JPS6184302A - Manufacture of sintered forged parts - Google Patents

Manufacture of sintered forged parts

Info

Publication number
JPS6184302A
JPS6184302A JP20370284A JP20370284A JPS6184302A JP S6184302 A JPS6184302 A JP S6184302A JP 20370284 A JP20370284 A JP 20370284A JP 20370284 A JP20370284 A JP 20370284A JP S6184302 A JPS6184302 A JP S6184302A
Authority
JP
Japan
Prior art keywords
coining
sintered
surface layer
decarburized
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20370284A
Other languages
Japanese (ja)
Inventor
Koji Harada
原田 弘司
Kunihiko Imahashi
今橋 邦彦
Kazuhiko Tsuda
和彦 津田
Eisuke Hoshina
栄介 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20370284A priority Critical patent/JPS6184302A/en
Publication of JPS6184302A publication Critical patent/JPS6184302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enable accurate forming and to reduce the degree of wear of coining dies by decarburizing the surface layer of a sintered forged blank by a prescribed extent before coining, coining the blank, and carburizing it. CONSTITUTION:Alloy powder consisting of 2wt% Ni, 0.5wt% Mo and the balance Fe is mixed with 0.2-0.5wt% graphite and a lubricant, and the mixture is press-molded. This molded body is sintered in an atmosphere of an endothermic gas,and the sintered body is hot forged and allowed to cool in the air. The surface layer is decarburized up to about 0.1mm depth, and the resulting decarburized sintered blank is cold coined with coining dies after Bonderizing. The decarburized surface layer is then recarburized, and carburization, hardening and tempering are carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結鍛造部品の製造方法、特にコイニング方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing sintered forged parts, particularly a coining method.

〔従来の技術〕[Conventional technology]

焼結鍛造部品の製造において、粗材の精度向上等を目的
として、冷間コイニングを行う場合がある。しかして、
従来の焼結鍛造部品の製造においては、表面硬度の低下
等をさけるために、加熱工程はすべて吸熱ガス(RXガ
ス)等の保護雰囲気を用いて処理を行って、粗材表面層
の脱炭を0.1四程度に抑えている。そのため、コイニ
ング加工が良好に行われない場合がある。
In the production of sintered forged parts, cold coining is sometimes performed for the purpose of improving the precision of rough materials. However,
In the conventional manufacturing of sintered forged parts, in order to avoid a decrease in surface hardness, all heating processes are performed using a protective atmosphere such as endothermic gas (RX gas) to decarburize the surface layer of the raw material. is kept to around 0.14. Therefore, the coining process may not be performed well.

(発明が解決しようとする問題点) 、 コイニングは表層部の硬い粗材では、変形抵抗が高
いため、コイニングにおいてコイニング荷重が上がり、
型摩耗が大きくなる問題がある。
(Problem to be solved by the invention) In coining, since the rough material with a hard surface layer has high deformation resistance, the coining load increases during coining.
There is a problem that mold wear increases.

従来の方法で得られた焼結鍛造粗材では、コイニング化
の大きい部品の場合、コイニング後でも十分な精度が得
られないという問題を有している。
The sintered and forged raw material obtained by the conventional method has a problem in that sufficient accuracy cannot be obtained even after coining in the case of parts that are heavily coined.

本発明はコイニング時のコイニング荷重及び型摩耗を低
減し得るとともに、部品精度を向上せしめることができ
る焼結鍛造部品の製造方法を提供することを目的とする
ものである。
An object of the present invention is to provide a method for manufacturing sintered forged parts that can reduce coining load and mold wear during coining and improve part precision.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の焼結鍛造部品の製造方法は、コイニングを行う
前の例えは焼結粗材の加熱時又は焼きならし時などで該
焼結鍛造粗材の表面層を所定量脱炭させてコイニングを
行い、その後浸炭処理を行うことを特徴とする特 脱炭はコイニング時の粗材の変形抵抗を、減少させ、粗
材の変形態を高めることが目的で、本発明者の実鹸によ
れば、コイニング時の荷重としごき代の関係を示す第3
図のグラフかられかるように、コイニング時、従来、1
75tの荷重を必要としていたものが、脱炭することに
より100tと低荷重で済み、そしてスプリングノ(ツ
ク量も従来の0.09nmからtl、0’5mと大幅に
減少し、その結果、寸法の変動の低域化も可能となる。
The method for producing a sintered forged part of the present invention includes decarburizing a predetermined amount of the surface layer of the sintered forged raw material before coining, for example, during heating or normalizing the sintered raw material, and then coining. Special decarburization, which is characterized by carrying out carburizing treatment after that, is aimed at reducing the deformation resistance of the raw material during coining and increasing the deformation of the raw material, and was developed by the inventor of the present invention. For example, the third diagram shows the relationship between the load during coining and the ironing allowance.
As can be seen from the graph in the figure, when coining, conventionally, 1
What used to require a load of 75 tons can now be reduced to just 100 tons by decarburizing, and the spring load has also been significantly reduced from the conventional 0.09 nm to 0'5 m, resulting in reduced dimensions. It is also possible to lower the range of fluctuations.

