JP2022013693A - Electroslag welding method and magnetic field application device in electroslag welding - Google Patents

Electroslag welding method and magnetic field application device in electroslag welding Download PDF

Info

Publication number
JP2022013693A
JP2022013693A JP2021076268A JP2021076268A JP2022013693A JP 2022013693 A JP2022013693 A JP 2022013693A JP 2021076268 A JP2021076268 A JP 2021076268A JP 2021076268 A JP2021076268 A JP 2021076268A JP 2022013693 A JP2022013693 A JP 2022013693A
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetic
magnetic field
coil
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021076268A
Other languages
Japanese (ja)
Inventor
修 尾崎
Osamu Ozaki
裕志 橋本
Hiroshi Hashimoto
秀徳 名古
Hidenori Nako
真理子 江上
Mariko Egami
圭人 石崎
Yoshihito Ishizaki
舞帆 辰巳
Maho Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2022013693A publication Critical patent/JP2022013693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

To apply a magnetic field to a molten pool in electroslag welding.SOLUTION: According to an electroslag welding method, electroslag welding of a base material is performed while applying a magnetic field into a groove by using a front upper side magnetic pole and a front lower side magnetic pole which are two upper and lower magnetic field application magnetic poles which are located on a front side of the groove of the base material, and a rear upper side magnetic pole and a rear lower side magnetic pole which are two upper and lower magnetic field application magnetic poles which are located on a rear side of the groove so that the magnetic field at the tip of the weld wire becomes weaker than the magnetic field at the molten pool in the groove.SELECTED DRAWING: Figure 6

Description

本発明は、エレクトロスラグ溶接方法及びエレクトロスラグ溶接における磁場印加装置に関する。 The present invention relates to an electroslag welding method and a magnetic field application device in electroslag welding.

アーク溶接において溶融池に磁界を作用させて、該磁界と溶接電流とによる回転方向の磁力で溶融金属を攪拌しながら溶接を行う磁気攪拌溶接法は、知られている(例えば、特許文献1、2参照)。特許文献1、2では、溶接トーチの回りを囲むように磁気コイルが配されている。 In arc welding, a magnetic stirring welding method in which a magnetic field is applied to a molten pool and welding is performed while stirring the molten metal with a magnetic force in the rotational direction due to the magnetic field and the welding current is known (for example, Patent Document 1, Patent Document 1, 2). In Patent Documents 1 and 2, a magnetic coil is arranged so as to surround the welding torch.

特開平4-190976号公報Japanese Unexamined Patent Publication No. 4-190976 特開平8-318370号公報Japanese Unexamined Patent Publication No. 8-318370

ところで、エレクトロスラグ溶接は、アーク溶接と異なり、数百アンペアの電流を通電している溶接ワイヤを、溶融した電解質である溶融スラグに供給し、溶融スラグ内のジュール発熱によって、母材と溶接ワイヤを溶かしながら溶接する方法である。溶接方向は垂直であり、下から上に溶接が進む。また、溶融スラグや溶融金属がこぼれないように、母材の開先部は水冷銅板で覆われる。エレクトロスラグ溶接では、溶融池の前後左右は母材や水冷銅板に覆われ、溶融池の上下は既に溶接した溶接部分と溶融スラグとに覆われている。従って、アーク溶接のように溶接ワイヤを供給するトーチ部分にコイルを配置しても、溶融スラグが存在するので、溶融池に有効な磁場を印加できないばかりでなく、そもそも開先部の空間は狭く、コイルを配置することもできない。 By the way, in electroslag welding, unlike arc welding, a welding wire carrying a current of several hundred amperes is supplied to the molten slag, which is a molten electrolyte, and Joule heat generation in the molten slag causes the base metal and the weld wire to be welded. It is a method of welding while melting. The welding direction is vertical, and welding proceeds from bottom to top. In addition, the groove of the base metal is covered with a water-cooled copper plate so that molten slag and molten metal do not spill. In electroslag welding, the front, back, left and right of the molten pool are covered with a base metal and a water-cooled copper plate, and the top and bottom of the molten pool are covered with the welded portion and the molten slag that have already been welded. Therefore, even if the coil is placed in the torch part that supplies the welding wire as in arc welding, the molten slag is present, so that not only is it impossible to apply an effective magnetic field to the molten pool, but the space at the groove is narrow in the first place. , The coil cannot be placed either.

本発明の目的は、エレクトロスラグ溶接において溶融池に磁場を印加することにある。 An object of the present invention is to apply a magnetic field to a molten pool in electroslag welding.

かかる目的のもと、本発明は、母材の開先部の表側に配置された上下2個の磁場印加磁極である表上側磁極及び表下側磁極と、開先部の裏側に配置された上下2個の磁場印加磁極である裏上側磁極及び裏下側磁極とを用いて、溶接ワイヤの先端部における磁場が開先部内の溶融池における磁場よりも弱くなるように、開先部内に磁場を印加しながら母材のエレクトロスラグ溶接を行うエレクトロスラグ溶接方法を提供する。 For this purpose, the present invention is arranged on the front side magnetic pole and the front lower side magnetic pole, which are two upper and lower magnetic field application magnetic poles arranged on the front side of the groove portion of the base metal, and on the back side of the groove portion. Using the two upper and lower magnetic field application magnetic fields, the back upper magnetic field and the back lower magnetic field, the magnetic field in the groove is weakened so that the magnetic field at the tip of the welding wire is weaker than the magnetic field in the molten pool in the groove. Provided is an electroslag welding method for performing electroslag welding of a base material while applying a magnet.

エレクトロスラグ溶接方法は、表上側磁極と裏上側磁極とが同じ高さに位置し、表下側磁極と裏下側磁極とが同じ高さに位置し、溶接ワイヤの先端部が表上側磁極の高さと表下側磁極の高さとの間の高さに位置するように配置する、ものであってよい。 In the electroslag welding method, the front upper pole and the back upper pole are located at the same height, the front lower pole and the back lower pole are located at the same height, and the tip of the welding wire is located at the same height. It may be arranged so as to be located at a height between the height and the height of the lower front pole.

エレクトロスラグ溶接方法は、溶接トーチを、開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接し、溶接トーチの往復動の中で、溶接トーチが、表上側磁極及び表下側磁極に接近したときに、表上側磁極及び表下側磁極の発生磁場を減少させ、裏上側磁極及び裏下側磁極の発生磁場を増大させ、溶接トーチの往復動の中で、溶接トーチが、裏上側磁極及び裏下側磁極に接近したときに、裏上側磁極及び裏下側磁極の発生磁場を減少させ、表上側磁極及び表下側磁極の発生磁場を増大させる、ものであってよい。その場合、エレクトロスラグ溶接方法は、溶接トーチの往復動の中で、溶接トーチが、表上側磁極及び表下側磁極に最も接近したときに、裏上側磁極及び裏下側磁極の発生磁場を最大とし、溶接トーチの往復動の中で、溶接トーチが、裏上側磁極及び裏下側磁極に最も接近したときに、表上側磁極及び表下側磁極の発生磁場を最大とする、ものであってよい。また、エレクトロスラグ溶接方法は、溶接トーチの往復動の中で、溶接トーチが、開先部の厚み方向の中央よりも表側に位置するときに、裏上側磁極及び裏下側磁極の発生磁場を最大とし、溶接トーチの往復動の中で、溶接トーチが、開先部の厚み方向の中央よりも裏側に位置するときに、表上側磁極及び表下側磁極の発生磁場を最大とする、ものであってよい。 In the electroslag welding method, the welding torch is welded while reciprocating between the front side position and the back side position in the groove portion, and in the reciprocating movement of the welding torch, the welding torch has the front side magnetic pole. And when approaching the lower front magnetic pole, the generated magnetic field of the upper front magnetic pole and the lower front magnetic pole is decreased, the generated magnetic field of the upper back magnetic pole and the lower back magnetic pole is increased, and in the reciprocating motion of the welding torch, When the welding torch approaches the back upper magnetic pole and the back lower magnetic pole, the generated magnetic field of the back upper magnetic pole and the back lower magnetic pole is reduced, and the generated magnetic field of the front upper magnetic pole and the front lower magnetic pole is increased. It may be there. In that case, the electroslag welding method maximizes the magnetic field generated by the back upper magnetic pole and the back lower magnetic pole when the welding torch is closest to the front upper magnetic pole and the front lower magnetic pole in the reciprocating motion of the welding torch. When the welding torch is closest to the back upper magnetic pole and the back lower magnetic pole in the reciprocating motion of the welding torch, the generated magnetic fields of the front upper magnetic pole and the front lower magnetic pole are maximized. good. Further, in the electroslag welding method, when the welding torch is located on the front side of the center in the thickness direction of the groove portion in the reciprocating motion of the welding torch, the generated magnetic fields of the back upper magnetic pole and the back lower magnetic pole are generated. Maximum, in the reciprocating motion of the welding torch, when the welding torch is located behind the center in the thickness direction of the groove, the generated magnetic field of the front upper magnetic pole and the front lower magnetic pole is maximized. May be.

エレクトロスラグ溶接方法は、溶接ワイヤの先端部における磁場の強度が極小となるように、表上側磁極の発生磁場の強度と表下側磁極の発生磁場の強度とのバランス、及び裏上側磁極の発生磁場の強度と裏下側磁極の発生磁場の強度とのバランスの少なくとも何れか一方を調整する、ものであってよい。 The electroslag welding method balances the strength of the generated magnetic field of the front upper magnetic pole with the strength of the generated magnetic field of the front lower magnetic pole and the generation of the back upper magnetic pole so that the strength of the magnetic field at the tip of the welding wire is minimized. It may adjust at least one of the balance between the strength of the magnetic field and the strength of the generated magnetic field of the lower back magnetic pole.

エレクトロスラグ溶接方法は、表上側磁極と表下側磁極との間に軟磁性材料からなる表側部材を配置し、裏上側磁極と裏下側磁極との間に軟磁性材料からなる裏側部材を配置する、ものであってよい。その場合、軟磁性材料は、鉄、ニッケル、磁性ステンレス、パーマロイ、パーメンジュール、ケイ素鋼の何れかであってよい。或いは、エレクトロスラグ溶接方法は、表側部材の下端が溶融池の上端よりも高い位置になるように表側部材を配置し、裏側部材の下端が溶融池の上端よりも高い位置になるように裏側部材を配置する、ものであってよい。 In the electroslag welding method, a front side member made of a soft magnetic material is placed between the front upper magnetic pole and the front lower side magnetic pole, and a back side member made of a soft magnetic material is placed between the back upper magnetic pole and the back lower side magnetic pole. It may be something. In that case, the soft magnetic material may be any of iron, nickel, magnetic stainless steel, permalloy, permendur, and silicon steel. Alternatively, in the electroslag welding method, the front side member is arranged so that the lower end of the front side member is higher than the upper end of the molten pool, and the back side member is arranged so that the lower end of the back side member is higher than the upper end of the molten pool. It may be something.

また、本発明は、母材の開先部の表側に配置された上下2個の磁場印加磁極である表上側磁極及び表下側磁極と、開先部の裏側に配置された上下2個の磁場印加磁極である裏上側磁極及び裏下側磁極とを備え、表上側磁極と裏上側磁極とが同じ高さに位置し、表下側磁極と裏下側磁極とが同じ高さに位置し、溶接ワイヤの先端部が表上側磁極の高さと表下側磁極の高さとの間の高さに位置するように配置されているエレクトロスラグ溶接における磁場印加装置も提供する。 Further, in the present invention, two upper and lower magnetic field application magnetic poles arranged on the front side of the groove portion of the base material, the upper front magnetic pole and the lower front magnetic pole, and two upper and lower magnetic poles arranged on the back side of the groove portion. It is equipped with a magnetic field application magnetic pole, a back upper magnetic pole and a back lower magnetic pole, and the front upper magnetic pole and the back upper magnetic pole are located at the same height, and the front lower magnetic pole and the back lower magnetic pole are located at the same height. Also provided is a magnetic field application device in electroslag welding in which the tip of the weld wire is located at a height between the height of the front top magnetic pole and the height of the front bottom magnetic pole.

エレクトロスラグ溶接における磁場印加装置は、溶接ワイヤの先端部における磁場が開先部内の溶融池における磁場よりも弱くなるように構成されている、ものであってよい。 The magnetic field application device in electroslag welding may be configured such that the magnetic field at the tip of the weld wire is weaker than the magnetic field at the molten pool in the groove.

表上側磁極、表下側磁極、裏上側磁極、及び裏下側磁極の少なくとも1つは、発生磁場の強度を調節可能に構成されている、ものであってよい。 At least one of the front upper pole, the front lower pole, the back upper pole, and the back lower pole may be configured so that the strength of the generated magnetic field can be adjusted.

表上側磁極及び表下側磁極はコイルを共有し、裏上側磁極及び裏下側磁極はコイルを共有する、ものであってよい。 The front upper pole and the front lower pole may share a coil, and the back upper pole and the back lower pole may share a coil.

