portion 31a is formed by each ejection hole 19d. The plurality of ejection flow path portions 31a are arranged at equal pitches in the circumferential direction around the central axis O. In the present embodiment, twelve ejection flow path portions 31a are arranged at equal intervals in the circumferential direction.

マイクロバブル発生流路部32は、筒体11の内周面と、内装体12の外周面とにより形成される。マイクロバブル発生流路部32は、中心軸O回りの周方向に延びる環状である。マイクロバブル発生流路部32は、径方向において、上流側内筒17および下流側内筒18と、内装体12と、の間に配置される。
マイクロバブル発生流路部32は、拡径流路部32aと、縮径流路部32bと、を有する。
The micro-bubble generation flow path portion 32 is formed by an inner peripheral surface of the tubular body 11 and an outer peripheral surface of the interior body 12. The micro-bubble generation flow path portion 32 is an annular shape extending in the circumferential direction around the central axis O. The micro-bubble generation flow path portion 32 is arranged between the upstream inner cylinder 17, the downstream inner cylinder 18, and the interior body 12 in the radial direction.
The micro-bubble generation flow path portion 32 has a diameter-expanded flow path portion 32a and a diameter-reduced flow path portion 32b.

拡径流路部32aは、軸方向他方側へ向かうに従い拡径する。拡径流路部32aは、マイクロバブル発生流路部32のうち、軸方向一方側の部分に位置する。拡径流路部32aは、拡径内周面部20と、拡径外周面部24とにより形成される。 The diameter-expanded flow path portion 32a expands in diameter toward the other side in the axial direction. The enlarged diameter flow path portion 32a is located on one side in the axial direction of the micro bubble generation flow path portion 32. The diameter-expanded flow path portion 32a is formed by the diameter-expanded inner peripheral surface portion 20 and the diameter-expanded outer peripheral surface portion 24.

縮径流路部32bは、拡径流路部32aの軸方向他方側に配置されて拡径流路部32aと連通し、軸方向他方側へ向かうに従い縮径する。縮径流路部32bは、マイクロバブル発生流路部32のうち、軸方向他方側の部分に位置する。縮径流路部32bは、縮径内周面部22と、縮径外周面部25とにより形成される。 The diameter-reduced flow path portion 32b is arranged on the other side of the diameter-expanded flow path portion 32a in the axial direction, communicates with the diameter-expanded flow path portion 32a, and is reduced in diameter toward the other side in the axial direction. The reduced diameter flow path portion 32b is located on the other side in the axial direction of the micro bubble generation flow path portion 32. The reduced diameter flow path portion 32b is formed by a reduced diameter inner peripheral surface portion 22 and a reduced diameter outer peripheral surface portion 25.

以上説明した本実施形態のマイクロバブル発生ノズル10では、マイクロバブル発生流路部32が、拡径流路部32aと縮径流路部32bとを有する。このため液体が、マイクロバブル発生流路部32を拡径流路部32aから縮径流路部32bへと流れることにより、流路15内の液体の圧力が変化したり液体に遠心力が作用するなどして、液体中にマイクロバブルが発生する。 In the micro-bubble generation nozzle 10 of the present embodiment described above, the micro-bubble generation flow path portion 32 has a diameter-expanded flow path portion 32a and a diameter-reduced flow path portion 32b. Therefore, when the liquid flows through the micro-bubble generation flow path portion 32 from the diameter-expanded flow path portion 32a to the diameter-reduced flow path portion 32b, the pressure of the liquid in the flow path 15 changes or centrifugal force acts on the liquid. Then, microbubbles are generated in the liquid.

本実施形態では、例えば特許文献1(特許第6312768号公報)に記載の従来の構造のように流路を螺旋状に形成することなく、構造を簡素化しつつマイクロバブルを発生させることができる。このため、マイクロバブル発生ノズル10の製造が容易である。また従来の構造に比べて、本実施形態では、特に軸方向の全長を小さく抑えることが容易である。したがって、マイクロバブル発生ノズル10の外形をコンパクトに抑えることができる。 In the present embodiment, microbubbles can be generated while simplifying the structure without forming the flow path in a spiral shape as in the conventional structure described in, for example, Patent Document 1 (Patent No. 6312768). Therefore, it is easy to manufacture the micro-bubble generating nozzle 10. Further, as compared with the conventional structure, in the present embodiment, it is easy to keep the total length in the axial direction particularly small. Therefore, the outer shape of the micro-bubble generating nozzle 10 can be suppressed to be compact.

