JP2020139193A - Machine component, and method for producing the same - Google Patents

Machine component, and method for producing the same Download PDF

Info

Publication number
JP2020139193A
JP2020139193A JP2019035530A JP2019035530A JP2020139193A JP 2020139193 A JP2020139193 A JP 2020139193A JP 2019035530 A JP2019035530 A JP 2019035530A JP 2019035530 A JP2019035530 A JP 2019035530A JP 2020139193 A JP2020139193 A JP 2020139193A
Authority
JP
Japan
Prior art keywords
sintered body
hardened layer
sliding surface
sliding
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019035530A
Other languages
Japanese (ja)
Inventor
大輔 竹田
Daisuke Takeda
大輔 竹田
敏彦 毛利
Toshihiko Mori
敏彦 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019035530A priority Critical patent/JP2020139193A/en
Publication of JP2020139193A publication Critical patent/JP2020139193A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

To provide a machine component made of a sintered metal in which the hardness (wear resistance) of a slide face to slide with a mating component is increased.SOLUTION: A gear 1 as a machine component is made of a sintered compact having a composition essentially consisting of Fe, and the balance Ni, Mo and C with inevitable impurities, and has a slide face F to slide with a mating component. The sintered compact has: a first surface hardened layer 6 formed by carbonitriding, quenching, and tempering; and a second surface hardened layer 7 formed by work-hardening the surface layer part of the first surface hardened layer 6, and the surface of the second surface hardened layer 7 is provided with the slide face F.SELECTED DRAWING: Figure 4

Description

本発明は、機械部品およびその製造方法に関し、特に、鉄系合金の焼結体からなり、相手部品と摺動する摺動面を有する機械部品およびその製造方法に関する。 The present invention relates to a mechanical part and a method for manufacturing the same, and more particularly to a mechanical part made of a sintered body of an iron alloy and having a sliding surface that slides with a mating part and a method for manufacturing the same.

近年、自動車をはじめとする車両や産業機械などの機械製品のコスト低減を図るべく、その構成部品であるギヤやカム等の機械部品を、溶製材で作製された溶製品から鉄系の焼結体を母材とした焼結品に置換する試みがなされている。しかしながら、焼結体が無数の内部気孔を有する多孔質体である関係上、焼結品は溶製品に比べて機械的強度や耐摩耗性(相手部品と摺動する摺動面の耐摩耗性)に劣る。そこで、焼結体の機械的強度や耐摩耗性を向上するための様々な技術手段が提案されている。 In recent years, in order to reduce the cost of mechanical products such as automobiles and other vehicles and industrial machines, mechanical parts such as gears and cams, which are the constituent parts, are sintered from molten products made of molten materials to iron-based sintering. Attempts have been made to replace the body with a sintered product as the base material. However, since the sintered body is a porous body having innumerable internal pores, the sintered product has mechanical strength and wear resistance (wear resistance of the sliding surface sliding with the mating part) as compared with the molten product. ) Is inferior. Therefore, various technical means for improving the mechanical strength and abrasion resistance of the sintered body have been proposed.

例えば、下記の特許文献1には、所定量のニッケル、モリブデン、銅および炭素を含み、残部を鉄および不可避的不純物とした鉄系合金の焼結体に浸炭焼入れ焼戻しを施すことにより、焼結体にHV700〜800程度の表面硬化層を形成すると共に、焼結体の内部硬度をHV450〜500程度に調整することが記載されている。係る技術手段によれば、所望の耐摩耗性および靱性を併せ持つ焼結金属製の機械部品を得ることができる。 For example, Patent Document 1 below describes sintering by carburizing, quenching, and quenching a sintered body of an iron-based alloy containing a predetermined amount of nickel, molybdenum, copper, and carbon, and the balance being iron and unavoidable impurities. It is described that a surface hardened layer of about HV 700 to 800 is formed on the body and the internal hardness of the sintered body is adjusted to about HV 450 to 500. According to such technical means, it is possible to obtain a mechanical part made of sintered metal having both desired wear resistance and toughness.

また、下記の特許文献2には、焼結体の所定面(例えば、相手部品と摺動する摺動面となる面)にショットピーニングや転造等の塑性加工を施すことで上記所定面の表面開孔を封止し、その後、潤滑剤を塗布した上記所定面に冷間鍛造を施すことが記載されている。このようにすれば、高強度・高硬度で、かつ表面粗さ(算術平均粗さ)Raの値が小さい摺動面を得ることができる、とある。 Further, in Patent Document 2 below, a predetermined surface of a sintered body (for example, a surface that becomes a sliding surface that slides with a mating component) is subjected to plastic working such as shot peening or rolling to obtain the predetermined surface. It is described that the surface opening is sealed, and then cold forging is performed on the predetermined surface to which the lubricant is applied. By doing so, it is possible to obtain a sliding surface having high strength and high hardness and a small surface roughness (arithmetic mean roughness) Ra value.

特開2007−138226号公報JP-A-2007-138226 特許第6087042号公報Japanese Patent No. 6087042

ところで、ギヤやカム等の機械部品は、潤滑油や潤滑グリースなどといった潤滑剤の存在下で使用される場合が多い。例えば、エンジンの吸排気バルブの開閉タイミング等を調整するためにクランクシャフトとカムシャフトとの間に設けられる可変バルブタイミング装置においては、その内部をエンジンオイルが循環しているため、装置内部に形成される機械部品同士の摺動部には常時エンジンオイルが介在する。そのため、機械部品の摺動面に、格別に高い耐摩耗性は不要であるとも考えられる。 By the way, mechanical parts such as gears and cams are often used in the presence of a lubricant such as a lubricating oil or a lubricating grease. For example, in a variable valve timing device provided between a crankshaft and a camshaft to adjust the opening / closing timing of an engine intake / exhaust valve, engine oil circulates inside the variable valve timing device, so that the engine oil is formed inside the device. Engine oil is always present in the sliding parts between the mechanical parts. Therefore, it is considered that an exceptionally high wear resistance is not required for the sliding surface of the mechanical part.

しかしながら、エンジンオイルには、エンジンで発生した煤などの微小な硬質異物が混入している場合があり、この硬質異物を含むエンジンオイルが部品同士の摺動部に介在した状態で上記装置が運転されると、機械部品の摺動面の摩耗が進行し易くなる。特に、焼結体に対して種々の処理(例えば、上記の浸炭焼入れ焼戻しなど)を施すのに伴って摺動面が粗面化したような場合、摺動面の摩耗が一層進行し易くなる。この点、特許文献2に開示された技術手段は、機械部品の摺動面の表面粗さを小さい値に抑えつつ、摺動面の高強度化・高硬度化を実現することができるため、摺動面の耐摩耗性を高めるための技術手段として好適であると言える。しかしながら、上記のように、硬質異物を含む潤滑剤が存在するような過酷環境下で連続使用される機械部品においては、摺動面の摩耗を適切に抑
えることができるとは限らない。
However, the engine oil may contain minute hard foreign matter such as soot generated in the engine, and the above device operates with the engine oil containing the hard foreign matter intervening in the sliding parts between the parts. If this is done, wear of the sliding surface of the mechanical component is likely to proceed. In particular, when the sliding surface becomes rough due to various treatments (for example, carburizing, quenching, tempering, etc.) on the sintered body, the sliding surface is more likely to be worn. .. In this regard, the technical means disclosed in Patent Document 2 can realize high strength and high hardness of the sliding surface while suppressing the surface roughness of the sliding surface of the mechanical component to a small value. It can be said that it is suitable as a technical means for improving the wear resistance of the sliding surface. However, as described above, it is not always possible to appropriately suppress the wear of the sliding surface in a mechanical part that is continuously used in a harsh environment in which a lubricant containing a hard foreign substance is present.