エレクトロスラグ溶接における磁場印加装置は、表上側磁極と表下側磁極との間に軟磁性材料からなる表側部材が配置され、裏上側磁極と裏下側磁極との間に軟磁性体材料からなる裏側部材が配置されている、ものであってよい。その場合、軟磁性材料は、鉄、ニッケル、磁性ステンレス、パーマロイ、パーメンジュール、ケイ素鋼の何れかであってよい。或いは、エレクトロスラグ溶接における磁場印加装置は、表側部材の下端が溶融池の上端よりも高い位置になるように表側部材が配置され、裏側部材の下端が溶融池の上端よりも高い位置になるように裏側部材が配置されている、ものであってよい。 In the magnetic field application device in electroslag welding, a front side member made of a soft magnetic material is arranged between the front upper magnetic pole and the front lower side magnetic pole, and the front side member is made of a soft magnetic material material between the back upper magnetic pole and the back lower side magnetic pole. The back side member may be arranged. In that case, the soft magnetic material may be any of iron, nickel, magnetic stainless steel, permalloy, permendur, and silicon steel. Alternatively, in the magnetic field application device in electroslag welding, the front side member is arranged so that the lower end of the front side member is higher than the upper end of the molten pool, and the lower end of the back side member is located higher than the upper end of the molten pool on the back side. The member may be arranged.

本発明によれば、エレクトロスラグ溶接において溶融池に磁場を印加することが可能となる。 According to the present invention, it is possible to apply a magnetic field to the molten pool in electroslag welding.

(a),(b)は、従来の実施の形態における磁場印加装置を前側から見たときの斜視図である。(A) and (b) are perspective views when the magnetic field application device in the conventional embodiment is viewed from the front side. (a),(b)は、従来の実施の形態における磁場印加装置を後側から見たときの斜視図である。(A) and (b) are perspective views when the magnetic field application device in the conventional embodiment is viewed from the rear side. 従来の実施の形態の磁場印加装置における前側コイル及び後側コイルの位置を示した図である。It is a figure which showed the position of the front side coil and the rear side coil in the magnetic field application device of the conventional embodiment. (a),(b)は、本発明の第1の実施の形態における磁場印加装置を前側から見たときの斜視図である。(A) and (b) are perspective views of the magnetic field application device according to the first embodiment of the present invention when viewed from the front side. (a),(b)は、本発明の第1の実施の形態における磁場印加装置を後側から見たときの斜視図である。(A) and (b) are perspective views of the magnetic field application device according to the first embodiment of the present invention when viewed from the rear side. 本発明の第1の実施の形態の磁場印加装置における前側上コイル、前側下コイル、後側上コイル、及び後側下コイルの位置を示した図である。It is a figure which showed the position of the front side upper coil, the front side lower coil, the rear side upper coil, and the rear side lower coil in the magnetic field application device of 1st Embodiment of this invention. 本発明の第1の実施の形態の磁場印加装置における溶融スラグ、溶融池、及び溶接部における磁場強度分布を示すコンター図である。It is a contour diagram which shows the magnetic field strength distribution in a molten slag, a molten pool, and a weld part in the magnetic field application device of 1st Embodiment of this invention. 従来の実施の形態の磁場印加装置における溶融スラグ、溶融池、及び溶接部における磁場強度分布を示すコンター図である。It is a contour diagram which shows the magnetic field strength distribution in the molten slag, the molten pool, and the weld part in the magnetic field application device of the conventional embodiment. 母材の厚み方向の中央部の鉛直方向における磁場強度分布を本実施の形態と従来の実施の形態とで比較して示したグラフである。It is a graph which compared the magnetic field strength distribution in the vertical direction of the central part in the thickness direction of a base metal between this embodiment and the conventional embodiment. (a),(b)は、磁場印加による溶融スラグの流れの変化を示した図である。(A) and (b) are diagrams showing changes in the flow of molten slag due to the application of a magnetic field. (a),(b)は、本発明の第2の実施の形態の磁場印加装置における前側コイル及び後側コイルの電流の変化を説明するためのグラフである。(A) and (b) are graphs for explaining changes in currents of the front coil and the rear coil in the magnetic field applying device of the second embodiment of the present invention. (a),(b)は、本発明の第3の実施の形態の磁場印加装置における前側コイル及び後側コイルの電流の変化を説明するためのグラフである。(A) and (b) are graphs for explaining changes in currents of the front coil and the rear coil in the magnetic field applying device according to the third embodiment of the present invention. 本発明の第3の実施の形態において溶接トーチが位置Bにある場合の磁場強度分布を示すコンター図である。FIG. 3 is a contour diagram showing a magnetic field strength distribution when the welding torch is at position B in the third embodiment of the present invention. 本発明の第3の実施の形態において溶接トーチが位置Cにある場合の磁場強度分布を示すコンター図である。FIG. 3 is a contour diagram showing a magnetic field strength distribution when the welding torch is at position C in the third embodiment of the present invention. 本発明の第3の実施の形態において溶接トーチが位置Fにある場合の磁場強度分布を示すコンター図である。FIG. 3 is a contour diagram showing a magnetic field strength distribution when the welding torch is at position F in the third embodiment of the present invention. 本発明の第3の実施の形態において溶接トーチが位置Bにある場合の開先部の前後方向の磁場分布を示したグラフである。It is a graph which showed the magnetic field distribution in the anteroposterior direction of the groove part when the welding torch is in the position B in the 3rd Embodiment of this invention. 本発明の第3の実施の形態において溶接トーチが位置Cにある場合の開先部の前後方向の磁場分布を示したグラフである。It is a graph which showed the magnetic field distribution in the anteroposterior direction of the groove part when the welding torch is in the position C in the 3rd Embodiment of this invention. 本発明の第3の実施の形態において溶接トーチが位置Fにある場合の開先部の前後方向の磁場分布を示したグラフである。It is a graph which showed the magnetic field distribution in the anteroposterior direction of the groove part when the welding torch is in the position F in the 3rd Embodiment of this invention. 本発明の第5の実施の形態における磁場印加装置のコイルの位置を示した図である。It is a figure which showed the position of the coil of the magnetic field application device in 5th Embodiment of this invention. 本発明の第6の実施の形態における磁場印加装置の構成例を示した図である。It is a figure which showed the structural example of the magnetic field application device in 6th Embodiment of this invention. 本発明の第6の実施の形態において前側磁性体片及び後側磁性体片を配置した場合の磁束密度分布を示したグラフである。It is a graph which showed the magnetic flux density distribution when the front side magnetic body piece and the rear side magnetic body piece are arranged in the 6th Embodiment of this invention.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[発明の背景]
エレクトロスラグ溶接では、溶融池が厚さ10~30mmの溶融スラグの下に位置しているので、アーク溶接のように溶融池近傍に電磁攪拌用磁界を発生させるコイルを設置することが困難である。この課題を解決するために、本発明者らは、溶接箇所前後に設置する水冷銅板夫々に、貫通しない深さの穴又は溝を設け、その穴又は溝にコイルの鉄心を嵌める実施の形態(以下、「従来の実施の形態」という)を考えた。
[Background of invention]
In electroslag welding, since the molten pool is located under the molten slag having a thickness of 10 to 30 mm, it is difficult to install a coil that generates a magnetic field for electromagnetic agitation in the vicinity of the molten pool as in arc welding. .. In order to solve this problem, the present inventors provide holes or grooves having a depth that does not penetrate each of the water-cooled copper plates installed before and after the welded portion, and fit the iron core of the coil into the holes or grooves. Hereinafter, "conventional embodiment") was considered.

図1(a),(b)は、従来の実施の形態における磁場印加装置100を前側(表側ともいう)から見たときの斜視図であり、図2(a),(b)は、従来の実施の形態における磁場印加装置100を後側(裏側ともいう)から見たときの斜視図である。 1 (a) and 1 (b) are perspective views when the magnetic field application device 100 in the conventional embodiment is viewed from the front side (also referred to as the front side), and FIGS. 2 (a) and 2 (b) are conventional views. It is a perspective view of the magnetic field application device 100 in the embodiment seen from the rear side (also referred to as the back side).

従来の実施の形態における磁場印加装置100は、図1(a),(b)及び図2(a),(b)に示すように、溶接ワイヤ5と、前側水冷銅板10と、後側水冷銅板20と、前側コイル30と、後側コイル40とを含む。 As shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b), the magnetic field applying device 100 in the conventional embodiment includes a welding wire 5, a front water-cooled copper plate 10, and a rear water-cooled device 100. It includes a copper plate 20, a front coil 30, and a rear coil 40.

溶接ワイヤ5は、母材2,3の突き合わせ部に形成された開先部4に挿入される。そして、溶接電源(図示せず)により通電された状態で開先部4内の溶融スラグ6(図3参照)に供給され、溶融スラグ6内のジュール発熱によって溶融され、溶融金属を溶融池7(図3参照)に落とし込むことで下から上に向かって順次溶接して行くためのものである。 The welding wire 5 is inserted into the groove portion 4 formed in the butt portion of the base materials 2 and 3. Then, it is supplied to the molten slag 6 (see FIG. 3) in the groove 4 in a state of being energized by a welding power source (not shown), melted by Joule heat generation in the molten slag 6, and the molten metal is melted in the molten pool 7. It is for welding sequentially from the bottom to the top by dropping it into (see FIG. 3).

前側水冷銅板10は、母材2,3の開先部4の前側を覆う水冷のための銅板である。前側水冷銅板10には、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)とが設けられる。また、後側水冷銅板20は、母材2,3の開先部4の後側を覆う水冷のための銅板である。後側水冷銅板20にも、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)とが設けられる。 The front water-cooled copper plate 10 is a water-cooled copper plate that covers the front side of the groove portion 4 of the base materials 2 and 3. The front water-cooled copper plate 10 is provided with an inlet (not shown) for flowing in cooling water for water cooling and an outlet (not shown) for flowing out cooling water for water cooling. The rear water-cooled copper plate 20 is a water-cooled copper plate that covers the rear side of the groove portion 4 of the base materials 2 and 3. The rear water-cooled copper plate 20 is also provided with an inlet (not shown) for flowing in cooling water for water cooling and an outlet (not shown) for flowing out cooling water for water cooling.

前側コイル30は、前側水冷銅板10に配置される磁気コイルである。前側コイル30は、コイル用電源(図示せず)により通電されることにより、磁場を発生させて、その磁場を溶融池7(図3参照)に印加する。また、後側コイル40は、後側水冷銅板20に配置される磁気コイルである。後側コイル40も、コイル用電源(図示せず)により通電されることにより、磁場を発生させて、その磁場を溶融池7(図3参照)に印加する。 The front coil 30 is a magnetic coil arranged on the front water-cooled copper plate 10. The front coil 30 is energized by a coil power source (not shown) to generate a magnetic field, and the magnetic field is applied to the molten pool 7 (see FIG. 3). The rear coil 40 is a magnetic coil arranged on the rear water-cooled copper plate 20. The rear coil 40 is also energized by a coil power source (not shown) to generate a magnetic field, and the magnetic field is applied to the molten pool 7 (see FIG. 3).

ここで、図1(a)は、前側コイル30を嵌める前の磁場印加装置100の斜視図であり、図1(b)は、前側コイル30を嵌めた後の磁場印加装置100の斜視図である。前側水冷銅板10が溶接の進行に応じて上側に移動した場合、前側コイル30も同じく上側に移動する必要があるので、図示するように、前側水冷銅板10には穴11が設けられ、その穴11に前側コイル30の鉄芯31が嵌っている。 Here, FIG. 1A is a perspective view of the magnetic field applying device 100 before fitting the front coil 30, and FIG. 1B is a perspective view of the magnetic field applying device 100 after fitting the front coil 30. be. When the front water-cooled copper plate 10 moves upward according to the progress of welding, the front coil 30 also needs to move upward. Therefore, as shown in the figure, the front water-cooled copper plate 10 is provided with a hole 11 and the hole thereof. The iron core 31 of the front coil 30 is fitted in 11.

また、図2(a)は、後側コイル40を嵌める前の磁場印加装置100の斜視図であり、図2(b)は、後側コイル40を嵌めた後の磁場印加装置100の斜視図である。後側水冷銅板20は母材2,3に固定されているので、図示するように、後側水冷銅板20には鉛直方向に溝21が設けられ、後側コイル40の鉄芯41はその溝21に嵌ったまま、溶接の進行に応じて上側に移動するようになっている。 2 (a) is a perspective view of the magnetic field applying device 100 before the rear coil 40 is fitted, and FIG. 2 (b) is a perspective view of the magnetic field applying device 100 after the rear coil 40 is fitted. Is. Since the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3, as shown in the figure, the rear water-cooled copper plate 20 is provided with a groove 21 in the vertical direction, and the iron core 41 of the rear coil 40 is a groove thereof. While still fitted to 21, it moves upward as the welding progresses.

次に、従来の実施の形態の磁場印加装置100における前側コイル30及び後側コイル40の配置について説明する。図3は、磁場印加装置100における前側コイル30及び後側コイル40の位置を示した図である。本実施の形態では、前側コイル30及び後側コイル40の諸元を下記表1のように設定した。 Next, the arrangement of the front coil 30 and the rear coil 40 in the magnetic field applying device 100 of the conventional embodiment will be described. FIG. 3 is a diagram showing the positions of the front coil 30 and the rear coil 40 in the magnetic field application device 100. In this embodiment, the specifications of the front coil 30 and the rear coil 40 are set as shown in Table 1 below.