また本実施形態では、マイクロバブル発生流路部32が、中心軸O回りの周方向に延びる環状である。
この場合、マイクロバブル発生流路部32の構造をより簡素化でき、マイクロバブル発生ノズル10の製造がより容易となる。
Further, in the present embodiment, the microbubble generation flow path portion 32 is an annular shape extending in the circumferential direction around the central axis O.
In this case, the structure of the micro-bubble generation flow path portion 32 can be further simplified, and the production of the micro-bubble generation nozzle 10 becomes easier.

また本実施形態では、拡径流路部32aが、拡径内周面部20と、拡径外周面部24とにより形成され、縮径流路部32bが、縮径内周面部22と、縮径外周面部25とにより形成される。
この場合、液体が拡径流路部32aから縮径流路部32bへと流れることにより、流路15内の液体に圧力の変化や遠心力を安定して作用させることができ、液体中にマイクロバブルがより安定して発生する。
Further, in the present embodiment, the enlarged diameter flow path portion 32a is formed by the enlarged diameter inner peripheral surface portion 20 and the enlarged diameter outer peripheral surface portion 24, and the reduced diameter flow path portion 32b is the reduced diameter inner peripheral surface portion 22 and the reduced diameter outer peripheral surface portion 24. Formed by 25.
In this case, since the liquid flows from the expanded flow path portion 32a to the reduced diameter flow path portion 32b, it is possible to stably act on the liquid in the flow path 15 with a change in pressure and centrifugal force, and microbubbles can be formed in the liquid. Occurs more stably.

また本実施形態では、拡径内周面部20が、軸方向に沿って凹凸形状が繰り返される第1拡径凹凸部21を有し、拡径外周面部24が、軸方向に沿って凹凸形状が繰り返される第2拡径凹凸部26を有する。
すなわち、拡径流路部32aを形成する拡径内周面部20と拡径外周面部24とが、それぞれ軸方向に凹凸形状が繰り返される部分を有するので、拡径流路部32aの内部を流れる液体に、圧力の変化や遠心力をより作用させやすくすることができる。また、拡径流路部32aの断面形状および断面積が、軸方向の各位置で変化する。このため、拡径流路部32aを流れる液体に、マイクロバブルがより安定して発生しやすい。
Further, in the present embodiment, the diameter-expanded inner peripheral surface portion 20 has a first diameter-expanded concavo-convex portion 21 in which the concave-convex shape is repeated along the axial direction, and the diameter-expanded outer peripheral surface portion 24 has a concave-convex shape along the axial direction. It has a second enlarged uneven portion 26 that is repeated.
That is, since the enlarged inner peripheral surface portion 20 and the enlarged outer peripheral surface portion 24 forming the enlarged diameter flow path portion 32a each have a portion in which the uneven shape is repeated in the axial direction, the liquid flowing inside the enlarged diameter flow path portion 32a can be used. , It is possible to make it easier for pressure changes and centrifugal force to act. Further, the cross-sectional shape and cross-sectional area of the enlarged diameter flow path portion 32a change at each position in the axial direction. Therefore, microbubbles are more likely to be generated more stably in the liquid flowing through the diameter-expanded flow path portion 32a.

また本実施形態では、第1拡径凹凸部21の凸部21aと、第2拡径凹凸部26の凸部26aとが、互いに対向して配置され、第1拡径凹凸部21の凹部21bと、第2拡径凹凸部26の凹部26bとが、互いに対向して配置される。
この場合、拡径流路部32aの断面形状および断面積が、軸方向の各位置でより大きく変化する。したがって、拡径流路部32aを流れる液体に、マイクロバブルがより安定して発生させられる。
Further, in the present embodiment, the convex portion 21a of the first enlarged diameter concavo-convex portion 21 and the convex portion 26a of the second enlarged diameter concavo-convex portion 26 are arranged so as to face each other, and the concave portion 21b of the first enlarged diameter concavo-convex portion 21. And the recess 26b of the second diameter-expanded uneven portion 26 are arranged so as to face each other.
In this case, the cross-sectional shape and cross-sectional area of the enlarged diameter flow path portion 32a change more greatly at each position in the axial direction. Therefore, microbubbles are more stably generated in the liquid flowing through the enlarged diameter flow path portion 32a.

