JP2020138237A - Electroslag welding method and magnetic field application device in electroslag welding - Google Patents

Electroslag welding method and magnetic field application device in electroslag welding Download PDF

Info

Publication number
JP2020138237A
JP2020138237A JP2020024572A JP2020024572A JP2020138237A JP 2020138237 A JP2020138237 A JP 2020138237A JP 2020024572 A JP2020024572 A JP 2020024572A JP 2020024572 A JP2020024572 A JP 2020024572A JP 2020138237 A JP2020138237 A JP 2020138237A
Authority
JP
Japan
Prior art keywords
magnetic field
front side
copper plate
back side
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020024572A
Other languages
Japanese (ja)
Other versions
JP7377733B2 (en
Inventor
修 尾崎
Osamu Ozaki
修 尾崎
裕志 橋本
Hiroshi Hashimoto
裕志 橋本
舞帆 辰巳
Maho Tatsumi
舞帆 辰巳
亮 戸田
Ryo Toda
亮 戸田
秀徳 名古
Hidenori Nako
秀徳 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2020138237A publication Critical patent/JP2020138237A/en
Application granted granted Critical
Publication of JP7377733B2 publication Critical patent/JP7377733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an electroslag welding method characterized by performing electroslag welding of a base material while applying a magnetic field to a molten pool in a groove portion of the base material.SOLUTION: In the electroslag welding method, a base material is welded while reciprocating a welding torch 90 between a front side position and a rear side position in a groove portion; when the welding torch 90 approaches an iron core of a magnetic filed application coil 30 at a front side that applies the magnetic field through the front side of the groove portion during the reciprocation of the welding torch 90, electric current values of the magnetic field application coil 30 at the front side are reduced and electric current values of the magnetic application coil 40 at the rear side that applies a magnetic field through the rear side of the groove portion are increased; and when the welding torch 90 approaches an iron core of a magnetic field application coil 40 at the rear side during the reciprocation of the welding torch 90, electric current values of the magnetic field application coil 40 at the rear side are reduced, and electric current values of the magnetic field application coil 30 at the front side are increased.SELECTED DRAWING: Figure 20

Description

本発明は、エレクトロスラグ溶接方法及びエレクトロスラグ溶接における磁場印加装置に関する。 The present invention relates to an electroslag welding method and a magnetic field application device in electroslag welding.

アーク溶接において溶融池に磁界を作用させて、該磁界と溶接電流とによる回転方向の磁力で溶融金属を攪拌しながら溶接を行う磁気攪拌溶接法は、知られている(例えば、特許文献1、2参照)。特許文献1、2では、溶接トーチの回りを囲むように磁気コイルが配されている。 A magnetic stirring welding method in which a magnetic field is applied to a molten pool in arc welding and welding is performed while stirring the molten metal with a magnetic force in the rotational direction due to the magnetic field and the welding current is known (for example, Patent Document 1, Patent Document 1, 2). In Patent Documents 1 and 2, magnetic coils are arranged so as to surround the welding torch.

特開平4−190976号公報Japanese Unexamined Patent Publication No. 4-190976 特開平8−318370号公報Japanese Unexamined Patent Publication No. 8-318370

ところで、エレクトロスラグ溶接は、アーク溶接と異なり、数百アンペアの電流を通電している溶接ワイヤを、溶融した電解質である溶融スラグに供給し、溶融スラグ内のジュール発熱によって、母材と溶接ワイヤを溶かしながら溶接する方法である。溶接方向は垂直であり、下から上に溶接が進む。また、溶融スラグや溶融金属がこぼれないように、母材の開先部は水冷銅板で覆われる。エレクトロスラグ溶接では、溶融池の前後左右は母材や水冷銅板に覆われ、溶融池の上下は既に溶接した溶接部分と溶融スラグとに覆われている。従って、アーク溶接のように溶接ワイヤを供給するトーチ部分にコイルを配置しても、溶融スラグが存在するので、溶融池に有効な磁場を印加できないばかりでなく、そもそも開先部の空間は狭く、コイルを配置することもできない。 By the way, in electroslag welding, unlike arc welding, a welding wire carrying a current of several hundred amperes is supplied to the molten slag, which is a molten electrolyte, and Joule heat generation in the molten slag causes the base metal and the welding wire to be welded. It is a method of welding while melting. The welding direction is vertical, and welding proceeds from bottom to top. In addition, the groove of the base metal is covered with a water-cooled copper plate to prevent molten slag and molten metal from spilling. In electroslag welding, the front, back, left and right of the molten pool are covered with a base metal and a water-cooled copper plate, and the top and bottom of the molten pool are covered with the welded portion and the molten slag that have already been welded. Therefore, even if the coil is placed in the torch part that supplies the welding wire as in arc welding, not only is it impossible to apply an effective magnetic field to the molten pool because of the presence of molten slag, but the space at the groove is narrow in the first place. , The coil cannot be placed.

本発明の目的は、エレクトロスラグ溶接において溶融池に磁場を印加することにある。 An object of the present invention is to apply a magnetic field to a molten pool in electroslag welding.

かかる目的のもと、本発明は、母材の開先部内の溶融池に磁場を印加しながら母材のエレクトロスラグ溶接を行うことを特徴とするエレクトロスラグ溶接方法を提供する。 For this purpose, the present invention provides an electroslag welding method characterized in that electroslag welding of a base metal is performed while applying a magnetic field to a molten pool in the groove portion of the base metal.

磁場は、静磁場、又は、周波数が1Hz以下の回転磁場であってよい。 The magnetic field may be a static magnetic field or a rotating magnetic field having a frequency of 1 Hz or less.

エレクトロスラグ溶接方法は、開先部の表側及び裏側から磁場を印加する、ものであってよい。その場合、表側及び裏側から印加される磁場の向きは同じであっても逆であってもよい。 The electroslag welding method may be one in which a magnetic field is applied from the front side and the back side of the groove portion. In that case, the directions of the magnetic fields applied from the front side and the back side may be the same or opposite.

エレクトロスラグ溶接方法は、溶接トーチを、開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接し、溶接トーチの往復動の中で、溶接トーチが、開先部の表側から磁場を印加する表側の磁場印加コイルの鉄芯に接近したときに、表側の磁場印加コイルの電流値を減少させ、開先部の裏側から磁場を印加する裏側の磁場印加コイルの電流値を増大させ、溶接トーチの往復動の中で、溶接トーチが、裏側の磁場印加コイルの鉄芯に接近したときに、裏側の磁場印加コイルの電流値を減少させ、表側の磁場印加コイルの電流値を増大させる、ものであってよい。その場合、溶接トーチが表側の磁場印加コイルの鉄芯に最も近付いたときに、表側の磁場印加コイルの電流値を最小とし、裏側の磁場印加コイルの電流値を最大とし、溶接トーチが裏側の磁場印加コイルの鉄芯に最も近付いたときに、裏側の磁場印加コイルの電流値を最小とし、表側の磁場印加コイルの電流値を最大とする、ものであってもよい。また、表側の磁場印加コイル及び裏側の磁場印加コイルに流す電流の向きを、溶接トーチの往復動の周期ごとに反転させる、ものであってもよい。更に、溶接トーチが表側の磁場印加コイル又は裏側の磁場印加コイルの鉄芯に最も近付き、静止しているときに、表側の磁場印加コイルの電流と、裏側の磁場印加コイルの電流とを、値は同じで向きを逆とする、ものであってもよい。 In the electroslag welding method, the welding torch is welded while reciprocating between the front side position and the back side position in the groove portion, and in the reciprocating movement of the welding torch, the welding torch moves to the groove portion. When approaching the iron core of the magnetic field application coil on the front side where the magnetic field is applied from the front side, the current value of the magnetic field application coil on the front side is reduced, and the current of the magnetic field application coil on the back side where the magnetic field is applied from the back side of the groove. By increasing the value, when the welding torch approaches the iron core of the magnetic field application coil on the back side during the reciprocating movement of the welding torch, the current value of the magnetic field application coil on the back side is reduced, and the current value of the magnetic field application coil on the front side is reduced. It may be one that increases the current value. In that case, when the welding torch is closest to the iron core of the magnetic field application coil on the front side, the current value of the magnetic field application coil on the front side is minimized, the current value of the magnetic field application coil on the back side is maximized, and the welding torch is on the back side. The current value of the magnetic field application coil on the back side may be minimized and the current value of the magnetic field application coil on the front side may be maximized when the magnetic field application coil is closest to the iron core. Further, the direction of the current flowing through the magnetic field application coil on the front side and the magnetic field application coil on the back side may be reversed for each cycle of the reciprocating motion of the welding torch. Further, when the welding torch is closest to the iron core of the magnetic field application coil on the front side or the magnetic field application coil on the back side and is stationary, the current of the magnetic field application coil on the front side and the current of the magnetic field application coil on the back side are valued. May be the same but in the opposite direction.

開先部の表側及び裏側は、開先部の表面及び裏面に配置された冷却用銅板の母材とは反対側であってよい。 The front side and the back side of the groove portion may be opposite to the base material of the cooling copper plate arranged on the front surface and the back surface of the groove portion.

エレクトロスラグ溶接方法は、開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板の少なくとも何れか一方が、母材に対して固定されており、表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、裏側冷却用銅板に配置された裏側の電磁石の中心軸の基準面からの高さとが一致するように、表側の電磁石及び裏側の電磁石を移動しながら溶接する、ものであってよい。その場合、表側冷却用銅板及び裏側冷却用銅板の一方は、開先部が延びる方向に移動可能であってもよい。 In the electroslag welding method, at least one of the front cooling copper plate arranged on the front surface of the groove and the back cooling copper plate arranged on the back surface is fixed to the base material, and the front cooling copper plate is fixed. The front side electromagnet and the back side so that the height of the central axis of the front side electromagnets arranged in the above from the reference surface and the height of the back side electromagnets arranged on the back side cooling copper plate from the reference surface match. It may be one that welds while moving the electromagnet. In that case, one of the front side cooling copper plate and the back side cooling copper plate may be movable in the direction in which the groove portion extends.

エレクトロスラグ溶接方法は、開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板が何れも、開先部が延びる方向に移動可能であり、表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、裏側冷却用銅板に配置された裏側の電磁石の中心軸の基準面からの高さとが一致するように、表側冷却用銅板及び裏側冷却用銅板を移動しながら溶接する、ものであってよい。 In the electroslag welding method, both the front side cooling copper plate arranged on the front surface of the groove and the back side cooling copper plate arranged on the back surface can be moved in the direction in which the groove extends, and the front side cooling copper plate can be used. The front cooling copper plate and the back side so that the height of the central axis of the arranged front side electromagnet from the reference surface and the height of the back side electromagnet arranged on the back side cooling copper plate from the reference surface match. The cooling copper plate may be welded while moving.

また、本発明は、母材の開先部の表面及び裏面に配置された冷却用銅板の母材とは反対側に、開先部内の溶融池に磁場を印加するための電磁石を配置したことを特徴とするエレクトロスラグ溶接における磁場印加装置も提供する。 Further, in the present invention, an electromagnet for applying a magnetic field to the molten pool in the groove is arranged on the opposite side of the base material of the cooling copper plate arranged on the front surface and the back surface of the groove portion of the base material. Also provided is a magnetic field application device in electroslag welding.

冷却用銅板に穴又は溝が設けられており、電磁石の鉄芯が穴又は溝に嵌っている、ものであってよい。 The cooling copper plate may be provided with holes or grooves, and the iron core of the electromagnet may be fitted in the holes or grooves.

エレクトロスラグ溶接における磁場印加装置は、開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接する溶接トーチを更に配置し、溶接トーチの往復動の中で、溶接トーチが、開先部の表側から磁場を印加する表側の電磁石の鉄芯に接近したときに、表側の電磁石の電流値を減少させ、開先部の裏側から磁場を印加する裏側の電磁石の電流値を増大させ、溶接トーチの往復動の中で、溶接トーチが、裏側の電磁石の鉄芯に接近したときに、裏側の電磁石の電流値を減少させ、表側の電磁石の電流値を増大させる、ものであってよい。 The magnetic current application device in electroslag welding further arranges a welding torch for welding while reciprocating between the front side position and the back side position in the groove portion, and the welding torch is reciprocated in the reciprocating movement of the welding torch. However, when approaching the iron core of the electromagnet on the front side to which the magnetic field is applied from the front side of the groove, the current value of the electromagnet on the front side is reduced, and the current value of the electromagnet on the back side to which the magnetic field is applied from the back side of the groove is reduced. When the welding torch approaches the iron core of the electromagnet on the back side in the reciprocating movement of the welding torch, the current value of the electromagnet on the back side is reduced and the current value of the electromagnet on the front side is increased. It may be.

