JP2020142197A - Hydrogen permeation apparatus and method for manufacturing hydrogen permeation apparatus - Google Patents

Hydrogen permeation apparatus and method for manufacturing hydrogen permeation apparatus Download PDF

Info

Publication number
JP2020142197A
JP2020142197A JP2019041118A JP2019041118A JP2020142197A JP 2020142197 A JP2020142197 A JP 2020142197A JP 2019041118 A JP2019041118 A JP 2019041118A JP 2019041118 A JP2019041118 A JP 2019041118A JP 2020142197 A JP2020142197 A JP 2020142197A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen permeation
permeation
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019041118A
Other languages
Japanese (ja)
Other versions
JP7388627B2 (en
Inventor
湯川 宏
Hiroshi Yugawa
宏 湯川
智憲 南部
Tomonori Nanbu
智憲 南部
佳久 松本
Yoshihisa Matsumoto
佳久 松本
西村 睦
Mutsumi Nishimura
睦 西村
吉永 英雄
Hideo Yoshinaga
英雄 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO Ltd
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Tokai National Higher Education and Research System NUC
Original Assignee
TAIYO KOKO CO Ltd
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO Ltd, National Institute for Materials Science, Institute of National Colleges of Technologies Japan, Tokai National Higher Education and Research System NUC filed Critical TAIYO KOKO CO Ltd
Priority to JP2019041118A priority Critical patent/JP7388627B2/en
Publication of JP2020142197A publication Critical patent/JP2020142197A/en
Application granted granted Critical
Publication of JP7388627B2 publication Critical patent/JP7388627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To improve performance of a hydrogen permeation apparatus.SOLUTION: A hydrogen permeation apparatus includes: a hydrogen permeable membrane 50 formed of a pure metal or alloy; and a catalytic layer provided at a surface of the hydrogen permeable membrane 50. The metal or alloy of the hydrogen permeable membrane 50 at an interfacial boundary with the catalytic layer is oriented in a specific crystal orientation by a predetermined ratio or more.SELECTED DRAWING: Figure 1

Description

本開示は、水素透過装置及びその製造方法に関する。 The present disclosure relates to a hydrogen permeation device and a method for producing the same.

近年、水素が様々な分野において注目され、重要な役割を果たしている。例えば、家庭用燃料電池型コージェネレーションシステムや燃料電池自動車などにおいて、新しいエネルギーとして水素が利用されている。また、気相エピタキシャル成長法を用いたSiウェハ半導体材料の結晶成長や加工におけるキャリアガスとして、高純度水素ガスが使用されている。 In recent years, hydrogen has attracted attention in various fields and plays an important role. For example, hydrogen is used as a new energy in household fuel cell type cogeneration systems and fuel cell vehicles. Further, high-purity hydrogen gas is used as a carrier gas in crystal growth and processing of a Si wafer semiconductor material using a vapor phase epitaxial growth method.

特開2016−59902号公報Japanese Unexamined Patent Publication No. 2016-59902

固体高分子型燃料電池では、一酸化炭素等の不純物ガスによって負極触媒が被毒されるため、高純度の水素ガスを使用することが求められる。例えば、燃料電池自動車では、総合純度が99.97%以上の高純度水素を供給する必要がある上、硫黄成分が4ppb以下、ホルムアルデヒドが10ppb以下、ハロゲンが50ppb以下などの厳しい規制がある。また、半導体材料の結晶成長や加工におけるキャリアガスとして水素を使用する場合、不純物の混入によって半導体特性が低下することを避けるため、99.9999999%以上の超高純度水素ガスが必要とされる。さらに、アンモニアやメタノール等の薬品を製造する原料としても、高純度水素が必要とされている。なお、副生水素や水素キャリアからの分解ガスなど水素以外の気体成分を含む水素混合ガスからも高純度の水素ガスを分離回収する技術が要求されている。このように、高純度の水素の需要が益々高まっているため、高純度の水素を高効率かつ安定的に供給する技術が求められている。 In polymer electrolyte fuel cells, the negative electrode catalyst is poisoned by impurity gas such as carbon monoxide, so it is required to use high-purity hydrogen gas. For example, in a fuel cell vehicle, it is necessary to supply high-purity hydrogen having a total purity of 99.97% or more, and there are strict regulations such as sulfur component of 4 ppb or less, formaldehyde of 10 ppb or less, and halogen of 50 ppb or less. Further, when hydrogen is used as a carrier gas in crystal growth or processing of a semiconductor material, an ultra-high purity hydrogen gas of 99.999999999% or more is required in order to avoid deterioration of semiconductor characteristics due to mixing of impurities. Further, high-purity hydrogen is required as a raw material for producing chemicals such as ammonia and methanol. There is also a demand for a technique for separating and recovering high-purity hydrogen gas from a hydrogen mixed gas containing a gas component other than hydrogen, such as by-product hydrogen and decomposition gas from a hydrogen carrier. As described above, the demand for high-purity hydrogen is increasing more and more, and therefore, a technique for supplying high-purity hydrogen with high efficiency and stability is required.

水素を含む原料気体から水素を分離する技術として、本発明者らによる特許文献1がある。本発明者らは、特許文献1に記載された発明を更に改良し、本開示の技術に想到した。 Patent Document 1 by the present inventors is a technique for separating hydrogen from a raw material gas containing hydrogen. The present inventors further improved the invention described in Patent Document 1 and came up with the technique of the present disclosure.

本開示は、このような課題に鑑みてなされ、その目的は、水素透過装置の性能を向上させることである。 The present disclosure is made in view of such a problem, and an object thereof is to improve the performance of a hydrogen permeation device.

上記課題を解決するために、本発明のある態様の水素透過装置は、純金属又は合金により形成された水素透過膜と、水素透過膜の表面に設けられた触媒層と、を備える。触媒層との境界面における水素透過膜の金属又は合金の所定比率以上が特定の結晶方位に配向する。 In order to solve the above problems, the hydrogen permeation device according to an embodiment of the present invention includes a hydrogen permeation membrane formed of a pure metal or an alloy, and a catalyst layer provided on the surface of the hydrogen permeation membrane. A predetermined ratio or more of the metal or alloy of the hydrogen permeable membrane at the interface with the catalyst layer is oriented in a specific crystal orientation.

本発明のさらに別の態様もまた、水素透過装置である。この装置は、純金属又は合金により形成された水素透過膜と、水素透過膜の表面に設けられた触媒層と、を備える。触媒層との境界面における水素透過膜の金属又は合金は、(110)面に配向した領域がその他の面に配向した領域よりも大きい。 Yet another aspect of the present invention is also a hydrogen permeation device. This device includes a hydrogen permeable membrane formed of a pure metal or alloy, and a catalyst layer provided on the surface of the hydrogen permeable membrane. The metal or alloy of the hydrogen permeable membrane at the interface with the catalyst layer has a region oriented to the (110) plane larger than a region oriented to the other plane.

本発明のさらに別の態様もまた、水素透過装置である。この装置は、純金属又は合金により形成された水素透過膜と、水素透過膜の表面にパラジウムと銀の合金により形成された触媒層と、を備える。触媒層におけるパラジウムと銀の組成比は、一次側圧力が400kPa、二次側圧力が103kPa、温度が450℃の条件下で水素透過膜の水素透過試験を実施した場合に透過流速が開始直後の透過流速から20%減少する時点までの時間である20%劣化時間t0.2が40時間以上となるような組成比である。 Yet another aspect of the present invention is also a hydrogen permeation device. The apparatus comprises a hydrogen permeable membrane formed of a pure metal or alloy and a catalyst layer formed of an alloy of palladium and silver on the surface of the hydrogen permeable membrane. The composition ratio of palladium and silver in the catalyst layer is such that when the hydrogen permeation test of the hydrogen permeation film is carried out under the conditions of a primary pressure of 400 kPa, a secondary pressure of 103 kPa and a temperature of 450 ° C., the permeation flow velocity is immediately after the start. The composition ratio is such that the 20% deterioration time t 0.2, which is the time from the permeation flow velocity to the point of decrease by 20%, is 40 hours or more.

本発明のさらに別の態様は、水素透過装置の製造方法である。この方法は、純金属又は合金により水素透過膜を形成するステップと、水素透過膜の表面の純金属又は合金のうち特定の結晶方位に配向した領域を増加させるステップと、を備える。 Yet another aspect of the present invention is a method of manufacturing a hydrogen permeation device. The method comprises forming a hydrogen permeable membrane from a pure metal or alloy and increasing the region of the pure metal or alloy on the surface of the hydrogen permeable membrane that is oriented in a particular crystal orientation.

本開示によれば、水素透過装置の性能を向上させることができる。 According to the present disclosure, the performance of the hydrogen permeation device can be improved.