脱炭の深さは必要とするコイニング代に応じて決めれば
よいが、通常0.1〜0.5flが好ましい。
The depth of decarburization may be determined depending on the required coining amount, but is usually preferably 0.1 to 0.5 fl.

コイニング後に行う浸炭処理は焼結鍛造部品の表面部の
必要強度を確保するためのもので、固体浸炭、ガス浸炭
又は液体浸炭処理などにより行うことができる。浸炭量
は目的に応じて任意に選択してよい。
The carburizing treatment performed after coining is to ensure the required strength of the surface portion of the sintered forged part, and can be performed by solid carburizing, gas carburizing, liquid carburizing, or the like. The amount of carburization may be arbitrarily selected depending on the purpose.

本発明に用いる焼結合金の材質は、特に限定されないが
、焼結鍛造用に開発された合金などが好ましく、成分組
成として例えば重量比でCr” ”i”s ”0.7 
%及び残部Feカラナル組成り重量比でNi2%、Mo
0.5%及び残部Feからなる組成などが挙げられる。
The material of the sintered alloy used in the present invention is not particularly limited, but alloys developed for sintering and forging are preferable, and the component composition is, for example, Cr""i"s"0.7 in weight ratio.
% and balance Fe caranal composition weight ratio Ni2%, Mo
Examples include a composition consisting of 0.5% and the balance Fe.

〔作用〕[Effect]

加熱時及び/又は焼きならし時に焼結鍛造粗材の表面層
を脱炭することにより、コイニング時の粗材表面部の変
形抵抗を下げ、変形能を高めてコイニング荷重を低減し
、コイニングによる寸法精度全容易に得ることができる
。そしてコイニング後浸炭処理して粗材の表面層を復炭
させることにより表面部の必要強度を得ることができる
By decarburizing the surface layer of the sintered forged rough material during heating and/or normalizing, the deformation resistance of the rough material surface during coining is lowered, the deformability is increased, the coining load is reduced, and the coining All dimensional accuracy can be easily obtained. Then, by carburizing the surface layer of the rough material after coining, the required strength of the surface portion can be obtained.

〔実施例〕〔Example〕

本発明を一実施例により説明する。 The present invention will be explained by way of an example.

実施例 重量比でNi2%、MOo、5%残部Feからなる合金
粉にGr(グラファイト)0.2〜0,5重量%及び潤
滑剤であるステアリン酸亜鉛0.8重量%を添加、混合
し、密度6.5 t /crAの成形体に加圧成形した
Example 0.2 to 0.5% by weight of Gr (graphite) and 0.8% by weight of zinc stearate as a lubricant were added and mixed into an alloy powder consisting of 2% Ni, MOo, and 5% balance Fe by weight ratio. , and was press-molded into a molded body having a density of 6.5 t/crA.

次にこの成形体を吸熱性ガス雰囲気中で1150℃の温
度にて20分間保持して焼結した後、1050℃の温度
にて10t/−dの圧力で熱間鍛造し、そして大気放冷
して表面層を深さ0.1 m程度脱炭させた。次に大気
中で焼きならしを行って表面層を深さ0.4■程度脱炭
させた。この脱炭処理した焼結粗材をボンデ処理した仮
コイニング型により4t/!の加圧力にて冷間コイニン
グした。
Next, this compact was sintered by holding it at a temperature of 1150°C for 20 minutes in an endothermic gas atmosphere, then hot forged at a pressure of 10t/-d at a temperature of 1050°C, and then left to cool in the atmosphere. The surface layer was decarburized to a depth of about 0.1 m. Next, normalization was performed in the air to decarburize the surface layer to a depth of about 0.4 cm. This decarburized sintered rough material is bonded to a temporary coining mold to produce 4t/! Cold coining was carried out at a pressure of .

このようにして第1図に示すような高精度のギア・パー
キングロック1を有する焼結鍛造歯車粗材を得た。
In this way, a sintered forged gear rough material having a highly accurate gear/parking lock 1 as shown in FIG. 1 was obtained.

次にこのギア・パーキングロック1の歯部を基準として
該歯部に近接してより大きな第2の歯部を歯切り切削等
の機械加工により一体的に形成して第2図に示すような
大小二つの歯部が互いに近接する高精度の段付歯車を得
た。図中、2はギア・カウンタードリブンである。
Next, with the teeth of this gear/parking lock 1 as a reference, a second larger tooth is integrally formed adjacent to the tooth by machining such as gear cutting, as shown in FIG. A high-precision stepped gear in which two large and small teeth are close to each other was obtained. In the figure, 2 is gear counter driven.

