JP2020137686A - System for removing contaminant in air - Google Patents

System for removing contaminant in air Download PDF

Info

Publication number
JP2020137686A
JP2020137686A JP2019034573A JP2019034573A JP2020137686A JP 2020137686 A JP2020137686 A JP 2020137686A JP 2019034573 A JP2019034573 A JP 2019034573A JP 2019034573 A JP2019034573 A JP 2019034573A JP 2020137686 A JP2020137686 A JP 2020137686A
Authority
JP
Japan
Prior art keywords
stage
air
gas
liquid
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019034573A
Other languages
Japanese (ja)
Other versions
JP6746739B1 (en
Inventor
美紀 服部
Miki Hattori
美紀 服部
佐原 亮
Akira Sawara
亮 佐原
三上 秀人
Hideto Mikami
秀人 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2019034573A priority Critical patent/JP6746739B1/en
Priority to PH12019000275A priority patent/PH12019000275A1/en
Priority to MYPI2019004501A priority patent/MY196767A/en
Priority to TW108134733A priority patent/TWI732299B/en
Application granted granted Critical
Publication of JP6746739B1 publication Critical patent/JP6746739B1/en
Publication of JP2020137686A publication Critical patent/JP2020137686A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

To always highly maintain performance for removing a water-soluble component in the air and improve maintainability, and reduce running cost.SOLUTION: A system for removing a contaminant in the air includes: an air washer 11 at a former stage using a chemical solution containing at least either an alkaline solution or an acidic solution as an absorbent; a chemical solution supply device 12 for supplying a chemical solution to the air washer 11 at the former stage; an air washer 13 as a later stage which is arranged on the downstream side in an air circulation direction of the air washer 11 at the former stage and uses pure water as an absorbent; an ion exchange resin 14 that is at least either a cation exchange resin and an anion exchange resin through which the absorbent of the air washer 13 at the later stage passes; and a control unit 16 which estimates concentration of a contaminant that flows into the air washer 11 at the former stage and is contained in the air on the basis of conductivity of the absorbent passing through the ion exchange resin 14 and thereby calculates an amount of the chemical solution supplied to the air washer 11 at the former stage from the chemical solution supply device 12.SELECTED DRAWING: Figure 1

Description

本発明は、空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するための空気中汚染物質の除去システムに関するものである。 The present invention relates to an air pollutant removal system for dissolving and removing pollutants contained in air in the absorption liquid by bringing air and an absorption liquid into gas-liquid contact.

近年、半導体工場や液晶工場のクリーンルーム内の製造環境において、空気中に含まれる粒子状汚染物質だけでなくガス状汚染物質が、製品の歩留まりや性能の低下に影響を及ぼすことが報告されている。 In recent years, it has been reported that not only particulate pollutants contained in air but also gaseous pollutants affect the yield and performance deterioration of products in the manufacturing environment in clean rooms of semiconductor factories and liquid crystal factories. ..

ガス状汚染物質を空気中から除去する技術の1つとして、気液接触式の空気中汚染物質の除去システム(エアワッシャ)が知られている。この除去システム(エアワッシャ)は処理対象の空気と吸収液とを気液接触させて、空気中に含まれる二酸化硫黄(SO)やアンモニア(NH)等のガス状汚染物質を吸収液中に溶解させて除去する装置であり、半導体工場や液晶工場の外調機等に設置されている。 As one of the techniques for removing gaseous pollutants from the air, a gas-liquid contact type air pollutant removal system (air washer) is known. This removal system (air washer) brings the air to be treated and the absorbing liquid into gas-liquid contact, and contains gaseous pollutants such as sulfur dioxide (SO 2 ) and ammonia (NH 3 ) contained in the air in the absorbing liquid. It is a device that dissolves and removes gas, and is installed in external conditioners of semiconductor factories and liquid crystal factories.

この種の除去システム(エアワッシャ)の除去能力は、空気と気液接触させる吸収液のpHによって大きく変化する。空気中の酸成分の濃度が高いと吸収液のpHが下降し、SOなどの酸成分の除去能力が低下する。同様に、空気中のアルカリ成分の濃度が高いと吸収液のpHが上昇し、NHなどのアルカリ成分の除去能力が低下する課題がある。例えば、酸性ガスのSOは、周辺に発生源があると風向きなどによって1ppb以下から数10ppbの範囲で変動することもある。 The removal capacity of this type of removal system (air washer) varies greatly depending on the pH of the absorbent that is in gas-liquid contact with air. When the concentration of the acid component in the air is high, the pH of the absorbing solution is lowered, and the ability to remove the acid component such as SO 2 is lowered. Similarly, if the concentration of the alkaline component in the air is high, the pH of the absorbing solution rises, and there is a problem that the ability to remove the alkaline component such as NH 3 decreases. For example, SO 2 of acid gas may fluctuate in the range of 1 ppb or less to several tens of ppb depending on the wind direction and the like when there is a source in the vicinity.

除去システム(エアワッシャ)の除去能力を低下させない公知の技術として、薬液を一定量供給して吸収液のpHを維持する方式があるが、この方式では、常時薬液を補給するため、ランニングコストが高くなるという問題がある。 As a known technique that does not reduce the removal ability of the removal system (air washer), there is a method of supplying a constant amount of the chemical solution to maintain the pH of the absorption solution, but in this method, the chemical solution is constantly replenished, so the running cost is high. There is a problem that it becomes expensive.

そこで、従来、吸収液のpHをモニターしながら薬液量を制御するシステムなどが提案されている(例えば、特許文献1〜3参照)。 Therefore, conventionally, a system for controlling the amount of a chemical solution while monitoring the pH of the absorbing solution has been proposed (see, for example, Patent Documents 1 to 3).

例えば、特許文献1に記載の技術は、吸収液のpHを、純水または緩衝液、酸・アルカリ溶液、水を用いて所定の範囲(4.5〜9.5)で管理し、電磁弁のON/OFF制御によって給水する方式を採用している。 For example, in the technique described in Patent Document 1, the pH of the absorbing solution is controlled within a predetermined range (4.5 to 9.5) using pure water or a buffer solution, an acid / alkaline solution, or water, and a solenoid valve is used. The method of supplying water by ON / OFF control of is adopted.

また、特許文献2に記載の技術は、吸収液のpHを、一般水(pH6〜8、導電率20μS/cm以上)を用いて所定の範囲で管理し、電磁弁のON/OFF制御により給水する方式を採用している。 Further, in the technique described in Patent Document 2, the pH of the absorbing liquid is controlled within a predetermined range using general water (pH 6 to 8, conductivity 20 μS / cm or more), and water is supplied by ON / OFF control of the solenoid valve. The method of doing is adopted.

さらに、特許文献3に記載の技術は、吸収液のpHを、イオン除去装置で所定の範囲(5.0〜8.0)で管理する給水方式を採用している。 Further, the technique described in Patent Document 3 employs a water supply method in which the pH of the absorbing liquid is controlled in a predetermined range (5.0 to 8.0) by an ion removing device.

特開2004−230385号公報Japanese Unexamined Patent Publication No. 2004-230385 特開2002−239331号公報JP-A-2002-239331 特開2000−79319号公報Japanese Unexamined Patent Publication No. 2000-79319

しかしながら、上記した特許文献1〜3に記載の従来技術では、pH計の測定精度や応答性に問題があり、制御性が悪いといった問題や、定期的な電極の校正や塩化カリウム(KCl)溶液の補充が必要で、寿命が短く、交換頻度が多いなどメンテナンス性が悪いといった問題がある。 However, the prior art described in Patent Documents 1 to 3 described above has problems in measurement accuracy and responsiveness of the pH meter, poor controllability, periodic electrode calibration, and potassium chloride (KCl) solution. There are problems such as poor maintainability, such as the need for replenishment, short life, and frequent replacement.

また、上記した特許文献1又は2に記載の従来技術では、吸収液のpHが管理値に収まっている場合は、吸収液のガス状汚染物質の濃度が高くなり、導電率が上昇し続け、ガス状汚染物質の再飛散やスケールが発生するといった問題がある。 Further, in the prior art described in Patent Document 1 or 2 described above, when the pH of the absorbing liquid is within the control value, the concentration of gaseous pollutants in the absorbing liquid becomes high, and the conductivity continues to increase. There are problems such as re-scattering of gaseous pollutants and scale generation.

さらに、上記した特許文献3に記載の従来技術では、高濃度の吸収液を大量にイオン除去装置(イオン交換樹脂、電気分解を利用した装置など)に通水するため、交換頻度が多くなり、ランニングコストが高くなるといった問題がある。 Further, in the conventional technique described in Patent Document 3 described above, a large amount of high-concentration absorbing liquid is passed through an ion removing device (ion exchange resin, device using electrolysis, etc.), so that the frequency of replacement increases. There is a problem that the running cost becomes high.