実施の形態に係る水素分離装置の構成を示す図である。It is a figure which shows the structure of the hydrogen separation apparatus which concerns on embodiment. 純Vの水素透過膜に純Pdの触媒層を被覆した複合膜の550℃における水素透過能の時間変化を示す図である。It is a figure which shows the time change of the hydrogen permeation capacity at 550 ° C. of the composite membrane which coated the catalyst layer of pure Pd on the hydrogen permeation membrane of pure V. VとFeの合金の水素透過膜にPdとAgの合金の触媒層を被覆した複合膜の300℃における水素透過能の時間変化を示す図である。It is a figure which shows the time change of the hydrogen permeability at 300 degreeC of the composite membrane which coated the catalyst layer of the alloy of Pd and Ag on the hydrogen permeable membrane of the alloy of V and Fe. VとFeの合金の水素透過膜にPdとAgの合金の触媒層を被覆した複合膜の550℃における水素透過能の時間変化を示す図である。It is a figure which shows the time change of the hydrogen permeability at 550 ° C. of the composite membrane which coated the catalyst layer of the alloy of Pd and Ag on the hydrogen permeable membrane of the alloy of V and Fe. 触媒層の組成と劣化時間との関係を示す図である。It is a figure which shows the relationship between the composition of a catalyst layer, and the deterioration time. 水素透過試験温度に対する劣化時間を示す図である。It is a figure which shows the deterioration time with respect to the hydrogen permeation test temperature. 触媒層の組成と透過流速比の時間変化との関係を示す図である。It is a figure which shows the relationship between the composition of a catalyst layer, and the time change of a permeation flow velocity ratio. 熱処理後の複合膜の表面のSEM像である。It is an SEM image of the surface of the composite film after heat treatment. 図8に示した複合膜の(1)〜(7)の位置のSEM像である。It is an SEM image of the position (1) to (7) of the composite film shown in FIG. 図8に示した複合膜の(1)〜(7)の位置の断面のSEM像である。8 is an SEM image of a cross section of the composite film shown in FIG. 8 at positions (1) to (7). 熱処理後の複合膜のオージェ電子分光法(Auger Electron Spectroscopy:AES)による分析結果を結晶方位ごとに示す図である。It is a figure which shows the analysis result by Auger Electron Spectroscopy (AES) of the composite film after heat treatment for each crystal orientation. 純V単結晶試料を用いた連続水素透過試験の結果を示す図である。It is a figure which shows the result of the continuous hydrogen permeation test using a pure V single crystal sample. 水素透過試験前後の純V単結晶試料の表面のSEM像である。It is an SEM image of the surface of a pure V single crystal sample before and after the hydrogen permeation test. 本開示に係る第1の方法により製造した薄膜のX線回折結果を示す図である。It is a figure which shows the X-ray diffraction result of the thin film produced by the 1st method which concerns on this disclosure. 本開示に係る第2の方法により製造した薄膜のX線回折結果を示す図である。It is a figure which shows the X-ray diffraction result of the thin film produced by the 2nd method which concerns on this disclosure. 本開示に係る第3の方法により製造した薄膜のX線回折結果を示す図である。It is a figure which shows the X-ray diffraction result of the thin film produced by the 3rd method which concerns on this disclosure.

本開示の実施の形態として、非パラジウム(Pd)系金属、例えば、5族元素であるバナジウム(V)、ニオブ(Nb)、タンタル(Ta)や、非Pd系金属を主たる金属とする合金(以下、単に「非Pd系合金」ともいう)により形成された水素透過膜を利用した水素分離装置について説明する。水素分離装置は、本開示に係る水素透過装置の一例であり、水素透過膜が水素を選択的に透過する性質を利用して、水素を含む流体から水素を分離する。まず、実施の形態に係る水素分離装置の概要について説明し、つづいて、本開示に係る水素透過装置及びその製造方法について説明する。 As an embodiment of the present disclosure, a non-palladium (Pd) -based metal, for example, a group 5 element vanadium (V), niobium (Nb), tantalum (Ta), or an alloy containing a non-Pd-based metal as a main metal ( Hereinafter, a hydrogen separation apparatus using a hydrogen permeable film formed of (also simply referred to as “non-Pd-based alloy”) will be described. The hydrogen separation device is an example of the hydrogen permeation device according to the present disclosure, and separates hydrogen from a fluid containing hydrogen by utilizing the property that the hydrogen permeation membrane selectively permeates hydrogen. First, the outline of the hydrogen separation device according to the embodiment will be described, and then the hydrogen permeation device and the manufacturing method thereof according to the present disclosure will be described.

[水素分離装置の構成]
図1は、実施の形態に係る水素分離装置の構成を示す。本図は、水素分離装置10の断面を概略的に示す。水素分離装置10は、水素を選択的に透過する非Pd系金属又は非Pd系合金により形成された水素透過膜50と、水素を含む原料気体を水素透過膜50の一次側の表面に供給するための原料気体供給流路26と水素透過膜50を透過しなかった原料気体を排出するための原料気体排出流路28とが形成された一次側配管20と、水素透過膜50の二次側の表面へ透過した水素を回収するための水素回収流路32が形成された二次側配管30と、水素透過膜50を一次側配管20と二次側配管30との間に気密に挟持するための一次側ガスケット40及び二次側ガスケット42とを備える。一次側配管20は、同軸に配置された外管22と内管24の二重構造になっており、内管24の内側が原料気体供給流路26として機能し、外管22と内管24の間が原料気体排出流路28として機能する。なお、気体の流れは逆であってもよい。
[Structure of hydrogen separator]
FIG. 1 shows the configuration of the hydrogen separation device according to the embodiment. This figure schematically shows a cross section of the hydrogen separator 10. The hydrogen separation device 10 supplies a hydrogen permeable film 50 formed of a non-Pd-based metal or a non-Pd-based alloy that selectively permeates hydrogen and a raw material gas containing hydrogen to the surface on the primary side of the hydrogen permeable film 50. The primary side pipe 20 in which the raw material gas supply flow path 26 for the purpose and the raw material gas discharge flow path 28 for discharging the raw material gas that did not permeate the hydrogen permeable film 50 are formed, and the secondary side of the hydrogen permeable film 50. The secondary side pipe 30 in which the hydrogen recovery flow path 32 for recovering the hydrogen permeated to the surface of the gas is formed, and the hydrogen permeation film 50 are airtightly sandwiched between the primary side pipe 20 and the secondary side pipe 30. A primary side gasket 40 and a secondary side gasket 42 for the purpose are provided. The primary side pipe 20 has a double structure of an outer pipe 22 and an inner pipe 24 arranged coaxially, and the inside of the inner pipe 24 functions as a raw material gas supply flow path 26, and the outer pipe 22 and the inner pipe 24 The space between them functions as a raw material gas discharge flow path 28. The gas flow may be reversed.

一次側配管20の原料気体排出流路28の内径も、二次側配管30の水素回収流路32の内径も、水素透過膜50から遠い部分においては、一次側ガスケット40及び二次側ガスケット42の内径より細くされているが、一次側配管20と二次側配管30が水素透過膜50を介して接続される開口部分においては、一次側ガスケット40及び二次側ガスケット42の内径と同じ内径まで拡張されている。すなわち、一次側配管20の開口にも、二次側配管30の開口にも、一次側ガスケット40及び二次側ガスケット42の内径と同じ内径を有する凹部が形成されている。これにより、水素透過膜50の全体を効率良く利用して水素を分離することができる。 Both the inner diameter of the raw material gas discharge flow path 28 of the primary side pipe 20 and the inner diameter of the hydrogen recovery flow path 32 of the secondary side pipe 30 are the primary side gasket 40 and the secondary side gasket 42 in the portion far from the hydrogen permeation film 50. The inner diameter is the same as the inner diameter of the primary side gasket 40 and the secondary side gasket 42 at the opening where the primary side pipe 20 and the secondary side pipe 30 are connected via the hydrogen permeable film 50. Has been extended to. That is, both the opening of the primary side pipe 20 and the opening of the secondary side pipe 30 are formed with recesses having the same inner diameter as the inner diameters of the primary side gasket 40 and the secondary side gasket 42. As a result, hydrogen can be separated by efficiently utilizing the entire hydrogen permeation membrane 50.

原料気体供給流路26は、図示しないレギュレーターを介して、水素を含む原料気体を生成する気体発生装置又は水素を含む原料気体を貯蔵する貯蔵タンクなどに接続される。水素を含む原料気体は、レギュレーターにより所定の圧力に調整されて、原料気体供給流路26から水素透過膜50の一次側の表面に供給される。水素回収流路32は、水素透過膜50を透過して水素回収流路32に到達した水素を回収するための構成に接続される。 The raw material gas supply flow path 26 is connected to a gas generator that generates a raw material gas containing hydrogen, a storage tank that stores the raw material gas containing hydrogen, or the like via a regulator (not shown). The raw material gas containing hydrogen is adjusted to a predetermined pressure by a regulator and supplied from the raw material gas supply flow path 26 to the surface on the primary side of the hydrogen permeation membrane 50. The hydrogen recovery flow path 32 is connected to a configuration for recovering hydrogen that has passed through the hydrogen permeation membrane 50 and reached the hydrogen recovery flow path 32.

水素透過膜50は、5族元素であるV、Nb、Taの純金属、又は、5族元素に鉄(Fe)やニッケル(Ni)などの元素が添加された合金により形成される。従来、Pd又はPdの合金により形成されたPd系の水素透過膜の研究開発が広く行われてきたが、Pdは希少かつ高価な金属であることに加えて、水素透過能が不十分であることから、本発明者らは、その代替材料として、5族元素などの非Pd系金属又は非Pd系合金により形成された水素透過膜の設計開発を行ってきた。 The hydrogen permeable film 50 is formed of a pure metal of Group 5 elements V, Nb, and Ta, or an alloy in which an element such as iron (Fe) or nickel (Ni) is added to the Group 5 element. Conventionally, research and development of a Pd-based hydrogen permeable film formed of Pd or an alloy of Pd has been widely carried out, but Pd is a rare and expensive metal and has insufficient hydrogen permeability. Therefore, the present inventors have been designing and developing a hydrogen permeable film formed of a non-Pd-based metal such as a Group 5 element or a non-Pd-based alloy as an alternative material.