Figure 2022013693000002
Figure 2022013693000002

即ち、図3に示すように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41を、その軸心の位置が、溶融スラグ6と溶融池7との界面から20mm下の位置になるように配置している。また、表1に示すように、前側コイル30の鉄芯31及び後側コイル40の鉄芯41のサイズは何れも、直径20mm、長さ60mmとしている。 That is, as shown in FIG. 3, the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 are positioned 20 mm below the interface between the molten slag 6 and the molten pool 7. It is arranged so as to be. Further, as shown in Table 1, the sizes of the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 are both 20 mm in diameter and 60 mm in length.

その結果、溶融池7の近傍に前側コイル30の鉄芯31及び後側コイル40の鉄芯41を配置することができ、溶融池7に有効な強さの磁場を印加できるようになった。 As a result, the iron core 31 of the front coil 30 and the iron core 41 of the rear coil 40 can be arranged in the vicinity of the molten pool 7, and a magnetic field having an effective strength can be applied to the molten pool 7.

ところで、この従来の実施の形態によれば、溶融池7を電磁攪拌することはできるが、溶融池7だけでなく溶融スラグ6も磁場の作用により大きく偏流して電磁攪拌される。これにより、溶融池7に溶融スラグ6が巻き込まれることで溶接部8の機械的強度が劣化するという問題が生じる。 By the way, according to this conventional embodiment, the molten pool 7 can be electromagnetically agitated, but not only the molten pool 7 but also the molten slag 6 is greatly drifted and electromagnetically agitated by the action of the magnetic field. This causes a problem that the mechanical strength of the welded portion 8 deteriorates due to the molten slag 6 being caught in the molten pool 7.

また、エレクトラスラグ溶接では、溶接する厚板の厚さ方向にムラ無く溶接するために、溶接トーチ9を前後方向に摺動させる。そのため、溶接トーチ9が前側コイル30の鉄芯31又は後側コイル40の鉄芯41の近くに来たとき、溶融池7及び溶融スラグ6には大きなローレンツ力が働き、溶融スラグ6が強く偏流して電磁攪拌されることになる。その結果、溶融池7に溶融スラグ6が巻き込まれることで溶接部8の機械的強度が劣化するという問題に加え、溶融スラグ6が偏流することで母材2,3の溶け込みに偏りが生じるという問題も生じる。 Further, in electric slag welding, the welding torch 9 is slid in the front-rear direction in order to weld evenly in the thickness direction of the thick plate to be welded. Therefore, when the welding torch 9 comes near the iron core 31 of the front coil 30 or the iron core 41 of the rear coil 40, a large Lorentz force acts on the molten pool 7 and the molten slag 6, and the molten slag 6 is strongly biased. It will be flowed and electromagnetically agitated. As a result, in addition to the problem that the mechanical strength of the welded portion 8 deteriorates due to the molten slag 6 being caught in the molten pool 7, the uneven flow of the molten slag 6 causes a bias in the penetration of the base materials 2 and 3. Problems also arise.

以下、このような問題を解決する実施の形態について説明する。 Hereinafter, embodiments for solving such problems will be described.

[第1の実施の形態]
まず、本実施の形態における磁場印加装置200の構成について説明する。図4(a),(b)は、本実施の形態における磁場印加装置200を前側(表側ともいう)から見たときの斜視図であり、図5(a),(b)は、本実施の形態における磁場印加装置200を後側(裏側ともいう)から見たときの斜視図である。
[First Embodiment]
First, the configuration of the magnetic field application device 200 according to the present embodiment will be described. 4 (a) and 4 (b) are perspective views when the magnetic field applying device 200 in the present embodiment is viewed from the front side (also referred to as the front side), and FIGS. 5 (a) and 5 (b) are the present implementation. It is a perspective view of the magnetic field application device 200 in the form of the above when viewed from the rear side (also referred to as the back side).

本実施の形態における磁場印加装置200は、図4(a),(b)及び図5(a),(b)に示すように、溶接ワイヤ5と、前側水冷銅板10と、後側水冷銅板20と、前側上コイル30aと、前側下コイル30bと、後側上コイル40aと、後側下コイル40bとを含む。このように、本実施の形態では、従来の実施の形態と異なり、コイルが、前側水冷銅板10に上下に2つ配置され、後側水冷銅板20に上下に2つ配置される。 As shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b), the magnetic field applying device 200 in the present embodiment includes a welding wire 5, a front water-cooled copper plate 10, and a rear water-cooled copper plate. 20, the front upper coil 30a, the front lower coil 30b, the rear upper coil 40a, and the rear lower coil 40b. As described above, in the present embodiment, unlike the conventional embodiment, two coils are arranged vertically on the front water-cooled copper plate 10 and two coils are arranged vertically on the rear water-cooled copper plate 20.

溶接ワイヤ5は、母材2,3の突き合わせ部に形成された開先部4に挿入される。そして、溶接電源(図示せず)により通電された状態で開先部4内の溶融スラグ6(図6参照)に供給され、溶融スラグ6内のジュール発熱によって溶融され、溶融金属を溶融池7(図6参照)に落とし込むことで下から上に向かって順次溶接して行くためのものである。 The welding wire 5 is inserted into the groove portion 4 formed in the butt portion of the base materials 2 and 3. Then, it is supplied to the molten slag 6 (see FIG. 6) in the groove 4 in a state of being energized by a welding power source (not shown), melted by Joule heat generation in the molten slag 6, and the molten metal is melted in the molten pool 7. It is for welding sequentially from the bottom to the top by dropping it into (see FIG. 6).

前側水冷銅板10は、母材2,3の開先部4の前側を覆う水冷のための銅板である。前側水冷銅板10には、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)とが設けられる。また、後側水冷銅板20は、母材2,3の開先部4の後側を覆う水冷のための銅板である。後側水冷銅板20にも、水冷のための冷却水を流入させる流入口(図示せず)と、水冷のための冷却水を流出させる流出口(図示せず)とが設けられる。 The front water-cooled copper plate 10 is a water-cooled copper plate that covers the front side of the groove portion 4 of the base materials 2 and 3. The front water-cooled copper plate 10 is provided with an inlet (not shown) for flowing in cooling water for water cooling and an outlet (not shown) for flowing out cooling water for water cooling. The rear water-cooled copper plate 20 is a water-cooled copper plate that covers the rear side of the groove portion 4 of the base materials 2 and 3. The rear water-cooled copper plate 20 is also provided with an inlet (not shown) for flowing in cooling water for water cooling and an outlet (not shown) for flowing out cooling water for water cooling.

前側上コイル30aは、前側水冷銅板10に配置される2つの磁気コイルのうち上側の磁気コイルであり、前側下コイル30bは、前側水冷銅板10に配置される2つの磁気コイルのうち下側の磁気コイルである。また、後側上コイル40aは、後側水冷銅板20に配置される2つの磁気コイルのうち上側の磁気コイルであり、後側下コイル40bは、後側水冷銅板20に配置される2つの磁気コイルのうち下側の磁気コイルである。前側上コイル30a、前側下コイル30b、後側上コイル40a、及び後側下コイル40bは、それぞれ、コイル用電源(図示せず)により通電されることにより、磁場を発生させて、その磁場を溶融池7(図6参照)に印加する。尚、以下では、前側上コイル30a及び前側下コイル30bを「前側コイル」と総称したり、後側上コイル40a及び後側下コイル40bを「後側コイル」と総称したりすることもある。また、前側上コイル30a及び後側上コイル40aを「上コイル」と総称したり、前側下コイル30b及び後側下コイル40bを「下コイル」と総称したりすることもある。更に、前側上コイル30a、前側下コイル30b、後側上コイル40a、及び後側下コイル40bを単に「コイル」と総称することもある。 The front upper coil 30a is the upper magnetic coil of the two magnetic coils arranged on the front water-cooled copper plate 10, and the front lower coil 30b is the lower of the two magnetic coils arranged on the front water-cooled copper plate 10. It is a magnetic coil. Further, the rear upper coil 40a is the upper magnetic coil of the two magnetic coils arranged on the rear water-cooled copper plate 20, and the rear lower coil 40b is the two magnetisms arranged on the rear water-cooled copper plate 20. The lower magnetic coil of the coils. The front upper coil 30a, the front lower coil 30b, the rear upper coil 40a, and the rear lower coil 40b are each energized by a coil power supply (not shown) to generate a magnetic field, and the magnetic field is generated. It is applied to the molten pool 7 (see FIG. 6). In the following, the front upper coil 30a and the front lower coil 30b may be collectively referred to as a "front coil", and the rear upper coil 40a and the rear lower coil 40b may be collectively referred to as a "rear coil". Further, the front upper coil 30a and the rear upper coil 40a may be collectively referred to as an "upper coil", and the front lower coil 30b and the rear lower coil 40b may be collectively referred to as a "lower coil". Further, the front upper coil 30a, the front lower coil 30b, the rear upper coil 40a, and the rear lower coil 40b may be collectively referred to as "coils".

ここで、図4(a)は、前側上コイル30a及び前側下コイル30bを嵌める前の磁場印加装置200の斜視図であり、図4(b)は、前側上コイル30a及び前側下コイル30bを嵌めた後の磁場印加装置200の斜視図である。前側水冷銅板10が溶接の進行に応じて上側に移動した場合、前側上コイル30a及び前側下コイル30bも同じく上側に移動する必要があるので、図示するように、前側水冷銅板10には穴11a,11bが設けられ、その穴11a,11bにそれぞれ前側上コイル30aの鉄芯31a、前側下コイル30bの鉄芯31bが嵌っている。 Here, FIG. 4A is a perspective view of the magnetic field application device 200 before fitting the front upper coil 30a and the front lower coil 30b, and FIG. 4B shows the front upper coil 30a and the front lower coil 30b. It is a perspective view of the magnetic field application device 200 after fitting. When the front water-cooled copper plate 10 moves upward according to the progress of welding, the front upper coil 30a and the front lower coil 30b also need to move upward. Therefore, as shown in the figure, the front water-cooled copper plate 10 has a hole 11a. , 11b are provided, and the iron core 31a of the front upper coil 30a and the iron core 31b of the front lower coil 30b are fitted in the holes 11a and 11b, respectively.

また、図5(a)は、後側上コイル40a及び後側下コイル40bを嵌める前の磁場印加装置200の斜視図であり、図5(b)は、後側上コイル40a及び後側下コイル40bを嵌めた後の磁場印加装置200の斜視図である。後側水冷銅板20は母材2,3に固定されているので、図示するように、後側水冷銅板20には鉛直方向に溝21が設けられ、後側上コイル40aの鉄芯41a及び後側下コイル40bの鉄芯41bはその溝21に嵌ったまま、溶接の進行に応じて上側に移動するようになっている。 Further, FIG. 5A is a perspective view of the magnetic field application device 200 before fitting the rear upper coil 40a and the rear lower coil 40b, and FIG. 5B is a rear upper coil 40a and the rear lower coil 40a. It is a perspective view of the magnetic field application device 200 after fitting a coil 40b. Since the rear water-cooled copper plate 20 is fixed to the base materials 2 and 3, as shown in the figure, the rear water-cooled copper plate 20 is provided with a groove 21 in the vertical direction, and the iron core 41a and the rear of the rear upper coil 40a are provided. The iron core 41b of the lower coil 40b is adapted to move upward as the welding progresses while being fitted in the groove 21.

尚、本実施の形態では、図4(a),(b)及び図5(a),(b)に示すように、前側上コイル30a及び前側下コイル30bが開先部4の表側に配置されており、後側上コイル40a及び後側下コイル40bが開先部4の裏側に配置されている。また、前側水冷銅板10が、開先部4の表側の面、即ち、表面に配置されており、後側水冷銅板20が、開先部4の裏側の面、即ち、裏面に配置されている。この状態で、前側上コイル30a及び前側下コイル30bの配置位置は、前側水冷銅板10の母材2,3とは反対側であり、後側上コイル40a及び後側下コイル40bの配置位置は、後側水冷銅板20の母材2,3とは反対側であると言える。 In this embodiment, as shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b), the front upper coil 30a and the front lower coil 30b are arranged on the front side of the groove portion 4. The rear upper coil 40a and the rear lower coil 40b are arranged on the back side of the groove portion 4. Further, the front water-cooled copper plate 10 is arranged on the front surface, that is, the front surface of the groove portion 4, and the rear water-cooled copper plate 20 is arranged on the back surface, that is, the back surface of the groove portion 4. .. In this state, the arrangement positions of the front upper coil 30a and the front lower coil 30b are on the opposite sides of the base materials 2 and 3 of the front water-cooled copper plate 10, and the arrangement positions of the rear upper coil 40a and the rear lower coil 40b are. It can be said that the rear side water-cooled copper plate 20 is on the opposite side to the base materials 2 and 3.