本発明は、上記した課題を解決すべくなされたものであり、空気中の水溶性成分の除去性能を常に高く維持すると共にメンテナンス性の向上を図り、ランニングコストの削減を図ることのできる空気中汚染物質の除去システムを提供することを目的とするものである。 The present invention has been made to solve the above-mentioned problems, and is capable of always maintaining high removal performance of water-soluble components in the air, improving maintainability, and reducing running costs in the air. It is intended to provide a pollutant removal system.

上記した目的を達成するため、本発明は、空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するための空気中汚染物質の除去システムであって、アルカリ性溶液と酸性溶液の少なくともいずれかの溶液を含む薬液を吸収液とする前段のエアワッシャと、前記前段のエアワッシャに薬液を供給する薬液供給装置と、前記前段のエアワッシャの空気流通方向の下流側に配置され、純水を吸収液とする後段のエアワッシャと、前記後段のエアワッシャの吸収液が通過する陽イオン交換樹脂と陰イオン交換樹脂の少なくともいずれかのイオン交換樹脂と、前記イオン交換樹脂を通過した吸収液の導電率に基づき、前記前段のエアワッシャに流入する空気中に含まれる汚染物質の濃度を推定することで、前記薬液供給装置から前記前段のエアワッシャに供給する薬液の量を演算する制御ユニットと、を備えていることを特徴とする。 In order to achieve the above object, the present invention is an air pollutant removal system for dissolving and removing pollutants contained in the air in the absorption solution by bringing the air and the absorption solution into gas-liquid contact. The air washer in the previous stage, which uses a chemical solution containing at least one of an alkaline solution and an acidic solution as an absorption solution, a chemical solution supply device for supplying the chemical solution to the air washer in the previous stage, and an air washer in the previous stage. Ion exchange of at least one of a latter-stage air washer that is arranged on the downstream side in the air flow direction and uses pure water as an absorption solution, and a cation exchange resin and an anion exchange resin through which the absorption solution of the latter-stage air washer passes. By estimating the concentration of pollutants contained in the air flowing into the air washer in the previous stage based on the conductivity of the resin and the absorbing liquid that has passed through the ion exchange resin, the air in the previous stage is estimated from the chemical solution supply device. It is characterized by being provided with a control unit that calculates the amount of the chemical solution supplied to the washer.

また、本発明に係る空気中汚染物質の除去システムにおいて、前記前段のエアワッシャは、空気と吸収液とを気液接触させるための前段の気液接触材と、前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、を備え、前記後段のエアワッシャは、空気と吸収液とを気液接触させるための後段の気液接触材と、前記後段の気液接触材を通過した吸収液を貯留する後段の水槽と、前記後段の水槽と前記後段の気液接触材との間及び前記後段の水槽と前記イオン交換樹脂との間で吸収液を循環させる後段の吸収液循環設備と、を備え、前記薬液供給装置から前記前段の循環設備又は前記前段の水槽に薬液が供給されてもよい。 Further, in the air pollutant removal system according to the present invention, the air washer in the previous stage uses a gas-liquid contact material in the previous stage for bringing air and an absorbing liquid into gas-liquid contact, and a gas-liquid contact material in the previous stage. The air washer in the rear stage is provided with a water tank in the front stage for storing the passed absorption liquid and a water tank in the front stage for circulating the absorption liquid between the water tank in the front stage and the gas-liquid contact material in the front stage. , A post-stage gas-liquid contact material for bringing air and an absorption liquid into gas-liquid contact, a rear-stage water tank for storing the absorption liquid that has passed through the post-stage gas-liquid contact material, the rear-stage water tank and the post-stage air. A subsequent absorption liquid circulation facility for circulating the absorption liquid between the liquid contact material and the water tank in the latter stage and the ion exchange resin is provided, and the circulation equipment in the previous stage or the circulation equipment in the previous stage is provided from the chemical liquid supply device. A chemical solution may be supplied to the aquarium.

また、本発明に係る空気中汚染物質の除去システムにおいて、前記前段のエアワッシャは、空気と吸収液とを気液接触させるための前段の気液接触材と、前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、を備え、前記後段のエアワッシャは、空気と吸収液とを気液接触させるための後段の気液接触材と、前記後段の気液接触材より下方に配置される後段の水槽と、前記後段の水槽より小容量であり、該後段の気液接触材を通過した吸収液を一時的に受け止めると共に溢れた吸収液が前記後段の水槽に貯留されるように前記後段の気液接触材と前記後段の水槽との間に配置される受け部と、前記受け部から前記イオン交換樹脂に吸収液を送出する送液設備と、前記後段の水槽と前記後段の気液接触材との間で吸収液を循環させる後段の吸収液循環設備と、を備え、前記薬液供給装置から前記前段の吸収液循環設備又は前記前段の水槽に薬液が供給されてもよい。 Further, in the air pollutant removal system according to the present invention, the air washer in the previous stage uses a gas-liquid contact material in the previous stage for bringing air and an absorbing liquid into gas-liquid contact, and a gas-liquid contact material in the previous stage. The air washer in the rear stage is provided with a water tank in the front stage for storing the passed absorption liquid and a water tank in the front stage for circulating the absorption liquid between the water tank in the front stage and the gas-liquid contact material in the front stage. , A post-stage gas-liquid contact material for bringing air and an absorption liquid into gas-liquid contact, a rear-stage water tank arranged below the post-stage gas-liquid contact material, and a smaller capacity than the rear-stage water tank. It is arranged between the gas-liquid contact material in the latter stage and the water tank in the latter stage so that the absorption liquid that has passed through the gas-liquid contact material in the latter stage is temporarily received and the overflowing absorption liquid is stored in the water tank in the latter stage. The absorbing liquid is circulated between the receiving portion, the liquid feeding equipment that sends the absorbing liquid from the receiving portion to the ion exchange resin, and the water tank in the latter stage and the gas-liquid contact material in the latter stage. The chemical solution may be supplied from the chemical solution supply device to the absorption liquid circulation facility in the previous stage or the water tank in the previous stage.

さらに、本発明は、空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するための空気中汚染物質の除去システムであって、アルカリ性溶液と酸性溶液のいずれか一方の溶液を含む薬液を吸収液とする前段のエアワッシャと、前記前段のエアワッシャの空気流通方向の下流側に配置され、アルカリ性溶液と酸性溶液のいずれか他方の溶液を含む薬液を吸収液とする中段のエアワッシャと、前記前段のエアワッシャ及び前記中段のエアワッシャに薬液を供給する薬液供給装置と、前記中段のエアワッシャの空気流通方向の下流側に配置され、純水を吸収液とする後段のエアワッシャと、前記後段のエアワッシャの吸収液が通過する陽イオン交換樹脂及び陰イオン交換樹脂と、前記陽イオン交換樹脂と前記陰イオン交換樹脂をそれぞれ通過した吸収液の導電率に基づき、前記前段のエアワッシャに流入する空気中に含まれる汚染物質の濃度を推定することで、前記薬液供給装置から前記前段のエアワッシャと前記中段のエアワッシャに供給される薬液の量をそれぞれ演算する制御ユニットと、を備えていることを特徴とする。 Further, the present invention is an air pollutant removal system for dissolving and removing pollutants contained in the air in the absorption liquid by bringing the air and the absorption liquid into gas-liquid contact, and is an alkaline solution. An air washer in the previous stage that uses a chemical solution containing either one of the solution and the acidic solution as an absorption solution, and a solution of either the alkaline solution or the acidic solution, which is arranged downstream in the air flow direction of the air washer in the previous stage. An air washer in the middle stage that uses the chemical solution containing the chemical solution as an absorption solution, a chemical solution supply device that supplies the chemical solution to the air washer in the previous stage and the air washer in the middle stage, and the air washer in the middle stage are arranged on the downstream side in the air flow direction. The air washer in the subsequent stage using pure water as the absorption solution, the cation exchange resin and the anion exchange resin through which the absorption solution of the air washer in the latter stage passes, and the cation exchange resin and the anion exchange resin, respectively. By estimating the concentration of pollutants contained in the air flowing into the air washer in the previous stage based on the conductivity of the absorbed solution, the chemical solution supply device supplies the air washer in the previous stage and the air washer in the middle stage. It is characterized by including a control unit for calculating the amount of the chemical solution to be processed.