面心立方(fcc)格子構造をもつPdに比べて、体心立方(bcc)格子構造をもつV、Nb、Taは、水素の拡散の活性化エネルギーが小さいため、低温における水素の拡散係数が大きいという特徴がある。したがって、これらの金属又は合金により形成された水素透過膜を使用することにより、比較的低温においても高い水素透過速度が得られると考えられる。とくに、Vは、水素の拡散の活性化エネルギーが小さく、水素透過膜の材料として好適である。また、これらの金属及び合金は、Pd及びPd合金に比べれば十分に安価であるため、製造コストの観点からも好適である。 Compared to Pd having a face-centered cubic (fcc) lattice structure, V, Nb, and Ta having a body-centered cubic (bcc) lattice structure have a smaller activation energy for hydrogen diffusion, so that the hydrogen diffusion coefficient at low temperature is higher. It has the characteristic of being large. Therefore, it is considered that a high hydrogen permeation rate can be obtained even at a relatively low temperature by using a hydrogen permeation membrane formed of these metals or alloys. In particular, V has a small activation energy for hydrogen diffusion and is suitable as a material for a hydrogen permeable membrane. Further, these metals and alloys are sufficiently cheaper than Pd and Pd alloys, and are therefore suitable from the viewpoint of manufacturing cost.

VやNbなどの5族元素は、多量の水素が固溶することで機械的性質が著しく劣化する水素脆化を起こすことが知られている。具体的には、水素濃度が約0.2(H/M)を超えると、延性−脆性遷移が起こる。したがって、水素透過膜の水素脆性破壊を回避するためには、固溶水素濃度を0.2(H/M)以下に制御する必要がある。本発明者らの知見によれば、5族元素よりも水素との親和性が小さい元素、例えば、Fe、Ni、コバルト(Co)、クロム(Cr)、モリブデン(Mo)、タングステン(W)などや、5族元素に対する固溶限が大きいマンガン(Mn)、ルテニウム(Ru)、パラジウム(Pd)、金(Au)、レニウム(Re)、アルミニウム(Al)、錫(Sn)、ガリウム(Ga)などを5族元素に添加することにより、固溶水素濃度を抑制することができる。したがって、5族元素に上記の元素を添加した合金により水素透過膜50を形成することにより、水素分離装置10の使用中に水素透過膜50が水素脆化して破断してしまうことを避けることができる。 Group 5 elements such as V and Nb are known to cause hydrogen embrittlement in which a large amount of hydrogen is dissolved in a solid solution to significantly deteriorate the mechanical properties. Specifically, when the hydrogen concentration exceeds about 0.2 (H / M), a ductile-brittle transition occurs. Therefore, in order to avoid hydrogen brittle fracture of the hydrogen permeation membrane, it is necessary to control the solid solution hydrogen concentration to 0.2 (H / M) or less. According to the findings of the present inventors, elements having a smaller affinity for hydrogen than Group 5 elements, such as Fe, Ni, cobalt (Co), chromium (Cr), molybdenum (Mo), tungsten (W), etc. Manganese (Mn), ruthenium (Ru), palladium (Pd), gold (Au), renium (Re), aluminum (Al), tin (Sn), gallium (Ga), which have a large solid solubility limit for Group 5 elements. By adding such as to Group 5 elements, the concentration of dissolved hydrogen can be suppressed. Therefore, by forming the hydrogen permeable membrane 50 with an alloy obtained by adding the above elements to the Group 5 elements, it is possible to prevent the hydrogen permeable membrane 50 from being hydrogen-brittled and broken during the use of the hydrogen separator 10. it can.

他方で、金属中に異種元素を固溶させると、固溶強化によって強度が増す上、水素透過膜50を形成するために金属を圧延すると、加工硬化によっても強度が増すので、5族元素に添加する異種元素の量を多くし過ぎると、合金を圧延して水素透過膜50を形成するのが難しくなる。したがって、原料気体の種類及び水素の含有量、原料気体の圧力及び温度、必要な水素の純度、単位時間当たりの水素の回収量、水素分離装置10の耐用期間、水素分離装置10の製造コストなどの条件に応じて、水素分離装置10を使用する際の温度、一次側の圧力、二次側の圧力などの運転条件が決定されると、決定された運転条件に適した合金の組成を決定し、決定した組成の合金により水素透過膜50を形成してもよい。水素透過膜50を形成する合金の組成は、合金の水素溶解特性を表す圧力−組成−等温線(Pressure-composition-isotherm、PCT曲線)に基づいて決定してもよい。例えば、水素透過膜50は、原子百分率で0〜15%のFeを含むVの合金により形成されてもよい。Feの含有量を上記の範囲とすることにより、合金の強度を圧延加工が可能な程度にし、加工性を向上させることができる。温間圧延(熱間圧延)により水素透過膜50を形成する場合には、Feの含有量を原子百分率で0〜15%とするのが好適であり、冷間圧延により水素透過膜50を形成する場合には、Feの含有量を原子百分率で0〜12%とするのが好適である。圧延加工をより容易にする観点から、Feの含有量を原子百分率で0〜10%とするのが更に好適である。 On the other hand, when a dissimilar element is dissolved in a metal, the strength is increased by strengthening the solid solution, and when the metal is rolled to form a hydrogen permeable film 50, the strength is also increased by work hardening. If the amount of dissimilar elements added is too large, it becomes difficult to roll the alloy to form the hydrogen permeable film 50. Therefore, the type and hydrogen content of the raw material gas, the pressure and temperature of the raw material gas, the required purity of hydrogen, the amount of hydrogen recovered per unit time, the useful life of the hydrogen separation device 10, the manufacturing cost of the hydrogen separation device 10, etc. When the operating conditions such as the temperature, the pressure on the primary side, and the pressure on the secondary side when using the hydrogen separator 10 are determined according to the conditions of, the composition of the alloy suitable for the determined operating conditions is determined. Then, the hydrogen permeable film 50 may be formed from the alloy having the determined composition. The composition of the alloy forming the hydrogen permeable film 50 may be determined based on the pressure-composition-isotherm (PCT curve) representing the hydrogen dissolution property of the alloy. For example, the hydrogen permeable membrane 50 may be formed of an alloy of V containing Fe in an atomic percentage of 0 to 15%. By setting the Fe content in the above range, the strength of the alloy can be adjusted to the extent that rolling can be performed, and the workability can be improved. When the hydrogen permeable film 50 is formed by warm rolling (hot rolling), it is preferable that the Fe content is 0 to 15% in terms of atomic percentage, and the hydrogen permeable film 50 is formed by cold rolling. In this case, it is preferable that the Fe content is 0 to 12% in terms of atomic percentage. From the viewpoint of facilitating the rolling process, it is more preferable that the Fe content is 0 to 10% in terms of atomic percentage.

なお、水素透過膜50の両表面には、一次側の表面における水素分子から水素原子への解離反応、及び二次側の表面における水素原子から水素分子への再結合反応を促進するための触媒層として、Pd又はPd系合金が被覆される。これにより、水素透過速度を向上させることができる。Pd又はPd系合金の被覆に代えて、水素透過膜50の両表面に酸化処理を施してもよい。 On both surfaces of the hydrogen permeation film 50, a catalyst for promoting a dissociation reaction from a hydrogen atom to a hydrogen atom on the surface on the primary side and a recombination reaction from a hydrogen atom to a hydrogen molecule on the surface on the secondary side. As a layer, Pd or a Pd-based alloy is coated. Thereby, the hydrogen permeation rate can be improved. Instead of coating with Pd or a Pd-based alloy, both surfaces of the hydrogen permeable membrane 50 may be subjected to an oxidation treatment.

図1に示した水素分離装置10においては、原料気体供給流路26及び水素回収流路32が水素透過膜50に対して垂直に設けられるが、別の例では、原料気体供給流路26又は水素回収流路32が水素透過膜50に平行に設けられてもよいし、任意の方向に設けられてもよい。また、図1に示した水素分離装置10においては、原料気体排出流路28も水素透過膜50に対して垂直に設けられるが、別の例では、水素透過膜50を透過しなかった原料気体は、水素透過膜50の外周の近傍に設けられた排出口から排出されてもよい。 In the hydrogen separation device 10 shown in FIG. 1, the raw material gas supply flow path 26 and the hydrogen recovery flow path 32 are provided perpendicular to the hydrogen permeation film 50, but in another example, the raw material gas supply flow path 26 or The hydrogen recovery flow path 32 may be provided parallel to the hydrogen permeation film 50, or may be provided in any direction. Further, in the hydrogen separation device 10 shown in FIG. 1, the raw material gas discharge flow path 28 is also provided perpendicular to the hydrogen permeable membrane 50, but in another example, the raw material gas that did not permeate the hydrogen permeable membrane 50. May be discharged from a discharge port provided near the outer periphery of the hydrogen permeable membrane 50.

[水素透過膜の耐久性を向上させるための技術]
つづいて、Pd系合金が触媒層として被覆された非Pd系金属又は非Pd系合金の水素透過膜(以下、「複合膜」ともいう)を使用する水素透過装置において、複合膜の水素透過性能及び耐久性を向上させる技術について説明する。
[Technology for improving the durability of hydrogen permeable membrane]
Subsequently, in a hydrogen permeation device using a hydrogen permeation membrane (hereinafter, also referred to as “composite membrane”) of a non-Pd metal or non-Pd alloy coated with a Pd alloy as a catalyst layer, the hydrogen permeation performance of the composite membrane And the technique for improving durability will be described.