エレクトロスラグ溶接における磁場印加装置は、開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板の少なくとも何れか一方が、母材に対して固定されており、表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、裏側冷却用銅板に配置された裏側の電磁石の中心軸の基準面からの高さとが一致するように、表側の電磁石及び裏側の電磁石が移動可能に構成されている、ものであってよい。 In the magnetic field application device in electroslag welding, at least one of the front side cooling copper plate arranged on the front surface of the groove and the back side cooling copper plate arranged on the back surface is fixed to the base material, and the front side is fixed. The height of the center axis of the front side electromagnets placed on the cooling copper plate from the reference surface matches the height of the center axis of the back side electromagnets placed on the back side cooling copper plate. The electromagnet and the electromagnet on the back side may be configured to be movable.

エレクトロスラグ溶接における磁場印加装置は、開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板が何れも、開先部が延びる方向に移動可能な構造を持ち、表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、裏側冷却用銅板に配置された裏側の電磁石の中心軸の基準面からの高さとが一致するように、表側冷却用銅板及び裏側冷却用銅板が移動可能に構成されている、ものであってよい。 The magnetic field application device in electroslag welding has a structure in which both the front cooling copper plate arranged on the front surface of the groove and the back cooling copper plate arranged on the back surface can move in the direction in which the groove extends. The front side so that the height of the central axis of the front side electromagnets arranged on the front side cooling copper plate from the reference surface matches the height of the back side electromagnets arranged on the back side cooling copper plate from the reference surface. The cooling copper plate and the back side cooling copper plate may be configured to be movable.

本発明によれば、エレクトロスラグ溶接において溶融池に磁場を印加することが可能となる。 According to the present invention, it is possible to apply a magnetic field to a molten pool in electroslag welding.

(a),(b)は、本発明の第1の実施の形態における磁場印加装置を前側から見たときの斜視図である。(A) and (b) are perspective views of the magnetic field application device according to the first embodiment of the present invention when viewed from the front side. (a),(b)は、本発明の第1の実施の形態における磁場印加装置を後側から見たときの斜視図である。(A) and (b) are perspective views of the magnetic field application device according to the first embodiment of the present invention when viewed from the rear side. 本発明の第1の実施の形態の磁場印加装置における前側コイル及び後側コイルの位置を示した図である。It is a figure which showed the position of the front side coil and the rear side coil in the magnetic field application device of 1st Embodiment of this invention. 溶接個所における磁場の分布を示した図である。It is a figure which showed the distribution of the magnetic field at the welded part. 水冷銅板にコイルを嵌めた状態での磁場分布と水冷銅板にコイルを嵌めていない状態での磁場分布とを比較したグラフである。It is a graph comparing the magnetic field distribution in the state where the coil is fitted in the water-cooled copper plate, and the magnetic field distribution in the state where the coil is not fitted in the water-cooled copper plate. 溶融池における溶接電流密度の分布を示した図である。It is a figure which showed the distribution of the welding current density in a molten pool. (a),(b)は、溶融池の上面における溶融金属の流速ベクトル分布を示した図である。(A) and (b) are diagrams showing the flow velocity vector distribution of the molten metal on the upper surface of the molten pool. (a),(b)は、溶融池の内部における溶融金属の流速分布を示した図である。(A) and (b) are diagrams showing the flow velocity distribution of the molten metal inside the molten pool. (a)〜(e)は、溶接部の断面写真である。(A) to (e) are cross-sectional photographs of the welded portion. 本発明の第2の実施の形態の磁場印加装置における前側コイル及び後側コイルの位置を示した図である。It is a figure which showed the position of the front side coil and the rear side coil in the magnetic field application device of the 2nd Embodiment of this invention. (a),(b)は、溶接トーチが最も前側及び最も後側にあるときの溶接電流密度の高さ方向の分布を示したグラフである。(A) and (b) are graphs showing the distribution of the welding current density in the height direction when the welding torch is on the frontmost side and the rearmost side. 表2の構成での磁束密度の高さ方向の分布を示したグラフである。It is a graph which showed the distribution of the magnetic flux density in the height direction in the configuration of Table 2. 表2の構成でのローレンツ力の高さ方向の分布を示したグラフである。It is a graph which showed the distribution of the Lorentz force in the height direction in the configuration of Table 2. (a),(b)は、表2の構成でローレンツ力の平均値を溶融池と溶融スラグとで比較した棒グラフである。(A) and (b) are bar graphs comparing the average value of Lorentz force between the molten pool and the molten slag in the configuration of Table 2. (a),(b)は、溶融スラグ及び溶融池について溶接トーチの位置に対する溶接電流密度の分布を示したグラフである。(A) and (b) are graphs showing the distribution of welding current densities with respect to the position of the welding torch for the molten slag and the molten pool. (a),(b)は、溶接トーチが前側及び後側に位置するときの前側及び後側のローレンツ力の高さ方向の分布を示したグラフである。(A) and (b) are graphs showing the distribution of Lorentz force on the front side and the rear side in the height direction when the welding torch is located on the front side and the rear side. (a),(b)は、溶接トーチが前側及び後側に位置するときの前側及び後側のローレンツ力の平均値を溶融池と溶融スラグとで比較した棒グラフである。(A) and (b) are bar graphs comparing the average values of the Lorentz forces on the front side and the rear side when the welding torch is located on the front side and the rear side between the molten pool and the molten slag. (a),(b)は、前側コイル及び後側コイルの磁極の向きを変えない場合に生じる問題について示した図である。(A) and (b) are diagrams showing a problem that occurs when the directions of the magnetic poles of the front coil and the rear coil are not changed. (a)〜(d)は、電磁攪拌用の印加磁界の反転方法について説明するためのタイムチャートである。(A) to (d) are time charts for explaining the method of reversing the applied magnetic field for electromagnetic agitation. 本発明の第3の実施の形態の第1の実施例における磁場印加装置の構成を横から見た図である。It is a figure which looked at the structure of the magnetic field application device in 1st Example of 3rd Embodiment of this invention from the side. (a),(b)は、前側コイル及び後側コイルの上下昇降の様子を示した図である。(A) and (b) are views showing the state of up and down movement of the front coil and the rear coil. (a),(b)は、前側コイル及び後側コイルの上下昇降の様子を示した図である。(A) and (b) are views showing the state of up and down movement of the front coil and the rear coil. 本発明の第3の実施の形態の第2の実施例における磁場印加装置の構造を示した図である。It is a figure which showed the structure of the magnetic field application apparatus in the 2nd Example of the 3rd Embodiment of this invention. 本発明の第3の実施の形態の第2の実施例における磁場印加装置の構成を横から見た図である。It is a figure which looked at the structure of the magnetic field application device in 2nd Example of the 3rd Embodiment of this invention from the side. (a),(b)は、前側水冷銅板及び後側水冷銅板の上下昇降の様子を示した図である。FIGS. (A) and (b) are views showing a state in which the front water-cooled copper plate and the rear water-cooled copper plate are moved up and down. (a),(b)は、前側水冷銅板及び後側水冷銅板の上下昇降の様子を示した図である。FIGS. (A) and (b) are views showing a state in which the front water-cooled copper plate and the rear water-cooled copper plate are moved up and down.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1の実施の形態]
まず、第1の実施の形態における磁場印加装置1の構成について説明する。図1(a),(b)は、第1の実施の形態における磁場印加装置1を前側(表側ともいう)から見たときの斜視図であり、図2(a),(b)は、第1の実施の形態における磁場印加装置1を後側(裏側ともいう)から見たときの斜視図である。
[First Embodiment]
First, the configuration of the magnetic field application device 1 according to the first embodiment will be described. 1 (a) and 1 (b) are perspective views of the magnetic field applying device 1 according to the first embodiment as viewed from the front side (also referred to as the front side), and FIGS. 2 (a) and 2 (b) are views. It is a perspective view when the magnetic field application device 1 in the 1st Embodiment is seen from the rear side (also referred to as a back side).

第1の実施の形態における磁場印加装置1は、図1(a),(b)及び図2(a),(b)に示すように、溶接ワイヤ5と、前側水冷銅板10と、後側水冷銅板20と、前側コイル30と、後側コイル40とを含む。 As shown in FIGS. 1 (a) and 1 (b) and 2 (a) and 2 (b), the magnetic field applying device 1 according to the first embodiment includes a welding wire 5, a front water-cooled copper plate 10, and a rear side. A water-cooled copper plate 20, a front coil 30, and a rear coil 40 are included.

溶接ワイヤ5は、母材2,3の突き合わせ部に形成された開先部4に挿入される。そして、溶接電源(図示せず)により通電された状態で開先部4内の溶融スラグ6(図3参照)に供給され、溶融スラグ6内のジュール発熱によって溶融され、溶融金属を溶融池7(図3参照)に落とし込むことで下から上に向かって順次溶接して行くためのものである。 The welding wire 5 is inserted into the groove portion 4 formed at the abutting portion of the base materials 2 and 3. Then, it is supplied to the molten slag 6 (see FIG. 3) in the groove 4 in a state of being energized by a welding power source (not shown), and is melted by Joule heat generation in the molten slag 6, and the molten metal is melted in the molten pool 7. It is for welding sequentially from the bottom to the top by dropping it into (see FIG. 3).

前側水冷銅板10は、母材2,3の開先部4の前側を覆う水冷のための銅板である。前側水冷銅板10には、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)が設けられる。また、後側水冷銅板20は、母材2,3の開先部4の後側を覆う水冷のための銅板である。後側水冷銅板20にも、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)が設けられる。 The front water-cooled copper plate 10 is a water-cooled copper plate that covers the front side of the groove portion 4 of the base materials 2 and 3. The front water-cooled copper plate 10 is provided with an inflow port (not shown) for flowing in cooling water for water cooling and an outflow port (not shown) for flowing out cooling water for water cooling. The rear water-cooled copper plate 20 is a water-cooled copper plate that covers the rear side of the groove portion 4 of the base materials 2 and 3. The rear water-cooled copper plate 20 is also provided with an inflow port (not shown) for flowing in cooling water for water cooling and an outlet (not shown) for flowing out cooling water for water cooling.

前側コイル30は、前側水冷銅板10に配置される磁気コイルである。前側コイル30は、コイル用電源(図示せず)により通電されることにより、磁場を発生させて、その磁場を溶融池7(図3参照)に印加する。また、後側コイル40は、後側水冷銅板20に配置される磁気コイルである。後側コイル40も、コイル用電源(図示せず)により通電されることにより、磁場を発生させて、その磁場を溶融池7(図3参照)に印加する。 The front coil 30 is a magnetic coil arranged on the front water-cooled copper plate 10. The front coil 30 is energized by a coil power source (not shown) to generate a magnetic field, and the magnetic field is applied to the molten pool 7 (see FIG. 3). The rear coil 40 is a magnetic coil arranged on the posterior water-cooled copper plate 20. The rear coil 40 is also energized by a coil power source (not shown) to generate a magnetic field, and the magnetic field is applied to the molten pool 7 (see FIG. 3).

ここで、図1(a)は、前側コイル30を嵌める前の磁場印加装置1の斜視図であり、図1(b)は、前側コイル30を嵌めた後の磁場印加装置1の斜視図である。前側水冷銅板10が溶接の進行に応じて上側に移動した場合、前側コイル30も同じく上側に移動する必要があるので、図示するように、前側水冷銅板10には穴11が設けられ、その穴11に前側コイル30の鉄芯31が嵌っている。 Here, FIG. 1A is a perspective view of the magnetic field applying device 1 before fitting the front coil 30, and FIG. 1B is a perspective view of the magnetic field applying device 1 after fitting the front coil 30. is there. When the front water-cooled copper plate 10 moves upward according to the progress of welding, the front coil 30 also needs to move upward. Therefore, as shown in the figure, the front water-cooled copper plate 10 is provided with a hole 11, and the hole 11 is provided. The iron core 31 of the front coil 30 is fitted in 11.

また、図2(a)は、後側コイル40を嵌める前の磁場印加装置1の斜視図であり、図2(b)は、後側コイル40を嵌めた後の磁場印加装置1の斜視図である。後側水冷銅板20は母材2,3に固定されているので、図示するように、後側水冷銅板20には鉛直方向に溝21が設けられ、後側コイル40の鉄芯41はその溝21に嵌ったまま、溶接の進行に応じて上側に移動するようになっている。 2 (a) is a perspective view of the magnetic field applying device 1 before fitting the rear coil 40, and FIG. 2 (b) is a perspective view of the magnetic field applying device 1 after fitting the rear coil 40. Is. Since the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3, as shown in the figure, the rear water-cooled copper plate 20 is provided with a groove 21 in the vertical direction, and the iron core 41 of the rear coil 40 is a groove thereof. While still fitted to 21, it moves upward as the welding progresses.