また、本発明に係る空気中汚染物質の除去システムにおいて、前記前段のエアワッシャは、空気と吸収液とを気液接触させるための前段の気液接触材と、前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、を備え、前記中段のエアワッシャは、空気と吸収液とを気液接触させるための中段の気液接触材と、前記中段の気液接触材を通過した吸収液を貯留する中段の水槽と、前記中段の水槽と前記中段の気液接触材との間で吸収液を循環させる中段の吸収液循環設備と、を備え、前記後段のエアワッシャは、空気と吸収液とを気液接触させるための後段の気液接触材と、前記後段の気液接触材を通過した吸収液を貯留する後段の水槽と、前記後段の水槽と前記後段の気液接触材との間及び前記後段の水槽と前記陽イオン交換樹脂及び前記陰イオン交換樹脂との間で吸収液を循環させる後段の吸収液循環設備と、を備えてもよい。 Further, in the air pollutant removal system according to the present invention, the air washer in the previous stage uses a gas-liquid contact material in the previous stage for bringing air and an absorbing liquid into gas-liquid contact and a gas-liquid contact material in the previous stage. The air washer in the middle stage is provided with a water tank in the previous stage for storing the passed absorption liquid and a water tank in the previous stage for circulating the absorption liquid between the water tank in the previous stage and the gas-liquid contact material in the previous stage. , The middle stage gas-liquid contact material for bringing air and the absorption liquid into gas-liquid contact, the middle stage water tank for storing the absorption liquid that has passed through the middle stage gas-liquid contact material, the middle stage water tank and the middle stage air. An absorption liquid circulation facility in the middle stage for circulating the absorption liquid between the liquid contact material is provided, and the air washer in the latter stage includes a gas-liquid contact material in the latter stage for bringing the air and the absorption liquid into gas-liquid contact. Between the latter-stage water tank for storing the absorbing liquid that has passed through the latter-stage gas-liquid contact material, the latter-stage water tank and the latter-stage gas-liquid contact material, the latter-stage water tank, the cation exchange resin, and the anion. A subsequent absorption liquid circulation facility for circulating the absorption liquid with the exchange resin may be provided.

本発明によれば、空気中の水溶性成分の除去性能を常に高く維持すると共にメンテナンス性の向上を図り、ランニングコストの削減を図ることができる等、種々の優れた効果を得ることができる。 According to the present invention, various excellent effects can be obtained, such as maintaining high removal performance of water-soluble components in the air, improving maintainability, and reducing running costs.

本発明の実施の形態に係る空気中汚染物質の除去システムを示す系統図である。It is a system diagram which shows the air pollutant removal system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気中汚染物質の除去システムにおいて、外気中のSO濃度と陽イオン交換樹脂後の吸収液の導電率との関係を示す図である。In removal system air pollutants according to an embodiment of the present invention and showing a relationship between the conductivity of the absorption solution after SO 2 concentration and the cation exchange resin in the outside air. 本発明の実施の形態に係る空気中汚染物質の除去システムの第1の変形例を示す系統図である。It is a system diagram which shows the 1st modification of the air pollutant removal system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気中汚染物質の除去システムの第2の変形例を示す系統図である。It is a system diagram which shows the 2nd modification of the air pollutant removal system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気中汚染物質の除去システムの第3の変形例を示す系統図である。It is a system diagram which shows the 3rd modification of the air pollutant removal system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気中汚染物質の除去システムの第4の変形例を示す系統図である。It is a system diagram which shows the 4th modification of the air pollutant removal system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気中汚染物質の除去システムの第5の変形例を示す系統図である。It is a system diagram which shows the 5th modification of the air pollutant removal system which concerns on embodiment of this invention.

以下、図面を参照しつつ、本発明の実施の形態に係る空気中汚染物質の除去システムについて説明する。なお、以下の説明では、本発明の実施の形態に係る空気中汚染物質の除去システムを、半導体工場や液晶工場等のクリーンルームに外気を導入するために設置される外調機に適用した場合について例示して説明する。ここで、図1は本発明の実施の形態に係る空気中汚染物質の除去システムを示す系統図である。 Hereinafter, the air pollutant removal system according to the embodiment of the present invention will be described with reference to the drawings. In the following description, the case where the air pollutant removal system according to the embodiment of the present invention is applied to an external air conditioner installed to introduce outside air into a clean room such as a semiconductor factory or a liquid crystal factory. It will be described by way of example. Here, FIG. 1 is a system diagram showing an air pollutant removal system according to an embodiment of the present invention.

図1に示されているように、本実施の形態に係る空気中汚染物質の除去システム10は、空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するものであって、薬液を吸収液とする前段のエアワッシャ11と、前段のエアワッシャ11に薬液を供給する薬液供給装置12と、前段のエアワッシャ11の空気流通方向の下流側に配置されて純水を吸収液とする後段のエアワッシャ13と、後段のエアワッシャ13の吸収液が通過するイオン交換樹脂14と、イオン交換樹脂14を通過した吸収液の導電率を測定する導電率計15と、導電率計15の測定結果に基づき薬液供給装置12から前段のエアワッシャ11に供給される薬液の量を演算する制御ユニット16と、を備えて構成されている。 As shown in FIG. 1, the air pollutant removing system 10 according to the present embodiment brings the pollutants contained in the air into the absorbing liquid by bringing the air and the absorbing liquid into gas-liquid contact. An air washer 11 in the previous stage that dissolves and removes the chemical solution as an absorption solution, a chemical solution supply device 12 that supplies the chemical solution to the air washer 11 in the previous stage, and a downstream side of the air washer 11 in the previous stage in the air flow direction. Measure the conductivity of the post-stage air washer 13 that is arranged on the side and uses pure water as the absorption liquid, the ion exchange resin 14 through which the absorption liquid of the rear-stage air washer 13 passes, and the absorption liquid that has passed through the ion exchange resin 14. The conductivity meter 15 is provided with a control unit 16 for calculating the amount of the chemical solution supplied from the chemical solution supply device 12 to the air washer 11 in the previous stage based on the measurement result of the conductivity meter 15.

前段のエアワッシャ11は、空気と吸収液とを気液接触させるための前段の気液接触材17と、前段の気液接触材17を通過した吸収液を貯留する前段の水槽18と、前段の水槽18と前段の気液接触材17との間で吸収液を循環させる前段の吸収液循環設備19と、を備えている。 The air washer 11 in the front stage includes a gas-liquid contact material 17 in the front stage for bringing air and an absorption liquid into gas-liquid contact, a water tank 18 in the front stage for storing the absorption liquid that has passed through the gas-liquid contact material 17 in the front stage, and a front stage. The water tank 18 and the gas-liquid contact material 17 in the previous stage are provided with the absorption liquid circulation facility 19 in the previous stage for circulating the absorption liquid.

前段の気液接触材17は、空気が流通するチャンバー(図示省略)内に設けられ、空気の流れ方向(図1中の左から右に向う矢印方向)に対して直交するよう垂直に配置されている。前段の気液接触材17は、例えばポリエステルやセラミック等の親水性又は吸水性を有する材料から成り、上方から吸収液が滴下されることにより表面に液膜が形成されるようになっている。なお、前段の気液接触材17は、空気と吸収液とが効率良く気液接触する構成を有していれば、この構成に限定されるものではなく、例えば、スプレーノズルから吸収液を噴霧し、飛散した吸収液のミストをエリミネータで回収するように構成する等、各種変更が可能である。 The gas-liquid contact material 17 in the previous stage is provided in a chamber through which air flows (not shown), and is arranged vertically so as to be orthogonal to the air flow direction (arrow direction from left to right in FIG. 1). ing. The gas-liquid contact material 17 in the first stage is made of a hydrophilic or water-absorbent material such as polyester or ceramic, and a liquid film is formed on the surface by dropping the absorbing liquid from above. The gas-liquid contact material 17 in the previous stage is not limited to this configuration as long as it has a configuration in which air and the absorbing liquid efficiently contact each other. For example, the absorbing liquid is sprayed from a spray nozzle. However, various changes can be made, such as configuring the eliminator to collect the mist of the scattered absorbent liquid.

前段の水槽18は、前段の気液接触材17の下方に配置されている。また、前段の水槽18には、排水管20が接続されている。 The water tank 18 in the front stage is arranged below the gas-liquid contact material 17 in the front stage. Further, a drain pipe 20 is connected to the water tank 18 in the previous stage.

前段の吸収液循環設備19は、前段の水槽18から前段の気液接触材17の上方まで配設される循環配管21と、循環配管21の途中に設けられる循環ポンプ22と、を備えて構成されている。 The absorption liquid circulation facility 19 in the front stage includes a circulation pipe 21 arranged from the water tank 18 in the front stage to above the gas-liquid contact material 17 in the front stage, and a circulation pump 22 provided in the middle of the circulation pipe 21. Has been done.

薬液供給装置12と循環配管21と間には、薬液補給配管23が接続されており、薬液供給装置12から薬液補給配管23を介して循環配管21内の吸収液に薬液が補給されるようになっている。この場合の薬液は、電解水などのアルカリ性溶液と酸性溶液の少なくともいずれかの溶液を含んでいる。 A chemical solution supply pipe 23 is connected between the chemical solution supply device 12 and the circulation pipe 21, so that the chemical solution is supplied from the chemical solution supply device 12 to the absorbed liquid in the circulation pipe 21 via the chemical solution supply pipe 23. It has become. The chemical solution in this case contains at least one of an alkaline solution such as electrolyzed water and an acidic solution.

例えば、アルカリ性溶液としては、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)などが使用され、酸性溶液としては、炭酸(HCO)、塩酸(HCl)、次亜塩素酸(HClO)、クエン酸(C)などが使用される。 For example, potassium hydroxide (KOH), sodium hydroxide (NaOH), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ) and the like are used as the alkaline solution, and carbonic acid (Na 2 CO 3 ) is used as the acidic solution. H 2 CO 3 ), hydrochloric acid (HCl), hypochlorous acid (HClO), citric acid (C 6 H 8 O 7 ) and the like are used.