[触媒層の組成の制御]
図2は、純Vの水素透過膜に純Pdの触媒層を被覆した複合膜の550℃における水素透過能の時間変化を示す。一次側の圧力は400kPaとし、二次側の圧力は200kPaとした。水素の供給を開始してすぐに透過流速が減少し始め、わずか30分でほぼゼロになった。複合膜を高温下で使用したことにより水素透過膜のVと触媒層のPdが相互拡散したことが、このような水素透過能の急速な劣化の主要な要因の一つであろうと推測される。
[Control of catalyst layer composition]
FIG. 2 shows the time change of the hydrogen permeability at 550 ° C. of a composite membrane in which a pure V hydrogen permeable membrane is coated with a pure Pd catalyst layer. The pressure on the primary side was 400 kPa, and the pressure on the secondary side was 200 kPa. Immediately after starting the supply of hydrogen, the permeation flow rate began to decrease and became almost zero in just 30 minutes. It is speculated that the mutual diffusion of V of the hydrogen permeable membrane and Pd of the catalyst layer due to the use of the composite membrane at high temperature may be one of the major causes of such rapid deterioration of hydrogen permeability. ..

図3は、VとFeの合金の水素透過膜にPdとAgの合金の触媒層を被覆した複合膜の300℃における水素透過能の時間変化を示す。一次側の圧力は200kPaとし、二次側の圧力は10kPaとした。水素透過膜は、原子百分率でFeを10%含むVにより形成されたものであり、触媒層は、原子百分率でAgを27%含むPdで形成されたものである。透過流速は、40日以上経過してもほとんど減少しておらず、図2に示した場合に比べて非常に高い安定性を有することが分かった。 FIG. 3 shows the time change of the hydrogen permeability at 300 ° C. of the composite membrane in which the hydrogen permeable membrane of the alloy of V and Fe is coated with the catalyst layer of the alloy of Pd and Ag. The pressure on the primary side was 200 kPa, and the pressure on the secondary side was 10 kPa. The hydrogen permeable membrane is formed of V containing 10% of Fe in the atomic percentage, and the catalyst layer is formed of Pd containing 27% of Ag in the atomic percentage. It was found that the permeation flow velocity hardly decreased even after 40 days or more, and had a very high stability as compared with the case shown in FIG.

以上の結果より、複合膜の劣化速度を抑え、耐久性を向上させるためには、使用温度を低くすることも有効な手段の一つであるが、触媒層として純PdではなくPd系合金を使用することも、耐久性の向上に寄与することが示唆される。 From the above results, in order to suppress the deterioration rate of the composite film and improve the durability, lowering the operating temperature is one of the effective means, but a Pd-based alloy is used as the catalyst layer instead of pure Pd. It is suggested that the use also contributes to the improvement of durability.

そこで、本発明者らは、触媒層におけるPdとAgの組成が異なる複数の複合膜の試料を作製して水素透過試験を実施し、触媒層を形成するPd系合金におけるPdとAgの最適な組成を検討した。 Therefore, the present inventors prepared a sample of a plurality of composite membranes having different compositions of Pd and Ag in the catalyst layer, conducted a hydrogen permeation test, and optimally selected Pd and Ag in the Pd-based alloy forming the catalyst layer. The composition was examined.

Feを原子百分率で10%含むVの合金(V−10%Fe)により形成された水素透過膜(厚さ:100μm)を洗浄し、1000℃で24時間熱処理した後、RFスパッタリングによりPd合金(Pd−x%Ag)を両面に約200nm被覆して複合膜の試料を作製した。複合膜を水素分離装置10の水素透過膜50として設置し、温度350℃、一次側圧力400kPa、二次側圧力103kPaの条件で透過流速が安定するまで運転した後、温度450℃、500℃、又は550℃まで急速に昇温し、一次側圧力400kPa、二次側圧力103kPaで水素透過試験を実施し、水素透過流速の経時変化を記録した。 A hydrogen permeable film (thickness: 100 μm) formed of a V alloy (V-10% Fe) containing 10% of Fe in atomic percentage is washed, heat-treated at 1000 ° C. for 24 hours, and then Pd alloy (Pd alloy) by RF sputtering. Pd-x% Ag) was coated on both sides at about 200 nm to prepare a composite film sample. The composite film was installed as the hydrogen permeable film 50 of the hydrogen separator 10 and operated under the conditions of a temperature of 350 ° C., a primary side pressure of 400 kPa, and a secondary side pressure of 103 kPa until the permeation flow velocity became stable, and then the temperatures were 450 ° C. and 500 ° C. Alternatively, the temperature was rapidly raised to 550 ° C., a hydrogen permeation test was carried out at a primary side pressure of 400 kPa and a secondary side pressure of 103 kPa, and changes over time in the hydrogen permeation flow velocity were recorded.

図4は、VとFeの合金の水素透過膜にPdとAgの合金の触媒層を被覆した複合膜の550℃における水素透過能の時間変化を示す。上記の手順により作製したV−10%Feの水素透過膜にPd−27%Agを被覆した複合膜を550℃で使用した場合、図3に示した300℃で使用した場合よりも速く透過流速が減少するが、図2に示した純Pdを純V膜に被覆した場合と比較して耐久性が高い。透過流速が開始直後の透過流速から20%減少した時点までの時間を20%劣化時間t0.2と定義すると、V−10%Feの水素透過膜にPd−27%Agを被覆した複合膜を550℃で使用した場合の20%劣化時間t0.2は、図4に示すように、3.3時間である。 FIG. 4 shows the time change of the hydrogen permeability at 550 ° C. of the composite membrane in which the hydrogen permeable membrane of the alloy of V and Fe is coated with the catalyst layer of the alloy of Pd and Ag. When a composite membrane in which a hydrogen permeable membrane of V-10% Fe prepared by the above procedure is coated with Pd-27% Ag is used at 550 ° C., the permeation flow velocity is faster than when it is used at 300 ° C. shown in FIG. However, the durability is higher than that in the case where the pure Pd shown in FIG. 2 is coated on the pure V film. If the time from the permeation flow velocity immediately after the start to the time when the permeation flow velocity decreases by 20% is defined as the 20% deterioration time t 0.2 , a composite membrane in which a hydrogen permeation membrane of V-10% Fe is coated with Pd-27% Ag. The 20% deterioration time t 0.2 when used at 550 ° C. is 3.3 hours as shown in FIG.

図5は、触媒層の組成と劣化時間との関係を示す。450℃における水素透過試験では、触媒層におけるAgの濃度が約20〜30%のときにt0.2が最大となった。500℃における水素透過試験では、触媒層におけるAgの濃度が約10〜30%のときにt0.2が最大となった。550℃における水素透過試験では、触媒層におけるAgの濃度が約10〜25%のときにt0.2が最大となった。 FIG. 5 shows the relationship between the composition of the catalyst layer and the deterioration time. In the hydrogen permeation test at 450 ° C., t 0.2 was the maximum when the concentration of Ag in the catalyst layer was about 20 to 30%. In the hydrogen permeation test at 500 ° C., t 0.2 was the maximum when the concentration of Ag in the catalyst layer was about 10 to 30%. In the hydrogen permeation test at 550 ° C., t 0.2 was the maximum when the concentration of Ag in the catalyst layer was about 10 to 25%.

以上の結果より、複合膜の触媒層を形成するPd系合金におけるAgの最適な濃度は、5〜40%、より好ましくは5〜30%、更に好ましくは10〜30%である。より具体的には、450℃において複合膜を使用する場合の触媒層のAgの最適な濃度は、劣化時間t0.2が40時間以上となる5〜40%、より好ましくは劣化時間t0.2が70時間以上となる7〜40%、更に好ましくは劣化時間t0.2が100時間以上となる10〜35%である。500℃において複合膜を使用する場合の触媒層のAgの最適な濃度は、劣化時間t0.2が2時間以上となる2〜40%、より好ましくは劣化時間t0.2が5時間以上となる5〜40%、更に好ましくは劣化時間t0.2が10時間以上となる10〜40%、更に好ましくは劣化時間t0.2が20時間以上となる15〜30%である。550℃において複合膜を使用する場合の触媒層のAgの最適な濃度は、劣化時間t0.2が0.8時間以上となる5〜40%、より好ましくは劣化時間t0.2が2時間以上となる10〜35%、更に好ましくは劣化時間t0.2が3時間以上となる15〜30%である。 From the above results, the optimum concentration of Ag in the Pd-based alloy forming the catalyst layer of the composite film is 5 to 40%, more preferably 5 to 30%, still more preferably 10 to 30%. More specifically, the optimum concentration of Ag in the catalyst layer when the composite membrane is used at 450 ° C. is 5 to 40% when the deterioration time t 0.2 is 40 hours or more, more preferably the deterioration time t 0. .2 is 7 to 40% when it is 70 hours or more, and more preferably 10 to 35% when the deterioration time t 0.2 is 100 hours or more. When the composite membrane is used at 500 ° C., the optimum concentration of Ag in the catalyst layer is 2 to 40% in which the deterioration time t 0.2 is 2 hours or more, and more preferably the deterioration time t 0.2 is 5 hours or more. It is 5 to 40%, more preferably 10 to 40% in which the deterioration time t 0.2 is 10 hours or more, and further preferably 15 to 30% in which the deterioration time t 0.2 is 20 hours or more. When the composite membrane is used at 550 ° C., the optimum concentration of Ag in the catalyst layer is 5 to 40% when the deterioration time t 0.2 is 0.8 hours or more, and more preferably the deterioration time t 0.2 is 2. The time is 10 to 35%, more preferably the deterioration time t 0.2 is 15 to 30%, which is 3 hours or more.