尚、本実施の形態では、図1(a),(b)及び図2(a),(b)に示すように、前側コイル30が開先部4の表側に配置されており、後側コイル40が開先部4の裏側に配置されている。また、前側水冷銅板10が、開先部4の表側の面、即ち、表面に配置されており、後側水冷銅板20が、開先部4の裏側の面、即ち、裏面に配置されている。この状態で、前側コイル30の配置位置は、前側水冷銅板10の母材2,3とは反対側であり、後側コイル40の配置位置は、後側水冷銅板20の母材2,3とは反対側であると言える。 In the present embodiment, as shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b), the front coil 30 is arranged on the front side of the groove portion 4 and is located on the rear side. The coil 40 is arranged on the back side of the groove portion 4. Further, the front water-cooled copper plate 10 is arranged on the front surface, that is, the front surface of the groove portion 4, and the rear water-cooled copper plate 20 is arranged on the back surface, that is, the back surface of the groove portion 4. .. In this state, the arrangement position of the front coil 30 is on the side opposite to the base materials 2 and 3 of the front water-cooled copper plate 10, and the arrangement position of the rear coil 40 is the base material 2 and 3 of the rear water-cooled copper plate 20. Can be said to be on the other side.

また、本実施の形態では、図1(a),(b)及び図2(a),(b)に示すように、母材2,3の中心を通り母材2,3に平行な平面上で溶接の進行方向に垂直な方向で母材2,3の前側から見て右側に向かう方向をX軸の正の方向とする。また、母材2,3の中心を通り母材2,3に平行な平面に垂直な方向で母材2,3の後側に向かう方向をY軸の正の方向とする。更に、母材2,3の中心を通り母材2,3に平行な平面上の溶接の進行方向をZ軸の正の方向とする。 Further, in the present embodiment, as shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b), a plane passing through the center of the base materials 2 and 3 and parallel to the base materials 2 and 3. The direction perpendicular to the welding progress direction and toward the right side when viewed from the front side of the base materials 2 and 3 is defined as the positive direction of the X-axis. Further, the direction toward the rear side of the base materials 2 and 3 in the direction perpendicular to the plane parallel to the base materials 2 and 3 passing through the center of the base materials 2 and 3 is defined as the positive direction of the Y axis. Further, the direction of welding on a plane passing through the center of the base materials 2 and 3 and parallel to the base materials 2 and 3 is set to the positive direction of the Z axis.

次に、第1の実施の形態の磁場印加装置1における前側コイル30及び後側コイル40の諸元について説明する。下記表は、前側コイル30及び後側コイル40の諸元を示したものである。 Next, the specifications of the front coil 30 and the rear coil 40 in the magnetic field application device 1 of the first embodiment will be described. The table below shows the specifications of the front coil 30 and the rear coil 40.

表に示す通り、前側コイル30のアンペアターンは6000ATとし、後側コイル40のアンペアターンは9000ATとしている。また、前側コイル30の鉄芯31及び後側コイル40の鉄芯41のサイズは何れも、直径20mm、長さ60mmとしている。 As shown in the table, the ampere turn of the front coil 30 is 6000 AT, and the ampere turn of the rear coil 40 is 9000 AT. Further, the sizes of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 are both 20 mm in diameter and 60 mm in length.

次に、第1の実施の形態の磁場印加装置1における前側コイル30及び後側コイル40の配置について説明する。図3は、磁場印加装置1における前側コイル30及び後側コイル40の位置を示した図である。本実施の形態では、図示するように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41を、その軸心の位置が、溶接ワイヤ5の先端から20mm〜25mm下の位置になるように配置している。溶接ワイヤ5の先端から溶融池7までの距離は10mm〜15mmなので、このような配置とすることで、鉄芯31及び鉄芯41の上端が溶融スラグ6と溶融池7との界面8と比較して、略同じ高さとなるか又は低くなる。 Next, the arrangement of the front coil 30 and the rear coil 40 in the magnetic field application device 1 of the first embodiment will be described. FIG. 3 is a diagram showing the positions of the front coil 30 and the rear coil 40 in the magnetic field application device 1. In the present embodiment, as shown in the figure, the position of the axis of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 is 20 mm to 25 mm below the tip of the welding wire 5. It is arranged like this. Since the distance from the tip of the welding wire 5 to the molten pool 7 is 10 mm to 15 mm, with such an arrangement, the upper ends of the iron core 31 and the iron core 41 are compared with the interface 8 between the molten slag 6 and the molten pool 7. Then, the height becomes almost the same or lower.

次に、本実施の形態の磁場印加装置1により溶接個所に印加される磁場の分布について説明する。図4は、溶接個所における磁場の分布を示した図である。具体的には、溶接個所における磁場の分布のシミュレーション結果である。図3に示した前側コイル30及び後側コイル40の配置により、同じく溶接電流が流れている溶融スラグ6に印加される磁場の強度を低く保ちながら、溶融池7に磁場を印加できていることが分かる。 Next, the distribution of the magnetic field applied to the welded portion by the magnetic field applying device 1 of the present embodiment will be described. FIG. 4 is a diagram showing the distribution of the magnetic field at the welded portion. Specifically, it is a simulation result of the distribution of the magnetic field at the welded part. By arranging the front coil 30 and the rear coil 40 shown in FIG. 3, the magnetic field can be applied to the molten pool 7 while keeping the strength of the magnetic field applied to the molten slag 6 through which the welding current is flowing low. I understand.

次に、本実施の形態の磁場印加装置1において水冷銅板にコイルが嵌っている場合と嵌っていない場合とを比較して説明する。図5は、水冷銅板にコイルを嵌めた状態での磁場分布と水冷銅板にコイルを嵌めていない状態での磁場分布とを比較したグラフである。具体的には、前者の磁場分布は、前側水冷銅板10の穴11に前側コイル30の鉄芯31を嵌め、後側水冷銅板20の溝21に後側コイル40の鉄芯41を嵌めた状態での溶融池7の磁場分布のシミュレーション結果である。一方、後者の磁場分布は、前側水冷銅板10の穴11に前側コイル30の鉄芯31を嵌めず、後側水冷銅板20の溝21に後側コイル40の鉄芯41を嵌めない状態、言い換えると鉄芯41の先端が溶融池7から離れている状態での溶融池7の磁場分布のシミュレーション結果である。尚、グラフにおいて、前後方向位置の正方向は、磁場印加装置1の前側の方向を示している。グラフから、水冷銅板にコイルを嵌めた状態の方が、水冷銅板にコイルを嵌めていない状態よりも、磁場の強度が増加することが分かる。磁場の強度の増加は、特に、溶融池7の前後の界面8で著しく、約2倍に増加させることができる。 Next, in the magnetic field application device 1 of the present embodiment, the case where the coil is fitted to the water-cooled copper plate and the case where the coil is not fitted will be compared and described. FIG. 5 is a graph comparing the magnetic field distribution in the state where the coil is fitted in the water-cooled copper plate and the magnetic field distribution in the state where the coil is not fitted in the water-cooled copper plate. Specifically, the magnetic field distribution of the former is a state in which the iron core 31 of the front coil 30 is fitted in the hole 11 of the front water-cooled copper plate 10 and the iron core 41 of the rear coil 40 is fitted in the groove 21 of the rear water-cooled copper plate 20. It is a simulation result of the magnetic field distribution of the molten pool 7 in. On the other hand, the latter magnetic field distribution is a state in which the iron core 31 of the front coil 30 is not fitted in the hole 11 of the front water-cooled copper plate 10 and the iron core 41 of the rear coil 40 is not fitted in the groove 21 of the rear water-cooled copper plate 20. This is a simulation result of the magnetic field distribution of the molten pool 7 in a state where the tip of the iron core 41 is separated from the molten pool 7. In the graph, the positive direction of the front-back direction position indicates the direction on the front side of the magnetic field application device 1. From the graph, it can be seen that the strength of the magnetic field is increased when the coil is fitted to the water-cooled copper plate than when the coil is not fitted to the water-cooled copper plate. The increase in the strength of the magnetic field is remarkable, especially at the interface 8 before and after the molten pool 7, and can be increased about twice.

次に、本実施の形態の磁場印加装置1における溶融池7の溶接電流密度の分布について説明する。図6は、溶融池7における溶接電流密度の分布を示した図である。具体的には、溶融池7に磁場を印加しながら溶接ワイヤ5に30Vの直流電圧を印加して後側から観察した溶接電流密度の分布のシミュレーション結果である。図5から、溶融池7における溶接電流密度は約1.0×10[A/m]〜3.2×10[A/m]となっており、溶融池7にも溶接電流が流れていることが分かる。従って、この溶融池7の溶接電流に静磁場を印加することで電磁攪拌を起こすことができる。 Next, the distribution of the welding current density of the molten pool 7 in the magnetic field applying device 1 of the present embodiment will be described. FIG. 6 is a diagram showing the distribution of welding current densities in the molten pool 7. Specifically, it is a simulation result of the distribution of the welding current density observed from the rear side by applying a DC voltage of 30 V to the welding wire 5 while applying a magnetic field to the molten pool 7. From Figure 5, the welding current density has become approximately 1.0 × 10 5 [A / m 2] ~3.2 × 10 5 [A / m 2] in the molten pool 7, the welding current in the molten pool 7 You can see that is flowing. Therefore, electromagnetic stirring can be caused by applying a static magnetic field to the welding current of the molten pool 7.

次に、本実施の形態の磁場印加装置1により生じる溶融池7の上面における溶融金属の流速分布について説明する。図7(a),(b)は、溶融池7の上面における溶融金属の流速ベクトル分布を示した図である。具体的には、溶融池7の内部に電磁攪拌によって発生する溶融金属の流れのシミュレーション結果である。図7(a)は、前側コイル30が発生する磁場の方向と後側コイル40が発生する磁場の方向とが同じ場合を示し、図7(b)は、前側コイル30が発生する磁場の方向と後側コイル40が発生する磁場の方向とが反対の場合を示す。溶融池7のうち、鉄芯31,41に最も近い部分に最も大きなローレンツ力が働くので、流速は、溶融池7の前側及び後側で最も速く、約0.2m/sとなる。図7(a)では、前側コイル30が発生する磁場の方向と後側コイル40が発生する磁場の方向とが同じなので、溶融池7の前側及び後側で流れの向きも同じになり、溶融池7の水平面内にS字状の流れが生じている。また、図7(a),(b)から分かるように、流速分布は左右非対称になっている。よって、印加する磁場の方向を1.0Hz以下の低周波数で反転させることは攪拌効果を平均化させるために効果的である。但し、周波数を1.0Hz以上にすると、流れが成長する前にローレンツ力が反転し攪拌効果は小さくなるので、1.0Hz以下が妥当である。 Next, the flow velocity distribution of the molten metal on the upper surface of the molten pool 7 generated by the magnetic field applying device 1 of the present embodiment will be described. 7 (a) and 7 (b) are diagrams showing the flow velocity vector distribution of the molten metal on the upper surface of the molten pool 7. Specifically, it is a simulation result of the flow of molten metal generated by electromagnetic stirring inside the molten pool 7. FIG. 7A shows a case where the direction of the magnetic field generated by the front coil 30 and the direction of the magnetic field generated by the rear coil 40 are the same, and FIG. 7B shows the direction of the magnetic field generated by the front coil 30. The case where the direction of the magnetic field generated by the rear coil 40 is opposite to that of the magnetic field is shown. Since the largest Lorentz force acts on the portion of the molten pool 7 closest to the iron cores 31 and 41, the flow velocity is the fastest on the front side and the rear side of the molten pool 7 and is about 0.2 m / s. In FIG. 7A, since the direction of the magnetic field generated by the front coil 30 and the direction of the magnetic field generated by the rear coil 40 are the same, the flow directions are the same on the front side and the rear side of the molten pool 7, and the melt is melted. An S-shaped flow is generated in the horizontal plane of the pond 7. Further, as can be seen from FIGS. 7 (a) and 7 (b), the flow velocity distribution is asymmetrical. Therefore, reversing the direction of the applied magnetic field at a low frequency of 1.0 Hz or less is effective for averaging the stirring effect. However, when the frequency is 1.0 Hz or higher, the Lorentz force is reversed before the flow grows and the stirring effect becomes smaller, so 1.0 Hz or lower is appropriate.