以上の実情に鑑み、本発明は、鉄系の焼結体からなり、相手部品と摺動する摺動面を有する機械部品において、摺動面の硬度を高めて耐摩耗性を向上し、過酷環境下でも所定の機能を長期間に亘って発揮し得る機械部品を提供することを目的とする。 In view of the above circumstances, the present invention is harsh because it is made of an iron-based sintered body and has a sliding surface that slides with a mating component, and the hardness of the sliding surface is increased to improve wear resistance. It is an object of the present invention to provide mechanical parts capable of exhibiting a predetermined function for a long period of time even in an environment.

上記の目的を達成するために創案された本発明は、Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした焼結体からなり、相手部品と摺動する摺動面を有する機械部品であって、焼結体が、浸炭焼入れ焼戻しにより形成された第1の表面硬化層と、第1の表面硬化層の表層部が加工硬化することで形成された第2の表面硬化層とを有し、第2の表面硬化層の表面に摺動面が設けられていることを特徴とする。 The present invention, which was conceived to achieve the above object, is composed of a sintered body containing Fe as a main component and Ni, Mo, C and unavoidable impurities as the balance, and has a sliding surface that slides with a mating component. A second surface-hardened mechanical component having a first surface-hardened layer formed by carburizing, quenching and tempering, and a second surface-hardened layer formed by work-hardening the surface layer portion of the first surface-hardened layer. It has a layer, and is characterized in that a sliding surface is provided on the surface of the second surface-hardened layer.

本発明に係る機械部品の母材である焼結体は、Feを主成分とし、これに焼入れ性を向上させる元素としてのNiおよびMoを含む。そのため、機械部品の製造過程で焼結体に浸炭焼入れを施すと、高強度・高硬度の第1の表面硬化層(浸炭焼入れ層)を精度良く形成することができる。また、機械部品の母材である焼結体は、第1の表面硬化層の表層部が加工硬化することで形成された第2の表面硬化層を有し、この第2の表面硬化層の表面に相手部品との摺動面が設けられることから、硬度が格段に高められた摺動面を得ることができる。従って、本発明によれば、部品全体の機械的強度が高く、靱性(耐疲労強度)に富み、しかも相手部品との摺動面の耐摩耗性が格段に高められた焼結金属製の機械部品を得ることができる。 The sintered body, which is the base material of the mechanical parts according to the present invention, contains Fe as a main component and Ni and Mo as elements for improving hardenability. Therefore, if the sintered body is carburized and hardened in the process of manufacturing mechanical parts, a first surface hardened layer (carburized and hardened layer) having high strength and high hardness can be formed with high accuracy. Further, the sintered body, which is a base material of mechanical parts, has a second surface-hardened layer formed by work-hardening the surface layer portion of the first surface-hardened layer, and the second surface-hardened layer of the second surface-hardened layer. Since a sliding surface with the mating component is provided on the surface, it is possible to obtain a sliding surface with significantly increased hardness. Therefore, according to the present invention, a machine made of sintered metal, which has high mechanical strength of the entire part, is rich in toughness (fatigue resistance), and has significantly improved wear resistance of the sliding surface with the mating part. You can get the parts.

摺動面が粗面化するほど、摺動面が相手部品と摺動したときに摺動面が摩耗し易くなる。そのため、摺動面の表面粗さはRa1.0μm以下とするのが好ましい。なお、ここでいう「Ra」とは、JIS B 0601:2013に規定の算術平均粗さを意味する。 The rougher the sliding surface, the easier it is for the sliding surface to wear when it slides with the mating component. Therefore, the surface roughness of the sliding surface is preferably Ra 1.0 μm or less. The term "Ra" as used herein means the arithmetic mean roughness specified in JIS B 0601: 2013.

摺動面の摩耗を抑制する観点から、摺動面の硬度は、荷重0.2kgの条件で測定したビッカース硬さ[Hv0.2]で900以上とするのが好ましく、1000以上とするのが一層好ましい。また、第2の表面硬化層の厚み(表面からの深さ)は5〜50μmとすることができる。係る構成であれば、摺動面の摩耗が進行し易い過酷環境下で機械部品が使用される場合であっても、摺動面の摩耗を効果的に抑制することができる。 From the viewpoint of suppressing wear on the sliding surface, the hardness of the sliding surface is preferably 900 or more, preferably 1000 or more, based on the Vickers hardness [Hv0.2] measured under the condition of a load of 0.2 kg. More preferred. Further, the thickness (depth from the surface) of the second surface-hardened layer can be 5 to 50 μm. With such a configuration, it is possible to effectively suppress the wear of the sliding surface even when the mechanical parts are used in a harsh environment where the wear of the sliding surface is likely to progress.

以上の構成において、焼結体は、Niを1.0〜3.0質量%、Moを0.5〜2.0質量%、Cを0.1〜0.3質量%含み、残部をFeおよび不可避的不純物としたものとすることができる。 In the above configuration, the sintered body contains 1.0 to 3.0% by mass of Ni, 0.5 to 2.0% by mass of Mo, 0.1 to 0.3% by mass of C, and the balance is Fe. And can be an unavoidable impurity.

また、上記の目的を達成するため、本発明では、Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした焼結体からなり、相手部品と摺動する摺動面を有する機械部品を製造するための方法であって、焼結体に浸炭焼入れ焼戻しを施すことにより、焼結体に第1の表面硬化層を形成し、その後、焼結体のうち少なくとも上記摺動面の形成予定面を塑性変形させる表面処理を焼結体に施すことにより、第1の表面硬化層の表層部に第2の表面硬化層を形成することを特徴とする機械部品の製造方法を提供する。 Further, in order to achieve the above object, the present invention is composed of a sintered body containing Fe as a main component and Ni, Mo, C and unavoidable impurities as the balance, and has a sliding surface that slides with a mating component. A method for manufacturing mechanical parts, in which a first surface-hardened layer is formed on the sintered body by subjecting the sintered body to carburizing and quenching, and then at least the above-mentioned sliding surface of the sintered body. Provided is a method for manufacturing a mechanical part, which comprises forming a second surface-hardened layer on the surface layer portion of the first surface-hardened layer by subjecting the sintered body to a surface treatment for plastically deforming the surface to be formed. To do.

このような製造方法によれば、本発明に係る機械部品と同様の作用効果を享受することができる。 According to such a manufacturing method, it is possible to enjoy the same action and effect as the mechanical parts according to the present invention.

上記の表面処理としては、ショットピーニングを選択することができる。ショットピーニングであれば、任意の箇所に容易にかつ精度良く表面硬化層(第2の表面硬化層)を形成することができる。特に、ショット材として、平均粒径(個数平均粒径)が200μm
以下のものを選択使用すれば、ショット材が衝突する衝突面の表面粗さをRa1.0μm以下に仕上げることができるので、摺動面の耐摩耗性を高める(摺動面の摩耗量を抑える)上で有利となる。
Shot peening can be selected as the above surface treatment. With shot peening, a surface-hardened layer (second surface-hardened layer) can be easily and accurately formed at any location. In particular, as a shot material, the average particle size (number average particle size) is 200 μm.
If the following items are selectively used, the surface roughness of the collision surface on which the shot material collides can be finished to Ra 1.0 μm or less, so that the wear resistance of the sliding surface is improved (the amount of wear on the sliding surface is suppressed). ) It becomes advantageous on.