図6は、水素透過試験温度に対する劣化時間の変化を示す。横軸は水素透過試験温度の逆数であり、縦軸は劣化時間の逆数を劣化速度としてプロットしている。温度の逆数に対して、20%劣化速度rdeg_0.2(=1/t0.2)をプロットすると、ほぼ直線となる。したがって、近似式により複合膜の寿命を推測することができる。原子百分率で5〜40%のAgを含むPd合金の触媒層を被覆した複合膜は、純Pdの触媒層を被覆した複合膜よりも劣化速度が遅く、耐久性が高いことが分かる。10〜20%のAgを含むPd合金の触媒層を被覆した複合膜は、とくに耐久性が高い。 FIG. 6 shows the change in the deterioration time with respect to the hydrogen permeation test temperature. The horizontal axis is the reciprocal of the hydrogen permeation test temperature, and the vertical axis is the reciprocal of the deterioration time plotted as the deterioration rate. When the 20% deterioration rate r deg_0.2 (= 1 / t 0.2 ) is plotted against the reciprocal of the temperature, it becomes almost a straight line. Therefore, the life of the composite film can be estimated from the approximate expression. It can be seen that the composite film coated with the catalyst layer of the Pd alloy containing Ag at an atomic percentage of 5 to 40% has a slower deterioration rate and higher durability than the composite film coated with the catalyst layer of pure Pd. A composite membrane coated with a catalyst layer of a Pd alloy containing 10 to 20% Ag has particularly high durability.

本開示に係る水素透過装置において、Ag以外の金属元素を含むPd系合金を触媒層としてもよい。AgとAg以外の金属元素の双方を含むPd系合金を触媒層としてもよい。Ag以外の金属元素は、例えば、Wであってもよい。 In the hydrogen permeation apparatus according to the present disclosure, a Pd-based alloy containing a metal element other than Ag may be used as the catalyst layer. A Pd-based alloy containing both Ag and a metal element other than Ag may be used as the catalyst layer. The metal element other than Ag may be, for example, W.

図7は、触媒層の組成と透過流速比の時間変化との関係を示す。V−10%Feの水素透過膜にAgを28%とWを0.8%含むPd系合金を触媒層として被覆した複合膜は、Agを27%含むPd系合金を触媒層として被覆した複合膜よりも更に高い耐久性を有することが示された。 FIG. 7 shows the relationship between the composition of the catalyst layer and the time change of the permeation flow velocity ratio. The composite membrane in which a V-10% Fe hydrogen permeable membrane is coated with a Pd-based alloy containing 28% Ag and 0.8% W as a catalyst layer is a composite membrane coated with a Pd-based alloy containing 27% Ag as a catalyst layer. It has been shown to have even higher durability than membranes.

したがって、本開示に係る水素透過装置は、純金属又は合金により形成された水素透過膜と、前記水素透過膜の表面にパラジウムと銀の合金により形成された触媒層と、を備え、前記触媒層におけるパラジウムと銀の組成比は、一次側圧力が400kPa、二次側圧力が103kPa、温度が450℃、500℃、又は550℃の条件下で前記水素透過膜の水素透過試験を実施した場合に透過流速が開始直後の透過流速から20%減少する時点までの時間である20%劣化時間t0.2が[0030]〜[0031]に上述した値の範囲となるような組成比であることを特徴とする。例えば、PdとAgの合金を使用する場合、Agの含有量は上述した値の範囲であってもよい。この態様によると、水素透過装置の耐久性を向上させることができる。 Therefore, the hydrogen permeation apparatus according to the present disclosure includes a hydrogen permeation membrane formed of a pure metal or an alloy, and a catalyst layer formed of an alloy of palladium and silver on the surface of the hydrogen permeation membrane. The composition ratio of palladium and silver in the above is when the hydrogen permeation test of the hydrogen permeation membrane is carried out under the conditions of a primary side pressure of 400 kPa, a secondary side pressure of 103 kPa, and a temperature of 450 ° C., 500 ° C., or 550 ° C. The composition ratio is such that the 20% deterioration time t 0.2, which is the time from the permeation flow velocity immediately after the start to the time when the permeation flow velocity decreases by 20%, is in the range of the above-mentioned values in [0030] to [0031]. It is characterized by. For example, when an alloy of Pd and Ag is used, the Ag content may be in the range of the above-mentioned values. According to this aspect, the durability of the hydrogen permeation device can be improved.

[水素透過膜の結晶方位の制御]
本発明者らは、上述した水素透過試験の実施後に、複合膜の表面の走査型電子顕微鏡(SEM)像の解析及びエネルギー分散型X線分析(EDX)を実施した結果、結晶方位によって劣化の挙動が異なるという知見を得た。そこで、V合金の膜の表面にPd層を被覆した複合膜の熱処理による構造変化とV合金の結晶方位との関係を調査した。
[Control of crystal orientation of hydrogen permeable membrane]
After the above-mentioned hydrogen permeation test, the present inventors performed a scanning electron microscope (SEM) image analysis and an energy dispersive X-ray analysis (EDX) on the surface of the composite film, and as a result, the deterioration was caused by the crystal orientation. We obtained the finding that the behavior is different. Therefore, the relationship between the structural change due to heat treatment of the composite film in which the surface of the V alloy film was coated with the Pd layer and the crystal orientation of the V alloy was investigated.

まず、高純度Vを冷間鍛造し、切削加工により2mm×10mm×10mmの試料片を作製した。この試料片を、5×10−3Pa、1000℃で30分間熱処理した後、1μmのダイヤモンドパッドで研磨し、バフ仕上げ、アルゴンイオンミリングを実施した。この熱処理前の試料の表面を光学顕微鏡で観察するとともに、電子線後方散乱回折(Electron Back Scattered Diffraction Pattern:EBSD)法により結晶方位を解析した。つづいて、試料片の表面をPd−Ag合金で被覆し、5×10−3Pa、500℃で24時間熱処理した。この熱処理後の試料の表面を光学顕微鏡で観察するとともに、EBSD法により結晶方位を解析した。 First, high-purity V was cold forged, and a sample piece of 2 mm × 10 mm × 10 mm was prepared by cutting. This sample piece was heat-treated at 5 × 10 -3 Pa at 1000 ° C. for 30 minutes, polished with a 1 μm diamond pad, buffed, and subjected to argon ion milling. The surface of the sample before this heat treatment was observed with an optical microscope, and the crystal orientation was analyzed by the Electron Back Scattered Diffraction Pattern (EBSD) method. Subsequently, the surface of the sample piece was coated with a Pd-Ag alloy and heat-treated at 5 × 10 -3 Pa at 500 ° C. for 24 hours. The surface of the sample after this heat treatment was observed with an optical microscope, and the crystal orientation was analyzed by the EBSD method.

図8は、熱処理後の複合膜の表面のSEM像である。複合膜の表面には、結晶方位の異なる複数の結晶粒が形成されている。図8に示した(1)〜(7)の位置において、表面と断面の構造を分析した。(1)〜(4)は、結晶方位が<111>方位である結晶粒に対応し、(5)及び(6)は、結晶方位が<101>方位である結晶粒に対応し、(7)は、結晶方位が<101>方位である結晶粒と別の方位である結晶粒との粒界部分に対応する。なお、Vは体心立方格子構造を有しており、[110]、[101]、[011]などの方位は結晶学的に等価であるから、代表して<101>と表記する。 FIG. 8 is an SEM image of the surface of the composite film after the heat treatment. A plurality of crystal grains having different crystal orientations are formed on the surface of the composite film. The surface and cross-sectional structures were analyzed at the positions (1) to (7) shown in FIG. (1) to (4) correspond to crystal grains having a crystal orientation of <111> orientation, and (5) and (6) correspond to crystal grains having a crystal orientation of <101> orientation, and (7). ) Corresponds to the grain boundary portion between the crystal grains whose crystal orientation is the <101> orientation and the crystal grains whose orientation is another orientation. Since V has a body-centered cubic lattice structure and the orientations of [110], [101], [011] and the like are crystallographically equivalent, it is represented as <101>.

図9は、図8に示した複合膜の(1)〜(7)の位置のSEM像である。結晶方位が<101>方位である(5)の表面は、その他の表面に比べて平坦であり、熱処理による劣化が少ないことが示された。なお、(6)も結晶方位が<101>方位である結晶粒に対応しているが、欠陥に起因すると思われる凹凸が生じている。 FIG. 9 is an SEM image of the positions (1) to (7) of the composite film shown in FIG. It was shown that the surface of (5) having a crystal orientation of <101> orientation was flatter than the other surfaces and was less deteriorated by heat treatment. It should be noted that (6) also corresponds to the crystal grains whose crystal orientation is <101> orientation, but irregularities that are considered to be caused by defects are generated.

図10は、図8に示した複合膜の(1)〜(7)の位置の断面のSEM像である。結晶方位が<101>方位である(5)の断面は、Pd層とV合金膜との間の相互拡散がほとんどなく、触媒層と水素透過膜の構造が良好に維持されている。 FIG. 10 is an SEM image of a cross section of the composite film shown in FIG. 8 at positions (1) to (7). In the cross section of (5) in which the crystal orientation is <101> orientation, there is almost no mutual diffusion between the Pd layer and the V alloy film, and the structure of the catalyst layer and the hydrogen permeation membrane is well maintained.

図11は、熱処理後の複合膜のオージェ電子分光法(Auger Electron Spectroscopy:AES)による分析結果を結晶方位ごとに示す。同じ酸素分圧下であっても、結晶方位によってVの挙動が異なっている。PdとVの相互拡散は、<101>方位、<001>方位、<111>方位の順に大きくなっている。 FIG. 11 shows the analysis results of the composite film after the heat treatment by Auger Electron Spectroscopy (AES) for each crystal orientation. Even under the same oxygen partial pressure, the behavior of V differs depending on the crystal orientation. The mutual diffusion of Pd and V increases in the order of <101> azimuth, <001> azimuth, and <111> azimuth.