次に、本実施の形態の磁場印加装置1により生じる溶融池7の内部における溶融金属の流速分布について説明する。図8(a),(b)は、溶融池7の内部における溶融金属の流速分布を示した図である。図8(a)は、静磁場を印加した場合の流速分布を示す。ここでは、前側コイル30及び後側コイル40の起磁力は何れも6000ATとし、前側コイル30が発生する磁場の方向と後側コイル40が発生する磁場の方向とは同じとしている。また、図8(b)は、溶融池7の水平面内で回転する10Hzの回転磁場を印加した場合の流速分布を示す。ここでは、1つの前側コイル30及び2つの後側コイル40を用い、各コイルの起磁力は6000ATとしている。尚、図8(a),(b)の各図において、上側の流速分布図は溶融池7の上面の流速分布図を示し、中央の流速分布図は溶融池7の中心面の流速分布図を示し、下側の流速分布図は溶融池7の下面の流速分布図を示している。図8(a)と図8(b)とを比較すると、明らかに10Hzの回転磁場を印加した場合の流速は1桁以上小さく、攪拌効果が期待できないことが分かる。 Next, the flow velocity distribution of the molten metal inside the molten pool 7 generated by the magnetic field applying device 1 of the present embodiment will be described. 8 (a) and 8 (b) are views showing the flow velocity distribution of the molten metal inside the molten pool 7. FIG. 8A shows the flow velocity distribution when a static magnetic field is applied. Here, the magnetomotive forces of the front coil 30 and the rear coil 40 are both set to 6000 AT, and the direction of the magnetic field generated by the front coil 30 and the direction of the magnetic field generated by the rear coil 40 are the same. Further, FIG. 8B shows a flow velocity distribution when a rotating magnetic field of 10 Hz rotating in the horizontal plane of the molten pool 7 is applied. Here, one front coil 30 and two rear coils 40 are used, and the magnetomotive force of each coil is 6000 AT. In each of FIGS. 8A and 8B, the upper flow velocity distribution map shows the upper surface flow velocity distribution map of the molten pool 7, and the central flow velocity distribution map is the flow velocity distribution map of the central surface of the molten pool 7. The lower flow velocity distribution map shows the flow velocity distribution map of the lower surface of the molten pool 7. Comparing FIG. 8A and FIG. 8B, it can be seen that the flow velocity when a rotating magnetic field of 10 Hz is applied is clearly smaller by an order of magnitude or more, and the stirring effect cannot be expected.

次に、溶接部9(図3参照)の断面観測結果について説明する。図9(a)〜(e)は、溶接部9の断面写真である。具体的には、図9(a),(b),(c),(d),(e)はそれぞれ、静磁場を印加した場合、周波数が0.25Hzの矩形波の磁場を印加した場合(1回目)、周波数が0.25Hzの矩形波の磁場を印加した場合(2回目)、周波数が1.0Hzの矩形波の磁場を印加した場合、磁場を印加しなかった場合における断面写真である。これらの断面写真を、結晶粒界が小さい順に並べると、写真中に矢印で示すように、(a)<(b),(c)<(d)<(e)となる。(e)の磁場を印加しなかった場合と比較して、(a)の静磁場を印加した場合の方が、結晶粒界が小さくなり、電磁攪拌による結晶粒界の微細化の効果を得ることができている。また、(b),(c)の低周波数(1.0Hz未満)で矩形波の磁場を印加した場合も、(a)の静磁場を印加した場合には劣るが、同様の効果を得ることができている。 Next, the cross-sectional observation result of the welded portion 9 (see FIG. 3) will be described. 9 (a) to 9 (e) are cross-sectional photographs of the welded portion 9. Specifically, FIGS. 9 (a), 9 (b), (c), (d), and (e) show a case where a static magnetic field is applied and a case where a rectangular wave magnetic field having a frequency of 0.25 Hz is applied. (1st time), when a rectangular wave magnetic field with a frequency of 0.25 Hz is applied (2nd time), when a rectangular wave magnetic field with a frequency of 1.0 Hz is applied, and when no magnetic field is applied. is there. When these cross-sectional photographs are arranged in ascending order of grain boundaries, (a) <(b) and (c) <(d) <(e) are obtained as shown by arrows in the photographs. Compared with the case where the magnetic field of (e) is not applied, the crystal grain boundary becomes smaller when the static magnetic field of (a) is applied, and the effect of refining the grain boundary by electromagnetic stirring is obtained. Can be done. Further, when a rectangular wave magnetic field is applied at low frequencies (less than 1.0 Hz) of (b) and (c), the same effect can be obtained although it is inferior when the static magnetic field of (a) is applied. Is done.

本実施の形態では、開先部4の前側に配置する前側水冷銅板10の外側に前側コイル30を配置し、開先部4の後側に配置する後側水冷銅板20の外側に後側コイル40を配置した。具体的には、前側水冷銅板10に穴11を掘り、その穴11に前側コイル30の鉄芯31を嵌めると共に、後側水冷銅板20に溝21を掘り、その溝21に後側コイル40の鉄芯41を嵌めるようにした。これにより、溶融池7に印加できる磁界強度が向上し、溶融池7の磁気攪拌効果も向上した。 In the present embodiment, the front coil 30 is arranged outside the front water-cooled copper plate 10 arranged on the front side of the groove portion 4, and the rear coil 30 is arranged outside the rear water-cooled copper plate 20 arranged on the rear side of the groove portion 4. 40 was placed. Specifically, a hole 11 is dug in the front water-cooled copper plate 10, the iron core 31 of the front coil 30 is fitted into the hole 11, a groove 21 is dug in the rear water-cooled copper plate 20, and the rear coil 40 is formed in the groove 21. The iron core 41 was fitted. As a result, the magnetic field strength that can be applied to the molten pool 7 is improved, and the magnetic stirring effect of the molten pool 7 is also improved.

[第2の実施の形態]
第2の実施の形態における磁場印加装置1’の構成は、図1(a),(b)及び図2(a),(b)に示したものと同じなので、説明を省略する。
[Second Embodiment]
Since the configuration of the magnetic field applying device 1'in the second embodiment is the same as that shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b), the description thereof will be omitted.

次に、第2の実施の形態の磁場印加装置1’における前側コイル30及び後側コイル40の配置について説明する。図10は、磁場印加装置1’における前側コイル30及び後側コイル40の位置を示した図である。本実施の形態では、前側コイル30及び後側コイル40の諸元を下記表2のように設定した。 Next, the arrangement of the front coil 30 and the rear coil 40 in the magnetic field application device 1'of the second embodiment will be described. FIG. 10 is a diagram showing the positions of the front coil 30 and the rear coil 40 in the magnetic field application device 1'. In the present embodiment, the specifications of the front coil 30 and the rear coil 40 are set as shown in Table 2 below.

即ち、図10に示すように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41を、その軸心の位置が、溶融スラグ6と溶融池7との界面8から20mm下の位置になるように配置している。これは、溶融スラグ6に印加される磁界を小さくしたいからである。また、表2に示すように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41のサイズは何れも、直径20mm、長さ60mmとしている。この状態で、表2に示すように前側コイル30及び後側コイル40に3000AT(アンペアターン)の起磁力を印加したときの溶融池7及び溶融スラグ6に働くローレンツ力を見積もった。 That is, as shown in FIG. 10, the position of the axis of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 is 20 mm below the interface 8 between the molten slag 6 and the molten pool 7. It is arranged so that it becomes. This is because the magnetic field applied to the molten slag 6 is desired to be reduced. Further, as shown in Table 2, the sizes of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 are both 20 mm in diameter and 60 mm in length. In this state, as shown in Table 2, the Lorentz force acting on the molten pool 7 and the molten slag 6 when a magnetomotive force of 3000 AT (ampere turn) was applied to the front coil 30 and the rear coil 40 was estimated.

また、エレクトラスラグ溶接では、母材2,3の厚さ方向にムラ無く溶接するため、溶接トーチ90を前後方向に摺動させる。図3では、この溶接トーチ90の摺動運動については示していなかったが、図10では、溶接トーチ90が、厚さ方向に16mmの幅で摺動運動することを示している。具体的には、厚さ方向の中心から、前側に9mm、後側に7mm摺動運動するものとする。 Further, in the electric slag welding, the welding torch 90 is slid in the front-rear direction in order to weld the base materials 2 and 3 evenly in the thickness direction. Although FIG. 3 did not show the sliding motion of the welding torch 90, FIG. 10 shows that the welding torch 90 slides with a width of 16 mm in the thickness direction. Specifically, it is assumed that the sliding motion is 9 mm to the front side and 7 mm to the rear side from the center in the thickness direction.

図11(a),(b)はそれぞれ、溶接トーチ90が最も前側にあるとき及び最も後側にあるときの溶接電流密度の高さ方向の分布を示したグラフである。これらのグラフでは、溶融池7及び溶融スラグ6の前側の溶接電流密度を実線で示し、溶融池7及び溶融スラグ6の後側の溶接電流密度を破線で示している。図11(a)から、溶接トーチ90が前側に来たとき、溶融池7の前側の溶接電流密度と溶融スラグ6の前側の溶接電流密度とを比較すると、溶融池7よりも溶融スラグ6の方が溶接電流密度が大きいことが分かる。但し、後ろ側の溶接電流密度については、溶接トーチ90が離れることにより、溶融池7よりも溶融スラグ6の方がその絶対値は小さくなっている。一方、図11(b)から、溶接トーチ90が後側にある場合はこれとは逆であることが分かる。 11 (a) and 11 (b) are graphs showing the distribution of the welding current density in the height direction when the welding torch 90 is at the frontmost side and at the rearmost side, respectively. In these graphs, the welding current densities on the front side of the molten pool 7 and the molten slag 6 are shown by solid lines, and the welding current densities on the rear side of the molten pool 7 and the molten slag 6 are shown by broken lines. From FIG. 11A, when the welding torch 90 comes to the front side, comparing the welding current density on the front side of the molten pool 7 with the welding current density on the front side of the molten slag 6, the molten slag 6 is more than the molten pool 7. It can be seen that the welding current density is higher. However, the absolute value of the welding current density on the rear side of the molten slag 6 is smaller than that of the molten pool 7 because the welding torch 90 is separated. On the other hand, from FIG. 11B, it can be seen that the opposite is true when the welding torch 90 is on the rear side.

図12は、表2の構成での磁束密度の高さ方向の分布を示したグラフである。このグラフでは、溶融池7及び溶融スラグ6の前側の磁束密度を実線で示し、溶融池7及び溶融スラグ6の後側の磁束密度を破線で示している。図12から、鉄芯31及び鉄芯41の位置を下げた効果として、溶融池7よりも溶融スラグ6の方が磁界強度が低くなっていることが分かる。 FIG. 12 is a graph showing the distribution of the magnetic flux density in the height direction in the configuration shown in Table 2. In this graph, the magnetic flux densities on the front side of the molten pool 7 and the molten slag 6 are shown by a solid line, and the magnetic flux densities on the rear side of the molten pool 7 and the molten slag 6 are shown by a broken line. From FIG. 12, it can be seen that the magnetic field strength of the molten slag 6 is lower than that of the molten pool 7 as an effect of lowering the positions of the iron core 31 and the iron core 41.

図13は、表2の構成でのローレンツ力の高さ方向の分布を示したグラフである。このグラフでは、溶接トーチ90が前側に位置するときの溶融池7及び溶融スラグ6の前側のローレンツ力を実線で示し、溶接トーチ90が後側に位置するときの溶融池7及び溶融スラグ6の後側のローレンツ力を破線で示している。 FIG. 13 is a graph showing the distribution of Lorentz force in the height direction in the configuration shown in Table 2. In this graph, the Lorentz force on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the front side is shown by a solid line, and the Lorentz force of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the rear side is shown by a solid line. The Lorentz force on the posterior side is shown by a broken line.

図14(a),(b)は、表2の構成で、ローレンツ力の平均値を溶融池7と溶融スラグ6とで比較した棒グラフである。具体的には、図14(a)は、図13に実線で示した、溶接トーチ90が前側に位置するときに溶融池7及び溶融スラグ6の前側に働くローレンツ力の平均値を示す。また、図14(b)は、図13に破線で示した、溶接トーチ90が後側に位置するときに溶融池7及び溶融スラグ6の後側に働くローレンツ力の平均値を示す。図14(a),(b)から、溶融スラグ6よりも溶融池7の方が大きなローレンツ力が働いていることが分かる。 14 (a) and 14 (b) are bar graphs comparing the average value of Lorentz force between the molten pool 7 and the molten slag 6 in the configuration of Table 2. Specifically, FIG. 14A shows the average value of the Lorentz force acting on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the front side, which is shown by a solid line in FIG. Further, FIG. 14B shows the average value of the Lorentz force acting on the rear side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the rear side, which is shown by the broken line in FIG. From FIGS. 14 (a) and 14 (b), it can be seen that a larger Lorentz force is acting in the molten pool 7 than in the molten slag 6.

次に、溶融スラグ6に生じる電磁攪拌効果を更に抑制する方法について述べる。 Next, a method of further suppressing the electromagnetic stirring effect generated in the molten slag 6 will be described.