次にこの歯車を吸熱性ガス中で930℃の温度にて5時
間浸炭処理を施して、脱炭した表面層を復炭させたうえ
に浸炭焼入れ、焼もどしを行った。
Next, this gear was carburized in an endothermic gas at a temperature of 930° C. for 5 hours to recarburize the decarburized surface layer, and then carburized and quenched and tempered.

互いに近接する二つ以上の歯形を有する歯車部品を製作
する場合、従来は二つ以上の歯形を有する部品を別々に
機械加工により製作し、これらを電子ビーム溶接等によ
り溶接して一体化していたが、本発明方法によれば上記
したように少なくとも外径の小さい歯部を焼結鍛造によ
り一体的に高精度成形することができるので工程が簡略
化され、コストが低減され、しかも精度及び強度に優れ
た、互いに近接する大小二つの歯部を有する歯車部品を
容易に得ることができる。
When manufacturing gear parts that have two or more tooth profiles that are close to each other, conventionally the parts that have two or more tooth profiles were manufactured separately by machining, and then welded together using electron beam welding etc. However, according to the method of the present invention, as described above, at least the teeth with a small outer diameter can be integrally formed with high precision by sinter forging, which simplifies the process, reduces costs, and improves accuracy and strength. It is possible to easily obtain a gear component having two large and small tooth portions that are close to each other and have excellent properties.

そのため、歯形を有する二つの部品の接合部を機械加工
により高精度に仕上げる等の長い機械7]0工工程や該
接合部の洗浄工程等が必要なくなった。また、従来、電
子ビーム溶接の品質確認のために溶は込み深さを破壊検
査しなければならず、そのためコスト高になっていたが
、その検査の必要もなくなり、コストが低減される。
Therefore, there is no longer a need for a long mechanical process such as finishing a joint between two tooth-shaped parts with high precision by machining, or a cleaning process for the joint. Furthermore, conventionally, the penetration depth had to be destructively inspected to confirm the quality of electron beam welding, which increased costs, but this inspection is no longer necessary, and costs are reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の焼結鍛造部品の製造方法は上記したように、焼
結鍛造粗材の表面層をコイニングに必要な量だけ脱炭し
た後コイニングすることとしたので、加工時変形抵抗が
城少し、その結果低荷重でコイニングができ、またスプ
リングバック量も少なくなり、寸法の変動も低減でき、
高精度に成形できる。更に、低荷重でよいことからコイ
ニング時の型摩耗の度合も減少させることができる。
As described above, in the method for manufacturing sintered forged parts of the present invention, the surface layer of the sintered forged rough material is decarburized by the amount necessary for coining, and then coined, so that the deformation resistance during processing is reduced. As a result, coining can be done with low load, the amount of springback is also reduced, and dimensional fluctuations can be reduced.
Can be formed with high precision. Furthermore, since a low load is required, the degree of die wear during coining can also be reduced.

更に、近接した歯部を有する段付歯車など機械加工によ
り一体的に高精度成形することが困難な部品であっても
容易にしかも一体的かつ高精度で製造することができる
Furthermore, even parts that are difficult to mold integrally with high precision by machining, such as stepped gears having closely spaced teeth, can be manufactured easily, integrally, and with high precision.

更に本発明方法では熱間鍛造後空気中で放冷するとか、
空気中で焼きならしすることにより脱炭することができ
るため、新たな工程を必要とせず、従来の放冷及び焼き
ならしの工程を空気中又はそれに近い雰囲気中で行うよ
うにするだけでよい。その結果、従来、加熱工程で保護
雰囲気として窒素ガス等を使用していたが、その必要が
なくなり、該工程を簡略化することができる。
Furthermore, in the method of the present invention, after hot forging, it is allowed to cool in the air,
Since decarburization can be achieved by normalizing in air, there is no need for a new process, and the conventional cooling and normalizing processes can be performed in air or a similar atmosphere. good. As a result, although nitrogen gas or the like has conventionally been used as a protective atmosphere in the heating process, this is no longer necessary and the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の焼結鍛造歯車粗材の
断面図、第1図(b)は同平面図、第2図は本発明の一
実施例の焼結鍛造段付歯車の断面図、 第3図はコイニング時の荷重としごき代の関係を示すグ
ラフを表す。 図中、 1・・・ギア・パーキングロック 2・・・ギア拳カウンタードリフ゛ン 特許出願人  トヨタ自動車株式会社 @、愼 2
FIG. 1(a) is a sectional view of a sintered forged gear rough material according to an embodiment of the present invention, FIG. 1(b) is a plan view of the same, and FIG. 2 is a sintered forged stage of an embodiment of the present invention. The cross-sectional view of the attached gear and Figure 3 are graphs showing the relationship between the load during coining and the ironing allowance. In the diagram, 1...Gear parking lock 2...Gear fist counter drift patent applicant Toyota Motor Corporation @, Shin 2