また本実施形態では、縮径内周面部22が、軸方向に沿って凹凸形状が繰り返される第1縮径凹凸部23を有し、縮径外周面部25が、軸方向に沿って凹凸形状が繰り返される第2縮径凹凸部27を有する。
すなわち、縮径流路部32bを形成する縮径内周面部22と縮径外周面部25とが、それぞれ軸方向に凹凸形状が繰り返される部分を有するので、縮径流路部32bの内部を流れる液体に、圧力の変化や遠心力をより作用させやすくすることができる。また、縮径流路部32bの断面形状および断面積が、軸方向の各位置で変化する。このため、縮径流路部32bを流れる液体に、マイクロバブルがより安定して発生しやすい。
Further, in the present embodiment, the reduced-diameter inner peripheral surface portion 22 has a first reduced-diameter concavo-convex portion 23 in which the concave-convex shape is repeated along the axial direction, and the reduced-diameter outer peripheral surface portion 25 has a concave-convex shape along the axial direction. It has a second reduced-diameter uneven portion 27 that is repeated.
That is, since the reduced-diameter inner peripheral surface portion 22 and the reduced-diameter outer peripheral surface portion 25 forming the reduced-diameter flow path portion 32b each have a portion in which the concave-convex shape is repeated in the axial direction, the liquid flowing inside the reduced-diameter flow path portion 32b , It is possible to make it easier for pressure changes and centrifugal force to act. Further, the cross-sectional shape and cross-sectional area of the reduced diameter flow path portion 32b change at each position in the axial direction. Therefore, microbubbles are more likely to be generated more stably in the liquid flowing through the reduced diameter flow path portion 32b.

また本実施形態では、第1縮径凹凸部23の凸部23aと、第2縮径凹凸部27の凸部27aとが、互いに対向して配置され、第1縮径凹凸部23の凹部23bと、第2縮径凹凸部27の凹部27bとが、互いに対向して配置される。
この場合、縮径流路部32bの断面形状および断面積が、軸方向の各位置でより大きく変化する。したがって、縮径流路部32bを流れる液体に、マイクロバブルがより安定して発生させられる。
Further, in the present embodiment, the convex portion 23a of the first reduced-diameter concavo-convex portion 23 and the convex portion 27a of the second reduced-diameter concavo-convex portion 27 are arranged so as to face each other, and the concave portion 23b of the first reduced-diameter concavo-convex portion 23. And the recess 27b of the second diameter-reduced uneven portion 27 are arranged so as to face each other.
In this case, the cross-sectional shape and cross-sectional area of the reduced-diameter flow path portion 32b change more greatly at each position in the axial direction. Therefore, microbubbles are more stably generated in the liquid flowing through the reduced diameter flow path portion 32b.

また本実施形態では、流入側流路部30の複数の接続流路部30aが、中心軸O回りの周方向に等ピッチで配列する。
この場合、流入側流路部30の複数の接続流路部30aからマイクロバブル発生流路部32へと、液体が周方向均等に分散されて流入する。したがって、マイクロバブル発生流路部32を流れる液体に、マイクロバブルを周方向均等に発生させることができる。
Further, in the present embodiment, the plurality of connecting flow path portions 30a of the inflow side flow path portion 30 are arranged at equal pitches in the circumferential direction around the central axis O.
In this case, the liquid is evenly dispersed in the circumferential direction and flows into the microbubble generation flow path portion 32 from the plurality of connection flow path portions 30a of the inflow side flow path portion 30. Therefore, the microbubbles can be uniformly generated in the circumferential direction in the liquid flowing through the microbubble generation flow path portion 32.