以上の実験結果から、V合金の表面をPd−Ag合金で被覆した複合膜を熱処理したときのPdとVの相互拡散は結晶方位によって異なり、<101>方位、<001>方位、<111>方位の順に大きくなることが示された。したがって、結晶方位を<101>方位に配向させたV合金を使用することにより、V合金とPd−Ag合金の複合膜の耐久性を向上させることができると考えられる。 From the above experimental results, the mutual diffusion of Pd and V when the composite film in which the surface of the V alloy is coated with the Pd-Ag alloy is heat-treated differs depending on the crystal orientation, and is different depending on the crystal orientation, <101> orientation, <001> orientation, and <111>. It was shown to increase in the order of orientation. Therefore, it is considered that the durability of the composite film of the V alloy and the Pd-Ag alloy can be improved by using the V alloy in which the crystal orientation is oriented in the <101> orientation.

上記の知見を確認するために、(110)、(111)、及び(100)の面方位を有する純V単結晶の表面にPd−25Agを被覆した試料を用いて400℃で連続水素透過試験を実施し、複合膜の耐久性を評価した。1次側水素圧力は20kPaとし、2次側圧力は真空とした。試料の厚さは、(110)方位は0.319mm、(111)方位は0.449mm、(100)方位は0.568mmであった。 In order to confirm the above findings, a continuous hydrogen permeation test at 400 ° C. was performed using a sample in which the surface of a pure V single crystal having the plane orientations of (110), (111), and (100) was coated with Pd-25Ag. Was carried out, and the durability of the composite film was evaluated. The hydrogen pressure on the primary side was 20 kPa, and the pressure on the secondary side was vacuum. The thickness of the sample was 0.319 mm in the (110) orientation, 0.449 mm in the (111) orientation, and 0.568 mm in the (100) orientation.

図12は、純V単結晶試料を用いた連続水素透過試験の結果を示す。試験開始から168時間後の水素透過度は、結晶方位によって顕著に異なっている。(110)方位の試料では、水素透過度が168時間経過後もほとんど低下しておらず、高い耐久性を有することが示された。水素透過度の劣化速度は、(110)方位<(111)方位<(100)方位の順に速くなる。 FIG. 12 shows the results of a continuous hydrogen permeation test using a pure V single crystal sample. The hydrogen permeability after 168 hours from the start of the test is significantly different depending on the crystal orientation. In the sample in the (110) orientation, the hydrogen permeability was hardly reduced even after the lapse of 168 hours, indicating that the sample had high durability. The deterioration rate of hydrogen permeability increases in the order of (110) orientation <(111) orientation <(100) orientation.

図13は、水素透過試験前後の純V単結晶試料の表面のSEM像である。図13(a)は、純V単結晶の表面にPd−25Agをスパッタリングした直後のSEM像であり、図13(b)は、連続水素透過試験後のSEM像である。(110)面は、連続水素透過試験後も平坦であり、良好な状態が維持されている。(100)面及び(111)面は、連続水素透過試験後には表面に凹凸が生じており、PdとVが相互拡散したことが示唆される。 FIG. 13 is an SEM image of the surface of the pure V single crystal sample before and after the hydrogen permeation test. FIG. 13 (a) is an SEM image immediately after sputtering Pd-25Ag on the surface of a pure V single crystal, and FIG. 13 (b) is an SEM image after a continuous hydrogen permeation test. The surface (110) is flat even after the continuous hydrogen permeation test, and is maintained in a good state. The surfaces of the (100) and (111) planes have irregularities after the continuous hydrogen permeation test, suggesting that Pd and V are mutually diffused.

したがって、本開示に係る水素透過装置は、純金属又は合金により形成された水素透過膜と、前記水素透過膜の表面に設けられた触媒層と、を備え、前記触媒層との境界面における前記水素透過膜の金属又は合金の所定比率以上が特定の結晶方位に配向したことを特徴とする。この態様によると、水素透過装置の耐久性などの特性を向上させることができる。 Therefore, the hydrogen permeation device according to the present disclosure includes a hydrogen permeation membrane formed of a pure metal or alloy and a catalyst layer provided on the surface of the hydrogen permeation membrane, and the hydrogen permeation device at the interface with the catalyst layer. It is characterized in that more than a predetermined ratio of the metal or alloy of the hydrogen permeable membrane is oriented in a specific crystal orientation. According to this aspect, characteristics such as durability of the hydrogen permeation device can be improved.

水素透過膜は、体心立方格子構造を有する金属元素の純金属又は合金により形成されてもよい。水素透過膜は、5族元素の純金属又は5族元素を主たる金属とする合金により形成されてもよい。水素透過膜は、Vの純金属又はVとFeの合金により形成されてもよい。 The hydrogen permeable membrane may be formed of a pure metal or alloy of a metal element having a body-centered cubic lattice structure. The hydrogen permeable membrane may be formed of a pure metal of a Group 5 element or an alloy containing a Group 5 element as a main metal. The hydrogen permeable membrane may be formed of a pure metal of V or an alloy of V and Fe.

触媒層は、純Pd、又は、Pdを主たる金属とする合金により形成されてもよい。触媒層は、PdとAg及びWのうち一方若しくは双方との合金により形成されてもよい。 The catalyst layer may be formed of pure Pd or an alloy containing Pd as a main metal. The catalyst layer may be formed of an alloy of Pd and one or both of Ag and W.

Pd系合金におけるPdとPd以外の金属元素との組成比は、一次側圧力が400kPa、二次側圧力が103kPa、温度が450℃、500℃、又は550℃の条件下で水素透過膜の水素透過試験を実施した場合に透過流速が開始直後の透過流速から20%減少する時点までの時間である20%劣化時間t0.2が[0030]〜[0031]に上述した値の範囲となるような組成比であってもよい。例えば、PdとAgの合金を使用する場合、Agの含有量は[0030]〜[0032]に上述した値の範囲であってもよい。 The composition ratio of Pd and metal elements other than Pd in the Pd alloy is as follows: hydrogen in the hydrogen permeation film under the conditions of a primary pressure of 400 kPa, a secondary pressure of 103 kPa, and a temperature of 450 ° C, 500 ° C, or 550 ° C. When the permeation test is carried out, the 20% deterioration time t 0.2, which is the time from the permeation flow velocity immediately after the start to the time when the permeation flow velocity decreases by 20%, is in the range of the above-mentioned values in [0030] to [0031]. The composition ratio may be such that. For example, when an alloy of Pd and Ag is used, the content of Ag may be in the range of the above-mentioned values in [0030] to [0032].

特定の結晶方位は、<101>方位であってもよい。この態様によると、水素透過膜を構成する金属原子と触媒層を構成する金属原子との相互拡散を抑えることができるので、水素透過装置の耐久性を向上させることができる。 The specific crystal orientation may be the <101> orientation. According to this aspect, the mutual diffusion between the metal atoms constituting the hydrogen permeation membrane and the metal atoms constituting the catalyst layer can be suppressed, so that the durability of the hydrogen permeation device can be improved.

水素透過膜の表面において、特定の結晶方位に配向した領域の比率は、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上であってもよい。特定の結晶方位に配向した領域が、他の結晶方位に配向した領域よりも大きくてもよい。結晶方位の比率は、上述したEBSD法による解析により算出することができる。 On the surface of the hydrogen permeable membrane, the proportions of regions oriented in a specific crystal orientation are, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80. It may be% or more and 90% or more. The region oriented in a particular crystal orientation may be larger than the region oriented in another crystal orientation. The ratio of crystal orientations can be calculated by the analysis by the EBSD method described above.

上述したように、水素透過装置の耐久性を向上させる観点からは、水素透過膜を形成する純金属又は合金の結晶方位を<101>方位に配向させることが好ましいが、別の観点からは、別の方位に配向させることが好ましい場合もある。例えば、流体に含まれる水素を除去するために水素透過装置を使用する場合、流体に含まれる水素が選択的に水素透過膜を透過して除去された後、いったん水素透過膜を透過した水素が一次側圧力と二次側圧力との圧力差が逆転するなどの要因により流体側に戻ってしまうのを防ぐことが好ましい。このような観点からは、水素透過膜の使用後に水素透過能が速やかに失活するように、水素透過膜を形成する純金属又は合金の結晶方位を<001>方位又は<111>方位に配向させてもよい。 As described above, from the viewpoint of improving the durability of the hydrogen permeation device, it is preferable to orient the crystal orientation of the pure metal or alloy forming the hydrogen permeation membrane in the <101> orientation, but from another viewpoint, it is preferable. It may be preferable to orient it in a different orientation. For example, when a hydrogen permeation device is used to remove hydrogen contained in a fluid, hydrogen contained in the fluid is selectively permeated through the hydrogen permeation film to be removed, and then hydrogen once permeated through the hydrogen permeation film is removed. It is preferable to prevent the pressure difference between the primary side pressure and the secondary side pressure from returning to the fluid side due to factors such as reversal. From this point of view, the crystal orientation of the pure metal or alloy forming the hydrogen permeable membrane is oriented in the <001> orientation or the <111> orientation so that the hydrogen permeability is rapidly deactivated after the use of the hydrogen permeable membrane. You may let me.