図15(a),(b)はそれぞれ、溶融スラグ6及び溶融池7について、溶接トーチ90の位置に対する溶接電流密度の分布を示したグラフである。各グラフでは、溶融スラグ6又は溶融池7の前側の溶接電流密度を実線で示し、溶融スラグ6又は溶融池7の後側の溶接電流密度を破線で示している。図15(a)の溶融スラグ6中間の溶接電流密度の分布と、図15(b)の溶融池7中間の溶接電流密度の分布とを比較すると、前者が溶接トーチ90の位置に対して二次関数に近い形状を有しているのに対し、後者は溶接トーチ90の位置に対して一次関数に近い形状を有している。即ち、溶融池7の方が、溶融スラグ6よりも、溶接電流密度の溶接トーチ90の位置に対する依存性が少ない。よって、溶接トーチ90が前側コイル30の鉄芯31に最も近付いたときに、前側コイル30の電流値を最小にし、後側コイル40の電流値を最大にするとよい。これにより、溶融スラグ6に働く電磁力を効果的に抑制しながら、有意な大きさの電磁力を溶融池7に働かせることが可能になる。逆に、溶接トーチ90が後側コイル40の鉄芯41に最も近付いたときは、後側コイル40の電流値を最小にし、前側コイル30の電流値を最大にすればよい。 15 (a) and 15 (b) are graphs showing the distribution of welding current densities with respect to the position of the welding torch 90 for the molten slag 6 and the molten pool 7, respectively. In each graph, the welding current density on the front side of the molten slag 6 or the molten pool 7 is shown by a solid line, and the welding current density on the rear side of the molten slag 6 or the molten pool 7 is shown by a broken line. Comparing the distribution of the welding current density in the middle of the molten slag 6 in FIG. 15 (a) with the distribution of the welding current density in the middle of the molten pool 7 in FIG. 15 (b), the former is two with respect to the position of the welding torch 90. While the latter has a shape close to a linear function, the latter has a shape close to a linear function with respect to the position of the welding torch 90. That is, the molten pool 7 is less dependent on the position of the welding torch 90 in the welding current density than the molten slag 6. Therefore, when the welding torch 90 is closest to the iron core 31 of the front coil 30, the current value of the front coil 30 may be minimized and the current value of the rear coil 40 may be maximized. This makes it possible to apply a significant magnitude of electromagnetic force to the molten pool 7 while effectively suppressing the electromagnetic force acting on the molten slag 6. On the contrary, when the welding torch 90 is closest to the iron core 41 of the rear coil 40, the current value of the rear coil 40 may be minimized and the current value of the front coil 30 may be maximized.

このような前側コイル30及び後側コイル40の通電方法により、溶融池7に有意な大きさの電磁攪拌ができると共に溶融スラグ6の電磁攪拌が抑制でき、溶融スラグ6が溶融池7に巻き込まれることがなくなる。その結果、溶接部9の機械的強度が向上する。 By such a method of energizing the front coil 30 and the rear coil 40, the molten pool 7 can be electromagnetically agitated to a significant size and the molten slag 6 can be suppressed, and the molten slag 6 is caught in the molten pool 7. There will be no such thing. As a result, the mechanical strength of the welded portion 9 is improved.

そこで、以上述べた溶接トーチ90の位置に同期して前側コイル30及び後側コイル40の電流値を変化させる方法を採用し、ローレンツ力の分布を見積もった。そのときの前側コイル30及び後側コイル40の諸元を下記表3に示す。 Therefore, the Lorentz force distribution was estimated by adopting the method of changing the current values of the front coil 30 and the rear coil 40 in synchronization with the position of the welding torch 90 described above. The specifications of the front coil 30 and the rear coil 40 at that time are shown in Table 3 below.

図11(a),(b)では、溶接トーチ90が前側又は後側に位置するとき、その反対側の溶接電流密度は、溶接トーチ90の位置の溶接電流密度の最大値の半分以下に落ちていた。この溶接電流密度が小さくなった分を補うために印加磁界を大きくする必要がある。よって、表3に示すように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41の位置を10mm上げ、通電電流値も前側コイル30で3倍、後側コイル40で2倍というように大きくした。 In FIGS. 11A and 11B, when the welding torch 90 is located on the front side or the rear side, the welding current density on the opposite side drops to less than half of the maximum value of the welding current density at the position of the welding torch 90. Was there. It is necessary to increase the applied magnetic field in order to compensate for the decrease in the welding current density. Therefore, as shown in Table 3, the positions of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 are raised by 10 mm, and the energization current value is also tripled for the front coil 30 and doubled for the rear coil 40. I made it big.

図16(a),(b)は、それぞれ、溶接トーチ90が前側及び後側に位置するときの溶融池7及び溶融スラグ6の前側のローレンツ力の高さ方向の分布、溶接トーチ90が前側及び後側に位置するときの溶融池7及び溶融スラグ6の後側のローレンツ力の高さ方向の分布を示したグラフである。このうち、図16(a)は、表3の構成で、溶接トーチ90が後側に位置するときの溶融池7及び溶融スラグ6の前側のローレンツ力の分布を太線で示す。図16(a)には表2の構成でのローレンツ力の分布も細線で示しているが、太線で示した表3の構成の場合、溶融スラグ6の方がローレンツ力がより抑制できているように見える。尚、図16(b)に示すように、溶接トーチ90が前側及び後側に位置するときの後側のローレンツ力についても同様である。 16 (a) and 16 (b) show the distribution of the Lorentz force on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the front side and the rear side, respectively, and the welding torch 90 is on the front side. It is a graph which showed the distribution in the height direction of the Lorentz force on the rear side of the molten pool 7 and the molten slag 6 when it is located on the rear side. Of these, FIG. 16A shows the distribution of Lorentz force on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the rear side in the configuration shown in Table 3 with a thick line. In FIG. 16A, the distribution of the Lorentz force in the configuration of Table 2 is also shown by a thin line, but in the case of the configuration of Table 3 shown by a thick line, the Lorentz force can be suppressed more by the molten slag 6. looks like. As shown in FIG. 16B, the same applies to the Lorentz force on the rear side when the welding torch 90 is located on the front side and the rear side.

このことを定量的に分かり易くするために、平均値で評価したグラフを示す。図17(a),(b)は、それぞれ、溶接トーチ90が前側及び後側に位置するときの溶融池7及び溶融スラグ6の前側のローレンツ力の平均値、溶接トーチ90が前側及び後側に位置するときの溶融池7及び溶融スラグ6の後側のローレンツ力の平均値を溶融池7と溶融スラグ6とで比較した棒グラフである。このうち、図17(a)は、溶接トーチ90が前側及び後側に位置するときの溶融池7及び溶融スラグ6の前側のローレンツ力の平均値を示す。図17(a)から、表3の構成では、表2の構成と比べ、溶融スラグ6のローレンツ力がより抑制できていることが分かる。尚、図17(b)に示すように、溶接トーチ90が前側及び後側に位置するときの後側のローレンツ力についても同様である。 In order to make this quantitatively easy to understand, a graph evaluated by an average value is shown. 17 (a) and 17 (b) show the average value of the Lorentz force on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the front side and the rear side, respectively, and the welding torch 90 is on the front side and the rear side. It is a bar graph comparing the average value of the Lorentz force on the posterior side of the molten pool 7 and the molten slag 6 when it is located in the molten pool 7 and the molten slag 6. Of these, FIG. 17A shows the average value of the Lorentz force on the front side of the molten pool 7 and the molten slag 6 when the welding torch 90 is located on the front side and the rear side. From FIG. 17A, it can be seen that the Lorentz force of the molten slag 6 can be further suppressed in the configuration of Table 3 as compared with the configuration of Table 2. As shown in FIG. 17B, the same applies to the Lorentz force on the rear side when the welding torch 90 is located on the front side and the rear side.

以上により、表3の構成でのローレンツ力の分布を見積もり、溶接トーチ90の位置と前側コイル30及び後側コイル40の電流値とを同期して変化させることで溶融スラグ6の電磁攪拌効果を抑制できることが分かったが、前側コイル30及び後側コイル40の通電方向、言い換えると磁極の向きを変えない場合は問題が生じる。 Based on the above, the distribution of Lorentz force in the configuration shown in Table 3 is estimated, and the position of the welding torch 90 and the current values of the front coil 30 and the rear coil 40 are changed in synchronization to obtain the electromagnetic stirring effect of the molten slag 6. It was found that it can be suppressed, but a problem arises when the energization direction of the front coil 30 and the rear coil 40, in other words, the direction of the magnetic poles is not changed.

図18(a),(b)は、このような問題について示した図である。図18(a)に示すように、溶融スラグ6には電磁攪拌用の磁界を印加していない場合でも溶接電流によりピンチ力が働き、溶接ワイヤ5に沿って上から下に向かう強い流れSが生じている。この流れSは、電磁攪拌用の印加磁界が作用することにより、ローレンツ力の向きに応じて左右方向に曲げられることになる。図18(b)では、紙面奥行き方向の磁界Mがかけられているため、右方向にローレンツ力Fが働き、これにより、流れSが右方向にカーブしている。その結果、溶融スラグ6に左右方向の温度ムラが生じ、母材2,3の溶け込み量に差異が生じることになる。 18 (a) and 18 (b) are diagrams showing such a problem. As shown in FIG. 18A, even when a magnetic field for electromagnetic agitation is not applied to the molten slag 6, a pinch force acts due to the welding current, and a strong flow S from top to bottom is generated along the welding wire 5. It is happening. The flow S is bent in the left-right direction according to the direction of the Lorentz force due to the action of the applied magnetic field for electromagnetic agitation. In FIG. 18B, since the magnetic field M in the depth direction of the paper surface is applied, the Lorentz force F acts in the right direction, whereby the flow S is curved in the right direction. As a result, the molten slag 6 has temperature unevenness in the left-right direction, and the amount of the base materials 2 and 3 is different.

そこで、本実施の形態では、電磁攪拌用の印加磁界の向きを周期的に反転させることで、母材2,3の溶け込み量を左右均等にする。 Therefore, in the present embodiment, the direction of the applied magnetic field for electromagnetic agitation is periodically reversed to equalize the amount of penetration of the base materials 2 and 3 on the left and right.

図19(a)〜(d)は、電磁攪拌用の印加磁界の反転方法について説明するためのタイムチャートである。これらのタイムチャートでは、図19(a)に示すように、溶接トーチ90が後側に静止している時間を時刻t0〜時刻t1とし、溶接トーチ90が後側から前側へ移動している時間を時刻t1〜時刻t2とし、溶接トーチ90が前側に静止している時間を時刻t2〜時刻t3とし、溶接トーチ90が前側から後側へ移動している時間を時刻t3〜時刻t0とする。 19 (a) to 19 (d) are time charts for explaining a method of reversing an applied magnetic field for electromagnetic agitation. In these time charts, as shown in FIG. 19A, the time when the welding torch 90 is stationary on the rear side is set to time t0 to time t1, and the time when the welding torch 90 is moving from the rear side to the front side. Is time t1 to time t2, the time when the welding torch 90 is stationary on the front side is time t2 to time t3, and the time when the welding torch 90 is moving from the front side to the rear side is time t3 to time t0.

このうち、図19(c)は、溶接トーチ90の移動の周期ごとに磁極の向きを反転させる場合の通電パターンを示す。また、図19(d)は、溶接トーチ90が前側又は後側にあるときに磁極の向きを入れ替える場合の通電パターンを示す。更に、比較のために、溶接トーチ90の摺動運動に合わせて前側コイル30及び後側コイル40の磁極の向きを変更しない場合の通電パターンも図19(b)に示している。尚、図19(b)の通電パターンでは、前側コイル30の電流値の最大値、最小値をそれぞれ「前側コイル最大」、「前側コイル最小」とし、後側コイル40の電流値の最大値、最小値をそれぞれ「後側コイル最大」、「後側コイル最小」として、図19(c),(d)の通電パターンでも、磁極の向きを反転させない場合にはこれらの値をそのまま示し、磁極の向きを反転させる場合にはこれらの値にマイナスを付して示している。 Of these, FIG. 19 (c) shows an energization pattern when the direction of the magnetic poles is reversed for each movement cycle of the welding torch 90. Further, FIG. 19D shows an energization pattern when the directions of the magnetic poles are changed when the welding torch 90 is on the front side or the rear side. Further, for comparison, FIG. 19B also shows an energization pattern when the directions of the magnetic poles of the front coil 30 and the rear coil 40 are not changed according to the sliding motion of the welding torch 90. In the energization pattern of FIG. 19B, the maximum value and the minimum value of the current value of the front coil 30 are set to "maximum front coil" and "minimum front coil", respectively, and the maximum value of the current value of the rear coil 40 is defined. Assuming that the minimum values are "maximum rear coil" and "minimum rear coil", these values are shown as they are even in the energization patterns shown in FIGS. 19 (c) and 19 (d) when the directions of the magnetic poles are not reversed. When the direction of is reversed, these values are shown with a minus.