なお、薬液補給配管23は、循環配管21に接続される代わりに、薬液供給装置12から前段の水槽18まで配設され、薬液供給装置12から前段の水槽18に薬液が補給されるように構成されていてもよい。 The chemical solution supply pipe 23 is arranged from the chemical solution supply device 12 to the water tank 18 in the front stage instead of being connected to the circulation pipe 21, and is configured so that the chemical solution is supplied from the chemical solution supply device 12 to the water tank 18 in the front stage. It may have been.

後段のエアワッシャ13は、空気と吸収液とを気液接触させるための後段の気液接触材24と、後段の気液接触材24を通過した吸収液を貯留する後段の水槽25と、後段の水槽25と後段の気液接触材24との間及び後段の水槽25とイオン交換樹脂14との間で吸収液を循環させる後段の吸収液循環設備27と、を備えている。 The post-stage air washer 13 includes a rear-stage gas-liquid contact material 24 for bringing air and an absorption liquid into gas-liquid contact, a rear-stage water tank 25 for storing the absorption liquid that has passed through the rear-stage gas-liquid contact material 24, and a rear stage. It is provided with a subsequent absorption liquid circulation facility 27 for circulating an absorption liquid between the water tank 25 and the gas-liquid contact material 24 in the subsequent stage and between the water tank 25 in the latter stage and the ion exchange resin 14.

後段の気液接触材24は、空気が流通するチャンバー(図示省略)内に設けられ、空気の流れ方向(図1中の左から右に向う矢印方向)に対して直交するよう垂直に配置されている。後段の気液接触材24は、上述した前段の気液接触材17と同様の構成を有しているため、その詳細な説明は省略する。 The gas-liquid contact material 24 in the subsequent stage is provided in a chamber through which air flows (not shown), and is arranged perpendicularly to the air flow direction (arrow direction from left to right in FIG. 1). ing. Since the gas-liquid contact material 24 in the subsequent stage has the same configuration as the gas-liquid contact material 17 in the previous stage described above, detailed description thereof will be omitted.

後段の水槽25は、後段の気液接触材24の下方に配置されている。また、後段の水槽25と前段の水槽18との間には、両方の水槽18,25を連通するように連通管26が設けられている。 The water tank 25 in the rear stage is arranged below the gas-liquid contact material 24 in the rear stage. Further, a communication pipe 26 is provided between the water tank 25 in the rear stage and the water tank 18 in the front stage so as to communicate both the water tanks 18 and 25.

後段の吸収液循環設備27は、後段の水槽25から後段の気液接触材24の上方まで配設される第1の循環配管28と、第1の循環配管28の途中に設けられる循環ポンプ29と、吸収液の循環方向において循環ポンプ29の下流側で第1の循環配管28から分岐して後段の水槽25まで配設される第2の循環配管30と、を備えている。 The absorption liquid circulation facility 27 in the subsequent stage includes a first circulation pipe 28 arranged from the water tank 25 in the rear stage to above the gas-liquid contact material 24 in the rear stage, and a circulation pump 29 provided in the middle of the first circulation pipe 28. A second circulation pipe 30 is provided on the downstream side of the circulation pump 29 in the circulation direction of the absorbing liquid, which is branched from the first circulation pipe 28 to the water tank 25 in the subsequent stage.

図示を省略する給水源から後段の水槽25までは、補給水配管31が配設されており、補給水配管31を介して後段の水槽25に吸収液が補給されるようになっている。この場合の吸収液は、純水が使用される。 A make-up water pipe 31 is arranged from the water supply source (not shown) to the water tank 25 in the subsequent stage, and the absorbing liquid is supplied to the water tank 25 in the subsequent stage via the make-up water pipe 31. Pure water is used as the absorbing liquid in this case.

イオン交換樹脂14は、陽イオン交換樹脂と陰イオン交換樹脂の少なくともいずれかのイオン交換樹脂であり、薬液供給装置12から前段のエアワッシャ11に供給される薬液がアルカリ性溶液の場合には、陽イオン交換樹脂が設けられ、薬液供給装置12から前段のエアワッシャ11に供給される薬液が酸性溶液の場合には、陰イオン交換樹脂が設けられる。 The ion exchange resin 14 is at least one of a cation exchange resin and an anion exchange resin, and when the chemical solution supplied from the chemical solution supply device 12 to the air washer 11 in the previous stage is an alkaline solution, the ion exchange resin 14 is positive. An ion exchange resin is provided, and when the chemical solution supplied from the chemical solution supply device 12 to the air washer 11 in the previous stage is an acidic solution, an anion exchange resin is provided.

導電率計15は、吸収液の循環方向においてイオン交換樹脂14の下流側の第2の循環配管30の途中に設けられている。導電率計15は制御ユニット16と電気的に接続され、制御ユニット16は薬液供給装置12と電気的に接続されている。 The conductivity meter 15 is provided in the middle of the second circulation pipe 30 on the downstream side of the ion exchange resin 14 in the circulation direction of the absorbing liquid. The conductivity meter 15 is electrically connected to the control unit 16, and the control unit 16 is electrically connected to the chemical supply device 12.

次に、図面を参照しつつ、上記した構成を備えた本発明の実施の形態に係る空気中汚染物質の除去システム10の作用について説明する。 Next, the operation of the air pollutant removal system 10 according to the embodiment of the present invention having the above-described configuration will be described with reference to the drawings.

まず、前段のエアワッシャ11において、前段の吸収液循環設備19の循環ポンプ22の駆動により前段の水槽18内から汲み上げられた薬液入りの吸収液は、循環配管21を通って前段の気液接触材17の上方から滴下され、この気液接触材17の表面に液膜が形成される。 First, in the air washer 11 in the front stage, the absorption liquid containing the chemical solution pumped from the water tank 18 in the front stage by driving the circulation pump 22 of the absorption liquid circulation facility 19 in the front stage passes through the circulation pipe 21 and comes into contact with the gas and liquid in the front stage. It is dropped from above the material 17, and a liquid film is formed on the surface of the gas-liquid contact material 17.

図1中において太矢印で示すように、前記チャンバー(図示省略)内に導入された処理対象の外気は、上記したように表面に液膜が形成された前段の気液接触材17を通過すると、空気と吸収液とが気液接触し、空気中に含まれるガス状汚染物質が吸収液中に溶解されて除去される。そして、ガス状汚染物質が溶解された吸収液は前段の水槽18に自然落下して戻される。 As shown by a thick arrow in FIG. 1, when the outside air to be treated introduced into the chamber (not shown) passes through the gas-liquid contact material 17 in the previous stage in which the liquid film is formed on the surface as described above. , Air and the absorption liquid come into gas-liquid contact, and gaseous pollutants contained in the air are dissolved and removed in the absorption liquid. Then, the absorbing liquid in which the gaseous pollutant is dissolved naturally falls back to the water tank 18 in the previous stage.

このようにして前段のエアワッシャ11を通過した空気は後段のエアワッシャ13に流入する。後段のエアワッシャ13では、最終の吸収液循環設備27の循環ポンプ29の駆動により後段の水槽25内から汲み上げられた吸収液(純水)は、第1の循環配管28を通って後段の気液接触材24の上方から滴下され、この気液接触材24の表面に液膜が形成される。 The air that has passed through the air washer 11 in the front stage in this way flows into the air washer 13 in the rear stage. In the air washer 13 in the subsequent stage, the absorption liquid (pure water) pumped from the water tank 25 in the subsequent stage by driving the circulation pump 29 of the final absorption liquid circulation facility 27 passes through the first circulation pipe 28 to the air in the subsequent stage. It is dropped from above the liquid contact material 24, and a liquid film is formed on the surface of the gas-liquid contact material 24.

後段のエアワッシャ13に流入した空気は、上記したように表面に液膜が形成された後段の気液接触材24を通過すると、空気と吸収液とが気液接触し、空気中に含まれるガス状汚染物質が吸収液中に溶解されて除去される。その後、後段の気液接触材24を通過してガス状汚染物質が除去された清浄空気は、図1中において太矢印で示されているように、クリーンルーム(図示省略)に供給される。そして、ガス状汚染物質が溶解された吸収液は後段の水槽25に自然落下して戻される。 When the air flowing into the air washer 13 in the subsequent stage passes through the gas-liquid contact material 24 in the latter stage where the liquid film is formed on the surface as described above, the air and the absorbing liquid come into gas-liquid contact and are contained in the air. Gaseous contaminants are dissolved and removed in the absorption liquid. After that, the clean air from which the gaseous pollutants have been removed by passing through the gas-liquid contact material 24 in the subsequent stage is supplied to a clean room (not shown) as shown by a thick arrow in FIG. Then, the absorbing liquid in which the gaseous pollutant is dissolved naturally falls back to the water tank 25 in the subsequent stage.