また本実施形態では、流出側流路部31の複数の噴出流路部31aが、中心軸O回りの周方向に等ピッチで配列する。
この場合、マイクロバブル発生流路部32から流出側流路部31の複数の噴出流路部31aへと、液体が周方向均等に分散されて流入する。したがって、マイクロバブルを含む液体を、複数の噴出流路部31aからシャワー状に周方向均等に噴出させることができる。
Further, in the present embodiment, the plurality of ejection flow path portions 31a of the outflow side flow path portion 31 are arranged at equal pitches in the circumferential direction around the central axis O.
In this case, the liquid is evenly dispersed and flows in the circumferential direction from the micro-bubble generation flow path portion 32 to the plurality of ejection flow path portions 31a of the outflow side flow path portion 31. Therefore, the liquid containing the microbubbles can be evenly ejected from the plurality of ejection flow paths 31a in a shower shape in the circumferential direction.

なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。 The present invention is not limited to the above-described embodiment, and the configuration can be changed without departing from the spirit of the present invention, for example, as described below.

前述の実施形態では、流出側流路部31の複数の噴出流路部31aから液体がシャワー状に流出する例を挙げたが、これに限らない。例えば、マイクロバブル発生ノズル10を管の途中に設ける場合には、流入側流路部30の構成を軸方向に反転した構成を、流出側流路部31に採用してもよい。 In the above-described embodiment, an example in which the liquid flows out in a shower shape from the plurality of ejection flow paths 31a of the outflow side flow path 31 is given, but the present invention is not limited to this. For example, when the micro-bubble generating nozzle 10 is provided in the middle of the pipe, the configuration of the inflow side flow path portion 30 may be reversed in the axial direction for the outflow side flow path portion 31.

その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されず、特許請求の範囲によってのみ限定される。 In addition, each configuration (component) described in the above-described embodiments, modifications, and notes may be combined as long as it does not deviate from the gist of the present invention, and addition, omission, replacement, and other configurations may be added. It can be changed. Further, the present invention is not limited by the above-described embodiments, but is limited only by the scope of claims.

本発明のマイクロバブル発生ノズルによれば、構造を簡素化しつつ外形をコンパクトに抑えることができる。したがって、産業上の利用可能性を有する。 According to the micro-bubble generating nozzle of the present invention, the outer shape can be kept compact while simplifying the structure. Therefore, it has industrial applicability.

10…マイクロバブル発生ノズル、11…筒体、12…内装体、15…流路、20…拡径内周面部、21…第1拡径凹凸部、21a,23a,26a,27a…凸部、21b,23b,26b,27b…凹部、22…縮径内周面部、23…第1縮径凹凸部、24…拡径外周面部、25…縮径外周面部、26…第2拡径凹凸部、27…第2縮径凹凸部、30…流入側流路部、30a…接続流路部、31…流出側流路部、31a…噴出流路部、32…マイクロバブル発生流路部、32a…拡径流路部、32b…縮径流路部、O…中心軸 10 ... Micro bubble generation nozzle, 11 ... Cylinder body, 12 ... Interior body, 15 ... Flow path, 20 ... Diameter-expanded inner peripheral surface portion, 21 ... First diameter-expanded uneven portion, 21a, 23a, 26a, 27a ... Convex portion, 21b, 23b, 26b, 27b ... Recessed, 22 ... Reduced inner peripheral surface, 23 ... First reduced diameter unevenness, 24 ... Expanded outer peripheral surface, 25 ... Reduced outer peripheral surface, 26 ... Second enlarged uneven surface, 27 ... 2nd reduced diameter uneven portion, 30 ... Inflow side flow path portion, 30a ... Connection flow path portion, 31 ... Outflow side flow path portion, 31a ... Ejection flow path portion, 32 ... Micro bubble generation flow path portion, 32a ... Expanded diameter flow path, 32b ... Reduced diameter flow path, O ... Central axis

Claims (9)