また、本実施の形態では、図4(a),(b)及び図5(a),(b)に示すように、母材2,3の厚み方向の中心の平面上で後側下コイル40bの高さにあり開先部4の幅方向の中心にある点を原点とする。そして、母材2,3の厚み方向の中心の平面上で原点から溶接の進行方向に垂直な方向で母材2,3の前側から見て右側に向かう方向をX軸の正の方向とする。また、母材2,3の厚み方向の中心の平面に垂直な方向で原点から母材2,3の後側に向かう方向をY軸の正の方向とする。更に、母材2,3の厚み方向の中心の平面上で原点から溶接の進行方向に向かう方向をZ軸の正の方向とする。 Further, in the present embodiment, as shown in FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b), the rear lower coil is on the plane of the center of the base materials 2 and 3 in the thickness direction. The origin is a point at the height of 40b and at the center of the groove portion 4 in the width direction. Then, the direction toward the right side when viewed from the front side of the base materials 2 and 3 in the direction perpendicular to the welding progress direction from the origin on the plane of the center in the thickness direction of the base materials 2 and 3 is defined as the positive direction of the X axis. .. Further, the direction from the origin to the rear side of the base materials 2 and 3 in the direction perpendicular to the central plane in the thickness direction of the base materials 2 and 3 is defined as the positive direction of the Y axis. Further, the direction from the origin to the welding progress direction on the plane of the center in the thickness direction of the base materials 2 and 3 is defined as the positive direction of the Z axis.

次に、本実施の形態の磁場印加装置200における前側上コイル30a、前側下コイル30b、後側上コイル40a及び後側下コイル40bの配置について説明する。図6は、磁場印加装置200におけるコイル30a,30b,40a,40bの位置を示した図である。本実施の形態では、図示するように、前側上コイル30aの鉄芯31b及び後側上コイル40aの鉄芯41aの鉛直方向位置を同じに設定し、前側下コイル30bの鉄芯31b及び後側下コイル40bの鉄芯41bの鉛直方向位置を同じに設定している。つまり、前側上コイル30aの磁極と後側上コイル40aの磁極とを同じ高さに設定し、前側下コイル30bの磁極と後側下コイル40bの磁極とを同じ高さに設定している。ここで、前側上コイル30aの磁極は表上側磁極の一例であり、後側上コイル40aの磁極は裏上側磁極の一例であり、前側下コイル30bの磁極は表下側磁極の一例であり、後側下コイル40bの磁極は裏下側磁極の一例である。 Next, the arrangement of the front upper coil 30a, the front lower coil 30b, the rear upper coil 40a, and the rear lower coil 40b in the magnetic field applying device 200 of the present embodiment will be described. FIG. 6 is a diagram showing the positions of the coils 30a, 30b, 40a, and 40b in the magnetic field applying device 200. In the present embodiment, as shown in the figure, the vertical positions of the iron core 31b of the front upper coil 30a and the iron core 41a of the rear upper coil 40a are set to be the same, and the iron core 31b and the rear side of the front lower coil 30b are set to be the same. The vertical position of the iron core 41b of the lower coil 40b is set to be the same. That is, the magnetic poles of the front upper coil 30a and the magnetic poles of the rear upper coil 40a are set to the same height, and the magnetic poles of the front lower coil 30b and the rear lower coil 40b are set to the same height. Here, the magnetic pole of the front upper coil 30a is an example of the front upper magnetic pole, the magnetic pole of the rear upper coil 40a is an example of the back upper magnetic pole, and the magnetic pole of the front lower coil 30b is an example of the front lower magnetic pole. The magnetic pole of the rear lower coil 40b is an example of the back lower magnetic pole.

その上で、前側下コイル30bの磁極から後側下コイル40bの磁極に向けて磁界が発生するように前側下コイル30b及び後側下コイル40bに電流を流す。そして、後側上コイル40aの磁極から前側上コイル30aの磁極に向けて磁界が発生するように後側上コイル40a及び前側上コイル30aに電流を流す。図中、白矢印は磁場の方向を示す。ここで、コイル30a,30b,40a,40bの磁極から発生する磁力の絶対値が同じになるようにコイル30a,30b,40a,40bの電流を設定したとする。すると、コイル30a,30b,40a,40bの磁極に囲まれた中央部の磁場は、コイル30a,30b,40a,40bの磁極が発生する磁場で打ち消され、ほぼゼロとなる。 Then, a current is passed through the front lower coil 30b and the rear lower coil 40b so that a magnetic field is generated from the magnetic pole of the front lower coil 30b toward the magnetic pole of the rear lower coil 40b. Then, a current is passed through the rear upper coil 40a and the front upper coil 30a so that a magnetic field is generated from the magnetic pole of the rear upper coil 40a toward the magnetic pole of the front upper coil 30a. In the figure, the white arrow indicates the direction of the magnetic field. Here, it is assumed that the currents of the coils 30a, 30b, 40a, and 40b are set so that the absolute values of the magnetic forces generated from the magnetic poles of the coils 30a, 30b, 40a, and 40b are the same. Then, the magnetic field in the central portion surrounded by the magnetic poles of the coils 30a, 30b, 40a, and 40b is canceled by the magnetic field generated by the magnetic poles of the coils 30a, 30b, 40a, and 40b, and becomes almost zero.

図6に示すコイル配置において、コイル30a,30b,40a,40bに囲まれた領域に溶融スラグ6、溶融池7及び溶接部8があるとする。ここで、コイル30a,30b,40a,40bは下記表2に示す条件を満たすものとする。 In the coil arrangement shown in FIG. 6, it is assumed that the molten slag 6, the molten pool 7, and the welded portion 8 are located in the region surrounded by the coils 30a, 30b, 40a, and 40b. Here, it is assumed that the coils 30a, 30b, 40a, 40b satisfy the conditions shown in Table 2 below.

Figure 2022013693000003
Figure 2022013693000003

図7は、この場合の溶融スラグ6、溶融池7、及び溶接部8における磁場強度分布を示すコンター図である。図中、白矢印は磁場の方向を示す。この図において、磁場強度は、白丸印で示すように、上コイル30a,40aと下コイル30b,40bとの中央部において小さくなっている。 FIG. 7 is a contour diagram showing the magnetic field strength distribution in the molten slag 6, the molten pool 7, and the welded portion 8 in this case. In the figure, the white arrow indicates the direction of the magnetic field. In this figure, the magnetic field strength is small at the center of the upper coils 30a and 40a and the lower coils 30b and 40b, as indicated by the white circles.

一方で、従来の実施の形態では、開先部4の前側及び後側にそれぞれ前側コイル30及び後側コイル40を配置している。図8は、この場合の溶融スラグ6、溶融池7、及び溶接部8における磁場強度分布を示すコンター図である。図中、白矢印は磁場の方向を示す。この図において、磁場強度は、白丸印で示すように、前側コイル30及び後側コイル40の鉛直方向位置において小さくなっている。 On the other hand, in the conventional embodiment, the front coil 30 and the rear coil 40 are arranged on the front side and the rear side of the groove portion 4, respectively. FIG. 8 is a contour diagram showing the magnetic field strength distribution in the molten slag 6, the molten pool 7, and the welded portion 8 in this case. In the figure, the white arrow indicates the direction of the magnetic field. In this figure, the magnetic field strength is small in the vertical position of the front coil 30 and the rear coil 40, as indicated by white circles.

図9は、母材2,3の厚み方向の中央部の鉛直方向における磁場強度分布を本実施の形態と従来の実施の形態とで比較して示したグラフである。ここで、母材2,3の厚み方向の中央部とは、本実施の形態では、前側上コイル30aと後側上コイル40aとの中央部(前側下コイル30bと後側下コイル40bとの中央部と同じ)と前後方向における位置が同じ部分である。一方、母材2,3の厚み方向の中央部とは、従来の実施の形態では、前側コイル30と後側コイル40との中央部と前後方向における位置が同じ部分である。また、図9において、鉛直方向位置0mmは、本実施の形態では、前側下コイル30bの鉄芯31bの中心の鉛直方向位置(後側下コイル40bの鉄芯41bの中心の鉛直方向位置と同じ)に設定されている。一方、図9において、鉛直方向位置0mmは、従来の実施の形態では、前側コイル30の鉄芯31の中心の鉛直方向位置(後側コイル40の鉄芯41の中心の鉛直方向位置と同じ)に設定されている。 FIG. 9 is a graph showing the magnetic field strength distribution in the vertical direction of the central portion in the thickness direction of the base materials 2 and 3 in comparison between the present embodiment and the conventional embodiment. Here, the central portion of the base materials 2 and 3 in the thickness direction is the central portion of the front upper coil 30a and the rear upper coil 40a (the front lower coil 30b and the rear lower coil 40b) in the present embodiment. Same as the central part) and the same part in the front-back direction. On the other hand, the central portion of the base materials 2 and 3 in the thickness direction is a portion in which the positions of the front coil 30 and the rear coil 40 are the same as those of the central portion in the front-rear direction in the conventional embodiment. Further, in FIG. 9, the vertical position 0 mm is the same as the vertical position of the center of the iron core 31b of the front lower coil 30b (the same as the vertical position of the center of the iron core 41b of the rear lower coil 40b) in the present embodiment. ) Is set. On the other hand, in FIG. 9, the vertical position 0 mm is the vertical position of the center of the iron core 31 of the front coil 30 (the same as the vertical position of the center of the iron core 41 of the rear coil 40) in the conventional embodiment. Is set to.

図9のグラフから、本実施の形態において、磁場強度は、実線グラフ上に黒丸印で示すように、上コイル30a,40aと下コイル30b,40bとの中央部(鉛直方向位置30mm)でほぼゼロとなることが分かる。また、鉛直方向位置0mm及び60mmで最大値となることも分かる。 From the graph of FIG. 9, in the present embodiment, the magnetic field strength is substantially equal to the central portion (vertical position 30 mm) of the upper coils 30a and 40a and the lower coils 30b and 40b, as indicated by black circles on the solid line graph. It turns out to be zero. It can also be seen that the maximum values are obtained at the vertical positions of 0 mm and 60 mm.

一方で、図9のグラフから、従来の実施の形態において、磁場強度は、鉛直方向位置0mmで最大となり、鉛直方向位置が高くなるに従い減少するが、破線グラフ上に黒丸印で示すように、鉛直方向位置30mmで30mT程度あることが分かる。 On the other hand, from the graph of FIG. 9, in the conventional embodiment, the magnetic field strength becomes maximum at the vertical position 0 mm and decreases as the vertical position increases, but as shown by the black circles on the broken line graph, It can be seen that there is about 30 mT at a vertical position of 30 mm.

即ち、本実施の形態では、鉛直方向位置16mm~34mmの範囲にて、従来の実施の形態の場合よりも磁場が弱くなることが分かる。 That is, it can be seen that in the present embodiment, the magnetic field is weaker in the vertical position range of 16 mm to 34 mm than in the conventional embodiment.

ここで図6に戻る。図6には、コイル30a,30b,40a,40bの磁極、溶接ワイヤ5、溶融スラグ6、溶融池7、溶接トーチ9の位置関係の例を示している。本実施の形態では、上コイル30a,40aの磁極と下コイル30b,40bの磁極との中間点が溶接ワイヤ5の先端部の高さと同じになるように、上コイル30a,40aの磁極と下コイル30b,40bの磁極とを配置する。このように配置することは、溶接ワイヤ5の先端部が上コイル30a,40aの磁極の高さと下コイル30b,40bの磁極の高さとの間の高さに位置するように配置することの一例である。尚、本実施の形態では、上コイル30a,40aの磁極及び下コイル30b,40bの磁極と溶接トーチ9とが一体的に上下動するように構成され、磁場強度が極小となる位置への溶接ワイヤ5の先端部の位置決めはある程度正確に行えることを想定している。上記のように上コイル30a,40aの磁極と下コイル30b,40bの磁極とを配置することにより、図7及び図9に示した磁場ゼロのポイントを溶接ワイヤ5の先端部に持ってくることができる。即ち、溶接ワイヤ5の先端部における磁場を溶融池7における磁場よりも弱くすることができる。 Here, it returns to FIG. FIG. 6 shows an example of the positional relationship between the magnetic poles of the coils 30a, 30b, 40a, and 40b, the welding wire 5, the molten slag 6, the molten pool 7, and the welding torch 9. In the present embodiment, the magnetic poles and the lower of the upper coils 30a and 40a are set so that the midpoint between the magnetic poles of the upper coils 30a and 40a and the magnetic poles of the lower coils 30b and 40b is the same as the height of the tip of the welding wire 5. The magnetic poles of the coils 30b and 40b are arranged. This arrangement is an example of arranging so that the tip of the welding wire 5 is located at a height between the height of the magnetic poles of the upper coils 30a and 40a and the height of the magnetic poles of the lower coils 30b and 40b. Is. In this embodiment, the magnetic poles of the upper coils 30a and 40a, the magnetic poles of the lower coils 30b and 40b, and the welding torch 9 are configured to move up and down integrally, and welding is performed to a position where the magnetic field strength is minimized. It is assumed that the tip of the wire 5 can be positioned accurately to some extent. By arranging the magnetic poles of the upper coils 30a and 40a and the magnetic poles of the lower coils 30b and 40b as described above, the point of zero magnetic field shown in FIGS. 7 and 9 is brought to the tip of the welding wire 5. Can be done. That is, the magnetic field at the tip of the welding wire 5 can be weaker than the magnetic field at the molten pool 7.