焼結体は、NiおよびMoの一部がFeと合金化した部分合金化粉と、黒鉛粉とを含み、Cuを含まない原料粉末の圧粉体を焼結したものとすることができる。 The sintered body may be obtained by sintering a green compact of a raw material powder containing graphite powder and a partially alloyed powder in which a part of Ni and Mo is alloyed with Fe, and not Cu.

以上から、本発明によれば、特に相手部品と摺動する摺動面の硬度が格段に高められるので、相手部品との摺動部に硬質異物が存在するような過酷環境下で使用される場合であっても、長期間に亘って所望の機能を安定的に発揮することのできる機械部品を提供することができる。 From the above, according to the present invention, the hardness of the sliding surface that slides with the mating part is remarkably increased, so that the machine is used in a harsh environment where a hard foreign substance is present at the sliding portion with the mating part. Even in such a case, it is possible to provide a mechanical component capable of stably exhibiting a desired function for a long period of time.

本発明の一実施形態に係る機械部品の平面図である。It is a top view of the mechanical parts which concerns on one Embodiment of this invention. 図1のA−A線矢視断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 図2のB−B線矢視断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. 図1のC−C線矢視断面図である。FIG. 1 is a cross-sectional view taken along the line CC of FIG. 本発明に係る機械部品の製造手順を示すブロック図である。It is a block diagram which shows the manufacturing procedure of the mechanical part which concerns on this invention. 確認試験の試験結果を示す図である。It is a figure which shows the test result of the confirmation test. 確認試験で用いた試験体表層部の硬度測定結果を示す図である。It is a figure which shows the hardness measurement result of the test body surface layer part used in the confirmation test.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る機械部品の平面図、図2は、図1のA−A線矢視断面図、図3は、図2のB−B線矢視(部分)断面図、図4は、図1のC−C線矢視(部分)断面図である。図1〜図4に示す機械部品は、自動車用エンジンの吸排気バルブの開閉タイミングを調整する可変バルブタイミング装置に組み込んで使用される環状の歯車1であって、より詳細には、Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした鉄系(鉄系合金)の焼結体からなり、外周部に内歯歯車の歯面と噛み合う歯面2が設けられた外歯歯車である。この歯車1は、環状部3と、環状部3の軸方向一方側に突設された周方向で有端の突出部4とを一体に有し、歯面2は環状部3および突出部4の外周部に設けられている。 1 is a plan view of a mechanical component according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a view taken along the line BB (part) of FIG. The cross-sectional view and FIG. 4 are cross-sectional views taken along the line CC of FIG. The mechanical parts shown in FIGS. 1 to 4 are annular gears 1 used by being incorporated in a variable valve timing device that adjusts the opening / closing timing of intake / exhaust valves of an automobile engine, and more specifically, Fe is mainly used. An external tooth made of an iron-based (iron-based alloy) sintered body containing Ni, Mo, C and unavoidable impurities as components, and having a tooth surface 2 that meshes with the tooth surface of an internal gear on the outer peripheral portion. It is a gear. The gear 1 integrally has an annular portion 3 and a circumferentially endped protruding portion 4 projecting from one side of the annular portion 3 in the axial direction, and the tooth surface 2 has the annular portion 3 and the protruding portion 4. It is provided on the outer peripheral portion of the.

詳細な図示は省略するが、上記の歯車1が可変バルブタイミング装置に組み込まれたとき、歯車1は、その内周(中心孔)に嵌合固定される外輪を有する転がり軸受によって回転自在に支持されると共に、突出部4が、歯車1の軸方向外側に対向配置される環状の金属製相手部品に設けられた凹部に嵌合される。そして、上記の可変バルブタイミング装置が駆動されたとき、歯車1に設けられた突出部4の両側面(周方向一方側および他方側の端面)5,5が上記相手部品と繰り返し摺動する(摺動方向は、歯車1の径方向に沿う方向)。そのため、図示例の歯車1においては、突出部4の両側面5,5が相手部品との摺動面Fとなる。 Although detailed illustration is omitted, when the gear 1 is incorporated in the variable valve timing device, the gear 1 is rotatably supported by a rolling bearing having an outer ring fitted and fixed to the inner circumference (center hole) thereof. At the same time, the protruding portion 4 is fitted into a recess provided in the annular metal mating component arranged so as to face the outer side in the axial direction of the gear 1. Then, when the variable valve timing device is driven, both side surfaces (end surfaces on one side and the other side in the circumferential direction) 5 and 5 of the protrusion 4 provided on the gear 1 repeatedly slide with the mating component (the other parts). The sliding direction is along the radial direction of the gear 1). Therefore, in the gear 1 of the illustrated example, both side surfaces 5 and 5 of the protruding portion 4 serve as sliding surfaces F with the mating component.

歯車1は、図2〜図4に示すように、第1の表面硬化層6と、第1の表面硬化層6の表層部が加工硬化(塑性変形)することで形成された第2の表面硬化層7とを有する。本実施形態の歯車1においては、摺動面Fのみが第2の表面硬化層7の表面に設けられており、摺動面F以外の面は第1の表面硬化層6の表面に設けられている。詳細は後述するが、第1の表面硬化層6は、歯車1の母材である焼結体に熱処理としての浸炭焼入れ(浸炭焼入れ焼戻し)を施すことにより形成され、第2の表面硬化層7は、熱処理後の焼結体のう
ち、摺動面Fの形成予定面に表面処理としてのショットピーニングを施すことにより形成されている。従って、図示は省略しているが、摺動面Fは、ショット材が焼結体に衝突することで形成された圧痕(深さ2μm程度のマイクロディンプル)が無数に存在する梨地面となっている。
As shown in FIGS. 2 to 4, the gear 1 has a second surface formed by work hardening (plastic deformation) of the first surface hardened layer 6 and the surface layer portion of the first surface hardened layer 6. It has a hardened layer 7. In the gear 1 of the present embodiment, only the sliding surface F is provided on the surface of the second surface hardened layer 7, and the surfaces other than the sliding surface F are provided on the surface of the first surface hardened layer 6. ing. The details will be described later, but the first surface-hardened layer 6 is formed by carburizing and quenching (carburizing and quenching and tempering) the sintered body, which is the base material of the gear 1, as a heat treatment, and the second surface-hardened layer 7 is formed. Is formed by subjecting the surface to be formed of the sliding surface F to shot carburizing as a surface treatment in the sintered body after the heat treatment. Therefore, although not shown, the sliding surface F is a pear-ground surface in which innumerable indentations (micro dimples having a depth of about 2 μm) formed by the shot material colliding with the sintered body exist. There is.

第1の表面硬化層6の表面硬度(摺動面F以外の面の硬度)は、荷重0.2kgで測定したビッカース硬さ[Hv0.2]で800程度とされ、第2の表面硬化層7の表面硬度(摺動面Fの硬度)は、同ビッカース硬さで900以上、好ましくは1000以上とされる。また、歯車1のサイズ等にもよるが、第1の表面硬化層6の厚み(歯車1の表面からの深さ)は、例えば300μm程度とされ、第2の表面硬化層7の厚みd(図4参照)は、例えば5〜50μm程度とされる。 The surface hardness of the first surface-hardened layer 6 (hardness of surfaces other than the sliding surface F) is about 800 in Vickers hardness [Hv0.2] measured at a load of 0.2 kg, and the second surface-hardened layer The surface hardness of No. 7 (hardness of the sliding surface F) is 900 or more, preferably 1000 or more in the same Vickers hardness. Further, although it depends on the size of the gear 1 and the like, the thickness of the first surface-hardened layer 6 (depth from the surface of the gear 1) is set to, for example, about 300 μm, and the thickness d of the second surface-hardened layer 7 (d). (See FIG. 4) is, for example, about 5 to 50 μm.