なお、吸収液である純水は、補給水配管31を介して後段の水槽25に供給され、後段の水槽25に供給された純水は連通管26を通って前段の水槽18にも供給される。そして、前段の水槽18の液面レベルが所定レベルを超えた場合、前段の水槽18内の吸収液は排水管20を介して外部に排出され、また、後段の水槽25の液面レベルが所定レベルを超えた場合、後段の水槽25内の吸収液は、連通管26を通って前段の水槽18に流入した後に排水管20を介して外部に排出される。 The pure water as the absorption liquid is supplied to the water tank 25 in the subsequent stage via the make-up water pipe 31, and the pure water supplied to the water tank 25 in the rear stage is also supplied to the water tank 18 in the front stage through the communication pipe 26. To. When the liquid level of the water tank 18 in the front stage exceeds a predetermined level, the absorbed liquid in the water tank 18 in the front stage is discharged to the outside through the drain pipe 20, and the liquid level in the water tank 25 in the rear stage is predetermined. When the level is exceeded, the absorbing liquid in the water tank 25 in the subsequent stage flows into the water tank 18 in the front stage through the communication pipe 26 and then is discharged to the outside through the drain pipe 20.

一方、後段のエアワッシャ13において、最終の吸収液循環設備27の循環ポンプ29の駆動により後段の水槽25内から汲み上げられた吸収液(純水)の一部は、第2の循環配管30を介してイオン交換樹脂14を通過した後、後段の水槽25に戻される。そして、第2の循環配管30を吸収液が循環している間、導電率計15によって第2の循環配管30内の吸収液の導電率が測定され、その測定値は制御ユニット16に送信される。制御ユニット16は、導電率計15による吸収液の導電率の測定値に基づき、前段のエアワッシャ11に流入する外気中に含まれるガス状汚染物質の濃度を推定し、薬液供給装置12から前段のエアワッシャ11に供給される薬液の量を演算する。そして、薬液供給装置12は、その演算結果に基づき、前段のエアワッシャ11の吸収液に所要量の薬液を注入する。 On the other hand, in the air washer 13 in the subsequent stage, a part of the absorption liquid (pure water) pumped from the water tank 25 in the subsequent stage by driving the circulation pump 29 of the final absorption liquid circulation equipment 27 is connected to the second circulation pipe 30. After passing through the ion exchange resin 14, it is returned to the water tank 25 in the subsequent stage. Then, while the absorbing liquid circulates in the second circulation pipe 30, the conductivity of the absorbing liquid in the second circulation pipe 30 is measured by the conductivity meter 15, and the measured value is transmitted to the control unit 16. To. The control unit 16 estimates the concentration of gaseous pollutants contained in the outside air flowing into the air washer 11 in the previous stage based on the measured value of the conductivity of the absorbed liquid by the conductivity meter 15, and supplies the chemical solution 12 to the previous stage. The amount of the chemical solution supplied to the air washer 11 of the above is calculated. Then, the chemical solution supply device 12 injects a required amount of the chemical solution into the absorption solution of the air washer 11 in the previous stage based on the calculation result.

次に、図1を参照しつつ、本発明の実施の形態に係る空気中汚染物質の除去システム10において、ガス状汚染物質として酸性物質の二酸化硫黄(SO2)を含む外気を処理対象とした場合の実施例について説明する。 Next, with reference to FIG. 1, in the air pollutant removal system 10 according to the embodiment of the present invention, the outside air containing the acidic substance sulfur dioxide (SO 2 ) as a gaseous pollutant was treated. An embodiment of the case will be described.

この実施例では、前段のエアワッシャ11及び後段のエアワッシャ13として、いずれも飽和効率95%以上の気化式エアワッシャ、薬液供給装置12として、アルカリ電解水(水酸化カリウム(KOH)pH11〜12)供給装置、イオン交換樹脂14として、陽イオン交換樹脂、制御ユニット16として、PLC(Programmable Logic Controller)を採用した。 In this embodiment, the air washer 11 in the front stage and the air washer 13 in the rear stage are both vaporized air washer with a saturation efficiency of 95% or more, and the chemical solution supply device 12 is an alkaline electrolyzed water (potassium hydroxide (KOH) pH 11-12. ) A cation exchange resin was used as the supply device and the ion exchange resin 14, and a PLC (Programmable Logic Controller) was used as the control unit 16.

そして、処理空気は、外気に10ppb(約40,000ng/m)の二酸化硫黄(SO2)を注入した空気とし、その風量を12,500m/h、通過風速を2.5m/sとした。なお、外気にはアンモニア(NH3)を含んでいる。また、前段の気液接触材17及び後段の気液接触材24に供給する吸収液の流量をそれぞれ15L/min、陽イオン交換樹脂に通水する吸収液の流量を0.5L/min(後段の気液接触材24に供給する吸収液の1/30)、補給水配管31を介して後段の水槽25に供給する吸収液(純水)の流量を2L/minとし、前段の気液接触材17に供給する吸収液をpH8〜9の弱アルカリ性溶液とした。 The treated air is air in which 10 ppb (about 40,000 ng / m 3 ) of sulfur dioxide (SO 2 ) is injected into the outside air, the air volume is 12,500 m 3 / h, and the passing air speed is 2.5 m / s. did. The outside air contains ammonia (NH 3 ). Further, the flow rate of the absorbing liquid supplied to the gas-liquid contact material 17 in the first stage and the gas-liquid contact material 24 in the second stage is 15 L / min, respectively, and the flow rate of the absorbing liquid passing through the cation exchange resin is 0.5 L / min (second stage). 1/30) of the absorption liquid supplied to the gas-liquid contact material 24, and the flow rate of the absorption liquid (pure water) supplied to the water tank 25 in the subsequent stage via the make-up water pipe 31 is set to 2 L / min, and the gas-liquid contact in the previous stage The absorption liquid supplied to the material 17 was a weakly alkaline solution having a pH of 8 to 9.

このような条件において、図1中において太矢印で示すように、処理対象の外気が前段の気液接触材17を通過すると、外気中に含まれる二酸化硫黄(SO2)は中和反応により除去され、前段の気液接触材17の上方から滴下された吸収液に硫酸イオン(SO 2-)が溶解され、該吸収液は前段の水槽18に自然落下して戻される。 Under such conditions, as shown by the thick arrow in FIG. 1, when the outside air to be treated passes through the gas-liquid contact material 17 in the previous stage, sulfur dioxide (SO 2 ) contained in the outside air is removed by a neutralization reaction. is, sulfate ion (SO 4 2-) was dissolved in the absorption liquid which is dripped from above the front of the gas-liquid contact member 17, the absorbent solution is returned by gravity in front of the water tank 18.

このようにして前段のエアワッシャ11を通過した空気は、その後、後段のエアワッシャ13に流入して後段の気液接触材24を通過すると、前段のエアワッシャ13で除去されなかったアンモニア(NH3)が除去され、後段の気液接触材24の上方から滴下された吸収液にアンモニアイオン(NH )が溶解され、該吸収液は後段の水槽25に自然落下して戻される。そして、図1中において太矢印で示されているように、後段の気液接触材24を通過してガス状汚染物質が除去された清浄空気は、クリーンルーム(図示省略)に供給される。 The air that has passed through the air washer 11 in the front stage in this way then flows into the air washer 13 in the rear stage and passes through the gas-liquid contact material 24 in the rear stage, and then ammonia (NH) that was not removed by the air washer 13 in the front stage. 3 ) is removed, ammonia ions (NH 4 + ) are dissolved in the absorbing liquid dropped from above the gas-liquid contact material 24 in the subsequent stage, and the absorbing liquid naturally drops back into the water tank 25 in the subsequent stage. Then, as shown by the thick arrow in FIG. 1, the clean air from which the gaseous pollutants have been removed has passed through the gas-liquid contact material 24 in the subsequent stage is supplied to the clean room (not shown).

一方、後段のエアワッシャ13において、吸収液(純水)の一部は、第2の循環配管30を介してイオン交換樹脂14を通過することで、吸収液中のアンモニアイオン(NH )等の陽イオンがトラップされる。そして、イオン交換樹脂14を通過した後の吸収液の導電率が導電率計15によって測定される。イオン交換樹脂14では、硫酸イオン(SO 2-)のような陰イオンはトラップされずに通過するため、イオン交換樹脂14を通過した吸収液の導電率の値が上昇した場合には、外気中に含まれる二酸化硫黄(SO2)の濃度が上昇していると考えることができる。 On the other hand, in the air washer 13 in the subsequent stage, a part of the absorption liquid (pure water) passes through the ion exchange resin 14 via the second circulation pipe 30 to allow ammonia ions (NH 4 + ) in the absorption liquid. Cations such as are trapped. Then, the conductivity of the absorbing liquid after passing through the ion exchange resin 14 is measured by the conductivity meter 15. In the ion exchange resin 14, in order to pass without being anions trap, such as sulfate ion (SO 4 2-), when the value of the conductivity of the absorption liquid which has passed through the ion exchange resin 14 rises, the outside air It can be considered that the concentration of sulfur dioxide (SO 2 ) contained therein is increasing.