溶接ワイヤ5の先端部は溶融スラグ6中で最も高温の領域であり、電流密度も最も高いことが知られている。この領域に磁場がかかるとローレンツ力によって溶融スラグ6の流れが偏り易いが、本実施の形態では、溶接ワイヤ5の先端部の磁場がほぼゼロとなるので、溶融スラグ6の流れへのコイル磁場の影響は軽微となる。一方で、本来攪拌したい溶融池7、特に溶融池7の底部付近には、従来の実施の形態の場合と同等の磁場がかかるので、攪拌効果は阻害されない。 It is known that the tip of the welding wire 5 is the hottest region in the molten slag 6 and has the highest current density. When a magnetic field is applied to this region, the flow of the molten slag 6 tends to be biased due to the Lorentz force, but in the present embodiment, the magnetic field at the tip of the welding wire 5 becomes almost zero, so that the coil magnetic field to the flow of the molten slag 6 The effect of is minor. On the other hand, since the magnetic field equivalent to that in the conventional embodiment is applied to the molten pool 7, particularly near the bottom of the molten pool 7, which is originally desired to be agitated, the stirring effect is not impaired.

尚、図6において、前側上コイル30a及び後側上コイル40aの磁極の向きは同じであり、前側下コイル30b及び後側下コイル40bの磁極の向きは同じである。そして、前側上コイル30a及び前側下コイル30bの磁極の向きは反対であり、後側上コイル40a及び後側下コイル40bの磁極の向きは反対である。溶接ワイヤ5の先端部の位置の磁場強度を弱めるためには、このような磁極の向きとすることは必須である。 In FIG. 6, the directions of the magnetic poles of the front upper coil 30a and the rear upper coil 40a are the same, and the directions of the magnetic poles of the front lower coil 30b and the rear lower coil 40b are the same. The directions of the magnetic poles of the front upper coil 30a and the front lower coil 30b are opposite, and the directions of the magnetic poles of the rear upper coil 40a and the rear lower coil 40b are opposite. In order to weaken the magnetic field strength at the position of the tip of the welding wire 5, it is essential to have such a magnetic pole orientation.

図10(a),(b)は、磁場印加による溶融スラグ6の流れの変化を示した図である。図10(a)に示すように、通常、溶融スラグ6には溶接電流によりピンチ力が働き、溶接ワイヤ5の周りに下向きの流れSが生じている。この流れSは、電磁攪拌のために印加した磁界が作用することにより、ローレンツ力の向きに応じて左右方向に曲げられることになる。図10(b)では、紙面奥行き方向の磁界Mがかけられているため、右方向にローレンツ力Lが働き、これにより、流れSが右方向にカーブしている。その結果、溶融スラグ6に左右方向の温度ムラが生じ、母材2,3の溶け込み量に差異が生じることになる。 10 (a) and 10 (b) are diagrams showing changes in the flow of the molten slag 6 due to the application of a magnetic field. As shown in FIG. 10A, usually, a pinch force acts on the molten slag 6 due to a welding current, and a downward flow S is generated around the welding wire 5. This flow S is bent in the left-right direction according to the direction of the Lorentz force due to the action of the magnetic field applied for electromagnetic stirring. In FIG. 10B, since the magnetic field M in the depth direction of the paper surface is applied, the Lorentz force L acts in the right direction, whereby the flow S curves in the right direction. As a result, temperature unevenness occurs in the molten slag 6 in the left-right direction, and a difference occurs in the amount of penetration of the base materials 2 and 3.

本実施の形態におけるコイル配置によれば、溶融スラグ6中の溶接ワイヤ5の直下の磁場は、上コイル30a,40aの磁極及び下コイル30b,40bの磁極が発生する磁場によって打ち消され、最小化される。これにより、溶融スラグ6の偏流や攪拌は減少し、母材2,3の溶け込み形状の偏りや溶融スラグ6の巻き込みが減少する。 According to the coil arrangement in the present embodiment, the magnetic field directly under the welding wire 5 in the molten slag 6 is canceled and minimized by the magnetic fields generated by the magnetic poles of the upper coils 30a and 40a and the magnetic poles of the lower coils 30b and 40b. Will be done. As a result, the drift and stirring of the molten slag 6 are reduced, and the bias of the melted shape of the base materials 2 and 3 and the entrainment of the molten slag 6 are reduced.

また、本実施の形態によれば、上コイル30a,40a又は下コイル30b,40bの磁極に近い溶融池7には強い磁場が作用して溶融金属が攪拌される。その結果、金属組織が微細化し、金属中の介在物が低減するため、溶接部8の機械特性が向上する。 Further, according to the present embodiment, a strong magnetic field acts on the molten pool 7 near the magnetic poles of the upper coils 30a and 40a or the lower coils 30b and 40b to agitate the molten metal. As a result, the metal structure becomes finer and inclusions in the metal are reduced, so that the mechanical properties of the welded portion 8 are improved.

[第2の実施の形態]
第1の実施の形態は、開先部4の前後方向における中央部の磁場強度がほぼゼロになるため、溶接ワイヤ5の先端部が開先部4の前後方向における中央部に位置する場合の溶融スラグ6の偏流防止には効果的である。しかしながら、溶接トーチ9が中央部から磁場を発生するコイルの側に近付くと、溶接ワイヤ5の先端部が磁場強度ゼロの領域から外れ、溶融スラグ6の流れが磁場の影響を受け易くなる。
[Second Embodiment]
In the first embodiment, since the magnetic field strength of the central portion of the groove portion 4 in the front-rear direction becomes almost zero, the tip portion of the welding wire 5 is located at the center portion of the groove portion 4 in the front-rear direction. It is effective in preventing the drift of the molten slag 6. However, when the welding torch 9 approaches the side of the coil that generates the magnetic field from the central portion, the tip portion of the welding wire 5 deviates from the region where the magnetic field strength is zero, and the flow of the molten slag 6 is easily affected by the magnetic field.

そこで、本実施の形態は、溶接トーチ9が開先部4の中央部から前側に近付いたときには前側上コイル30a及び前側下コイル30bの電流を減少させる。つまり、溶接トーチ9が前側上コイル30aの磁極及び前側下コイル30bの磁極に接近したときに、前側上コイル30aの磁極及び前側下コイル30bの磁極の発生磁場を減少させる。このとき、後側上コイル40a及び後側下コイル40bの電流は維持し又は増加させる。つまり、後側上コイル40aの磁極及び後側下コイル40bの磁極の発生磁場は維持し又は増大させる。 Therefore, in the present embodiment, when the welding torch 9 approaches the front side from the central portion of the groove portion 4, the currents of the front side upper coil 30a and the front side lower coil 30b are reduced. That is, when the welding torch 9 approaches the magnetic poles of the front upper coil 30a and the magnetic poles of the front lower coil 30b, the generated magnetic fields of the magnetic poles of the front upper coil 30a and the front lower coil 30b are reduced. At this time, the currents of the rear upper coil 40a and the rear lower coil 40b are maintained or increased. That is, the generated magnetic fields of the magnetic poles of the rear upper coil 40a and the magnetic poles of the rear lower coil 40b are maintained or increased.

また、本実施の形態では、逆に、溶接トーチ9が開先部4の中央部から後側に近付いたときには後側上コイル40a及び後側下コイル40bの電流を減少させる。つまり、溶接トーチ9が後側上コイル40aの磁極及び後側下コイル40bの磁極に接近したときに、後側上コイル40aの磁極及び後側下コイル40bの磁極の発生磁場を減少させる。このとき、前側上コイル30a及び前側下コイル30bの電流は維持し又は増加させる。つまり、前側上コイル30aの磁極及び前側下コイル30bの磁極の発生磁場は維持し又は増大させる。 Further, in the present embodiment, conversely, when the welding torch 9 approaches the rear side from the central portion of the groove portion 4, the currents of the rear side upper coil 40a and the rear side lower coil 40b are reduced. That is, when the welding torch 9 approaches the magnetic poles of the rear upper coil 40a and the magnetic poles of the rear lower coil 40b, the generated magnetic fields of the magnetic poles of the rear upper coil 40a and the rear lower coil 40b are reduced. At this time, the currents of the front upper coil 30a and the front lower coil 30b are maintained or increased. That is, the generated magnetic fields of the magnetic poles of the front upper coil 30a and the magnetic poles of the front lower coil 30b are maintained or increased.

このように、本実施の形態では、溶接トーチ9の位置に応じて、前側コイル30a,30b及び後側コイル40a,40bの電流値を変化させることとした。これにより、磁場強度がゼロとなる領域を開先部4の前側や後側に移動することができ、溶接トーチ9が摺動する場合でも溶融スラグ6の流れへの磁場の影響を抑えることができる。 As described above, in the present embodiment, the current values of the front coil 30a and 30b and the rear coils 40a and 40b are changed according to the position of the welding torch 9. As a result, the region where the magnetic field strength becomes zero can be moved to the front side or the rear side of the groove portion 4, and even when the welding torch 9 slides, the influence of the magnetic field on the flow of the molten slag 6 can be suppressed. can.

図11(a),(b)は、この場合の前側コイル30a,30b及び後側コイル40a,40bの電流の変化を説明するためのグラフである。 11 (a) and 11 (b) are graphs for explaining changes in the currents of the front coils 30a and 30b and the rear coils 40a and 40b in this case.

溶接トーチ9は、図11(a)に示すように、位置B(後側)と位置F(前側)との間を周期的に移動し、位置F及び位置Bでは一時的に停止している。 As shown in FIG. 11A, the welding torch 9 periodically moves between the position B (rear side) and the position F (front side), and is temporarily stopped at the position F and the position B. ..

後側コイル40a,40bに流れる電流は、図11(b)に細線で示すように、溶接トーチ9が位置Fにあるときに最大となり、溶接トーチ9が後側に移動するにつれて減少し、溶接トーチ9が位置Bにあるときに最小(最大値の4分の1)となっている。 As shown by a thin line in FIG. 11B, the current flowing through the rear coils 40a and 40b is maximum when the welding torch 9 is at position F, decreases as the welding torch 9 moves to the rear, and is welded. It is the minimum (a quarter of the maximum value) when the torch 9 is at position B.

前側コイル30a,30bに流れる電流は、図11(b)に太線で示すように、溶接トーチ9が位置Bにあるときに最大となり、溶接トーチ9が前側に移動するにつれて減少し、溶接トーチ9が位置Fにあるときに最小(最大値の8分の1)となっている。 As shown by the thick line in FIG. 11B, the current flowing through the front coils 30a and 30b is maximum when the welding torch 9 is at position B, decreases as the welding torch 9 moves to the front side, and the welding torch 9 Is at the minimum (1/8 of the maximum value) when is at the position F.

ここで、後側コイル40a,40bに流れる電流の最小値が、前側コイル30a,30bに流れる電流の最小値よりも大きくなっているのは、開先部4の幅は後側の方が前側よりも狭く、母材2,3の影響を受けて減衰し易いためである。 Here, the minimum value of the current flowing through the rear coils 40a and 40b is larger than the minimum value of the current flowing through the front coils 30a and 30b because the width of the groove 4 is larger on the front side on the rear side. This is because it is narrower than the above and easily attenuates due to the influence of the base materials 2 and 3.

図11(a),(b)のような通電パターンで前側コイル30a,30b及び後側コイル40a,40bに電流を流すことにより、溶接トーチ9の位置が最も後側のときに後側コイル40a,40bの電流をゼロにする場合等よりも、溶融池7の溶接電流に作用する磁束密度を大きくすることができる。逆に溶接トーチ9の位置が最も前側のときも同じ効果がある。 By passing an electric current through the front coils 30a and 30b and the rear coils 40a and 40b in the energization pattern as shown in FIGS. 11A and 11B, the rear coil 40a is when the position of the welding torch 9 is the rearmost. , The magnetic flux density acting on the welding current of the molten pool 7 can be increased as compared with the case where the current of 40b is set to zero. On the contrary, the same effect is obtained when the position of the welding torch 9 is the frontmost side.

本実施の形態では、溶接トーチ9の摺動、即ち、溶接ワイヤ5の先端部が開先部4の前面と後面との間を往復運動する動きに応じて、各磁極の磁場を変化させるようにした。これにより、溶接トーチ9を摺動させるエレクトロスラグ溶接においても、常に溶接ワイヤ5の先端部の磁場を最小化することができるようになった。その結果、金属組織が微細化し、金属中の介在物が低減するため、溶接部8の機械特性が向上することとなった。 In the present embodiment, the magnetic field of each magnetic pole is changed according to the sliding of the welding torch 9, that is, the movement of the tip of the welding wire 5 reciprocating between the front surface and the rear surface of the groove portion 4. I made it. As a result, even in electroslag welding in which the welding torch 9 is slid, the magnetic field at the tip of the welding wire 5 can always be minimized. As a result, the metal structure becomes finer and inclusions in the metal are reduced, so that the mechanical properties of the welded portion 8 are improved.