尚、本実施の形態では、溶接トーチ90が前側コイル30の鉄芯31に最も近付いたときに、前側コイル30の電流値を最小にして後側コイル40の電流値を最大にし、溶接トーチ90が後側コイル40の鉄芯41に最も近付いたときに、後側コイル40の電流値を最小にして前側コイル30の電流値を最大にしたが、これには限らない。溶接トーチ90が前側コイル30の鉄芯31に接近したときに前側コイル30の電流値を減少させて後側コイル40の電流値を増大させ、溶接トーチ90が後側コイル40の鉄芯41に接近したときに後側コイル40の電流値を減少させて前側コイル30の電流値を増大させてもよい。 In the present embodiment, when the welding torch 90 is closest to the iron core 31 of the front coil 30, the current value of the front coil 30 is minimized and the current value of the rear coil 40 is maximized to maximize the welding torch 90. Is closest to the iron core 41 of the rear coil 40, the current value of the rear coil 40 is minimized and the current value of the front coil 30 is maximized, but this is not limited to this. When the welding torch 90 approaches the iron core 31 of the front coil 30, the current value of the front coil 30 is decreased to increase the current value of the rear coil 40, and the welding torch 90 becomes the iron core 41 of the rear coil 40. When approaching, the current value of the rear coil 40 may be decreased to increase the current value of the front coil 30.

[第3の実施の形態]
第3の実施の形態は、前側コイル30及び後側コイル40を母材2,3に対して移動させる機構に関する実施の形態である。
[Third Embodiment]
The third embodiment is an embodiment relating to a mechanism for moving the front coil 30 and the rear coil 40 with respect to the base materials 2 and 3.

第3の実施の形態の第1の実施例では、第1の実施の形態における磁場印加装置1を用いる。即ち、第3の実施の形態の第1の実施例の構造は、図1(a),(b)、図2(a),(b)、図3に示したものとなる。この磁場印加装置1では、前述したように、後側水冷銅板20は母材2,3に固定して動かさず、前側水冷銅板10及び前側コイル30と、後側コイル40とを母材2,3に対して動かす。 In the first embodiment of the third embodiment, the magnetic field application device 1 of the first embodiment is used. That is, the structure of the first embodiment of the third embodiment is as shown in FIGS. 1 (a), (b), 2 (a), (b), and 3. In this magnetic field application device 1, as described above, the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3 and does not move, and the front water-cooled copper plate 10 and the front coil 30 and the rear coil 40 are used as the base materials 2 and 2. Move against 3.

図20は、第1の実施例における磁場印加装置1の構成を横から見た図である。図示するように、前側水冷銅板10及び前側コイル30と、後側コイル40とはそれぞれ、互いに独立した前側上下昇降機構50と、後側上下昇降機構60とに固定されている。具体的には、前側上下昇降機構50が、前側フレーム51により前側水冷銅板10及び前側コイル30を母材2,3に押え付けており、後側上下昇降機構60が、後側フレーム61により後側コイル40を後側水冷銅板20に押え付けている。これにより、前側上下昇降機構50が、前側水冷銅板10及び前側コイル30を溶接対象の母材2,3に沿って上下に昇降させ、後側上下昇降機構60が、後側コイル40を後側水冷銅板20に掘られた溝21に沿って上下に昇降させる。尚、図示するように、前側上下昇降機構50には、溶接ワイヤ5を送給する溶接トーチ90も設けられている。 FIG. 20 is a side view of the configuration of the magnetic field application device 1 in the first embodiment. As shown in the figure, the front water-cooled copper plate 10, the front coil 30, and the rear coil 40 are fixed to the front vertical lift mechanism 50 and the rear vertical lift mechanism 60, which are independent of each other, respectively. Specifically, the front vertical lifting mechanism 50 presses the front water-cooled copper plate 10 and the front coil 30 against the base materials 2 and 3 by the front frame 51, and the rear vertical lifting mechanism 60 is reared by the rear frame 61. The side coil 40 is pressed against the rear water-cooled copper plate 20. As a result, the front vertical lift mechanism 50 raises and lowers the front water-cooled copper plate 10 and the front coil 30 up and down along the base materials 2 and 3 to be welded, and the rear vertical lift mechanism 60 raises the rear coil 40 to the rear side. It is moved up and down along the groove 21 dug in the water-cooled copper plate 20. As shown in the figure, the front vertical elevating mechanism 50 is also provided with a welding torch 90 for feeding the welding wire 5.

図21(a),(b)及び図22(a),(b)は、前側コイル30及び後側コイル40の上下昇降の様子を示した図である。具体的には、図21(a),(b)は、前側コイル30及び後側コイル40が初期位置にある状態を示し、図21(a)はそれを前から見た図であり、図21(b)はそれを後側から見た図である。また、図22(a),(b)は、前側コイル30及び後側コイル40が溶接のために移動中である状態を示し、図22(a)はそれを前側から見た図であり、図22(b)はそれを後側から見た図である。 21 (a) and 21 (b) and 22 (a) and 22 (b) are views showing a state in which the front coil 30 and the rear coil 40 are moved up and down. Specifically, FIGS. 21 (a) and 21 (b) show a state in which the front coil 30 and the rear coil 40 are in the initial positions, and FIG. 21 (a) is a view of the front coil 30 and the rear coil 40 viewed from the front. 21 (b) is a view of it from the rear side. 22 (a) and 22 (b) show a state in which the front coil 30 and the rear coil 40 are moving for welding, and FIG. 22 (a) is a view of the front coil 30 and the rear coil 40 viewed from the front side. FIG. 22B is a view of the rear side.

図21(a)及び図22(a)に示すように、母材3には架台70が固定されており、前側上下昇降機構50は、架台70に沿って移動用歯車52,53により上下に昇降する。また、前側上下昇降機構50は、前側コイル30の高さを検出する高さセンサ54を持つ。高さセンサ54は赤外線等を利用した非接触の距離計等が利用できる。基準面L1に反射板55を設け、高さセンサ54は反射板55との距離を測定するとよい。尚、基準面L1はどの高さに設けてもよいが、図では後側水冷銅板20の上端の高さに設けている。更に、前側上下昇降機構50には、高さセンサ54が検出した高さの情報を後側上下昇降機構60に伝達する制御を行う前側制御器56も設けられている。 As shown in FIGS. 21 (a) and 22 (a), a gantry 70 is fixed to the base material 3, and the front vertical elevating mechanism 50 is moved up and down along the gantry 70 by moving gears 52 and 53. Go up and down. Further, the front vertical elevating mechanism 50 has a height sensor 54 that detects the height of the front coil 30. As the height sensor 54, a non-contact range finder or the like using infrared rays or the like can be used. A reflector 55 may be provided on the reference surface L1, and the height sensor 54 may measure the distance from the reflector 55. The reference surface L1 may be provided at any height, but in the figure, it is provided at the height of the upper end of the rear water-cooled copper plate 20. Further, the front side vertical lift mechanism 50 is also provided with a front side controller 56 that controls transmission of height information detected by the height sensor 54 to the rear side vertical lift mechanism 60.

図21(b)及び図22(b)に示すように、母材3には架台80も固定されており、後側上下昇降機構60は、架台80に沿って移動用歯車62,63により上下に昇降する。また、後側上下昇降機構60は、後側コイル40の高さを検出する高さセンサ64を持つ。高さセンサ64は赤外線等を利用した非接触の距離計等が利用できる。図21(a)及び図22(a)に示したのと同じ基準面L1に反射板65を設け、高さセンサ64は反射板65との距離を測定するとよい。更に、後側上下昇降機構60には、前側上下昇降機構50から高さの情報が伝達されると、この伝達された高さと高さセンサ64が検出した高さとが一致するように後側コイル40を上下昇降させる制御を行う後側制御器66も設けられている。 As shown in FIGS. 21 (b) and 22 (b), a gantry 80 is also fixed to the base material 3, and the rear vertical elevating mechanism 60 is moved up and down along the gantry 80 by moving gears 62 and 63. Go up and down. Further, the rear side vertical lift mechanism 60 has a height sensor 64 that detects the height of the rear side coil 40. As the height sensor 64, a non-contact range finder or the like using infrared rays or the like can be used. A reflector 65 may be provided on the same reference surface L1 as shown in FIGS. 21 (a) and 22 (a), and the height sensor 64 may measure the distance from the reflector 65. Further, when height information is transmitted from the front vertical lifting mechanism 50 to the rear vertical lifting mechanism 60, the rear coil so that the transmitted height and the height detected by the height sensor 64 match. A rear controller 66 that controls the up and down movement of the 40 is also provided.

まず、溶接開始前には、図21(a),(b)に示すように、基準面L1を基準とした前側上下昇降機構50及び後側上下昇降機構60の高さ(基準高さ)が一致するように、前側上下昇降機構50及び後側上下昇降機構60の位置を調整する。その結果、前側コイル30の高さと後側コイル40の高さとは一致する。この状態を初期状態とする。 First, before the start of welding, as shown in FIGS. 21 (a) and 21 (b), the heights (reference heights) of the front side vertical lift mechanism 50 and the rear side vertical lift mechanism 60 with reference to the reference surface L1 are set. The positions of the front vertical lift mechanism 50 and the rear vertical lift mechanism 60 are adjusted so as to match. As a result, the height of the front coil 30 and the height of the rear coil 40 match. This state is the initial state.

次に、溶接を開始すると、前側上下昇降機構50は、図22(a)に示すように、溶接が進むにつれて上に移動し、基準面L1を基準とした高さA1は短くなっていく。前側制御器56は、前側上下昇降機構50の初期状態からの高さA1の情報を逐次後側制御器66に伝達する。これにより、後側上下昇降機構60では、図22(b)に示すように、高さセンサ64が、後側上下昇降機構60の基準面L1からの高さB1を測定する。そして、後側制御器66が、前側制御器56から伝達された高さA1と、高さセンサ64により測定された高さB1とが一致するように、後側上下昇降機構60の位置を制御する。 Next, when welding is started, the front vertical elevating mechanism 50 moves upward as the welding progresses, and the height A1 with respect to the reference surface L1 becomes shorter as shown in FIG. 22A. The front controller 56 sequentially transmits information on the height A1 from the initial state of the front vertical lift mechanism 50 to the posterior controller 66. As a result, in the posterior vertical lift mechanism 60, as shown in FIG. 22B, the height sensor 64 measures the height B1 from the reference surface L1 of the posterior vertical lift mechanism 60. Then, the rear controller 66 controls the position of the posterior vertical lift mechanism 60 so that the height A1 transmitted from the front controller 56 and the height B1 measured by the height sensor 64 match. To do.

尚、第1の実施例では、前側制御器56が高さA1の情報を後側制御器66に伝達し、後側制御器66が高さA1と高さB1とが一致するように後側上下昇降機構60の位置を制御するようにしたが、これには限らない。例えば、前側及び後側に共通の制御器を設け、前側制御器56及び後側制御器66がそれぞれ高さA1及び高さB1の情報をこの共通の制御器に伝達し、この共通の制御器が高さA1と高さB1とが一致するように、前側上下昇降機構50の位置を制御する信号を前側制御器56に送ったり、後側上下昇降機構60の位置を制御する信号を後側制御器66に送ったりしてもよい。 In the first embodiment, the front controller 56 transmits the information of the height A1 to the posterior controller 66, and the posterior controller 66 is on the posterior side so that the height A1 and the height B1 match. The position of the vertical elevating mechanism 60 is controlled, but the present invention is not limited to this. For example, a common controller is provided on the front side and the rear side, and the front side controller 56 and the rear side controller 66 transmit information on height A1 and height B1 to this common controller, respectively, and this common controller. Sends a signal to control the position of the front vertical lift mechanism 50 to the front controller 56, or sends a signal to control the position of the rear vertical lift mechanism 60 to the rear side so that the height A1 and the height B1 match. It may be sent to the controller 66.

このように、第3の実施の形態の第1の実施例では、溶融スラグ6及び溶融池7の高さ方向に対して前側コイル30及び後側コイル40の位置を一致させるようにした。これにより、励磁による溶融スラグ6の暴れを抑制できるので、ビード形状を安定化させ、介在物等の混入を防ぐことが可能となった。 As described above, in the first embodiment of the third embodiment, the positions of the front coil 30 and the rear coil 40 are aligned with each other in the height direction of the molten slag 6 and the molten pool 7. As a result, the violence of the molten slag 6 due to excitation can be suppressed, so that the bead shape can be stabilized and inclusions and the like can be prevented from being mixed.

また、第3の実施の形態の第1の実施例では、後側水冷銅板20が母材2,3に固定されるようにした。これにより、後側からの溶融スラグ6の漏れを抑制できるので、ビード形状を安定化させることが可能となった。 Further, in the first embodiment of the third embodiment, the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3. As a result, leakage of the molten slag 6 from the rear side can be suppressed, so that the bead shape can be stabilized.