以上の構成を有する歯車1は、図5に示すように、圧縮成形工程S1、焼結工程S2、形状修整工程S3、熱処理工程S4および表面処理工程S5を順に経て製造することができる。以下、上記の各工程について説明する。 As shown in FIG. 5, the gear 1 having the above configuration can be manufactured through the compression molding step S1, the sintering step S2, the shape modification step S3, the heat treatment step S4, and the surface treatment step S5 in this order. Hereinafter, each of the above steps will be described.

[圧縮成形工程S1]
この工程では、相対的に昇降移動可能に同軸配置されたコアピン、ダイ、下パンチおよび上パンチを備えた成形金型のうち、コアピン、ダイおよび下パンチによって画成されるキャビティに圧粉体成形用の原料粉末を充填し、その後、下パンチと下パンチに対して相対的に接近移動させた上パンチとで上記キャビティに充填された原料粉末を圧縮成形することにより、完成品としての歯車1に対応した形状を有する圧粉体を得る。
[Compression molding step S1]
In this step, among the molding dies having core pins, dies, lower punches and upper punches coaxially arranged so as to be relatively movable up and down, powder compact molding is performed in the cavity defined by the core pins, dies and lower punches. The raw material powder for use is filled, and then the raw material powder filled in the cavity is compression-molded by the lower punch and the upper punch that is moved relatively close to the lower punch. A green compact having a shape corresponding to the above is obtained.

圧粉体成形用の原料粉末は、NiおよびMoを含む鉄粉(合金鋼粉)と、炭素(C)からなる黒鉛粉とを混合した混合粉末であり、単体粉としての銅粉や合金成分としての銅(Cu)は含んでいない。上記の合金鋼粉としては、例えば、NiおよびMoがFeと完全に合金化した完全合金粉の他、Ni(Ni粒子)およびMo(Mo粒子)の一部がFe(Fe粒子)と合金化した部分合金化粉を使用することができる。但し、完全合金粉は部分合金化粉よりも高硬度な分、部分合金化粉よりも圧縮成形性に劣り、高密度の圧粉体を安定的に得るためには、成形圧が大きい大型のプレス装置を用いる必要が生じる場合がある。そのため、合金鋼粉としては、NiおよびMoの一部がFeと合金化した部分合金化粉(Fe−Ni−Mo系合金鋼粉)を使用するのが好ましい。 The raw material powder for compaction molding is a mixed powder obtained by mixing iron powder (alloy steel powder) containing Ni and Mo and graphite powder composed of carbon (C), and is a copper powder as a single powder or an alloy component. Does not contain copper (Cu) as. As the above alloy steel powder, for example, in addition to a complete alloy powder in which Ni and Mo are completely alloyed with Fe, a part of Ni (Ni particles) and Mo (Mo particles) is alloyed with Fe (Fe particles). Partially alloyed powder can be used. However, since the complete alloy powder has a higher hardness than the partially alloyed powder, it is inferior in compression moldability to the partially alloyed powder, and in order to stably obtain a high-density green compact, a large molding pressure is large. It may be necessary to use a press device. Therefore, as the alloy steel powder, it is preferable to use a partially alloyed powder (Fe—Ni—Mo-based alloy steel powder) in which a part of Ni and Mo is alloyed with Fe.

ここで、原料粉末にCuを含めない理由を説明しておく。まず、Cuを含む圧粉体を加熱・焼結した場合には、焼結時にCuがFe中に拡散することで焼結体の機械的強度を高めることができる、というメリットがある。しかしながら、Cuを含む圧粉体を加熱・焼結した場合には、Cuが膨張することで焼結体の密度や寸法精度を低下させるというデメリットがある。また、Cuは高価であることに加え、Cuを含む圧粉体の焼結体に熱処理(浸炭焼入れ)を施した場合でも焼結体の焼入れ性(表面硬度)が高まるわけではない。以上を勘案すると、原料粉末にCuを含めることにより享受されるメリットよりも、原料粉末にCuを含めることにより生じるデメリットが上回る。そのため、原料粉末にはCuを含めていない。 Here, the reason why Cu is not included in the raw material powder will be described. First, when the green compact containing Cu is heated and sintered, there is an advantage that the mechanical strength of the sintered body can be increased by diffusing Cu into Fe during sintering. However, when the green compact containing Cu is heated and sintered, there is a demerit that the density and dimensional accuracy of the sintered body are lowered due to the expansion of Cu. Further, Cu is expensive, and even when a sintered body of a green compact containing Cu is heat-treated (carburized and hardened), the hardenability (surface hardness) of the sintered body is not improved. In consideration of the above, the demerits caused by including Cu in the raw material powder outweigh the advantages enjoyed by including Cu in the raw material powder. Therefore, Cu is not included in the raw material powder.

成形用粉末は、後述する焼結工程S2において、Niを1.0〜3.0質量%、Moを0.5〜2.0質量%、Cを0.1〜0.3質量%含み、残部をFeおよび不可避的不純物とした焼結体を得ることができるように、上記合金鋼粉および黒鉛粉の配合割合が調整されている。Ni、MoおよびCの配合割合を上記の数値範囲内に設定した理由は、以下のとおりである。 The molding powder contains 1.0 to 3.0% by mass of Ni, 0.5 to 2.0% by mass of Mo, and 0.1 to 0.3% by mass of C in the sintering step S2 described later. The blending ratio of the alloy steel powder and the graphite powder is adjusted so that a sintered body in which the balance is Fe and unavoidable impurities can be obtained. The reason why the blending ratios of Ni, Mo and C are set within the above numerical range is as follows.

まず、NiおよびMoは、焼入れ性を向上させる元素であり、後述する熱処理工程S4
で実施される浸炭焼入れによる焼入れ性を向上するために添加される。そして、NiおよびMoの配合割合は、焼入れ性の向上効果を適切にかつ低コストに享受するため、上記の範囲としている。
First, Ni and Mo are elements that improve hardenability, and the heat treatment step S4 described later
It is added to improve the hardenability by carburizing and quenching carried out in. The blending ratio of Ni and Mo is within the above range in order to appropriately and at low cost to enjoy the effect of improving hardenability.