そこで、我々は、実験により、後段のエアワッシャ13においてイオン交換樹脂14を通過した吸収液の導電率と、前段のエアワッシャ11において前段の気液接触材17を通過する前の外気中のガス状汚染物質の濃度との間に図2に示すような相関があることを見出した。 Therefore, we conducted an experiment to determine the conductivity of the absorbing liquid that passed through the ion exchange resin 14 in the air washer 13 in the subsequent stage and the gas in the outside air before passing through the gas-liquid contact material 17 in the previous stage in the air washer 11 in the previous stage. It was found that there is a correlation with the concentration of the state pollutants as shown in FIG.

そして、図2において得られた、縦軸の外気SO濃度yと横軸の陽イオン交換樹脂後の吸収液の導電率xとの関係から、以下の制御式を得た。
y=21.023x−21.588
=0.999
Then, obtained in Figure 2, the relationship between the outside air SO 2 concentration y and conductivity x of the horizontal axis the absorption liquid after the cation exchange resin of the vertical axis to give the following controlled.
y = 21.023x-21.588
R 2 = 0.999

制御ユニット16は、導電率計15から受信した吸収液の導電率の測定値xと前記制御式から、前段のエアワッシャ11に流入する外気中に含まれる二酸化硫黄(SO2)の濃度yを推定する。その後、制御ユニット16は、二酸化硫黄(SO2)の濃度と必要な水酸化カリウム(KOH)の量との関係を示す実験データを使用して、薬液供給装置12から前段のエアワッシャ11に供給する水酸化カリウム溶液の所要量を演算し、その演算結果を薬液供給装置12に送信する。薬液供給装置12は、制御ユニット16の演算結果に基づき、前段の吸収液循環設備19の循環配管21中を流通する吸収液に所要量の水酸化カリウム溶液を注入する。 The control unit 16 determines the concentration y of sulfur dioxide (SO 2 ) contained in the outside air flowing into the air washer 11 in the previous stage from the measured value x of the conductivity of the absorbing liquid received from the conductivity meter 15 and the control formula. presume. After that, the control unit 16 supplies the chemical solution supply device 12 to the air washer 11 in the previous stage by using the experimental data showing the relationship between the concentration of sulfur dioxide (SO 2 ) and the required amount of potassium hydroxide (KOH). The required amount of the potassium hydroxide solution to be prepared is calculated, and the calculation result is transmitted to the chemical solution supply device 12. The chemical solution supply device 12 injects a required amount of potassium hydroxide solution into the absorption solution flowing through the circulation pipe 21 of the absorption solution circulation facility 19 in the previous stage based on the calculation result of the control unit 16.

この結果、表1に示すように、外気中の二酸化硫黄(SO2)の除去率として99%以上、外気中のアンモニア(NH3)の除去率として94%以上の高い割合を得ることができた。 As a result, as shown in Table 1, a high rate of removal of sulfur dioxide (SO 2 ) in the outside air of 99% or more and a high rate of removal of ammonia (NH 3 ) in the outside air of 94% or more can be obtained. It was.

なお、陽イオン交換樹脂後の吸収液の導電率と外気中のSO濃度との関係は、処理空気の通過風速や、後段のエアワッシャ13に対する純水の供給量や、空気中のガス状汚染物質の除去率のようなパラメータによってそれぞれ変化する。より具体的には、陽イオン交換樹脂後の吸収液の導電率に対する外気中のSO濃度の値は、処理空気の通過風速の増加や、後段のエアワッシャ13に対する純水の供給量の減少や、空気中のガス状汚染物質の除去率の低下に従って、それぞれ、小さくなる傾向がある。そのため、制御ユニット16が循環配管21中の吸収液に注入する水酸化カリウム溶液の量を演算する際には、前記各パラメータに応じた異なる制御式が使用される。 The relationship between the conductivity of the absorbing liquid after the cation exchange resin and the SO 2 concentration in the outside air is the passing wind speed of the treated air, the amount of pure water supplied to the air washer 13 in the subsequent stage, and the gas state in the air. It depends on parameters such as the removal rate of pollutants. More specifically, the value of the SO 2 concentration in the outside air with respect to the conductivity of the absorbing liquid after the cation exchange resin increases the passing wind speed of the treated air and decreases the supply amount of pure water to the air washer 13 in the subsequent stage. And, as the removal rate of gaseous pollutants in the air decreases, they tend to become smaller. Therefore, when the control unit 16 calculates the amount of the potassium hydroxide solution to be injected into the absorption liquid in the circulation pipe 21, different control formulas corresponding to the respective parameters are used.

上記した本発明の実施の形態に係る空気中汚染物質の除去システム10によれば、外気中のガス状汚染物質の濃度を推定して必要な分だけ薬液を供給するため、薬液量を大幅に削減することができる。
また、導電率計15を使用して制御しているため、制御性が良く、部品の交換頻度やメンテナンス頻度を減少させることができる。
According to the air pollutant removal system 10 according to the embodiment of the present invention described above, the concentration of the gaseous pollutant in the outside air is estimated and the required amount of the chemical solution is supplied, so that the amount of the chemical solution is significantly increased. Can be reduced.
Further, since the conductivity meter 15 is used for control, the controllability is good, and the frequency of parts replacement and the frequency of maintenance can be reduced.

また、前段のエアワッシャ11及び後段のエアワッシャ13へ常時純水が供給されているため、前段のエアワッシャ11で除去したガス状汚染物質の再飛散を防止することができ、スケールの発生を防止することもできる。 Further, since pure water is constantly supplied to the air washer 11 in the front stage and the air washer 13 in the rear stage, it is possible to prevent the re-scattering of the gaseous pollutants removed by the air washer 11 in the front stage, and the scale is generated. It can also be prevented.

また、イオン交換樹脂14を通水する吸収液の流量は、非常に少なく(実施例では、後段の気液接触材24に供給する吸収液の1/30)、濃度も低いため、イオン交換樹脂14の交換頻度やメンテナンス頻度を減少させることができる。 Further, since the flow rate of the absorbing liquid passing through the ion exchange resin 14 is very small (1/30 of the absorbing liquid supplied to the gas-liquid contact material 24 in the subsequent stage in the embodiment) and the concentration is low, the ion exchange resin 14 is used. The replacement frequency and maintenance frequency of 14 can be reduced.

また、前段のエアワッシャ11では、ガス状汚染物質を中和反応で除去するため、ガス状汚染物質の除去能力が高く、再飛散を防止することができる。さらに、実施例のように、薬液として汚染源にならない水酸化カリウム(KOH)を使用することで、安全性を高めることができる。 Further, since the air washer 11 in the previous stage removes the gaseous pollutant by the neutralization reaction, the ability to remove the gaseous pollutant is high and re-scattering can be prevented. Furthermore, as in the examples, the safety can be enhanced by using potassium hydroxide (KOH) which does not become a pollution source as a chemical solution.

なお、上記した本発明の実施の形態に係る空気中汚染物質の除去システム10は、各種変形が可能である。例えば、図3に示されているように、後段のエアワッシャ13において、後段の気液接触材24と後段の水槽25の間に後段の水槽25より小容量の受け部32を配置し、受け部32からイオン交換樹脂14に吸収液を送出する送水設備33(送水ポンプ34及び送水配管35)を設けてもよい。このように構成することにより、後段の気液接触材24に滴下された吸収液が後段の水槽25に落下する前に小容量の受け部32で回収し、イオン交換樹脂14に通水することができるため、イオン交換樹脂14を通過した後の吸収液の導電率の上昇を導電率計15によって即座に感知することができる。これにより、導電率の急激な濃度上昇に合わせて必要な量の薬液を薬液供給装置12から循環配管21中の吸収液に素早く供給することができるため、応答性の向上を図ることができる。 The air pollutant removal system 10 according to the embodiment of the present invention described above can be modified in various ways. For example, as shown in FIG. 3, in the rear-stage air washer 13, a receiving portion 32 having a capacity smaller than that of the rear-stage water tank 25 is arranged between the rear-stage gas-liquid contact material 24 and the rear-stage water tank 25 to receive the air washer 13. A water supply facility 33 (water supply pump 34 and water supply pipe 35) that sends an absorbing liquid from the unit 32 to the ion exchange resin 14 may be provided. With this configuration, the absorbing liquid dropped on the gas-liquid contact material 24 in the subsequent stage is collected by the small-capacity receiving portion 32 before falling into the water tank 25 in the subsequent stage, and water is passed through the ion exchange resin 14. Therefore, the increase in the conductivity of the absorbing liquid after passing through the ion exchange resin 14 can be immediately detected by the conductivity meter 15. As a result, a required amount of the chemical solution can be quickly supplied from the chemical solution supply device 12 to the absorption liquid in the circulation pipe 21 in accordance with the rapid increase in the concentration of the conductivity, so that the responsiveness can be improved.