尚、上記では、前側水冷銅板10が母材2,3に沿って移動し、後側水冷銅板20が母材2,3に固定されている構成を採用したが、これには限らない。前側水冷銅板10が母材2,3に固定され、後側水冷銅板20が母材2,3に沿って移動する構成や、前側水冷銅板10及び後側水冷銅板20の両方が母材2,3に固定されている構成を採用してもよい。つまり、前側水冷銅板10及び後側水冷銅板20の少なくとも何れか一方が母材2,3に固定されている構成としてよい。 In the above, the front water-cooled copper plate 10 moves along the base materials 2 and 3, and the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3, but the present invention is not limited to this. The front water-cooled copper plate 10 is fixed to the base materials 2 and 3, and the rear water-cooled copper plate 20 moves along the base materials 2 and 3, and both the front water-cooled copper plate 10 and the rear water-cooled copper plate 20 are the base materials 2 and 2. A configuration fixed to 3 may be adopted. That is, at least one of the front water-cooled copper plate 10 and the rear water-cooled copper plate 20 may be fixed to the base materials 2 and 3.

第3の実施の形態の第2の実施例では、第1の実施の形態における磁場印加装置1の後側水冷銅板20を前側水冷銅板10と同タイプのものに置き換えた磁場印加装置1’を用いる。図23は、磁場印加装置1’の構造を示した図である。この磁場印加装置1’では、磁場印加装置1の前側水冷銅板10に対応する構成要素を前側水冷銅板10aとし、磁場印加装置1の後側水冷銅板20に対応する構成要素を後側水冷銅板10bとする。そして、この磁場印加装置1’は、前側コイル30の鉄芯31が前側水冷銅板10aの穴11aに嵌って一緒に移動するだけでなく、後側コイル40の鉄芯41も後側水冷銅板10bの穴11bに嵌って一緒に移動する機構となっている。 In the second embodiment of the third embodiment, the magnetic field application device 1'in which the rear water-cooled copper plate 20 of the magnetic field application device 1 in the first embodiment is replaced with the same type as the front water-cooled copper plate 10 is used. Use. FIG. 23 is a diagram showing the structure of the magnetic field application device 1'. In this magnetic field application device 1', the component corresponding to the front side water-cooled copper plate 10 of the magnetic field application device 1 is the front side water-cooled copper plate 10a, and the component corresponding to the rear side water-cooled copper plate 20 of the magnetic field application device 1 is the rear side water-cooled copper plate 10b. And. Then, in this magnetic field application device 1', not only the iron core 31 of the front coil 30 fits into the hole 11a of the front water-cooled copper plate 10a and moves together, but also the iron core 41 of the rear coil 40 also moves with the rear water-cooled copper plate 10b. It is a mechanism that fits into the hole 11b and moves together.

図24は、第2の実施例における磁場印加装置1’の構成を横から見た図である。図示するように、前側水冷銅板10aと、後側水冷銅板10bとはそれぞれ、互いに独立した前側上下昇降機構50aと、後側上下昇降機構50bとに固定されている。具体的には、前側上下昇降機構50aが、前側フレーム51aにより前側水冷銅板10aを母材2,3に押え付けており、後側上下昇降機構50bが後側フレーム51bにより後側水冷銅板10bを母材2,3に押え付けている。これにより、前側上下昇降機構50a及び後側上下昇降機構50bが、前側水冷銅板10a及び後側水冷銅板10bを溶接対象の母材2,3に沿って上下に昇降させる。尚、図示するように、前側上下昇降機構50aには、溶接ワイヤ5を送給する溶接トーチ90も設けられている。 FIG. 24 is a side view of the configuration of the magnetic field application device 1'in the second embodiment. As shown in the figure, the front side water-cooled copper plate 10a and the rear side water-cooled copper plate 10b are fixed to the front side vertical lifting mechanism 50a and the rear side vertical lifting mechanism 50b, which are independent of each other, respectively. Specifically, the front vertical elevating mechanism 50a presses the front water-cooled copper plate 10a against the base materials 2 and 3 by the front frame 51a, and the rear vertical elevating mechanism 50b presses the rear water-cooled copper plate 10b by the rear frame 51b. It is pressed against the base materials 2 and 3. As a result, the front side vertical lift mechanism 50a and the rear side vertical lift mechanism 50b move the front side water-cooled copper plate 10a and the rear side water-cooled copper plate 10b up and down along the base materials 2 and 3 to be welded. As shown in the figure, the front vertical elevating mechanism 50a is also provided with a welding torch 90 for feeding the welding wire 5.

図25(a),(b)及び図26(a),(b)は、前側水冷銅板10a及び後側水冷銅板10bの上下昇降の様子を示した図である。具体的には、図25(a),(b)は、前側水冷銅板10a及び後側水冷銅板10bが初期位置にある状態を示し、図25(a)はそれを前側から見た図であり、図25(b)はそれを後側から見た図である。また、図26(a),(b)は、前側水冷銅板10a及び後側水冷銅板10bが溶接のために移動中である状態を示し、図26(a)はそれを前側から見た図であり、図26(b)はそれを後側から見た図である。 25 (a) and 25 (b) and 26 (a) and 26 (b) are views showing the vertical movement of the front water-cooled copper plate 10a and the rear water-cooled copper plate 10b. Specifically, FIGS. 25 (a) and 25 (b) show a state in which the front side water-cooled copper plate 10a and the rear side water-cooled copper plate 10b are in the initial positions, and FIG. 25 (a) is a view of them viewed from the front side. , FIG. 25 (b) is a view of it from the rear side. Further, FIGS. 26 (a) and 26 (b) show a state in which the front water-cooled copper plate 10a and the rear water-cooled copper plate 10b are moving for welding, and FIG. 26 (a) is a view of the front water-cooled copper plate 10a as viewed from the front side. Yes, FIG. 26 (b) is a view of it from the rear side.

図25(a)及び図26(a)に示すように、母材3には架台70が固定されており、前側上下昇降機構50aは、架台70に沿って移動用歯車52a,53aにより上下に昇降する。また、前側上下昇降機構50aは、前側水冷銅板10a及び前側コイル30の高さを検出する高さセンサ54aを持つ。高さセンサ54aは赤外線等を利用した非接触の距離計等が利用できる。基準面L2に反射板55aを設け、高さセンサ54aは反射板55aとの距離を測定するとよい。尚、基準面L2はどの高さに設けてもよいが、図では溶接開始位置の高さに設けている。更に、前側上下昇降機構50aには、高さセンサ54aが検出した高さの情報を後側上下昇降機構50bに伝達する制御を行う前側制御器56aも設けられている。 As shown in FIGS. 25 (a) and 26 (a), a gantry 70 is fixed to the base material 3, and the front vertical elevating mechanism 50a is moved up and down along the gantry 70 by moving gears 52a and 53a. Go up and down. Further, the front vertical elevating mechanism 50a has a height sensor 54a that detects the height of the front water-cooled copper plate 10a and the front coil 30. As the height sensor 54a, a non-contact range finder or the like using infrared rays or the like can be used. A reflector 55a may be provided on the reference surface L2, and the height sensor 54a may measure the distance from the reflector 55a. The reference surface L2 may be provided at any height, but in the figure, it is provided at the height of the welding start position. Further, the front vertical elevating mechanism 50a is also provided with a front controller 56a that controls transmission of height information detected by the height sensor 54a to the rear vertical elevating mechanism 50b.

図25(b)及び図26(b)に示すように、母材3には架台80も固定されており、後側上下昇降機構50bは、架台80に沿って移動用歯車52b,53bにより上下に昇降する。また、後側上下昇降機構50bは、後側水冷銅板10b及び後側コイル40の高さを検出する高さセンサ54bを持つ。高さセンサ54bは赤外線等を利用した非接触の距離計等が利用できる。図25(a)及び図26(a)に示したのと同じ基準面L2に反射板55bを設け、高さセンサ54bは反射板55bとの距離を測定するとよい。更に、後側上下昇降機構50bには、前側上下昇降機構50aから高さの情報が伝達されると、この伝達された高さと高さセンサ54bが検出した高さとが一致するように後側水冷銅板10bを上下昇降させる制御を行う後側制御器56bも設けられている。 As shown in FIGS. 25 (b) and 26 (b), a gantry 80 is also fixed to the base material 3, and the rear vertical elevating mechanism 50b is moved up and down along the gantry 80 by moving gears 52b and 53b. Go up and down. Further, the rear side vertical elevating mechanism 50b has a height sensor 54b that detects the height of the rear side water-cooled copper plate 10b and the rear side coil 40. As the height sensor 54b, a non-contact range finder or the like using infrared rays or the like can be used. A reflector 55b may be provided on the same reference surface L2 as shown in FIGS. 25 (a) and 26 (a), and the height sensor 54b may measure the distance from the reflector 55b. Further, when the height information is transmitted from the front vertical lifting mechanism 50a to the rear vertical lifting mechanism 50b, the rear water cooling is performed so that the transmitted height and the height detected by the height sensor 54b match. A rear controller 56b that controls the vertical movement of the copper plate 10b is also provided.

まず、溶接開始前には、図25(a),(b)に示すように、基準面L2を基準とした前側水冷銅板10a及び前側コイル30の高さと、基準面L2を基準とした後側水冷銅板10b及び後側コイル40の高さとを一致させる。この状態を初期状態とする。 First, before the start of welding, as shown in FIGS. 25 (a) and 25 (b), the heights of the front water-cooled copper plate 10a and the front coil 30 with reference to the reference surface L2 and the rear side with reference to the reference surface L2. Match the heights of the water-cooled copper plate 10b and the rear coil 40. This state is the initial state.

次に、溶接を開始すると、前側上下昇降機構50aは、図26(a)に示すように、溶接が進むにつれて上に移動し、基準面L2を基準とした高さA2は長くなっていく。前側制御器56aは、前側水冷銅板10aの初期状態からの高さA2の情報を逐次後側制御器56bに伝達する。これにより、後側上下昇降機構50bでは、図26(b)に示すように、高さセンサ54bが、後側水冷銅板10bの基準面L2からの高さB2を測定する。そして、後側制御器56bが、前側制御器56aから伝達された高さA2と、高さセンサ54bにより測定された高さB2とが一致するように、後側水冷銅板10bの位置を制御する。 Next, when welding is started, the front vertical elevating mechanism 50a moves upward as the welding progresses, and the height A2 with respect to the reference surface L2 becomes longer as shown in FIG. 26A. The front controller 56a sequentially transmits information on the height A2 of the front water-cooled copper plate 10a from the initial state to the posterior controller 56b. As a result, in the posterior vertical lift mechanism 50b, as shown in FIG. 26B, the height sensor 54b measures the height B2 of the posterior water-cooled copper plate 10b from the reference surface L2. Then, the rear controller 56b controls the position of the posterior water-cooled copper plate 10b so that the height A2 transmitted from the front controller 56a and the height B2 measured by the height sensor 54b coincide with each other. ..

尚、第2の実施例では、前側制御器56aが高さA2の情報を後側制御器56bに伝達し、後側制御器56bが高さA2と高さB2とが一致するように後側水冷銅板10bの位置を制御するようにしたが、これには限らない。例えば、前側及び後側に共通の制御器を設け、前側制御器56a及び後側制御器56bがそれぞれ高さA2及び高さB2の情報をこの共通の制御器に伝達し、この共通の制御器が高さA2と高さB2とが一致するように、前側水冷銅板10aの位置を制御する信号を前側制御器56aに送ったり、後側水冷銅板10bの位置を制御する信号を後側制御器56bに送ったりしてもよい。 In the second embodiment, the front controller 56a transmits the information of the height A2 to the posterior controller 56b, and the posterior controller 56b is on the posterior side so that the height A2 and the height B2 match. The position of the water-cooled copper plate 10b is controlled, but the position is not limited to this. For example, a common controller is provided on the front side and the rear side, and the front side controller 56a and the rear side controller 56b transmit information on the height A2 and the height B2 to this common controller, respectively, and this common controller. Sends a signal to control the position of the front water-cooled copper plate 10a to the front controller 56a, and sends a signal to control the position of the rear water-cooled copper plate 10b to the rear controller so that the height A2 and the height B2 match. It may be sent to 56b.

このように、第3の実施の形態の第2の実施例では、溶融スラグ6及び溶融池7の高さ方向に対して前側コイル30及び後側コイル40の位置を一致させるようにした。これにより、励磁による溶融スラグ6の暴れを抑制できるので、ビード形状を安定化させ、介在物等の混入を防ぐことが可能となった。 As described above, in the second embodiment of the third embodiment, the positions of the front coil 30 and the rear coil 40 are aligned with each other in the height direction of the molten slag 6 and the molten pool 7. As a result, the violence of the molten slag 6 due to excitation can be suppressed, so that the bead shape can be stabilized and inclusions and the like can be prevented from being mixed.