また、C(黒鉛粉)は、主に、圧粉体の焼結時に鉄と炭素を反応させて焼結体を高強度・高硬度化するために配合されている。そのため、黒鉛粉の配合量が0.1質量%未満の場合、所望の機械的強度等を具備した焼結体を得ることが難しくなる。一方、本実施形態では、後述する熱処理工程S4において、焼結体に対して熱処理としての浸炭焼入れ焼戻しを施し、焼結体の表層部に浸炭焼入れ層からなる第1の表面硬化層6を形成するので、黒鉛粉の配合量が0.3質量%を超えると、焼結体に第1の表面硬化層6を適切に形成しつつ、焼結体に所望の靱性(耐疲労強度)を確保することが難しくなる。また、黒鉛は比重が小さいため、配合量が多いと密度を低下させるデメリットがある。従って、黒鉛粉の配合割合は上記の範囲としている。 Further, C (graphite powder) is mainly blended in order to increase the strength and hardness of the sintered body by reacting iron and carbon at the time of sintering the green compact. Therefore, when the blending amount of the graphite powder is less than 0.1% by mass, it becomes difficult to obtain a sintered body having desired mechanical strength and the like. On the other hand, in the present embodiment, in the heat treatment step S4 described later, the sintered body is subjected to carburizing and quenching as heat treatment to form a first surface hardened layer 6 composed of a carburizing and quenching layer on the surface layer portion of the sintered body. Therefore, when the blending amount of the graphite powder exceeds 0.3% by mass, the first surface-hardened layer 6 is appropriately formed on the sintered body, and the desired toughness (fatigue resistance) of the sintered body is ensured. It becomes difficult to do. Further, since graphite has a small specific gravity, there is a demerit that the density is lowered when the blending amount is large. Therefore, the blending ratio of graphite powder is within the above range.

なお、圧粉体成形用の原料粉末には、圧粉体の成形性および離型性や、成形金型の耐久性を高めるためにステアリン酸亜鉛等の固体潤滑剤を添加しても良い。また、圧粉体の圧縮成形時には、成形用粉末および成形金型の何れか一方又は双方を加熱しても良い(温間成形)。 A solid lubricant such as zinc stearate may be added to the raw material powder for compaction molding in order to improve the moldability and releasability of the green compact and the durability of the molding die. Further, at the time of compression molding of the green compact, either one or both of the molding powder and the molding die may be heated (warm molding).

[焼結工程S2]
この工程では、圧縮成形工程S1で得られた圧粉体を所定の温度・時間で加熱・焼結することにより、圧粉体を構成する合金鋼粉の粒子同士がネック結合した焼結体を得る。圧粉体の加熱温度は、鉄と炭素が反応を開始する温度(900℃)よりも高く設定され、より具体的には、1100〜1300℃に設定される。従って、この焼結工程S2の完了時に得られる焼結体の組織中に黒鉛組織は存在しない。焼結体の金属組織は、圧粉体の成形用粉末を構成する鉄粉(合金鋼粉)等の配合割合に倣い、Niを1.0〜3.0質量%、Moを0.5〜2.0質量%、Cを0.1〜0.3質量%含み、残部をFeおよび不可避的不純物とした組織である。
[Sintering step S2]
In this step, the green compact obtained in the compression molding step S1 is heated and sintered at a predetermined temperature and time to form a sintered body in which the alloy steel powder particles constituting the green compact are neck-bonded to each other. obtain. The heating temperature of the green compact is set higher than the temperature at which iron and carbon start the reaction (900 ° C.), and more specifically, it is set to 1100 to 1300 ° C. Therefore, there is no graphite structure in the structure of the sintered body obtained at the completion of the sintering step S2. The metal structure of the sintered body is 1.0 to 3.0% by mass of Ni and 0.5 to 0.5% of Mo, following the blending ratio of iron powder (alloy steel powder) that constitutes the powder for forming the green compact. It is a structure containing 2.0% by mass and 0.1 to 0.3% by mass of C, and the balance is Fe and unavoidable impurities.

[形状修整工程S3]
この工程では、焼結工程S2で得られた焼結体に対してサイジング加工や機械加工(例えば、切削加工)を適宜施すことにより、焼結体が完成品形状に仕上げられる。但し、この形状修整工程S3は、焼結工程S2で得られた焼結体が所定の形状・寸法精度を有していない場合にのみ実施され、必ずしも実施されるわけではない。なお、本実施形態のように、最終的に環状の歯車(外歯歯車)1となる焼結体の形状修整を行う場合、サイジング加工は、例えば焼結体の軸方向寸法を矯正するために実施される。
[Shape retouching process S3]
In this step, the sintered body obtained in the sintering step S2 is appropriately subjected to sizing processing or machining (for example, cutting processing) to finish the sintered body into a finished product shape. However, this shape modification step S3 is performed only when the sintered body obtained in the sintering step S2 does not have a predetermined shape and dimensional accuracy, and is not necessarily carried out. When the shape of the sintered body that finally becomes the annular gear (external gear) 1 is modified as in the present embodiment, the sizing process is performed, for example, in order to correct the axial dimension of the sintered body. Will be implemented.

[熱処理工程S4]
この工程では、焼結体に対して浸炭焼入れを施すことにより、焼結体の表層部全域に浸炭焼入れ層からなる第1の表面硬化層6を形成し、その後、この焼結体に対して焼戻しを施すことにより、焼入れに伴って焼結体のFe組織中に生成された残留オーステナイトを除去する。これにより、表面硬度(耐摩耗性)および靱性(耐疲労強度)が高められた焼結体が得られる。参考までに、浸炭焼入れ前の焼結体の表面硬度は、荷重0.2kgの条件で測定したビッカース硬さ[Hv0.2]で250程度であり、浸炭焼入れ焼戻し後の焼結体の表面硬度(第1の表面硬化層6の表面硬度)および芯部の硬度は、それぞれ、同ビッカース硬さで800および550程度である。また、第1の表面硬化層6の厚み(焼結体表面からの深さ)は、焼入れ時間等によって調整し得るが、例えば0.3mm程度とすることができる。
[Heat treatment step S4]
In this step, the sintered body is carburized and hardened to form a first surface hardened layer 6 composed of a carburized and hardened layer over the entire surface layer portion of the sintered body, and then the sintered body is subjected to carburizing and quenching. By performing tempering, retained austenite generated in the Fe structure of the sintered body due to quenching is removed. As a result, a sintered body having increased surface hardness (wear resistance) and toughness (fatigue resistance) can be obtained. For reference, the surface hardness of the sintered body before carburizing and quenching is about 250 in Vickers hardness [Hv0.2] measured under the condition of a load of 0.2 kg, and the surface hardness of the sintered body after carburizing and quenching and quenching. (The surface hardness of the first surface hardening layer 6) and the hardness of the core portion are about 800 and 550, respectively, at the same Vickers hardness. The thickness of the first surface-hardened layer 6 (depth from the surface of the sintered body) can be adjusted by the quenching time or the like, but can be, for example, about 0.3 mm.