液体が流通する管に設けられるマイクロバブル発生ノズルであって、
中心軸を有し、前記中心軸の軸方向に延びる筒体と、
前記筒体の内部に配置される内装体と、
前記筒体の内部に形成される流路と、を備え、
前記流路は、
前記筒体の軸方向一方側の端部に位置する流入側流路部と、
前記筒体の軸方向他方側の端部に位置する流出側流路部と、
軸方向において前記流入側流路部と前記流出側流路部との間に位置し、前記流入側流路部および前記流出側流路部と連通するマイクロバブル発生流路部と、を有し、
前記マイクロバブル発生流路部は、前記筒体の内周面と、前記内装体の外周面とにより形成され、
前記マイクロバブル発生流路部は、
軸方向他方側へ向かうに従い拡径する拡径流路部と、
前記拡径流路部の軸方向他方側に配置されて前記拡径流路部と連通し、軸方向他方側へ向かうに従い縮径する縮径流路部と、を有する、
マイクロバブル発生ノズル。
A micro-bubble generating nozzle provided in a pipe through which liquid flows.
A cylinder having a central axis and extending in the axial direction of the central axis,
An interior body arranged inside the cylinder and
A flow path formed inside the cylinder is provided.
The flow path is
An inflow side flow path portion located at one end of the cylinder in the axial direction and
The outflow side flow path portion located at the end on the other side in the axial direction of the cylinder,
It has a microbubble generation flow path portion that is located between the inflow side flow path portion and the outflow side flow path portion in the axial direction and communicates with the inflow side flow path portion and the outflow side flow path portion. ,
The micro-bubble generation flow path portion is formed by an inner peripheral surface of the tubular body and an outer peripheral surface of the interior body.
The micro-bubble generation flow path portion is
A diameter-expanded flow path that increases in diameter toward the other side in the axial direction,
It has a diameter-reduced flow path portion that is arranged on the other side in the axial direction of the diameter-expanded flow path portion, communicates with the diameter-expanded flow path portion, and decreases in diameter toward the other side in the axial direction.
Micro bubble generation nozzle.
前記マイクロバブル発生流路部は、前記中心軸回りの周方向に延びる環状である、
請求項1に記載のマイクロバブル発生ノズル。
The micro-bubble generation flow path portion is an annular shape extending in the circumferential direction around the central axis.
The microbubble generating nozzle according to claim 1.
前記筒体は、
前記筒体の内周面の一部を構成し、軸方向他方側へ向かうに従い拡径する拡径内周面部と、
前記筒体の内周面の一部を構成し、前記拡径内周面部の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する縮径内周面部と、を有し、
前記内装体は、
前記内装体の外周面の一部を構成し、軸方向他方側へ向かうに従い拡径する拡径外周面部と、
前記内装体の外周面の一部を構成し、前記拡径外周面部の軸方向他方側に配置され、軸方向他方側へ向かうに従い縮径する縮径外周面部と、を有し、
前記拡径流路部は、前記拡径内周面部と、前記拡径外周面部とにより形成され、
前記縮径流路部は、前記縮径内周面部と、前記縮径外周面部とにより形成される、
請求項1または2に記載のマイクロバブル発生ノズル。
The cylinder is
A diameter-expanded inner peripheral surface portion that forms a part of the inner peripheral surface of the cylinder and expands in diameter toward the other side in the axial direction.
It has a diameter-reduced inner peripheral surface portion that constitutes a part of the inner peripheral surface of the tubular body, is arranged on the other side in the axial direction of the enlarged diameter inner peripheral surface portion, and is reduced in diameter toward the other side in the axial direction.
The interior body is
A diameter-expanded outer peripheral surface portion that forms a part of the outer peripheral surface of the interior body and expands in diameter toward the other side in the axial direction.
It has a reduced outer peripheral surface portion that constitutes a part of the outer peripheral surface of the interior body, is arranged on the other side in the axial direction of the enlarged outer peripheral surface portion, and is reduced in diameter toward the other side in the axial direction.
The enlarged diameter flow path portion is formed by the enlarged inner peripheral surface portion and the enlarged outer peripheral surface portion.