[薄膜の結晶方位の制御方法]
特定の結晶方位に配向した純金属又は合金の薄膜を製造するための方法として、金属単結晶を形成するなど、既知の任意の技術を利用可能である。本開示では、より安価で容易な方法として、純金属又は合金により水素透過膜を形成するステップと、水素透過膜の表面の純金属又は合金のうち特定の結晶方位に配向した領域を増加させるステップと、を備える製造方法を新たに提案する。特定の結晶方位に配向した領域を増加させるステップは、水素透過膜の表面の純金属又は合金の結晶粒径を微細化するための処理を実行するステップを含んでもよい。結晶粒径を微細化するための処理は、任意の技術を利用してもよいが、例えば、以下の4つの方法がある。第1の方法は、水素透過膜の表面をショットブラスト加工する方法である。第2の方法は、アークプラズマ法により水素透過膜の表面に金属原子を蒸着させる方法である。第3の方法は、水素透過膜を高圧ねじり(High-Pressure Torsion:HPT)加工する方法である。第4の方法は、水素透過膜を高圧スライド(High-Pressure Sliding:HPS)加工する方法である。ショットブラスト加工、アークプラズマ法による蒸着、高圧ねじり加工、高圧スライド加工は、いずれも、既知の任意の技術を利用可能である。特定の結晶方位に配向した領域を増加させるステップは、熱処理を実行するステップを含んでもよい。
[Method of controlling crystal orientation of thin film]
Any known technique is available, such as forming a metal single crystal, as a method for producing a thin film of pure metal or alloy oriented in a particular crystal orientation. In the present disclosure, as a cheaper and easier method, a step of forming a hydrogen permeable membrane from a pure metal or alloy and a step of increasing a region of the pure metal or alloy on the surface of the hydrogen permeable membrane oriented in a specific crystal orientation. We propose a new manufacturing method that includes. The step of increasing the region oriented in a specific crystal orientation may include a step of performing a process for refining the crystal grain size of a pure metal or alloy on the surface of a hydrogen permeable membrane. Any technique may be used for the treatment for refining the crystal grain size, and for example, there are the following four methods. The first method is a method of shot blasting the surface of the hydrogen permeable membrane. The second method is a method of depositing metal atoms on the surface of a hydrogen permeable membrane by an arc plasma method. The third method is a method of processing a hydrogen permeable membrane by high-pressure torsion (HPT). The fourth method is a method of high-pressure sliding (HPS) processing of a hydrogen permeable membrane. Any known technique can be used for shot blasting, vapor deposition by the arc plasma method, high-pressure twisting, and high-pressure sliding. The step of increasing the region oriented in a particular crystal orientation may include performing a heat treatment.

図14は、本開示に係る第1の方法により製造した薄膜のX線回折結果を示す。最上段は、圧延により製造した試料のX線回折結果を示す。圧延により(110)面のピークはほぼ消失しており、(200)面や(211)面のピークが優勢となる。中段は、圧延した試料の表面をショットブラスト加工した試料のX線回折結果を示す。ショットブラスト加工により(110)面のピークが優勢となる。このX線回折結果は、結晶がランダムに配向した試料のものとほぼ同様である。すなわち、ショットブラスト加工により表面の結晶粒をランダムに配向させることができるので、圧延によりほぼ消失してしまった(110)面に配向した結晶粒を再び生じさせ、増加させることができる。最下段は、ショットブラスト加工した試料を、800℃、5×10−3Paで15分間熱処理した試料のX線回折結果を示す。熱処理により、それぞれのピークが急峻になっている。 FIG. 14 shows the X-ray diffraction result of the thin film produced by the first method according to the present disclosure. The top row shows the X-ray diffraction results of the sample produced by rolling. By rolling, the peak on the (110) plane has almost disappeared, and the peaks on the (200) plane and the (211) plane become dominant. The middle stage shows the X-ray diffraction results of the sample obtained by shotblasting the surface of the rolled sample. Due to shot blasting, the peak on the (110) surface becomes predominant. The result of this X-ray diffraction is almost the same as that of the sample in which the crystals are randomly oriented. That is, since the crystal grains on the surface can be randomly oriented by the shot blasting process, the crystal grains oriented on the (110) plane, which has almost disappeared by rolling, can be regenerated and increased. The bottom row shows the X-ray diffraction results of the shot-blasted sample heat-treated at 800 ° C. and 5 × 10 -3 Pa for 15 minutes. Due to the heat treatment, each peak becomes steep.

図15は、本開示に係る第2の方法により製造した薄膜のX線回折結果を示す。最上段は、図14の最上段と同じ圧延後の試料のX線回折結果を示す。中段は、圧延した試料の表面にアークプラズマ法によりFe原子を蒸着させた試料のX線回折結果を示す。薄膜の表面に被覆されたFeは、主に(110)面に配向している。したがって、試料の表面にアークプラズマ法により金属原子を蒸着させることにより、特定の結晶方位に配向した領域を増加させることができる。最下段は、Fe原子を蒸着させた試料を、500℃、5×10−3Pa以下で1時間熱処理した試料のX線回折結果を示す。熱処理によりFeの(110)面のピークがやや成長している。したがって、試料の表面にアークプラズマ法により金属原子を蒸着させた後、熱処理を実施することにより、特定の結晶方位に配向した領域を更に増加させることができる。 FIG. 15 shows the X-ray diffraction results of the thin film produced by the second method according to the present disclosure. The uppermost stage shows the same X-ray diffraction results of the sample after rolling as in the uppermost stage of FIG. The middle stage shows the X-ray diffraction results of the sample in which Fe atoms are vapor-deposited on the surface of the rolled sample by the arc plasma method. The Fe coated on the surface of the thin film is mainly oriented on the (110) plane. Therefore, by depositing metal atoms on the surface of the sample by the arc plasma method, it is possible to increase the region oriented in a specific crystal orientation. The bottom row shows the X-ray diffraction results of the sample in which the Fe atom-deposited sample is heat-treated at 500 ° C. and 5 × 10 -3 Pa or less for 1 hour. The peak of the (110) plane of Fe is slightly grown by the heat treatment. Therefore, by depositing metal atoms on the surface of the sample by the arc plasma method and then performing heat treatment, the region oriented in a specific crystal orientation can be further increased.

図16は、本開示に係る第3の方法により製造した薄膜のX線回折結果を示す。最上段は、図14の最上段と同じ圧延後の試料のX線回折結果を示す。中段は、圧延した試料の表面を高圧ねじり加工した試料のX線回折結果を示す。高圧ねじり加工により(110)面のピークが優勢となる。したがって、試料の表面を高圧ねじり加工することにより、特定の結晶方位に配向した領域を増加させることができる。最下段は、高圧ねじり加工した試料を、800℃、5×10−3Paで15分間熱処理した試料のX線回折結果を示す。熱処理により、(110)面のピークと、(110)面と等価な(220)面のピークのみが残り、それ以外のピークはほぼ消失している。したがって、試料の表面を高圧ねじり加工した後、熱処理を実施することにより、特定の結晶方位に配向した領域を更に増加させることができる。第3の方法によれば、表面のほぼ全ての金属が(110)面に配向した薄膜を安価かつ容易に製造することができる。 FIG. 16 shows the X-ray diffraction results of the thin film produced by the third method according to the present disclosure. The uppermost stage shows the same X-ray diffraction results of the sample after rolling as in the uppermost stage of FIG. The middle stage shows the X-ray diffraction results of the sample obtained by high-pressure twisting the surface of the rolled sample. The peak on the (110) plane becomes predominant due to the high-pressure twisting process. Therefore, by high-pressure twisting the surface of the sample, the region oriented in a specific crystal orientation can be increased. The bottom row shows the X-ray diffraction results of a sample obtained by heat-treating a high-pressure twisted sample at 800 ° C. and 5 × 10 -3 Pa for 15 minutes. By the heat treatment, only the peak of the (110) plane and the peak of the (220) plane equivalent to the (110) plane remain, and the other peaks are almost eliminated. Therefore, by performing heat treatment after high-pressure twisting the surface of the sample, the region oriented in a specific crystal orientation can be further increased. According to the third method, a thin film in which almost all the metals on the surface are oriented on the (110) plane can be produced inexpensively and easily.

以上、実施例をもとに本開示を説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the examples. This embodiment is an example, and it will be understood by those skilled in the art that various modifications are possible for each of these components and combinations of each processing process, and that such modifications are also within the scope of the present disclosure. ..

10・・・水素分離装置、20・・・一次側配管、22・・・外管、24・・・内管、26・・・原料気体供給流路、28・・・原料気体排出流路、30・・・二次側配管、32・・・水素回収流路、40・・・一次側ガスケット、42・・・二次側ガスケット、50・・・水素透過膜。 10 ... Hydrogen separator, 20 ... Primary side piping, 22 ... Outer pipe, 24 ... Inner pipe, 26 ... Raw material gas supply flow path, 28 ... Raw material gas discharge flow path, 30 ... Secondary side piping, 32 ... Hydrogen recovery flow path, 40 ... Primary side gasket, 42 ... Secondary side gasket, 50 ... Hydrogen permeable film.