Claims (1)

【特許請求の範囲】[Claims] コイニング前に焼結鍛造粗材の表面層を所定量脱炭させ
てコイニングを行い、その後浸炭処理を行うことを特徴
とする焼結鍛造部品の製造方法。
A method for manufacturing sintered forged parts, which comprises decarburizing a predetermined amount of the surface layer of a sintered forged raw material before coining, performing coining, and then carburizing the material.
JP20370284A 1984-09-28 1984-09-28 Manufacture of sintered forged parts Pending JPS6184302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20370284A JPS6184302A (en) 1984-09-28 1984-09-28 Manufacture of sintered forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20370284A JPS6184302A (en) 1984-09-28 1984-09-28 Manufacture of sintered forged parts

Publications (1)

Publication Number Publication Date
JPS6184302A true JPS6184302A (en) 1986-04-28

Family

ID=16478432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20370284A Pending JPS6184302A (en) 1984-09-28 1984-09-28 Manufacture of sintered forged parts

Country Status (1)

Country Link
JP (1) JPS6184302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305388A1 (en) * 1986-05-16 1989-03-08 Nilsen Sintered Products (Australia) Pty Ltd Method of making multi-chain sprockets
WO1991010754A2 (en) * 1990-01-19 1991-07-25 Mannesmann Ag Process for producing high-strength sintered parts from powdered steel
JP2004502028A (en) * 2000-06-28 2004-01-22 ホガナス アクチボラゲット Method for manufacturing powder metal parts with densified surface
EP3486009A1 (en) * 2017-11-17 2019-05-22 The Swatch Group Research and Development Ltd Method for sintering an austenitic stainless steel
CN110064753A (en) * 2018-01-24 2019-07-30 米巴烧结奥地利有限公司 Method for manufacturing sintered component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305388A1 (en) * 1986-05-16 1989-03-08 Nilsen Sintered Products (Australia) Pty Ltd Method of making multi-chain sprockets
WO1991010754A2 (en) * 1990-01-19 1991-07-25 Mannesmann Ag Process for producing high-strength sintered parts from powdered steel
WO1991010754A3 (en) * 1990-01-19 1991-09-05 Mannesmann Ag Process for producing high-strength sintered parts from powdered steel
JP2004502028A (en) * 2000-06-28 2004-01-22 ホガナス アクチボラゲット Method for manufacturing powder metal parts with densified surface
EP3486009A1 (en) * 2017-11-17 2019-05-22 The Swatch Group Research and Development Ltd Method for sintering an austenitic stainless steel
US11185917B2 (en) 2017-11-17 2021-11-30 The Swatch Group Research And Development Ltd Austenitic stainless steel workpiece
CN110064753A (en) * 2018-01-24 2019-07-30 米巴烧结奥地利有限公司 Method for manufacturing sintered component

Similar Documents

Publication Publication Date Title
US5754937A (en) Hi-density forming process
JP3309344B2 (en) Manufacturing method of gear with center hole
CN100391659C (en) Method of production of surface densified powder metal components
KR20050077492A (en) Method to make sinter-hardened powder metal parts with complex shapes
US6013225A (en) Surface densification of machine components made by powder metallurgy
US4251273A (en) Method of forming valve lifters
US5997805A (en) High carbon, high density forming
US5562786A (en) Process for producing heat-treated sintered iron alloy part
US6143240A (en) High density forming process with powder blends
JP5642386B2 (en) High carbon surface densified sintered steel product and its production method
JP3869620B2 (en) Alloy steel powder molding material, alloy steel powder processed body, and manufacturing method of alloy steel powder molding material
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JPS6184302A (en) Manufacture of sintered forged parts
US4018632A (en) Machinable powder metal parts
US8444781B1 (en) Method of strengthening metal parts through ausizing
JPH0535203B2 (en)
JPH07138613A (en) Production of heat-treated ferrous sintered alloy parts
KR100966266B1 (en) Manufacturing method of sinter hardening powder metal machine part
JPH06330108A (en) Production of sintered composite mechanical parts
JPS60169501A (en) Ferrous alloy powder for sintering and forging
JP2018127650A (en) Ferrous powder metallurgical member and method for producing the same
JP7356035B2 (en) Forging materials, forged parts and manufacturing methods thereof
KR100263956B1 (en) Process for producing heat treatment iron alloy parts
JPS6270504A (en) Production of sinter forged parts
JP2020139193A (en) Machine component, and method for producing the same