The reduced diameter flow path portion is formed by the reduced diameter inner peripheral surface portion and the reduced diameter outer peripheral surface portion.
The microbubble generating nozzle according to claim 1 or 2.
前記拡径内周面部は、軸方向に沿って凹凸形状が繰り返される第1拡径凹凸部を有し、
前記拡径外周面部は、軸方向に沿って凹凸形状が繰り返される第2拡径凹凸部を有する、
請求項3に記載のマイクロバブル発生ノズル。
The enlarged-diameter inner peripheral surface portion has a first enlarged-diameter concavo-convex portion in which a concavo-convex shape is repeated along the axial direction.
The diameter-expanded outer peripheral surface portion has a second diameter-expanded uneven portion in which a concave-convex shape is repeated along the axial direction.
The microbubble generating nozzle according to claim 3.
前記第1拡径凹凸部の凸部と、前記第2拡径凹凸部の凸部とが、互いに対向して配置され、
前記第1拡径凹凸部の凹部と、前記第2拡径凹凸部の凹部とが、互いに対向して配置される、
請求項4に記載のマイクロバブル発生ノズル。
The convex portion of the first diameter-expanded concavo-convex portion and the convex portion of the second diameter-expanded concavo-convex portion are arranged so as to face each other.
The concave portion of the first enlarged diameter uneven portion and the concave portion of the second enlarged diameter uneven portion are arranged so as to face each other.
The microbubble generating nozzle according to claim 4.
前記縮径内周面部は、軸方向に沿って凹凸形状が繰り返される第1縮径凹凸部を有し、
前記縮径外周面部は、軸方向に沿って凹凸形状が繰り返される第2縮径凹凸部を有する、
請求項3から5のいずれか1項に記載のマイクロバブル発生ノズル。
The reduced-diameter inner peripheral surface portion has a first reduced-diameter concavo-convex portion in which a concavo-convex shape is repeated along the axial direction.
The reduced-diameter outer peripheral surface portion has a second reduced-diameter uneven portion in which the concave-convex shape is repeated along the axial direction.
The microbubble generating nozzle according to any one of claims 3 to 5.
前記第1縮径凹凸部の凸部と、前記第2縮径凹凸部の凸部とが、互いに対向して配置され、
前記第1縮径凹凸部の凹部と、前記第2縮径凹凸部の凹部とが、互いに対向して配置される、
請求項6に記載のマイクロバブル発生ノズル。
The convex portion of the first reduced-diameter concavo-convex portion and the convex portion of the second reduced-diameter concavo-convex portion are arranged so as to face each other.
The concave portion of the first reduced-diameter uneven portion and the concave portion of the second reduced-diameter uneven portion are arranged so as to face each other.
The microbubble generating nozzle according to claim 6.
前記流入側流路部は、前記流入側流路部のうち軸方向他方側の端部に位置して前記マイクロバブル発生流路部と繋がる複数の接続流路部を有し、
複数の前記接続流路部は、前記中心軸回りの周方向に等ピッチで配列する、
請求項1から7のいずれか1項に記載のマイクロバブル発生ノズル。
The inflow side flow path portion has a plurality of connection flow path portions located at the end of the inflow side flow path portion on the other side in the axial direction and connected to the microbubble generation flow path portion.
The plurality of connection flow paths are arranged at equal pitches in the circumferential direction around the central axis.
The microbubble generating nozzle according to any one of claims 1 to 7.
前記流出側流路部は、前記マイクロバブル発生流路部と繋がる複数の噴出流路部を有し、
複数の前記噴出流路部は、前記中心軸回りの周方向に等ピッチで配列する、
請求項1から8のいずれか1項に記載のマイクロバブル発生ノズル。
The outflow side flow path portion has a plurality of ejection flow path portions connected to the micro bubble generation flow path portion.
The plurality of ejection flow paths are arranged at equal pitches in the circumferential direction around the central axis.
The microbubble generating nozzle according to any one of claims 1 to 8.
JP2019042459A 2019-03-08 2019-03-08 Microbubble generating nozzle Active JP7249819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042459A JP7249819B2 (en) 2019-03-08 2019-03-08 Microbubble generating nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042459A JP7249819B2 (en) 2019-03-08 2019-03-08 Microbubble generating nozzle