また、上記した実施の形態に係る空気中汚染物質の除去システム10では、前段のエアワッシャ11及び後段のエアワッシャ13への純水の供給が、いずれも、後段のエアワッシャ13を介して行われているが、本発明はこれに限定されるものではない。 Further, in the air pollutant removal system 10 according to the above-described embodiment, pure water is supplied to the air washer 11 in the front stage and the air washer 13 in the rear stage, both of which are performed via the air washer 13 in the rear stage. However, the present invention is not limited to this.

例えば、図4に示すように、前段の水槽18と後段の水槽25との間に連通管26を設けずに、各水槽18,25に各補給水配管36,31を介してそれぞれ別個に純水を供給するように構成してもよい。 For example, as shown in FIG. 4, the communication pipes 26 are not provided between the water tank 18 in the front stage and the water tank 25 in the rear stage, and the water tanks 18 and 25 are separately purely connected via the make-up water pipes 36 and 31. It may be configured to supply water.

或いは、図5に示すように、後段の水槽25の周りに第1の循環配管28を設けずに、後段の気液接触材24に補給水配管37を介して直接、純水を供給すると共に、連通管26を介して後段の水槽25から前段の水槽18に純水を供給するように構成してもよい。 Alternatively, as shown in FIG. 5, pure water is directly supplied to the gas-liquid contact material 24 in the subsequent stage via the make-up water pipe 37 without providing the first circulation pipe 28 around the water tank 25 in the subsequent stage. , The pure water may be supplied from the water tank 25 in the subsequent stage to the water tank 18 in the front stage via the communication pipe 26.

或いは、図6に示すように、前段の水槽18と後段の水槽25との間に連通管26を設けずに、前段の気液接触材17と後段の気液接触材24に各補給水配管38,37を介してそれぞれ別個に純水を供給するように構成してもよい。この場合、前段の吸収液循環設備19と後段の水槽25周りの第1の循環配管28は設けない。 Alternatively, as shown in FIG. 6, each make-up water pipe is connected to the gas-liquid contact material 17 in the front stage and the gas-liquid contact material 24 in the rear stage without providing the communication pipe 26 between the water tank 18 in the front stage and the water tank 25 in the rear stage. It may be configured to supply pure water separately via 38 and 37. In this case, the absorption liquid circulation facility 19 in the front stage and the first circulation pipe 28 around the water tank 25 in the rear stage are not provided.

さらに、上記した実施の形態に係る空気中汚染物質の除去システム10では、前段と後段の2段のエアワッシャ11,13が設けられているが、図7に示すように、前段のエアワッシャ11と後段のエアワッシャ13の間にさらに中段のエアワッシャ41を配置した3段のエアワッシャを備えた除去システム40としてもよい。 Further, in the air pollutant removal system 10 according to the above-described embodiment, the two-stage air washers 11 and 13 of the front stage and the rear stage are provided, but as shown in FIG. 7, the air washer 11 of the front stage is provided. The removal system 40 may be provided with a three-stage air washer in which a middle-stage air washer 41 is further arranged between the air washer 13 in the subsequent stage.

この変形例において、中段のエアワッシャ41は、中段の気液接触材42と、中段の水槽43と、中段の吸収液循環設備44と、を備えている。そして、中段の水槽43と後段の水槽25との間には第1の連通管45が設けられ、前段の水槽18と後段の水槽25との間には第2の連通管46が設けられている。中段の吸収液循環設備44は、中段の水槽43から中段の気液接触材42の上方まで配設される循環配管47と、循環配管47の途中に設けられる循環ポンプ48と、を備えて構成されている。 In this modification, the air washer 41 in the middle stage includes a gas-liquid contact material 42 in the middle stage, a water tank 43 in the middle stage, and an absorption liquid circulation facility 44 in the middle stage. A first communication pipe 45 is provided between the middle-stage water tank 43 and the rear-stage water tank 25, and a second communication pipe 46 is provided between the front-stage water tank 18 and the rear-stage water tank 25. There is. The absorption liquid circulation facility 44 in the middle stage includes a circulation pipe 47 arranged from the water tank 43 in the middle stage to the upper part of the gas-liquid contact material 42 in the middle stage, and a circulation pump 48 provided in the middle of the circulation pipe 47. Has been done.

薬液供給装置12と前段の循環配管21と間には、薬液補給配管23が接続されており、薬液供給装置12から薬液補給配管23を介して前段の循環配管21内の吸収液にアルカリ性溶液の薬液が補給されるようになっている。また、薬液供給装置12と中段の循環配管47と間には、薬液補給配管49が接続されており、薬液供給装置12から薬液補給配管49を介して中段の循環配管47内の吸収液に酸性溶液の薬液が補給されるようになっている。 A chemical solution supply pipe 23 is connected between the chemical solution supply device 12 and the circulation pipe 21 in the previous stage, and an alkaline solution is supplied from the chemical solution supply device 12 to the absorption liquid in the circulation pipe 21 in the previous stage via the chemical solution supply pipe 23. The chemical solution is being replenished. Further, a chemical solution supply pipe 49 is connected between the chemical solution supply device 12 and the middle stage circulation pipe 47, and the chemical solution supply pipe 12 is acidic to the absorbed liquid in the middle stage circulation pipe 47 via the chemical solution supply pipe 49. The chemical solution of the solution is to be replenished.

イオン交換樹脂14は、陽イオン交換樹脂14aと陰イオン交換樹脂14bの両方が設けられている。導電率計15は、陽イオン交換樹脂14aの下流側に設けられる第1の導電率計15aと陰イオン交換樹脂14bの下流側に設けられる第2の導電率計15bとが設けられている。第1の導電率計15a及び第2の導電率計15bはそれぞれ制御ユニット16と電気的に接続され、制御ユニット16は薬液供給装置12と電気的に接続されている。 The ion exchange resin 14 is provided with both a cation exchange resin 14a and an anion exchange resin 14b. The conductivity meter 15 is provided with a first conductivity meter 15a provided on the downstream side of the cation exchange resin 14a and a second conductivity meter 15b provided on the downstream side of the anion exchange resin 14b. The first conductivity meter 15a and the second conductivity meter 15b are each electrically connected to the control unit 16, and the control unit 16 is electrically connected to the chemical liquid supply device 12.

このような構成を備えた空気中汚染物質の除去システム40において、図7中において太矢印で示すように、前記チャンバー(図示省略)内に導入された処理対象の外気は、前段の気液接触材17を通過すると、空気と吸収液とが気液接触し、空気中に含まれる酸性物質が吸収液中に溶解されて除去される。 In the air pollutant removal system 40 having such a configuration, as shown by a thick arrow in FIG. 7, the outside air to be treated introduced into the chamber (not shown) is in gas-liquid contact in the previous stage. When passing through the material 17, the air and the absorbing liquid come into gas-liquid contact, and the acidic substance contained in the air is dissolved in the absorbing liquid and removed.

前段のエアワッシャ11を通過した後、中段のエアワッシャ41に流入した空気は、中段の気液接触材42を通過すると、空気と吸収液とが気液接触し、空気中に含まれるアルカリ性物質が吸収液中に溶解されて除去される。 When the air that has flowed into the air washer 41 in the middle stage after passing through the air washer 11 in the previous stage passes through the gas-liquid contact material 42 in the middle stage, the air and the absorbing liquid come into gas-liquid contact, and an alkaline substance contained in the air. Is dissolved in the absorbent and removed.

中段のエアワッシャ41を通過した後、後段のエアワッシャ13に流入した空気は、後段の気液接触材24を通過すると、空気と吸収液とが気液接触し、空気中に含まれるガス状汚染物質が吸収液中に溶解されて除去される。その後、後段の気液接触材24を通過してガス状汚染物質が除去された清浄空気は、図1中において太矢印で示されているように、クリーンルーム(図示省略)に供給される。 When the air that has flowed into the air washer 13 in the rear stage after passing through the air washer 41 in the middle stage passes through the gas-liquid contact material 24 in the rear stage, the air and the absorbing liquid come into gas-liquid contact, and the gas contained in the air. Contaminants are dissolved and removed in the absorption fluid. After that, the clean air from which the gaseous pollutants have been removed by passing through the gas-liquid contact material 24 in the subsequent stage is supplied to a clean room (not shown) as shown by a thick arrow in FIG.

なお、吸収液である純水は、補給水配管31を介して後段の水槽25に供給され、後段の水槽25に供給された純水は第1の連通管45及び第2の連通管46を通ってそれぞれ前段の水槽18及び中段の水槽43に供給される。 The pure water as the absorption liquid is supplied to the subsequent water tank 25 via the make-up water pipe 31, and the pure water supplied to the subsequent water tank 25 connects the first communication pipe 45 and the second communication pipe 46. It is supplied to the water tank 18 in the front stage and the water tank 43 in the middle stage, respectively.