[表面処理工程S5]
この工程では、熱処理後の焼結体(表層部全域に第1の表面硬化層6が形成された焼結体)のうち、少なくとも摺動面Fの形成予定面に対して表面処理としてのショットピーニングを施す。ショットピーニングは、粉体噴射装置から噴射した硬質のショット材を被加工物(焼結体)に高速で衝突させる冷間加工であり、焼結体のうちショット材が衝突した衝突面およびその近傍領域には塑性変形が生じる。塑性変形が生じた部分では、いわゆる加工誘起マルテンサイト変態による加工硬化が生じると共に、多孔質の金属組織が緻密化する(金属組織の気孔率が減少する)。そのため、焼結体のうち、ショットピーニングを施した摺動面Fの形成予定面を含む表層部には、ショットピーニングの非処理領域に比べ、多孔質の金属組織が緻密で高硬度の第2の表面硬化層7(図4参照)が形成される。第2の表面硬化層7は、上記のとおり、第1の表面硬化層6の表層部が加工硬化することで形成されるので、第2の表面硬化層7の表面硬度は第1の表面硬化層6の表面硬度よりも高くなる。これにより、摺動面Fの表面硬度が最も高められた焼結体が得られる。
[Surface treatment step S5]
In this step, of the heat-treated sintered body (sintered body in which the first surface-hardened layer 6 is formed over the entire surface layer portion), at least a shot as a surface treatment on the planned formation surface of the sliding surface F. Apply peening. Shot peening is cold working in which a hard shot material injected from a powder injection device collides with a work piece (sintered body) at high speed. Of the sintered body, the collision surface where the shot material collides and its vicinity. Plastic deformation occurs in the region. In the portion where the plastic deformation occurs, work hardening occurs due to so-called work-induced martensitic transformation, and the porous metal structure becomes dense (the porosity of the metal structure decreases). Therefore, in the surface layer portion of the sintered body including the surface to be formed of the sliding surface F subjected to shot peening, the porous metal structure is denser and has higher hardness than the non-treated region of shot peening. The surface hardened layer 7 (see FIG. 4) is formed. As described above, the second surface-hardened layer 7 is formed by processing and hardening the surface layer portion of the first surface-hardened layer 6, so that the surface hardness of the second surface-hardened layer 7 is the first surface-hardening. It becomes higher than the surface hardness of the layer 6. As a result, a sintered body having the highest surface hardness of the sliding surface F can be obtained.

なお、ショットピーニングによって形成される第2の表面硬化層7の表面硬度は、使用するショット材の粒径によって左右され、使用するショット材の粒径が小さくなるほど表面硬度の向上効果が高くなることが判明した。具体的には、平均粒径が200μmを超えるショット材を用いてショットピーニングを施した場合には、表面硬度が900Hv0.2程度の第2の表面硬化層7が得られ、粒径が200μm以下のショット材を用いてショットピーニングを施した場合には、表面硬度が1100Hv0.2程度の第2の表面硬化層7が得られた。 The surface hardness of the second surface-hardened layer 7 formed by shot peening depends on the particle size of the shot material used, and the smaller the particle size of the shot material used, the higher the effect of improving the surface hardness. There was found. Specifically, when shot peening is performed using a shot material having an average particle size of more than 200 μm, a second surface-hardened layer 7 having a surface hardness of about 900 Hv0.2 is obtained, and the particle size is 200 μm or less. When shot peening was performed using the shot material of No. 1, a second surface-hardened layer 7 having a surface hardness of about 1100 Hv0.2 was obtained.

また、ショット材が衝突した衝突面は、ショット材が衝突することで形成される圧痕(微小な凹部(マイクロディンプル))が無数に存在する梨地面となるため、ショット材の非衝突面に比べて算術平均粗さRaの値が大きくなるが、使用するショット材の粒径が小さくなるほど、Raの値の増加量を抑えることができることが判明した。特に、平均粒径が200μm以下のショット材を用いた場合には、ショット材の衝突面(摺動面F)の表面粗さをRa1.0μm以下に抑えることができる。そして、摺動面Fの表面粗さRaの値が小さくなるほど、摺動面Fの摩耗を抑える上で有利となる。従って、この点も考慮すると、焼結体のうち、摺動面Fの形成予定面に施すべきショットピーニングは、粒径が200μm以下のショット材を用いて実施するのが好ましい。 In addition, the collision surface with which the shot material collides is a pear ground with innumerable indentations (micro dimples) formed by the collision of the shot material, so compared to the non-collision surface of the shot material. It was found that the value of the arithmetic mean roughness Ra increases, but the smaller the particle size of the shot material used, the more the increase in the Ra value can be suppressed. In particular, when a shot material having an average particle size of 200 μm or less is used, the surface roughness of the collision surface (sliding surface F) of the shot material can be suppressed to Ra 1.0 μm or less. The smaller the value of the surface roughness Ra of the sliding surface F, the more advantageous it is in suppressing the wear of the sliding surface F. Therefore, in consideration of this point, it is preferable that the shot peening to be applied to the surface to be formed of the sliding surface F among the sintered bodies is carried out using a shot material having a particle size of 200 μm or less.

以上で説明した各工程S1〜S5(形状修整工程S3は任意)を経ることにより、図1〜図4を参照して説明した焼結金属製の歯車1が得られる。 By going through the steps S1 to S5 described above (the shape retouching step S3 is optional), the sintered metal gear 1 described with reference to FIGS. 1 to 4 can be obtained.

以上で説明したような歯車(外歯歯車)が組み込まれる可変バルブタイミング装置の駆動時には、その内部空間をエンジンオイルが常に循環するため、歯車の摺動面はエンジンオイルの油膜を介して金属製の相手部品と繰り返し摺動する。このため、摺動面の摩耗は可及的に抑制できるとも考えられる。しかしながら、エンジンオイルには、オイルフィルタで完全に捕捉することができない煤等の微小な硬質異物が混入している場合が多い。硬質異物を含むエンジンオイルが歯車と相手部品の摺動部に介在した状態で可変バルブタイミング装置が駆動されると、歯車の摺動面の摩耗が進行し易くなって、装置の耐久寿命に悪影響が及ぶ。 When driving a variable valve timing device that incorporates gears (external gears) as described above, engine oil constantly circulates in its internal space, so the sliding surface of the gears is made of metal via an oil film of engine oil. It slides repeatedly with the mating part of. Therefore, it is considered that the wear of the sliding surface can be suppressed as much as possible. However, engine oil often contains minute hard foreign substances such as soot that cannot be completely captured by the oil filter. If the variable valve timing device is driven with engine oil containing hard foreign matter intervening between the gear and the sliding part of the mating part, the sliding surface of the gear tends to wear, which adversely affects the durable life of the device. Extends.

これに対し、以上で説明した構成を有する本発明の実施形態に係る歯車1は、Feを主成分とし、これに焼入れ性を向上させる元素としてのNiおよびMoを含む焼結体を母材としているため、この焼結体に浸炭焼入れ(浸炭焼入れ焼戻し)を施すと、高強度・高硬度の浸炭焼入れ層(第1の表面硬化層)が精度良く形成される。また、歯車1の母材である焼結体は、第1の表面硬化層6の表層部が加工硬化することで形成された第2の表面硬化層7を有し、この第2の表面硬化層7の表面に相手部品との摺動面Fが設けられることから、摺動面Fの硬度(耐摩耗性)が900Hv0.2以上、好ましくは1100Hv0
.2以上にまで高められた歯車1を得ることができる。そのため、上記のように、煤等の硬質異物を含むエンジンオイルが歯車1と相手部品の摺動部に介在するような過酷環境下で可変バルブタイミング装置が駆動される場合でも、歯車1の摺動面Fの摩耗を効果的に抑制することができる。
On the other hand, the gear 1 according to the embodiment of the present invention having the configuration described above uses Fe as a main component and a sintered body containing Ni and Mo as elements for improving hardenability as a base material. Therefore, when this sintered body is carburized and hardened (carburized and hardened and tempered), a carburized and hardened layer (first surface hardened layer) having high strength and high hardness is formed with high accuracy. Further, the sintered body which is the base material of the gear 1 has a second surface hardened layer 7 formed by work hardening of the surface layer portion of the first surface hardened layer 6, and the second surface hardened layer 7. Since the sliding surface F with the mating component is provided on the surface of the layer 7, the hardness (wear resistance) of the sliding surface F is 900Hv0.2 or more, preferably 1100Hv0.
.. It is possible to obtain the gear 1 which is raised to 2 or more. Therefore, as described above, even when the variable valve timing device is driven in a harsh environment where engine oil containing hard foreign matter such as soot intervenes between the gear 1 and the sliding portion of the mating component, the sliding of the gear 1 Wear of the moving surface F can be effectively suppressed.