[第3の実施の形態]
本実施の形態は、溶接トーチ9が開先部4の中央部に位置するときに前側コイル30a,30b及び後側コイル40a,40bの電流を最大にするものである。
[Third Embodiment]
In this embodiment, the currents of the front coils 30a and 30b and the rear coils 40a and 40b are maximized when the welding torch 9 is located at the center of the groove portion 4.

図12(a),(b)は、この場合の前側コイル30a,30b及び後側コイル40a,40bの電流の変化を説明するためのグラフである。 12 (a) and 12 (b) are graphs for explaining changes in the currents of the front coils 30a and 30b and the rear coils 40a and 40b in this case.

溶接トーチ9は、図12(a)に示すように、位置B(後側)と位置F(前側)との間を周期的に移動し、位置F及び位置Bでは一時的に停止している。 As shown in FIG. 12A, the welding torch 9 periodically moves between the position B (rear side) and the position F (front side), and is temporarily stopped at the position F and the position B. ..

後側コイル40a,40bに流れる電流は、図12(b)に細線で示すように、溶接トーチ9が位置Fから位置Cまでの間にあるときに最大となり、溶接トーチ9が位置Cから後側に移動するにつれて減少し、溶接トーチ9が位置Bにあるときに最小(最大値の4分の1)となっている。 The current flowing through the rear coils 40a and 40b is maximum when the welding torch 9 is between the position F and the position C, and the welding torch 9 is rearward from the position C, as shown by a thin line in FIG. 12 (b). It decreases as it moves to the side, and is the minimum (1/4 of the maximum value) when the welding torch 9 is at position B.

前側コイル30a,30bに流れる電流は、図12(b)に太線で示すように、溶接トーチ9が位置Bから位置Cまでの間にあるときに最大となり、溶接トーチ9が位置Cから前側に移動するにつれて減少し、溶接トーチ9が位置Fにあるときに最小(最大値の8分の1)となっている。 As shown by the thick line in FIG. 12B, the current flowing through the front coils 30a and 30b is maximum when the welding torch 9 is between the position B and the position C, and the welding torch 9 moves from the position C to the front side. It decreases as it moves and is at its minimum (1/8 of the maximum) when the weld torch 9 is at position F.

図13~図15は、それぞれ、本実施の形態において溶接トーチ9が位置B、位置C、位置Fにある場合の磁場強度分布を示すコンター図である。図13のように、溶接トーチ9が、破線の縦線で示す位置B、つまり後側に近い位置にあるときには、磁場の弱い領域が後側に寄る。また、図14のように、溶接トーチ9が、破線の縦線で示す位置C、つまり中央に近い位置にあるときには、磁場の弱い領域が中央に来る。更に、図15のように、溶接トーチ9が、破線の縦線で示す位置F、つまり前側に近い位置にあるときには、磁場の弱い領域が前側に寄る。 13 to 15 are contour diagrams showing the magnetic field strength distribution when the welding torch 9 is at the position B, the position C, and the position F in the present embodiment, respectively. As shown in FIG. 13, when the welding torch 9 is located at the position B indicated by the vertical line of the broken line, that is, the position near the rear side, the region where the magnetic field is weak moves toward the rear side. Further, as shown in FIG. 14, when the welding torch 9 is located at the position C indicated by the vertical line of the broken line, that is, at a position close to the center, the region where the magnetic field is weak comes to the center. Further, as shown in FIG. 15, when the welding torch 9 is located at the position F indicated by the vertical line of the broken line, that is, at a position close to the front side, the region where the magnetic field is weak moves toward the front side.

図16~図18は、それぞれ、本実施の形態において溶接トーチ9が位置B、位置C、位置Fにある場合の開先部4の前後方向の磁場分布を示したグラフである。これらのグラフでは、左側が開先部4の後側に対応し、右側が開先部4の前側に対応している。また、鉛直方向位置が下コイル30b,40bの中心の位置である場合の磁場強度を太線で示し、鉛直方向位置が上コイル30a,40aと下コイル30b,40bとの中間点の位置である場合の磁場強度を細線で示している。尚、ここでは、磁場計算に母材2,3の磁性を考慮しているが、開先部4から5mmは非磁性と仮定している。これらのグラフから、溶接トーチ9が、各グラフにおいて破線の縦線で示す位置B、位置C、位置Fの何れにあっても、鉛直方向位置が上コイル30a,40aと下コイル30b,40bとの中間点の位置である場合の磁場強度はほぼゼロとなる一方で、鉛直方向位置が上コイル30a,40aの中心の位置である場合の磁場強度は一定レベルとなることが分かる。 16 to 18 are graphs showing the magnetic field distribution in the front-rear direction of the groove portion 4 when the welding torch 9 is at the position B, the position C, and the position F in the present embodiment, respectively. In these graphs, the left side corresponds to the rear side of the groove portion 4, and the right side corresponds to the front side of the groove portion 4. Further, the magnetic field strength when the vertical position is the center position of the lower coils 30b and 40b is shown by a thick line, and the vertical position is the position of the intermediate point between the upper coils 30a and 40a and the lower coils 30b and 40b. The magnetic field strength of is shown by a thin line. Here, although the magnetism of the base materials 2 and 3 is taken into consideration in the magnetic field calculation, it is assumed that the groove portion 4 to 5 mm is non-magnetic. From these graphs, the vertical positions are the upper coils 30a and 40a and the lower coils 30b and 40b regardless of whether the welding torch 9 is located at any of the positions B, C and F indicated by the vertical line of the broken line in each graph. It can be seen that the magnetic field strength at the position of the midpoint of is almost zero, while the magnetic field strength at the position of the center of the upper coils 30a and 40a in the vertical direction is at a constant level.

溶融金属の攪拌に寄与するローレンツ力は、磁力の大きさに比例する。一方で、磁力の大きさは磁極との距離が大きくなると小さくなる。本実施の形態では、溶接トーチ9の摺動の中間点で電流を最大化することにより、溶融金属にかかるローレンツ力を強くすることができるようになった。その結果、金属組織が微細化し、金属中の介在物が低減するため、溶接部8の機械特性が向上することとなった。 The Lorentz force that contributes to the stirring of molten metal is proportional to the magnitude of the magnetic force. On the other hand, the magnitude of the magnetic force decreases as the distance from the magnetic pole increases. In the present embodiment, the Lorentz force applied to the molten metal can be increased by maximizing the current at the intermediate point of sliding of the welding torch 9. As a result, the metal structure becomes finer and inclusions in the metal are reduced, so that the mechanical properties of the welded portion 8 are improved.

[第4の実施の形態]
第1乃至第3の実施の形態では、前側上コイル30aの電流及び起磁力と前側下コイル30bの電流及び起磁力とを同じとし、後側上コイル40aの電流及び起磁力と後側下コイル40bの電流及び起磁力とを同じとした。その場合、磁場が打ち消されてゼロになる領域は、上コイル30a,40aと下コイル30b,40bとの中間点の領域である。
[Fourth Embodiment]
In the first to third embodiments, the current and magnetomotive force of the front upper coil 30a and the current and magnetomotive force of the front lower coil 30b are the same, and the current and magnetomotive force of the rear upper coil 40a and the rear lower coil are the same. The current and magnetomotive force of 40b were the same. In that case, the region where the magnetic field is canceled and becomes zero is the region of the intermediate point between the upper coils 30a and 40a and the lower coils 30b and 40b.

溶接ワイヤ5の先端部の鉛直方向位置が図6のように上コイル30a,40aと下コイル30b,40bとの中間点の位置である場合は、このように上コイル30a,40aと下コイル30b,40bとで電流及び起磁力は同じとすることが望まれる。一方で、溶接条件が変化して溶接ワイヤ5の先端部の鉛直方向位置が上コイル30a,40aと下コイル30b,40bとの中間点の位置と異なる場合は、溶接ワイヤ5の先端部の磁場強度がゼロとならず、溶融スラグ6の流れに偏りが生じる可能性がある。その場合は、前側上コイル30aの電流と前側下コイル30bの電流とに差をつけたり、後側上コイル40aの電流と後側下コイル40bの電流とに差をつけたりするとよい。こうすることで、磁場強度がゼロとなる領域が、上コイル30a,40aと下コイル30b,40bとの中間点の位置よりも上下方向に調整される。 When the vertical position of the tip of the welding wire 5 is at the midpoint between the upper coils 30a and 40a and the lower coils 30b and 40b as shown in FIG. 6, the upper coils 30a and 40a and the lower coil 30b are thus located. It is desirable that the current and the magnetomotive force are the same at 40b and 40b. On the other hand, if the welding conditions change and the vertical position of the tip of the welding wire 5 is different from the position of the midpoint between the upper coils 30a and 40a and the lower coils 30b and 40b, the magnetic field at the tip of the welding wire 5 The strength does not become zero, and the flow of the molten slag 6 may be biased. In that case, it is advisable to make a difference between the current of the front upper coil 30a and the current of the front lower coil 30b, or make a difference between the current of the rear upper coil 40a and the current of the rear lower coil 40b. By doing so, the region where the magnetic field strength becomes zero is adjusted in the vertical direction from the position of the intermediate point between the upper coils 30a and 40a and the lower coils 30b and 40b.

本実施の形態では、前側上コイル30aと前側下コイル30bとの電流バランス、及び、後側上コイル40aと後側下コイル40bとの電流バランスの少なくとも何れか一方を調整するようにした。つまり、前側上コイル30aの磁極、前側下コイル30bの磁極、後側上コイル40aの磁極、及び後側下コイル40bの磁極の少なくとも1つは、発生磁場の強度を調整可能に構成されるものとした。そして、前側上コイル30aの磁極と前側下コイル30bの磁極との発生磁場の強度のバランス、及び後側上コイル40aの磁極と後側下コイル40bの磁極との発生磁場の強度のバランスの少なくとも何れか一方を調整するようにした。これにより、溶接ワイヤ5の先端部と前側水冷銅板10及び後側水冷銅板20との位置関係がずれても、磁場がゼロとなる領域の鉛直方向位置を調整することができるようになった。 In the present embodiment, at least one of the current balance between the front upper coil 30a and the front lower coil 30b and the current balance between the rear upper coil 40a and the rear lower coil 40b is adjusted. That is, at least one of the magnetic poles of the front upper coil 30a, the magnetic poles of the front lower coil 30b, the magnetic poles of the rear upper coil 40a, and the magnetic poles of the rear lower coil 40b is configured so that the strength of the generated magnetic field can be adjusted. And said. At least the balance of the strength of the generated magnetic field between the magnetic poles of the front upper coil 30a and the magnetic poles of the front lower coil 30b and the balance of the strength of the generated magnetic field between the magnetic poles of the rear upper coil 40a and the magnetic poles of the rear lower coil 40b. I tried to adjust either one. As a result, even if the positional relationship between the tip of the welding wire 5 and the front water-cooled copper plate 10 and the rear water-cooled copper plate 20 is deviated, the vertical position in the region where the magnetic field becomes zero can be adjusted.

[第5の実施の形態]
第5の実施の形態は、第1乃至第3の実施の形態の磁場印加装置200におけるコイルの形状の変形例である。図19は、第5の実施の形態における磁場印加装置200のコイルの位置を示した図である。
[Fifth Embodiment]
The fifth embodiment is a modification of the shape of the coil in the magnetic field applying device 200 of the first to third embodiments. FIG. 19 is a diagram showing the positions of the coils of the magnetic field applying device 200 in the fifth embodiment.

第1乃至第3の実施の形態において、前側上コイル30a及び前側下コイル30bは起磁力が等しく磁場の方向が逆向きであり、後側上コイル40a及び後側下コイル40bも起磁力が等しく磁場の方向が逆向きである。そこで、第5の実施の形態では、前側上コイル30aの磁極と前側下コイル30bの磁極とを共通にし、後側上コイル40aの磁極と後側下コイル40bの磁極とを共通にする。即ち、前側上コイル30aの磁極であった前上側の磁極と、前側下コイル30bの磁極であった前下側の磁極とが、前側上コイル30a及び前側下コイル30bをまとめた前側コイル30cと、鉄芯31a及び鉄芯31bをまとめた鉄芯31cとを共有している。また、後側上コイル40aの磁極であった後上側の磁極と、後側下コイル40bの磁極であった後下側の磁極とが、後側上コイル40a及び後側下コイル40bをまとめた後側コイル40cと、鉄芯41a及び鉄芯41bをまとめた鉄芯41cとを共有している。 In the first to third embodiments, the front upper coil 30a and the front lower coil 30b have the same magnetomotive force and the direction of the magnetic field is opposite, and the rear upper coil 40a and the rear lower coil 40b also have the same magnetomotive force. The direction of the magnetic field is opposite. Therefore, in the fifth embodiment, the magnetic poles of the front upper coil 30a and the magnetic poles of the front lower coil 30b are shared, and the magnetic poles of the rear upper coil 40a and the rear lower coil 40b are shared. That is, the front upper magnetic pole that was the magnetic pole of the front upper coil 30a and the front lower magnetic pole that was the magnetic pole of the front lower coil 30b are the front coil 30c that combines the front upper coil 30a and the front lower coil 30b. , And the iron core 31c, which is a collection of the iron core 31a and the iron core 31b. Further, the rear upper magnetic pole, which was the magnetic pole of the rear upper coil 40a, and the rear lower magnetic pole, which was the magnetic pole of the rear lower coil 40b, combined the rear upper coil 40a and the rear lower coil 40b. The rear coil 40c and the iron core 41c, which is a combination of the iron core 41a and the iron core 41b, are shared.