Publications (2)

Publication Number Publication Date
JP2020142219A true JP2020142219A (en) 2020-09-10
JP7249819B2 JP7249819B2 (en) 2023-03-31

Family

ID=72355270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042459A Active JP7249819B2 (en) 2019-03-08 2019-03-08 Microbubble generating nozzle

Country Status (1)

Country Link
JP (1) JP7249819B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016842A (en) * 2019-07-23 2021-02-15 ユニバーサル製缶株式会社 Floating oil tank
JP7214277B1 (en) 2022-04-27 2023-01-30 株式会社サイエンス Bubble liquid generating nozzle
JP2023076994A (en) * 2021-11-24 2023-06-05 株式会社サイエンス Cleaning gun device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644032A (en) * 1979-09-14 1981-04-23 Toyobo Co Ltd Static type dispersion mixing device
JP2009000687A (en) * 2008-10-07 2009-01-08 Regal Joint Co Ltd Fluid mixing device
JP2018015715A (en) * 2016-07-28 2018-02-01 株式会社カクイチ製作所 Nano-bubble generation nozzle and nano-bubble generation device
JP2018089610A (en) * 2016-11-29 2018-06-14 日東精工株式会社 Fine bubble generation nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644032A (en) * 1979-09-14 1981-04-23 Toyobo Co Ltd Static type dispersion mixing device
JP2009000687A (en) * 2008-10-07 2009-01-08 Regal Joint Co Ltd Fluid mixing device
JP2018015715A (en) * 2016-07-28 2018-02-01 株式会社カクイチ製作所 Nano-bubble generation nozzle and nano-bubble generation device
JP2018089610A (en) * 2016-11-29 2018-06-14 日東精工株式会社 Fine bubble generation nozzle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016842A (en) * 2019-07-23 2021-02-15 ユニバーサル製缶株式会社 Floating oil tank
JP7249903B2 (en) 2019-07-23 2023-03-31 アルテミラ製缶株式会社 floating oil tank
JP2023076994A (en) * 2021-11-24 2023-06-05 株式会社サイエンス Cleaning gun device
JP7291420B2 (en) 2021-11-24 2023-06-15 株式会社サイエンス Gun device for cleaning
JP7214277B1 (en) 2022-04-27 2023-01-30 株式会社サイエンス Bubble liquid generating nozzle
WO2023210028A1 (en) * 2022-04-27 2023-11-02 株式会社サイエンス Bubble liquid generating nozzle
KR20230153991A (en) * 2022-04-27 2023-11-07 가부시키가이샤 사이엔스 Bubble generating nozzle
JP2023162554A (en) * 2022-04-27 2023-11-09 株式会社サイエンス Bubble liquid generating nozzle
KR102655926B1 (en) * 2022-04-27 2024-04-08 가부시키가이샤 사이엔스 Bubble generating nozzle

Also Published As

Publication number Publication date
JP7249819B2 (en) 2023-03-31

Similar Documents

Publication Publication Date Title
JP2020142219A (en) Micro bubble generating nozzle
JP5755216B2 (en) In-line fluid mixing device
JP2019018345A5 (en)
WO2019049650A1 (en) Microbubble liquid generator
WO2018117040A1 (en) Device and system for generating gas-liquid containing microbubbles
JP6806941B1 (en) Gas-liquid mixer
JP7231593B2 (en) Water supply hose for washing machine with microbubble water generator
JP3202305U (en) Microbubble generator and microbubble generator set
JP2014121689A5 (en)
JP2021058847A (en) Fine bubble generation nozzle
WO2021155595A1 (en) Microbubble generation module
JP7012399B1 (en) Fine bubble generation unit and water supply system
JP2022063993A (en) Union-type fine air bubble water generator for city water pipe
WO2016031464A1 (en) Gas mixing device
JP7105016B1 (en) Fine bubble generation unit and water supply system
CN215917014U (en) Micro-bubble water generator, washing machine hose and shower hose
JP6074719B2 (en) shower head
JP2023026130A (en) Microbubble formation hose
JP2021177811A (en) Shower nozzle and liquid circulation structure
JP2022116684A (en) Bubble generator, shower nozzle, and pressure controller
JP2023050374A (en) Fluid mixing device
RU2588903C1 (en) Reversing working chamber of ejector "funnel"
JP7042013B2 (en) Fine bubble generator
JP7249815B2 (en) microbubble generator
TWI736107B (en) Micro bubble generation module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150