1,1’…磁場印加装置、2、3…母材、4…開先部、5…溶接ワイヤ、6…溶融スラグ、7…溶融池、8…界面、9…溶接部、10,10a…前側水冷銅板、11…穴、20,10b…後側水冷銅板、21…溝、30…前側コイル、31,41…鉄芯、40…後側コイル、50,50a…前側上下昇降機構、60,50b…後側上下昇降機構、54,64,54a,54b…高さセンサ、55,65,55a,55b…反射板、56,56a…前側制御器、66,56b…後側制御器、90…溶接トーチ 1,1'... magnetic field application device, 2,3 ... base material, 4 ... groove, 5 ... welding wire, 6 ... molten slag, 7 ... molten pond, 8 ... interface, 9 ... welded part, 10,10a ... Front water-cooled copper plate, 11 ... Hole, 20, 10b ... Rear water-cooled copper plate, 21 ... Groove, 30 ... Front coil, 31, 41 ... Iron core, 40 ... Rear coil, 50, 50a ... Front vertical lift mechanism, 60, 50b ... Rear vertical lift mechanism, 54, 64, 54a, 54b ... Height sensor, 55, 65, 55a, 55b ... Reflector, 56, 56a ... Front controller, 66, 56b ... Rear controller, 90 ... Welding torch

Claims (18)

母材の開先部内の溶融池に磁場を印加しながら当該母材のエレクトロスラグ溶接を行うことを特徴とするエレクトロスラグ溶接方法。 An electroslag welding method characterized in that electroslag welding of the base metal is performed while applying a magnetic field to a molten pool in the groove portion of the base metal. 前記磁場は、静磁場、又は、周波数が1Hz以下の回転磁場であることを特徴とする請求項1に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 1, wherein the magnetic field is a static magnetic field or a rotating magnetic field having a frequency of 1 Hz or less. 前記開先部の表側及び裏側から前記磁場を印加することを特徴とする請求項1に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 1, wherein the magnetic field is applied from the front side and the back side of the groove portion. 前記表側及び裏側から印加される前記磁場の向きが同じであることを特徴とする請求項3に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 3, wherein the directions of the magnetic fields applied from the front side and the back side are the same. 前記表側及び裏側から印加される前記磁場の向きが逆であることを特徴とする請求項3に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 3, wherein the directions of the magnetic fields applied from the front side and the back side are opposite to each other. 溶接トーチを、前記開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接し、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記開先部の表側から前記磁場を印加する表側の磁場印加コイルの鉄芯に接近したときに、当該表側の磁場印加コイルの電流値を減少させ、当該開先部の裏側から当該磁場を印加する裏側の磁場印加コイルの電流値を増大させ、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記裏側の磁場印加コイルの鉄芯に接近したときに、当該裏側の磁場印加コイルの電流値を減少させ、前記表側の磁場印加コイルの電流値を増大させることを特徴とする請求項3に記載のエレクトロスラグ溶接方法。
Welding is performed by reciprocating the welding torch between the front side position and the back side position in the groove portion.
In the reciprocating motion of the welding torch, when the welding torch approaches the iron core of the magnetic field application coil on the front side to which the magnetic field is applied from the front side of the groove portion, the current value of the magnetic field application coil on the front side. To increase the current value of the magnetic field application coil on the back side to which the magnetic field is applied from the back side of the groove portion.
In the reciprocating movement of the welding torch, when the welding torch approaches the iron core of the magnetic field application coil on the back side, the current value of the magnetic field application coil on the back side is reduced, and the magnetic field application coil on the front side is used. The electroslag welding method according to claim 3, wherein the current value is increased.
前記溶接トーチが前記表側の磁場印加コイルの鉄芯に最も近付いたときに、当該表側の磁場印加コイルの電流値を最小とし、前記裏側の磁場印加コイルの電流値を最大とし、
前記溶接トーチが前記裏側の磁場印加コイルの鉄芯に最も近付いたときに、当該裏側の磁場印加コイルの電流値を最小とし、前記表側の磁場印加コイルの電流値を最大とすることを特徴とする請求項6に記載のエレクトロスラグ溶接方法。
When the welding torch comes closest to the iron core of the magnetic field application coil on the front side, the current value of the magnetic field application coil on the front side is minimized, and the current value of the magnetic field application coil on the back side is maximized.
When the welding torch comes closest to the iron core of the magnetic field application coil on the back side, the current value of the magnetic field application coil on the back side is minimized, and the current value of the magnetic field application coil on the front side is maximized. The electroslag welding method according to claim 6.
前記表側の磁場印加コイル及び前記裏側の磁場印加コイルに流す電流の向きを、前記溶接トーチの往復動の周期ごとに反転させることを特徴とする請求項6に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 6, wherein the direction of the current flowing through the magnetic field application coil on the front side and the magnetic field application coil on the back side is reversed for each cycle of the reciprocating motion of the welding torch. 前記溶接トーチが前記表側の磁場印加コイル又は前記裏側の磁場印加コイルの鉄芯に最も近付き、静止しているときに、当該表側の磁場印加コイルの電流と、当該裏側の磁場印加コイルの電流とを、値は同じで向きを逆とすることを特徴とする請求項6に記載のエレクトロスラグ溶接方法。 When the welding torch is closest to the iron core of the front side magnetic field application coil or the back side magnetic field application coil and is stationary, the current of the front side magnetic field application coil and the current of the back side magnetic field application coil The electroslag welding method according to claim 6, wherein the values are the same and the directions are reversed. 前記表側及び裏側は、前記開先部の表面及び裏面に配置された冷却用銅板の前記母材とは反対側であることを特徴とする請求項3に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 3, wherein the front side and the back side are opposite sides of the base material of the cooling copper plate arranged on the front surface and the back surface of the groove portion. 前記開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板の少なくとも何れか一方は、前記母材に対して固定されており、
前記表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、前記裏側冷却用銅板に配置された裏側の電磁石の中心軸の当該基準面からの高さとが一致するように、当該表側の電磁石及び当該裏側の電磁石を移動しながら溶接することを特徴とする請求項10に記載のエレクトロスラグ溶接方法。
At least one of the front side cooling copper plate arranged on the surface of the groove portion and the back side cooling copper plate arranged on the back surface is fixed to the base material.
The height of the central axis of the front side electromagnet arranged on the front side cooling copper plate from the reference surface and the height of the center axis of the back side electromagnet arranged on the back side cooling copper plate from the reference surface match. The electroslag welding method according to claim 10, wherein the electromagnet on the front side and the electromagnet on the back side are welded while moving.
前記表側冷却用銅板及び前記裏側冷却用銅板の一方は、前記開先部が延びる方向に移動可能であることを特徴とする請求項11に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 11, wherein one of the front side cooling copper plate and the back side cooling copper plate is movable in a direction in which the groove portion extends. 前記開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板は何れも、当該開先部が延びる方向に移動可能であり、
前記表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、前記裏側冷却用銅板に配置された裏側の電磁石の中心軸の当該基準面からの高さとが一致するように、当該表側冷却用銅板及び当該裏側冷却用銅板を移動しながら溶接することを特徴とする請求項10に記載のエレクトロスラグ溶接方法。
Both the front side cooling copper plate arranged on the surface of the groove portion and the back side cooling copper plate arranged on the back surface can move in the direction in which the groove portion extends.
The height of the central axis of the front side electromagnet arranged on the front side cooling copper plate from the reference surface and the height of the center axis of the back side electromagnet arranged on the back side cooling copper plate from the reference surface match. The electroslag welding method according to claim 10, wherein the front side cooling copper plate and the back side cooling copper plate are welded while moving.
母材の開先部の表面及び裏面に配置された冷却用銅板の当該母材とは反対側に、当該開先部内の溶融池に磁場を印加するための電磁石を配置したことを特徴とするエレクトロスラグ溶接における磁場印加装置。 It is characterized in that an electromagnet for applying a magnetic field to the molten pool in the groove is arranged on the opposite side of the cooling copper plate arranged on the front surface and the back surface of the groove of the base material from the base material. Magnetic field application device in electroslag welding. 前記冷却用銅板に穴又は溝が設けられており、前記電磁石の鉄芯が当該穴又は溝に嵌っていることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。 The magnetic field application device in electroslag welding according to claim 14, wherein the cooling copper plate is provided with a hole or a groove, and the iron core of the electromagnet is fitted in the hole or the groove. 前記開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接する溶接トーチを更に配置し、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記開先部の表側から前記磁場を印加する表側の電磁石の鉄芯に接近したときに、当該表側の電磁石の電流値を減少させ、当該開先部の裏側から当該磁場を印加する裏側の電磁石の電流値を増大させ、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記裏側の電磁石の鉄芯に接近したときに、当該裏側の電磁石の電流値を減少させ、前記表側の電磁石の電流値を増大させることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。
A welding torch for welding while reciprocating between the front side position and the back side position in the groove portion is further arranged.
In the reciprocating motion of the welding torch, when the welding torch approaches the iron core of the electromagnet on the front side to which the magnetic field is applied from the front side of the groove portion, the current value of the electromagnet on the front side is reduced. The current value of the electromagnet on the back side to which the magnetic field is applied is increased from the back side of the groove portion.
In the reciprocating motion of the welding torch, when the welding torch approaches the iron core of the electromagnet on the back side, the current value of the electromagnet on the back side is decreased and the current value of the electromagnet on the front side is increased. The magnetic current application device in electroslag welding according to claim 14.
前記開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板の少なくとも何れか一方は、前記母材に対して固定されており、
前記表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、前記裏側冷却用銅板に配置された裏側の電磁石の中心軸の当該基準面からの高さとが一致するように、当該表側の電磁石及び当該裏側の電磁石が移動可能に構成されていることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。
At least one of the front side cooling copper plate arranged on the surface of the groove portion and the back side cooling copper plate arranged on the back surface is fixed to the base material.
The height of the central axis of the front side electromagnets arranged on the front side cooling copper plate from the reference surface matches the height of the center axis of the back side electromagnets arranged on the back side cooling copper plate from the reference surface. The magnetic field application device in electroslag welding according to claim 14, wherein the electromagnet on the front side and the electromagnet on the back side are configured to be movable.
前記開先部の表面に配置された表側冷却用銅板及び裏面に配置された裏側冷却用銅板は何れも、当該開先部が延びる方向に移動可能な構造を持ち、
前記表側冷却用銅板に配置された表側の電磁石の中心軸の基準面からの高さと、前記裏側冷却用銅板に配置された裏側の電磁石の中心軸の当該基準面からの高さとが一致するように、当該表側冷却用銅板及び当該裏側冷却用銅板が移動可能に構成されていることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。
Both the front-side cooling copper plate arranged on the front surface of the groove portion and the back-side cooling copper plate arranged on the back surface have a structure that can be moved in the direction in which the groove portion extends.
The height of the central axis of the front side electromagnets arranged on the front side cooling copper plate from the reference surface and the height of the center axis of the back side electromagnets arranged on the back side cooling copper plate from the reference surface match. The magnetic field application device in electroslag welding according to claim 14, wherein the front side cooling copper plate and the back side cooling copper plate are configured to be movable.
JP2020024572A 2019-02-27 2020-02-17 Electroslag welding method and magnetic field application device for electroslag welding Active JP7377733B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019033683 2019-02-27
JP2019033683 2019-02-27

Publications (2)

Publication Number Publication Date
JP2020138237A true JP2020138237A (en) 2020-09-03
JP7377733B2 JP7377733B2 (en) 2023-11-10

Family

ID=72264246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024572A Active JP7377733B2 (en) 2019-02-27 2020-02-17 Electroslag welding method and magnetic field application device for electroslag welding

Country Status (1)

Country Link
JP (1) JP7377733B2 (en)

Also Published As

Publication number Publication date
JP7377733B2 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP5124765B2 (en) Welding method and welding apparatus using electromagnetic force
EP1718910B1 (en) Cold crucible induction furnace with eddy current damping
JP5420117B2 (en) Apparatus and method for electromagnetic stirring in an electric arc furnace
JP2009521078A (en) Induction heating method for workpieces
RU2003101963A (en) METHOD AND DEVICE FOR CONTINUOUS CASTING OF METALS IN CRYSTALIZER
JP2020138237A (en) Electroslag welding method and magnetic field application device in electroslag welding
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
TWI554738B (en) Method and arrangement for vortex reduction in a metal making process
CN105014029A (en) Slab continuous-casting electromagnetic stirrer capable of regulating magnetic field action area
JP4539024B2 (en) Steel continuous casting method
JP4640349B2 (en) Continuous casting apparatus and casting method in continuous casting apparatus
US20230234126A1 (en) Actuator for a casting mold for producing metal components
JP2010017749A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP5010344B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP7026693B2 (en) Reactor assembly for metal manufacturing process
JP2022013693A (en) Electroslag welding method and magnetic field application device in electroslag welding
JP7180383B2 (en) continuous casting machine
JP4761593B2 (en) Induction melting furnace and induction melting method
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP2007098398A (en) Apparatus for controlling fluidity of molten steel
JP2020020554A (en) Melting device
JP7119684B2 (en) continuous casting machine
JP4102353B2 (en) Method for melting surface layer of ferromagnetic metal material
JPS59202144A (en) Stirring method of molten steel in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7377733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150