また、本実施形態の歯車1は、その母材である焼結体に浸炭焼入れを施すことで形成された第1の表面硬化層6を表層部全域に有することから、部品全体としての機械的強度が高い。また、浸炭焼入れ後の焼結体には焼戻しが施され、これによって焼結体の靱性が高められていることから、本実施形態の歯車1は優れた耐疲労強度も併せ持つ。従って、本実施形態の歯車1を用いれば、所定の機能を長期間に亘って安定的に発揮することのできる可変バルブタイミング装置を実現することができる。 Further, since the gear 1 of the present embodiment has the first surface hardened layer 6 formed by carburizing and quenching the sintered body which is the base material thereof over the entire surface layer portion, it is mechanical as a whole part. High strength. Further, since the sintered body after carburizing and quenching is tempered to increase the toughness of the sintered body, the gear 1 of the present embodiment also has excellent fatigue resistance. Therefore, by using the gear 1 of the present embodiment, it is possible to realize a variable valve timing device capable of stably exhibiting a predetermined function for a long period of time.

以上、本発明の一実施形態に係る焼結金属製の歯車1およびその製造方法について説明を行ったが、本発明は、以上で説明したような歯車(外歯歯車)1のみに限定適用されるわけではない。すなわち、本発明は、相手部品との摺動面を有する他の焼結金属製の機械部品(例えば、内歯歯車、カム、軸受等)に適用することもできる。 Although the sintered metal gear 1 and the manufacturing method thereof according to the embodiment of the present invention have been described above, the present invention is limited to the gear (external gear) 1 as described above. Not that. That is, the present invention can also be applied to other sintered metal mechanical parts (for example, internal gears, cams, bearings, etc.) having a sliding surface with the mating part.

本発明の有用性を実証するため、浸炭焼入れ焼戻しが施された焼結体に対し、どのような表面処理を施すことが焼結体の表面硬度を高める上で、また焼結体の表面粗さの悪化を抑える上で有効であるのかを確認した。具体的には、下記のような4種類の試験体(第1〜第4の試験体)を準備し、各試験体のうち相手部品との摺動面となる面のビッカース硬さを荷重0.2kgの条件で測定すると共に、上記摺動面となる面の算術平均粗さRaを小坂研究所社製の表面粗さ測定機(SE600)を用いて測定した。
[第1の試験体]
Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした焼結体からなる歯車(図1等を参照して説明した歯車1に準ずる形状・組成を有する歯車)であって、上記焼結体に浸炭焼入れ焼戻しを施したもの。
[第2の試験体]
第1の試験体(浸炭焼入れ焼戻しが施された焼結体。以下同様。)に対し、表面処理(表面改質処理)としてのガス軟窒化処理を施したもの。
[第3の試験体]
第1の試験体のうち、相手部品との摺動面となる面に対し、表面処理としてのショットピーニングを施したもの。但し、ショットピーニングは、平均粒径が200μmを超えるショット材を用いて実施。
[第4の試験体]
第1の試験体のうち、相手部品との摺動面となる面に対し、表面改質処理としてのショットピーニングを施したもの。但し、ショットピーニングは、平均粒径が200μm以下のショット材を用いて実施。
In order to demonstrate the usefulness of the present invention, what kind of surface treatment is applied to the sintered body that has been carburized, quenched and tempered in order to increase the surface hardness of the sintered body and also to roughen the surface of the sintered body. It was confirmed whether it was effective in suppressing the deterioration of the roughness. Specifically, the following four types of test bodies (first to fourth test bodies) are prepared, and the Vickers hardness of the surface of each test body that is the sliding surface with the mating part is loaded with 0. In addition to the measurement under the condition of .2 kg, the arithmetic average roughness Ra of the surface to be the sliding surface was measured using a surface roughness measuring machine (SE600) manufactured by Kosaka Research Institute.
[First test piece]
A gear made of a sintered body containing Fe as a main component and Ni, Mo, C and unavoidable impurities as the balance (a gear having a shape and composition similar to that of gear 1 described with reference to FIG. 1 and the like). The above sintered body is carburized, quenched and tempered.
[Second test piece]
A gas soft nitriding treatment as a surface treatment (surface modification treatment) is applied to a first test piece (a sintered body that has been carburized, quenched, and tempered. The same shall apply hereinafter).
[Third specimen]
Of the first test piece, the surface to be the sliding surface with the mating part is shot peened as a surface treatment. However, shot peening is carried out using a shot material having an average particle size of more than 200 μm.
[Fourth specimen]
Of the first test piece, the surface to be the sliding surface with the mating part is shot peened as a surface modification treatment. However, shot peening is carried out using a shot material having an average particle size of 200 μm or less.

各試験体に施した表面処理の方法、各試験体に設けた摺動面の硬度測定結果、および摺動面の表面粗さの測定結果等を図6にまとめて示す。なお、図6では、第1〜第4の試験体を、それぞれ、比較例1、比較例2、実施例1および実施例2と表示している。また、硬度および表面粗さの測定結果は3個の試験体の平均値である。また、各試験体のうち、摺動面を含む領域の硬度測定結果を図7に示す。 FIG. 6 summarizes the surface treatment method applied to each test piece, the hardness measurement result of the sliding surface provided on each test piece, the measurement result of the surface roughness of the sliding surface, and the like. In FIG. 6, the first to fourth test pieces are displayed as Comparative Example 1, Comparative Example 2, Example 1 and Example 2, respectively. The measurement results of hardness and surface roughness are average values of three test pieces. In addition, FIG. 7 shows the hardness measurement results of the region including the sliding surface in each test piece.

図6に示すように、浸炭焼入れ焼戻し後に表面処理を施していない焼結体からなる比較例1と、浸炭焼入れ焼戻し後にガス軟窒化を施した焼結体からなる比較例2とでは、摺動面の硬度および表面粗さに大差はない。但し、図7に示すように、浸炭焼入れ焼戻し後にガス軟窒化を施した焼結体からなる比較例2は、比較例1に比べて内部硬度が大きく低下
している。
As shown in FIG. 6, there is sliding between Comparative Example 1 composed of a sintered body not subjected to surface treatment after carburizing and quenching tempering and Comparative Example 2 consisting of a sintered body subjected to gas soft nitriding after carburizing and quenching tempering. There is no big difference in surface hardness and surface roughness. However, as shown in FIG. 7, the internal hardness of Comparative Example 2 composed of a sintered body subjected to gas soft nitriding after carburizing, quenching and tempering is significantly lower than that of Comparative Example 1.

これに対し、浸炭焼入れ焼戻し後に表面処理としてのショットピーニングを施した焼結体からなる実施例1,2は、図6および図7に示すように、比較例1に比べて摺動面の硬度が大きく向上すると共に表層部の硬度が向上したものの、摺動面が粗面化した。但し、平均粒径200μm以下のショット材を用いてショットピーニングを施した実施例2では、摺動面の粗面化を抑えることができ、かつ摺動面の硬度向上効果も大きくなった。 On the other hand, in Examples 1 and 2, which consist of a sintered body subjected to shot peening as a surface treatment after carburizing, quenching and tempering, as shown in FIGS. 6 and 7, the hardness of the sliding surface is higher than that of Comparative Example 1. Although the hardness of the surface layer was improved and the sliding surface was roughened. However, in Example 2 in which shot peening was performed using a shot material having an average particle size of 200 μm or less, roughening of the sliding surface could be suppressed and the effect of improving the hardness of the sliding surface was also increased.