Claims (14)

純金属又は合金により形成された水素透過膜と、
前記水素透過膜の表面に設けられた触媒層と、
を備え、
前記触媒層との境界面における前記水素透過膜の金属又は合金の所定比率以上が特定の結晶方位に配向した水素透過装置。
A hydrogen permeable membrane formed of pure metal or alloy,
A catalyst layer provided on the surface of the hydrogen permeable membrane and
With
A hydrogen permeation device in which a predetermined ratio or more of a metal or alloy of the hydrogen permeation membrane at the interface with the catalyst layer is oriented in a specific crystal orientation.
前記特定の結晶方位は<101>方位である請求項1に記載の水素透過装置。 The hydrogen permeation device according to claim 1, wherein the specific crystal orientation is the <101> orientation. 前記水素透過膜は、体心立方格子構造を有する金属元素の純金属又は合金により形成された請求項1又は2の水素透過装置。 The hydrogen permeation device according to claim 1 or 2, wherein the hydrogen permeation membrane is formed of a pure metal or alloy of a metal element having a body-centered cubic lattice structure. 前記水素透過膜は、5族元素の純金属又は5族元素を主たる金属とする合金により形成された請求項1から3のいずれかの水素透過装置。 The hydrogen permeation device according to any one of claims 1 to 3, wherein the hydrogen permeation membrane is formed of a pure metal of a Group 5 element or an alloy containing a Group 5 element as a main metal. 前記触媒層は、パラジウムの純金属、又は、パラジウムと銀及びタングステンのうち一方若しくは双方との合金により形成された請求項1から4のいずれかの水素透過装置。 The hydrogen permeation device according to any one of claims 1 to 4, wherein the catalyst layer is formed of a pure metal of palladium or an alloy of palladium and one or both of silver and tungsten. 前記触媒層は、パラジウムとパラジウム以外の金属元素との合金により形成され、パラジウムとパラウジム以外の金属元素との組成比は、一次側圧力が400kPa、二次側圧力が103kPa、温度が450℃の条件下で水素透過膜の水素透過試験を実施した場合に透過流速が開始直後の透過流速から20%減少する時点までの時間である20%劣化時間t0.2が40時間以上となるような組成比である請求項1から4のいずれかの水素透過装置。 The catalyst layer is formed of an alloy of palladium and a metal element other than palladium, and the composition ratio of palladium and the metal element other than paraudium is 400 kPa on the primary side pressure, 103 kPa on the secondary side pressure, and 450 ° C. When the hydrogen permeation test of the hydrogen permeation film is carried out under the conditions, the 20% deterioration time t 0.2, which is the time until the permeation flow velocity decreases by 20% from the permeation flow velocity immediately after the start, becomes 40 hours or more. The hydrogen permeation device according to any one of claims 1 to 4, which is a composition ratio. 前記触媒層は、パラジウムと銀の合金により形成され、銀の含有量は原子百分率で5〜40%である請求項1から4のいずれかに記載の水素透過装置。 The hydrogen permeation apparatus according to any one of claims 1 to 4, wherein the catalyst layer is formed of an alloy of palladium and silver, and the silver content is 5 to 40% in atomic percentage. 純金属又は合金により形成された水素透過膜と、
前記水素透過膜の表面に設けられた触媒層と、
を備え、
前記触媒層との境界面における前記水素透過膜の金属又は合金は、(110)面に配向した領域がその他の面に配向した領域よりも大きい水素透過装置。
A hydrogen permeable membrane formed of pure metal or alloy,
A catalyst layer provided on the surface of the hydrogen permeable membrane and
With
The metal or alloy of the hydrogen permeable membrane at the interface with the catalyst layer is a hydrogen permeation device in which the region oriented to the (110) plane is larger than the region oriented to the other plane.
純金属又は合金により形成された水素透過膜と、
前記水素透過膜の表面にパラジウムと銀の合金により形成された触媒層と、
を備え、
前記触媒層におけるパラジウムと銀の組成比は、一次側圧力が400kPa、二次側圧力が103kPa、温度が450℃の条件下で前記水素透過膜の水素透過試験を実施した場合に透過流速が開始直後の透過流速から20%減少する時点までの時間である20%劣化時間t0.2が40時間以上となるような組成比である水素透過装置。
A hydrogen permeable membrane formed of pure metal or alloy,
A catalyst layer formed of an alloy of palladium and silver on the surface of the hydrogen permeable membrane,
With
Regarding the composition ratio of palladium and silver in the catalyst layer, the permeation flow velocity starts when the hydrogen permeation test of the hydrogen permeation film is carried out under the conditions of a primary pressure of 400 kPa, a secondary pressure of 103 kPa and a temperature of 450 ° C. A hydrogen permeation device having a composition ratio such that the 20% deterioration time t 0.2, which is the time from the permeation flow velocity immediately after the permeation to the time when it decreases by 20%, becomes 40 hours or more.
純金属又は合金により水素透過膜を形成するステップと、
前記水素透過膜の表面の純金属又は合金のうち特定の結晶方位に配向した領域を増加させるステップと、
を備える水素透過装置の製造方法。
Steps to form a hydrogen permeable membrane from pure metal or alloy,
A step of increasing the region of the pure metal or alloy on the surface of the hydrogen permeable membrane oriented in a specific crystal orientation, and
A method for manufacturing a hydrogen permeation device.
前記増加させるステップは、前記水素透過膜の表面の純金属又は合金の結晶粒径を微細化するための処理を実行するステップを含む請求項10の水素透過装置の製造方法。 The method for manufacturing a hydrogen permeation device according to claim 10, wherein the step of increasing the step includes a step of executing a process for refining the crystal grain size of the pure metal or alloy on the surface of the hydrogen permeation membrane. 前記結晶粒径を微細化するための処理を実行するステップは、前記水素透過膜の表面をショットブラスト加工、高圧ねじり加工、又は高圧スライド加工するステップを含む請求項11の水素透過装置の製造方法。 The method for manufacturing a hydrogen permeation device according to claim 11, wherein the step of executing the process for refining the crystal grain size includes a step of shot blasting, high-pressure twisting, or high-pressure sliding the surface of the hydrogen permeation membrane. .. 前記結晶粒径を微細化するための処理を実行するステップは、前記水素透過膜の表面にアークプラズマ法により金属原子を蒸着させるステップを含む請求項11の水素透過装置の製造方法。 The method for manufacturing a hydrogen permeation device according to claim 11, wherein the step of executing the process for reducing the crystal grain size includes a step of depositing metal atoms on the surface of the hydrogen permeation film by an arc plasma method. 前記増加させるステップは、前記水素透過膜を熱処理するステップを含む請求項10から13のいずれかの水素透過装置の製造方法。 The method for manufacturing a hydrogen permeation device according to any one of claims 10 to 13, wherein the step of increasing is a step of heat-treating the hydrogen permeation membrane.
JP2019041118A 2019-03-07 2019-03-07 Hydrogen permeation device and method for manufacturing hydrogen permeation device Active JP7388627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041118A JP7388627B2 (en) 2019-03-07 2019-03-07 Hydrogen permeation device and method for manufacturing hydrogen permeation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041118A JP7388627B2 (en) 2019-03-07 2019-03-07 Hydrogen permeation device and method for manufacturing hydrogen permeation device

Publications (2)

Publication Number Publication Date
JP2020142197A true JP2020142197A (en) 2020-09-10
JP7388627B2 JP7388627B2 (en) 2023-11-29

Family

ID=72355242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041118A Active JP7388627B2 (en) 2019-03-07 2019-03-07 Hydrogen permeation device and method for manufacturing hydrogen permeation device

Country Status (1)

Country Link
JP (1) JP7388627B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045663A (en) * 2000-08-04 2002-02-12 Kobe Steel Ltd Method for manufacturing hydrogen permselective member
JP2002219343A (en) * 2000-11-24 2002-08-06 Sumitomo Electric Ind Ltd Material-separating structure and method for producing the same
JP2006239527A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP2017177024A (en) * 2016-03-30 2017-10-05 独立行政法人国立高等専門学校機構 Manufacturing method of hydrogen separation membrane, and hydrogen separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045663A (en) * 2000-08-04 2002-02-12 Kobe Steel Ltd Method for manufacturing hydrogen permselective member
JP2002219343A (en) * 2000-11-24 2002-08-06 Sumitomo Electric Ind Ltd Material-separating structure and method for producing the same
JP2006239527A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
JP2017177024A (en) * 2016-03-30 2017-10-05 独立行政法人国立高等専門学校機構 Manufacturing method of hydrogen separation membrane, and hydrogen separation membrane

Also Published As

Publication number Publication date
JP7388627B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP2016183412A (en) High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
JP2019005684A (en) Hydrogen separation device and hydrogen separation system
JP2006118035A (en) Crystalline dual-phase hydrogen permeable alloy and crystalline dual-phase hydrogen permeable alloy film
JP2007077445A (en) Hydrogen permeable alloy and method for producing the same
JP2006265638A (en) Compound phase hydrogen permeation alloy and hydrogen permeation alloy membrane
US9260304B2 (en) Hydrogen separation device and method for operating same
JP7388627B2 (en) Hydrogen permeation device and method for manufacturing hydrogen permeation device
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
WO2007105594A1 (en) Hydrogen-permeable separation thin membranes
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5463557B2 (en) Dual-phase hydrogen permeable alloy and method for producing the same
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
US10105657B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane
KR101227454B1 (en) A hydrogen permeable alloy and the manufacturing method of hydrogen separation membrane using the same
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
KR20130094259A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
TWI843181B (en) Hydrogen permeable membrane including pdcu alloy and hydrogen purification method using hydrogen permeable membrane
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
TW202317256A (en) Hydrogen permeable membrane including pdcu alloy and hydrogen purification method using hydrogen permeable membrane
CN115976385A (en) Hydrogen embrittlement resistant V-based hydrogen separation alloy and preparation method thereof
JPH0819500B2 (en) Hydrogen storage alloy thin film body and method for producing the same
WO2021106203A1 (en) Hydrogen permeation apparatus, hydrogen-permeable metal membrane, method for producing hydrogen-permeable metal membrane, gaskets, and method for producing gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7388627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150