[第6の実施の形態]
図20は、第6の実施の形態における磁場印加装置200の構成例を示した図である。本実施の形態における磁場印加装置200は、図示するように、前側水冷銅板10と、後側水冷銅板20と、前側上コイル30a及びその鉄芯31aと、前側下コイル30b及びその鉄芯31bと、後側上コイル40a及びその鉄芯41aと、後側下コイル40b及びその鉄芯41bとを含む。また、コイル30a,30b,40a,40bに囲まれた領域には、溶接ワイヤ5、溶融スラグ6、溶融池7、溶接部8、及び溶接トーチ9がある。これらの構成要素は、第1の実施の形態で述べたものと同様なので、説明を省略する。また、コイル30a,30b,40a,40bの条件も、第1の実施の形態で表2に示したものと同じとする。
[Sixth Embodiment]
FIG. 20 is a diagram showing a configuration example of the magnetic field applying device 200 according to the sixth embodiment. As shown in the figure, the magnetic field application device 200 according to the present embodiment includes a front water-cooled copper plate 10, a rear water-cooled copper plate 20, a front upper coil 30a and its iron core 31a, and a front lower coil 30b and its iron core 31b. , The rear upper coil 40a and its iron core 41a, and the rear lower coil 40b and its iron core 41b. Further, in the region surrounded by the coils 30a, 30b, 40a, 40b, there are a welding wire 5, a molten slag 6, a molten pool 7, a welded portion 8, and a weld torch 9. Since these components are the same as those described in the first embodiment, the description thereof will be omitted. Further, the conditions of the coils 30a, 30b, 40a, and 40b are also the same as those shown in Table 2 in the first embodiment.

本実施の形態では、前側上コイル30aの鉄芯31aの溶融池7側(前側上コイル30aの溶融池7側磁極)と前側下コイル30bの鉄芯31bの溶融池7側(前側下コイル30bの溶融池7側磁極)との間に軟磁性材料からなる前側磁性体片32を配置している。また、後側上コイル40aの鉄芯41aの溶融池7側(後側上コイル40aの溶融池7側磁極)と後側下コイル40bの鉄芯41bの溶融池7側(後側下コイル40bの溶融池7側磁極)との間に軟磁性材料からなる後側磁性体片42を配置している。前側磁性体片32及び後側磁性体片42のサイズは、上下方向を30mmとし、左右方向を20mmとし、前後方向を5mmとする。ここで、軟磁性材料とは、例えば、軟鉄等の鉄、ニッケル、磁性ステンレス、パーマロイ、パーメンジュール、ケイ素鋼である。前側磁性体片32は、軟磁性材料からなる表側部材の一例であり、後側磁性体片42は、軟磁性材料からなる裏側部材の一例である。 In the present embodiment, the molten pool 7 side of the iron core 31a of the front upper coil 30a (the magnetic pole on the molten pool 7 side of the front upper coil 30a) and the molten pool 7 side of the iron core 31b of the front lower coil 30b (front lower coil 30b). A front magnetic material piece 32 made of a soft magnetic material is arranged between the magnetic pole on the 7 side of the molten pool and the magnetic pole on the 7 side of the molten pool. Further, the molten pool 7 side of the iron core 41a of the rear upper coil 40a (the magnetic pole on the molten pool 7 side of the rear upper coil 40a) and the molten pool 7 side of the iron core 41b of the rear lower coil 40b (rear lower coil 40b). A rear magnetic material piece 42 made of a soft magnetic material is arranged between the magnetic pole on the 7 side of the molten pool and the magnetic pole on the 7 side of the molten pool. The size of the front magnetic material piece 32 and the rear magnetic material piece 42 is 30 mm in the vertical direction, 20 mm in the horizontal direction, and 5 mm in the front-rear direction. Here, the soft magnetic material is, for example, iron such as soft iron, nickel, magnetic stainless steel, permalloy, permendur, or silicon steel. The front magnetic material piece 32 is an example of a front side member made of a soft magnetic material, and the rear magnetic material piece 42 is an example of a back side member made of a soft magnetic material.

また、前側磁性体片32の溶融池7側の面の前後位置は、鉄芯31a,31bの溶融池7側の端部の前後位置と同じにしている。後側磁性体片42の溶融池7側の面の前後位置は、鉄芯41a,41bの溶融池7側の端部の前後位置と同じにしている。 Further, the front-rear position of the surface of the front magnetic material piece 32 on the molten pool 7 side is the same as the front-rear position of the end portion of the iron cores 31a and 31b on the molten pool 7 side. The front-rear position of the surface of the rear magnetic material piece 42 on the molten pool 7 side is the same as the front-rear position of the end portion of the iron cores 41a and 41b on the molten pool 7 side.

更に、本実施の形態では、前側磁性体片32を鉄芯31a,31b間に固定するために、非磁性で熱耐性のあるアルミニウム製のスペーサ33を配置している。また、後側磁性体片42を鉄芯41a,41b間に固定するために、非磁性で熱耐性のあるアルミ製のスペーサ43を配置している。 Further, in the present embodiment, in order to fix the front magnetic material piece 32 between the iron cores 31a and 31b, a non-magnetic and heat-resistant aluminum spacer 33 is arranged. Further, in order to fix the rear magnetic material piece 42 between the iron cores 41a and 41b, a non-magnetic and heat-resistant aluminum spacer 43 is arranged.

前側磁性体片32及び後側磁性体片42が配置されていない場合の開先部4内の磁束密度分布は図17のようになる。図17は、一般化して、前側コイル30a,30bに流れる電流と、後側コイル40a,40bに流れる電流とが等しい場合の磁束密度分布を示したグラフと捉えることができる。図17では、磁束密度は、溶接ワイヤ5の先頭付近では略ゼロまで小さくなっているが、少し前後にずれるとゼロから外れ、前側水冷銅板10及び後側水冷銅板20の近傍では約60mTまで大きくなっている。溶融スラグ6への電磁攪拌効果を更に抑制するためには、図20の破線で囲んだ領域R内の磁束密度を極力抑制することが望ましい。 The magnetic flux density distribution in the groove 4 when the front magnetic piece 32 and the rear magnetic piece 42 are not arranged is as shown in FIG. FIG. 17 can be generally regarded as a graph showing the magnetic flux density distribution when the current flowing through the front coils 30a and 30b and the current flowing through the rear coils 40a and 40b are equal. In FIG. 17, the magnetic flux density is reduced to approximately zero near the head of the weld wire 5, but deviates from zero when slightly displaced back and forth, and increases to about 60 mT near the front water-cooled copper plate 10 and the rear water-cooled copper plate 20. It has become. In order to further suppress the electromagnetic stirring effect on the molten slag 6, it is desirable to suppress the magnetic flux density in the region R surrounded by the broken line in FIG. 20 as much as possible.

図21は、前側磁性体片32及び後側磁性体片42を配置した場合の磁束密度分布を示したグラフである。図中、実線は前側磁性体片32及び後側磁性体片42を配置しない状態での磁束密度分布を示し、破線は前側磁性体片32及び後側磁性体片42を配置した状態での磁束密度分布を示す。両者を比べると、開先部4内で下コイル30b,40bの中心の高さ(凝固界面付近)の磁束密度分布は大きく変化していない。一方で、開先部4内で上コイル30a,40aと下コイル30b,40bとの中間の高さ(溶接ワイヤ5の先端付近)の磁束密度分布は抑制されている。特に、前側水冷銅板10及び後側水冷銅板20の近傍では約5分の1に抑制されている。よって、前側磁性体片32及び後側磁性体片42を配置することにより、溶融池7だけを選択的に電磁攪拌することができる。 FIG. 21 is a graph showing the magnetic flux density distribution when the front magnetic material piece 32 and the rear magnetic material piece 42 are arranged. In the figure, the solid line shows the magnetic flux density distribution in the state where the front magnetic material piece 32 and the rear magnetic material piece 42 are not arranged, and the broken line shows the magnetic flux in the state where the front magnetic material piece 32 and the rear magnetic material piece 42 are arranged. Shows the density distribution. Comparing the two, the magnetic flux density distribution at the center height (near the solidification interface) of the lower coils 30b and 40b in the groove portion 4 does not change significantly. On the other hand, the magnetic flux density distribution at the intermediate height (near the tip of the welding wire 5) between the upper coils 30a and 40a and the lower coils 30b and 40b is suppressed in the groove portion 4. In particular, it is suppressed to about one-fifth in the vicinity of the front water-cooled copper plate 10 and the rear water-cooled copper plate 20. Therefore, by arranging the front magnetic material piece 32 and the rear magnetic material piece 42, only the molten pool 7 can be selectively electromagnetically agitated.

より具体的には、前側磁性体片32及び後側磁性体片42の近傍の磁束がそれぞれ前側磁性体片32及び後側磁性体片42に吸収され、溶融スラグ6内で比較的電流密度の高い溶接ワイヤ5の先端付近(図20の領域R)の磁場強度が更に抑制される。その結果、溶融スラグ6での電磁攪拌効果は更に抑制され、溶融池7への溶融スラグ6の巻き込みや母材2,3の溶け込みの左右での偏りが更に抑制できる。 More specifically, the magnetic fluxes in the vicinity of the front magnetic piece 32 and the rear magnetic piece 42 are absorbed by the front magnetic piece 32 and the rear magnetic piece 42, respectively, and have a relatively high current density in the molten slag 6. The magnetic field strength near the tip of the high welding wire 5 (region R in FIG. 20) is further suppressed. As a result, the electromagnetic stirring effect of the molten slag 6 can be further suppressed, and the entrainment of the molten slag 6 in the molten pool 7 and the left-right bias of the melting of the base materials 2 and 3 can be further suppressed.

このように、前側磁性体片32及び後側磁性体片42を配置する目的は、溶融スラグ6内の溶接ワイヤ5の先端付近だけ、磁束密度を抑制することである。従って、前側磁性体片32及び後側磁性体片42が溶融池7と同じ上下位置に配置されることは好ましくない。前側磁性体片32及び後側磁性体片42が溶融池7と同じ上下位置に配置されると、溶融池7の磁束密度も抑制されるからである。よって、前側磁性体片32及び後側磁性体片42は、上コイル30a,40aと下コイル30b,40bとの中間地点に配置し、前側磁性体片32及び後側磁性体片42の下端が溶融池7の上端よりも高い位置にあることが望ましい。 As described above, the purpose of arranging the front magnetic piece 32 and the rear magnetic piece 42 is to suppress the magnetic flux density only in the vicinity of the tip of the welding wire 5 in the molten slag 6. Therefore, it is not preferable that the front magnetic material piece 32 and the rear magnetic material piece 42 are arranged at the same vertical position as the molten pool 7. This is because when the front magnetic material piece 32 and the rear magnetic material piece 42 are arranged at the same upper and lower positions as the molten pool 7, the magnetic flux density of the molten pool 7 is also suppressed. Therefore, the front magnetic piece 32 and the rear magnetic piece 42 are arranged at an intermediate point between the upper coils 30a and 40a and the lower coils 30b and 40b, and the lower ends of the front magnetic piece 32 and the rear magnetic piece 42 are arranged. It is desirable that the position is higher than the upper end of the molten pool 7.