以上から、浸炭焼入れ焼戻しが施された焼結体に対して表面硬度を高めるための表面処理を施す場合には、ショットピーニングを選択するのが良く、特に平均粒径が200μm以下のショット材を用いたショットピーニングを選択するのが良いことがわかる。 From the above, it is better to select shot peening when performing surface treatment to increase the surface hardness of a sintered body that has been carburized, quenched and tempered, and in particular, a shot material having an average particle size of 200 μm or less is used. It turns out that it is better to select the shot peening used.

1 歯車(焼結体からなる歯車)
2 歯面
3 環状部
4 突出部
5 側面(摺動面)
6 第1の表面硬化層
7 第2の表面硬化層
F 摺動面
S1 圧縮成形工程
S2 焼結工程
S3 形状修整工程
S4 熱処理工程
S5 表面処理工程
1 Gear (gear made of sintered body)
2 Tooth surface 3 Ring part 4 Protruding part 5 Side surface (sliding surface)
6 First surface-hardened layer 7 Second surface-hardened layer F Sliding surface S1 Compression molding process S2 Sintering process S3 Shape modification process S4 Heat treatment process S5 Surface treatment process

Claims (7)

Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした焼結体からなり、相手部品と摺動する摺動面を有する機械部品であって、
前記焼結体が、浸炭焼入れ焼戻しにより形成された第1の表面硬化層と、該第1の表面硬化層の表層部が加工硬化することで形成された第2の表面硬化層とを有し、該第2の表面硬化層の表面に前記摺動面が設けられていることを特徴とする機械部品。
It is a mechanical part that is composed of a sintered body containing Fe as a main component and Ni, Mo, C and unavoidable impurities as the balance, and has a sliding surface that slides with the mating part.
The sintered body has a first surface-hardened layer formed by carburizing, quenching and tempering, and a second surface-hardened layer formed by work-hardening the surface layer portion of the first surface-hardened layer. , A mechanical component characterized in that the sliding surface is provided on the surface of the second surface-hardened layer.
前記摺動面の表面粗さがRa1.0μm以下である請求項1に記載の機械部品。 The mechanical component according to claim 1, wherein the surface roughness of the sliding surface is Ra 1.0 μm or less. 前記摺動面は、荷重0.2kgの条件で測定したビッカース硬さ[Hv0.2]が900以上であり、前記第2の表面硬化層の厚みが5〜50μmである請求項1又は2に記載の機械部品。 The sliding surface has a Vickers hardness [Hv0.2] of 900 or more measured under a load of 0.2 kg, and the thickness of the second surface-hardened layer is 5 to 50 μm according to claim 1 or 2. Described mechanical parts. 前記焼結体は、Niを1.0〜3.0質量%、Moを0.5〜2.0質量%、Cを0.1〜0.3質量%含み、残部をFeおよび不可避的不純物としたものである請求項1〜3の何れか一項に記載の機械部品。 The sintered body contains 1.0 to 3.0% by mass of Ni, 0.5 to 2.0% by mass of Mo, 0.1 to 0.3% by mass of C, and Fe and unavoidable impurities in the balance. The mechanical part according to any one of claims 1 to 3. Feを主成分とし、残部をNi、Mo、Cおよび不可避的不純物とした焼結体からなり、相手部品と摺動する摺動面を有する機械部品を製造するための方法であって、
前記焼結体に浸炭焼入れ焼戻しを施すことにより、前記焼結体に第1の表面硬化層を形成し、その後、前記焼結体のうち少なくとも前記摺動面の形成予定面を塑性変形させる表面処理を前記焼結体に施すことにより、前記第1の表面硬化層の表層部に第2の表面硬化層を形成することを特徴とする機械部品の製造方法。
It is a method for manufacturing a mechanical part having a sliding surface that slides with a mating part and is composed of a sintered body containing Fe as a main component and the balance being Ni, Mo, C and unavoidable impurities.
By subjecting the sintered body to carburizing, quenching and tempering, a first surface-hardened layer is formed on the sintered body, and then at least the surface of the sintered body to be formed of the sliding surface is plastically deformed. A method for manufacturing a mechanical part, which comprises forming a second surface-hardened layer on the surface layer portion of the first surface-hardened layer by applying the treatment to the sintered body.
前記表面処理が、平均粒径200μm以下のショット材を用いたショットピーニングである請求項5に記載の機械部品の製造方法。 The method for manufacturing a mechanical part according to claim 5, wherein the surface treatment is shot peening using a shot material having an average particle diameter of 200 μm or less. 前記焼結体は、NiおよびMoの一部がFeと合金化した部分合金化粉と、黒鉛粉とを含み、Cuを含まない原料粉末の圧粉体を焼結したものである請求項5又は6に記載の機械部品の製造方法。 The sintered body is a sintered body obtained by sintering a green compact of a raw material powder containing graphite powder and partially alloyed powder in which a part of Ni and Mo is alloyed with Fe, and does not contain Cu. Or the method for manufacturing mechanical parts according to 6.
JP2019035530A 2019-02-28 2019-02-28 Machine component, and method for producing the same Pending JP2020139193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019035530A JP2020139193A (en) 2019-02-28 2019-02-28 Machine component, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019035530A JP2020139193A (en) 2019-02-28 2019-02-28 Machine component, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2020139193A true JP2020139193A (en) 2020-09-03

Family

ID=72264479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035530A Pending JP2020139193A (en) 2019-02-28 2019-02-28 Machine component, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2020139193A (en)

Similar Documents

Publication Publication Date Title
KR101002235B1 (en) Powder metal clutch races for one-way clutches and method of manufacture
US6338747B1 (en) Method for producing powder metal materials
US7905018B2 (en) Production method for sintered gear
US10213832B2 (en) Sintered member, pinion gear for starters, and production method therefor
US7718116B2 (en) Forged carburized powder metal part and method
US7309465B2 (en) Sintered sprocket for silent chain and production method therefor
US7827692B2 (en) Variable case depth powder metal gear and method thereof
KR20050077492A (en) Method to make sinter-hardened powder metal parts with complex shapes
JP2007262536A (en) Sintered gear and its production method
KR20010052876A (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
US20090129964A1 (en) Method of forming powder metal components having surface densification
US6143240A (en) High density forming process with powder blends
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
WO2009025659A1 (en) Variable case depth powder metal gear and method thereof
JP3869620B2 (en) Alloy steel powder molding material, alloy steel powder processed body, and manufacturing method of alloy steel powder molding material
JP2009544851A (en) High carbon surface densified sintered steel product and its production method
WO2004031429A1 (en) High-precision sintered cam lobe material
WO2009025660A1 (en) Method for obtaining forged carburized powder metal part
JP2020139193A (en) Machine component, and method for producing the same
US8444781B1 (en) Method of strengthening metal parts through ausizing
JPS6184302A (en) Manufacture of sintered forged parts
JP7356035B2 (en) Forging materials, forged parts and manufacturing methods thereof
JPH1150210A (en) Ferrous sintered alloy part and production thereof
KR20110054426A (en) Method of manufacturing sintered gear for transmission
Bengtsson et al. ADVANCED FORMING PROCESS FOR HIGH DENSITY PM GEARS