2、3…母材、4…開先部、5…溶接ワイヤ、6…溶融スラグ、7…溶融池、8…溶接部、9…溶接トーチ、10…前側水冷銅板、11a,11b…穴、20…後側水冷銅板、21…溝、30a…前側上コイル、30b…前側下コイル、30c…前側コイル、31a,31b,31c…鉄芯、32…前側磁性体片、33…スペーサ、40a…後側上コイル、40b…後側下コイル、40c…後側コイル、41a,41b,41c…鉄芯、42…後側磁性体片、43…スペーサ、100,200…磁場印加装置 2, 3 ... Base material, 4 ... Groove, 5 ... Welding wire, 6 ... Molten slag, 7 ... Molten pond, 8 ... Welding part, 9 ... Welding torch, 10 ... Front water-cooled copper plate, 11a, 11b ... Hole, 20 ... Rear water-cooled copper plate, 21 ... Groove, 30a ... Front upper coil, 30b ... Front lower coil, 30c ... Front coil, 31a, 31b, 31c ... Iron core, 32 ... Front magnetic piece, 33 ... Spacer, 40a ... Rear upper coil, 40b ... Rear lower coil, 40c ... Rear coil, 41a, 41b, 41c ... Iron core, 42 ... Rear magnetic material piece, 43 ... Spacer, 100, 200 ... Magnetic field application device

Claims (16)

母材の開先部の表側に配置された上下2個の磁場印加磁極である表上側磁極及び表下側磁極と、当該開先部の裏側に配置された上下2個の磁場印加磁極である裏上側磁極及び裏下側磁極とを用いて、溶接ワイヤの先端部における磁場が当該開先部内の溶融池における磁場よりも弱くなるように、当該開先部内に磁場を印加しながら当該母材のエレクトロスラグ溶接を行うことを特徴とするエレクトロスラグ溶接方法。 Two upper and lower magnetic field application magnetic poles arranged on the front side of the groove portion of the base material, the upper front magnetic pole and the lower front magnetic pole, and two upper and lower magnetic field application magnetic poles arranged on the back side of the groove portion. Using the back upper magnetic pole and the back lower magnetic pole, the base material is applied while applying a magnetic field in the groove so that the magnetic field at the tip of the welding wire is weaker than the magnetic field in the molten pool in the groove. An electroslag welding method characterized by performing electroslag welding. 前記表上側磁極と前記裏上側磁極とが同じ高さに位置し、前記表下側磁極と前記裏下側磁極とが同じ高さに位置し、前記溶接ワイヤの先端部が当該表上側磁極の高さと当該表下側磁極の高さとの間の高さに位置するように配置することを特徴とする請求項1に記載のエレクトロスラグ溶接方法。 The front upper magnetic pole and the back upper magnetic pole are located at the same height, the front lower magnetic pole and the back lower magnetic pole are located at the same height, and the tip of the weld wire is the front upper magnetic pole. The electroslag welding method according to claim 1, wherein the electroslag welding method is arranged so as to be located at a height between the height and the height of the lower magnetic pole of the table. 溶接トーチを、前記開先部の中の表側の位置と裏側の位置との間で往復動させつつ溶接し、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記表上側磁極及び前記表下側磁極に接近したときに、当該表上側磁極及び当該表下側磁極の発生磁場を減少させ、前記裏上側磁極及び前記裏下側磁極の発生磁場を増大させ、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記裏上側磁極及び前記裏下側磁極に接近したときに、当該裏上側磁極及び当該裏下側磁極の発生磁場を減少させ、前記表上側磁極及び前記表下側磁極の発生磁場を増大させることを特徴とする請求項1に記載のエレクトロスラグ溶接方法。
The welding torch is welded while reciprocating between the front side position and the back side position in the groove portion.
In the reciprocating motion of the welding torch, when the welding torch approaches the front upper magnetic pole and the front lower magnetic pole, the generated magnetic fields of the front upper magnetic pole and the front lower magnetic pole are reduced, and the back side of the welding torch is generated. Increasing the generated magnetic field of the upper magnetic pole and the back lower magnetic pole,
In the reciprocating motion of the welding torch, when the welding torch approaches the back upper magnetic pole and the back lower magnetic pole, the generated magnetic fields of the back upper magnetic pole and the back lower magnetic pole are reduced, and the front surface. The electroslag welding method according to claim 1, wherein the generated magnetic fields of the upper magnetic pole and the lower magnetic pole on the front surface are increased.
前記溶接トーチの往復動の中で、当該溶接トーチが、前記表上側磁極及び前記表下側磁極に最も接近したときに、前記裏上側磁極及び前記裏下側磁極の発生磁場を最大とし、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記裏上側磁極及び前記裏下側磁極に最も接近したときに、前記表上側磁極及び前記表下側磁極の発生磁場を最大とすることを特徴とする請求項3に記載のエレクトロスラグ溶接方法。
In the reciprocating motion of the welding torch, when the welding torch is closest to the front upper magnetic pole and the front lower magnetic pole, the generated magnetic fields of the back upper magnetic pole and the back lower magnetic pole are maximized.
In the reciprocating motion of the welding torch, when the welding torch is closest to the back upper magnetic pole and the back lower magnetic pole, the generated magnetic fields of the front upper magnetic pole and the front lower magnetic pole are maximized. 3. The electroslag welding method according to claim 3.
前記溶接トーチの往復動の中で、当該溶接トーチが、前記開先部の厚み方向の中央よりも表側に位置するときに、前記裏上側磁極及び前記裏下側磁極の発生磁場を最大とし、
前記溶接トーチの往復動の中で、当該溶接トーチが、前記開先部の厚み方向の中央よりも裏側に位置するときに、前記表上側磁極及び前記表下側磁極の発生磁場を最大とすることを特徴とする請求項4に記載のエレクトロスラグ溶接方法。
In the reciprocating motion of the welding torch, when the welding torch is located on the front side of the center in the thickness direction of the groove portion, the generated magnetic fields of the back upper magnetic pole and the back lower magnetic pole are maximized.
In the reciprocating motion of the welding torch, when the welding torch is located behind the center in the thickness direction of the groove portion, the generated magnetic fields of the front upper magnetic pole and the front lower magnetic pole are maximized. The electroslag welding method according to claim 4, wherein the method is characterized by the above.
前記溶接ワイヤの先端部における磁場の強度が極小となるように、前記表上側磁極の発生磁場の強度と前記表下側磁極の発生磁場の強度とのバランス、及び前記裏上側磁極の発生磁場の強度と前記裏下側磁極の発生磁場の強度とのバランスの少なくとも何れか一方を調整することを特徴とする請求項1に記載のエレクトロスラグ溶接方法。 The balance between the strength of the generated magnetic field of the front upper magnetic pole and the strength of the generated magnetic field of the front lower magnetic pole, and the generated magnetic field of the back upper magnetic pole so that the strength of the magnetic field at the tip of the welding wire is minimized. The electroslag welding method according to claim 1, wherein at least one of the balance between the strength and the strength of the generated magnetic field of the lower back magnetic pole is adjusted. 前記表上側磁極と前記表下側磁極との間に軟磁性材料からなる表側部材を配置し、前記裏上側磁極と前記裏下側磁極との間に軟磁性材料からなる裏側部材を配置することを特徴とする請求項1に記載のエレクトロスラグ溶接方法。 A front side member made of a soft magnetic material is arranged between the front upper magnetic pole and the front lower side magnetic pole, and a back side member made of a soft magnetic material is arranged between the back upper magnetic pole and the back lower side magnetic pole. The electroslag welding method according to claim 1. 前記軟磁性材料は、鉄、ニッケル、磁性ステンレス、パーマロイ、パーメンジュール、ケイ素鋼の何れかであることを特徴とする請求項7に記載のエレクトロスラグ溶接方法。 The electroslag welding method according to claim 7, wherein the soft magnetic material is any one of iron, nickel, magnetic stainless steel, permalloy, permendur, and silicon steel. 前記表側部材の下端が前記溶融池の上端よりも高い位置になるように当該表側部材を配置し、前記裏側部材の下端が前記溶融池の上端よりも高い位置になるように当該裏側部材を配置することを特徴とする請求項7に記載のエレクトロスラグ溶接方法。 The front side member is arranged so that the lower end of the front side member is higher than the upper end of the molten pool, and the back side member is arranged so that the lower end of the back side member is higher than the upper end of the molten pool. 7. The electroslag welding method according to claim 7. 母材の開先部の表側に配置された上下2個の磁場印加磁極である表上側磁極及び表下側磁極と、
前記開先部の裏側に配置された上下2個の磁場印加磁極である裏上側磁極及び裏下側磁極と
を備え、
前記表上側磁極と前記裏上側磁極とが同じ高さに位置し、前記表下側磁極と前記裏下側磁極とが同じ高さに位置し、溶接ワイヤの先端部が当該表上側磁極の高さと当該表下側磁極の高さとの間の高さに位置するように配置されていることを特徴とするエレクトロスラグ溶接における磁場印加装置。
The upper and lower magnetic poles, which are the two magnetic field application magnetic poles above and below, arranged on the front side of the groove of the base metal, and the front and lower magnetic poles,
It is provided with two upper and lower magnetic field application magnetic poles, a back upper magnetic pole and a back lower magnetic pole, which are arranged on the back side of the groove portion.
The front upper magnetic pole and the back upper magnetic pole are located at the same height, the front lower magnetic pole and the back lower magnetic pole are located at the same height, and the tip of the welding wire is the height of the front upper magnetic pole. A magnetic field application device in electroslag welding, characterized in that it is located at a height between the height of the lower magnetic pole and the height of the lower magnetic pole.
前記溶接ワイヤの先端部における磁場が前記開先部内の溶融池における磁場よりも弱くなるように構成されていることを特徴とする請求項10に記載のエレクトロスラグ溶接における磁場印加装置。 The magnetic field application device in electroslag welding according to claim 10, wherein the magnetic field at the tip of the welding wire is configured to be weaker than the magnetic field at the molten pool in the groove. 前記表上側磁極、前記表下側磁極、前記裏上側磁極、及び前記裏下側磁極の少なくとも1つは、発生磁場の強度を調節可能に構成されていることを特徴とする請求項10に記載のエレクトロスラグ溶接における磁場印加装置。 The tenth aspect of the present invention, wherein at least one of the front upper magnetic pole, the front lower magnetic pole, the back upper magnetic pole, and the back lower magnetic pole is configured so that the strength of the generated magnetic field can be adjusted. Magnetic field application device in electroslag welding. 前記表上側磁極及び前記表下側磁極はコイルを共有し、前記裏上側磁極及び前記裏下側磁極はコイルを共有することを特徴とする請求項10に記載のエレクトロスラグ溶接における磁場印加装置。 The magnetic field application device in electroslag welding according to claim 10, wherein the front upper magnetic pole and the front lower magnetic pole share a coil, and the back upper magnetic pole and the back lower magnetic pole share a coil. 前記表上側磁極と前記表下側磁極との間に軟磁性材料からなる表側部材が配置され、
前記裏上側磁極と前記裏下側磁極との間に軟磁性材料からなる裏側部材が配置されていることを特徴とする請求項10に記載のエレクトロスラグ溶接における磁場印加装置。
A front side member made of a soft magnetic material is arranged between the front upper side magnetic pole and the front side lower side magnetic pole.
The magnetic field application device in electroslag welding according to claim 10, wherein a back side member made of a soft magnetic material is arranged between the back upper magnetic pole and the back lower magnetic pole.
前記軟磁性材料は、鉄、ニッケル、磁性ステンレス、パーマロイ、パーメンジュール、ケイ素鋼の何れかであることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。 The magnetic field application device in electroslag welding according to claim 14, wherein the soft magnetic material is any one of iron, nickel, magnetic stainless steel, permalloy, permendur, and silicon steel. 前記表側部材の下端が前記溶融池の上端よりも高い位置になるように当該表側部材が配置され、前記裏側部材の下端が前記溶融池の上端よりも高い位置になるように当該裏側部材が配置されていることを特徴とする請求項14に記載のエレクトロスラグ溶接における磁場印加装置。 The front side member is arranged so that the lower end of the front side member is higher than the upper end of the molten pool, and the back side member is arranged so that the lower end of the back side member is higher than the upper end of the molten pool. The magnetic field application device in electroslag welding according to claim 14.
JP2021076268A 2020-06-29 2021-04-28 Electroslag welding method and magnetic field application device in electroslag welding Pending JP2022013693A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020111505 2020-06-29
JP2020111505 2020-06-29

Publications (1)

Publication Number Publication Date
JP2022013693A true JP2022013693A (en) 2022-01-18

Family

ID=80169737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021076268A Pending JP2022013693A (en) 2020-06-29 2021-04-28 Electroslag welding method and magnetic field application device in electroslag welding

Country Status (1)

Country Link
JP (1) JP2022013693A (en)

Similar Documents

Publication Publication Date Title
JP5124765B2 (en) Welding method and welding apparatus using electromagnetic force
KR20100003175A (en) Multing furnace with stirring device
US20130126501A1 (en) Arc welding method, arc welding device and arc welding magnetic field strength adjustment method
CN111607791B (en) Method and device for preparing WC reinforced metal-based composite coating with controllable distribution under assistance of electromagnetic composite field
US20230089136A1 (en) Magnetic field generation device, and transmission electron microscope sample holder capable of applying magnetic field
JP2022013693A (en) Electroslag welding method and magnetic field application device in electroslag welding
CN111702308B (en) Method for stepless position adjustment of direct-current magnetic control welding gun
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
US2694129A (en) Self-induced magnetic field controlled gas shielded-arc welding process and apparatus
US3621103A (en) Methods of and apparatus for stirring immiscible conductive fluids
CN112621031B (en) Welding method of magnetized steel plate in ship building process
JP7377733B2 (en) Electroslag welding method and magnetic field application device for electroslag welding
US2849658A (en) Control apparatus
GB1604044A (en) Welding with charged particle beams
JP4519600B2 (en) Electromagnetic stirring coil
JP2010017749A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP2005211919A (en) Control method for charged particle flow, control method for welding arc and plasma, and control method for molten metal
JP7119684B2 (en) continuous casting machine
JP2007534492A (en) Continuous casting mold magnetic brake
JP5010344B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP7180383B2 (en) continuous casting machine
JP2005238276A (en) Electromagnetic-stirring casting apparatus
KR102319760B1 (en) Flow rate control in continuous casting
Ukita et al. High-speed DCEN TIG welding of very thin aluminium sheets with magnetic arc control
JPS6236782B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521