一方、後段のエアワッシャ13において、後段の水槽25内から汲み上げられた吸収液(純水)の一部は、陽イオン交換樹脂14a及び陰イオン交換樹脂14bをそれぞれ通過した後、第1の導電率計15a及び第2の導電率計15bによってそれぞれ吸収液の導電率が測定され、その測定値は制御ユニット16に送信される。制御ユニット16は、第1の導電率計15a及び第2の導電率計15bによる導電率の測定値に基づき、前段のエアワッシャ11に流入する外気中に含まれるガス状汚染物質の濃度を推定し、薬液供給装置12から前段のエアワッシャ11及び中段のエアワッシャ41に供給される薬液の量をそれぞれ演算する。 On the other hand, in the air washer 13 in the subsequent stage, a part of the absorbing liquid (pure water) pumped from the water tank 25 in the subsequent stage passes through the cation exchange resin 14a and the anion exchange resin 14b, respectively, and then becomes the first conductivity. The conductivity of the absorbing liquid is measured by the rate meter 15a and the second conductivity meter 15b, respectively, and the measured value is transmitted to the control unit 16. The control unit 16 estimates the concentration of gaseous pollutants contained in the outside air flowing into the air washer 11 in the previous stage based on the measured conductivity values of the first conductivity meter 15a and the second conductivity meter 15b. Then, the amount of the chemical solution supplied from the chemical solution supply device 12 to the air washer 11 in the front stage and the air washer 41 in the middle stage is calculated, respectively.

上記した空気中汚染物質の除去システム40によれば、前段のエアワッシャ11と中段のエアワッシャ41を設けることにより、外気中に含まれるアルカリ性物質と酸性物質の両方のガス状汚染物質を高効率で除去することができるため、ガス状汚染物質の除去率をさらに高めることができる。 According to the above-mentioned air pollutant removal system 40, by providing the air washer 11 in the front stage and the air washer 41 in the middle stage, it is highly efficient to remove gaseous pollutants of both alkaline substances and acidic substances contained in the outside air. Since it can be removed with, the removal rate of gaseous pollutants can be further increased.

なお、上記した本発明の実施の形態では、本発明の実施の形態に係る空気中汚染物質の除去システムを半導体工場や液晶工場等のクリーンルームに外気を導入するために設置される外調機に適用した場合について説明したが、これは単なる例示に過ぎず、本発明は、電子部品や電子デバイスの製造工場等、他の用途の空調機全般に適用可能であることは言う迄ない。 In the above-described embodiment of the present invention, the air pollutant removal system according to the embodiment of the present invention is installed in an external air conditioner installed to introduce outside air into a clean room such as a semiconductor factory or a liquid crystal factory. Although the case of application has been described, this is merely an example, and it goes without saying that the present invention can be applied to all air conditioners for other purposes such as manufacturing factories of electronic parts and electronic devices.

10 空気中汚染物質の除去システム
11 前段のエアワッシャ
12 薬液供給装置
13 後段のエアワッシャ
14 イオン交換樹脂
16 制御ユニット
17 前段の気液接触材
18 前段の水槽
19 前段の吸収液循環設備
24 後段の気液接触材
25 後段の水槽
27 後段の吸収液循環設備
32 受け部
33 送水設備
38 補給水配管
40 中段のエアワッシャ
42 中段の気液接触材
43 中段の水槽
44 中段の吸収液循環設備
10 Air pollutant removal system 11 Front-stage air washer 12 Chemical solution supply device 13 Rear-stage air washer 14 Ion exchange resin 16 Control unit 17 Front-stage gas-liquid contact material 18 Front-stage water tank 19 Front-stage absorption liquid circulation equipment 24 Rear-stage Gas-liquid contact material 25 Rear-stage water tank 27 Rear-stage absorption liquid circulation equipment 32 Receiving part 33 Water supply equipment 38 Make-up water piping 40 Middle-stage air washer 42 Middle-stage gas-liquid contact material 43 Middle-stage water tank 44 Middle-stage absorption liquid circulation equipment

Claims (5)

空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するための空気中汚染物質の除去システムであって、
アルカリ性溶液と酸性溶液の少なくともいずれかの溶液を含む薬液を吸収液とする前段のエアワッシャと、
前記前段のエアワッシャに薬液を供給する薬液供給装置と、
前記前段のエアワッシャの空気流通方向の下流側に配置され、純水を吸収液とする後段のエアワッシャと、
前記後段のエアワッシャの吸収液が通過する陽イオン交換樹脂と陰イオン交換樹脂の少なくともいずれかのイオン交換樹脂と、
前記イオン交換樹脂を通過した吸収液の導電率に基づき、前記前段のエアワッシャに流入する空気中に含まれる汚染物質の濃度を推定することで、前記薬液供給装置から前記前段のエアワッシャに供給する薬液の量を演算する制御ユニットと、
を備えていることを特徴とする空気中汚染物質の除去システム。
It is an air pollutant removal system for dissolving and removing pollutants contained in the air in the absorption liquid by bringing the air and the absorption liquid into gas-liquid contact.
An air washer in the previous stage that uses a chemical solution containing at least one of an alkaline solution and an acidic solution as an absorption solution,
A chemical solution supply device that supplies a chemical solution to the air washer in the previous stage,
The air washer in the rear stage, which is arranged on the downstream side in the air flow direction of the air washer in the front stage and uses pure water as the absorbing liquid, and the air washer in the rear stage.
At least one of a cation exchange resin and an anion exchange resin through which the absorption liquid of the air washer in the subsequent stage passes, and an ion exchange resin.
By estimating the concentration of pollutants contained in the air flowing into the air washer in the previous stage based on the conductivity of the absorbing liquid that has passed through the ion exchange resin, the chemical solution supply device supplies the air washer in the previous stage. A control unit that calculates the amount of chemical solution to be used,
An air pollutant removal system characterized by being equipped with.
前記前段のエアワッシャは、
空気と吸収液とを気液接触させるための前段の気液接触材と、
前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、
前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、
を備え、
前記後段のエアワッシャは、
空気と吸収液とを気液接触させるための後段の気液接触材と、
前記後段の気液接触材を通過した吸収液を貯留する後段の水槽と、
前記後段の水槽と前記後段の気液接触材との間及び前記後段の水槽と前記イオン交換樹脂との間で吸収液を循環させる後段の吸収液循環設備と、
を備え、
前記薬液供給装置から前記前段の循環設備又は前記前段の水槽に薬液が供給される請求項1に記載の空気中汚染物質の除去システム。
The air washer in the previous stage
The gas-liquid contact material in the previous stage for bringing the air and the absorbing liquid into gas-liquid contact,
The water tank in the previous stage for storing the absorption liquid that has passed through the gas-liquid contact material in the previous stage, and
A pre-stage absorption liquid circulation facility that circulates an absorption liquid between the pre-stage water tank and the pre-stage gas-liquid contact material,
With
The air washer in the latter stage
A gas-liquid contact material in the subsequent stage for making air and absorption liquid in gas-liquid contact,
A water tank in the latter stage for storing the absorption liquid that has passed through the gas-liquid contact material in the latter stage, and
A rear-stage absorption liquid circulation facility that circulates an absorption liquid between the rear-stage water tank and the rear-stage gas-liquid contact material and between the rear-stage water tank and the ion exchange resin.
With
The air pollutant removal system according to claim 1, wherein the chemical solution is supplied from the chemical solution supply device to the circulation facility in the preceding stage or the water tank in the preceding stage.
前記前段のエアワッシャは、
空気と吸収液とを気液接触させるための前段の気液接触材と、
前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、
前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、
を備え、
前記後段のエアワッシャは、
空気と吸収液とを気液接触させるための後段の気液接触材と、
前記後段の気液接触材より下方に配置される後段の水槽と、
前記後段の水槽より小容量であり、該後段の気液接触材を通過した吸収液を一時的に受け止めると共に溢れた吸収液が前記後段の水槽に貯留されるように前記後段の気液接触材と前記後段の水槽との間に配置される受け部と、
前記受け部から前記イオン交換樹脂に吸収液を送出する送水設備と、
前記後段の水槽と前記後段の気液接触材との間で吸収液を循環させる後段の吸収液循環設備と、
を備え、
前記薬液供給装置から前記前段の吸収液循環設備又は前記前段の水槽に薬液が供給される請求項1に記載の空気中汚染物質の除去システム。
The air washer in the previous stage
The gas-liquid contact material in the previous stage for bringing the air and the absorbing liquid into gas-liquid contact,
The water tank in the previous stage for storing the absorption liquid that has passed through the gas-liquid contact material in the previous stage, and
A pre-stage absorption liquid circulation facility that circulates an absorption liquid between the pre-stage water tank and the pre-stage gas-liquid contact material,
With
The air washer in the latter stage
A gas-liquid contact material in the subsequent stage for making air and absorption liquid in gas-liquid contact,
The water tank in the rear stage, which is arranged below the gas-liquid contact material in the rear stage,
The capacity of the gas-liquid contact material in the latter stage is smaller than that in the water tank in the latter stage, and the absorption liquid that has passed through the gas-liquid contact material in the latter stage is temporarily received and the overflowing absorption liquid is stored in the water tank in the latter stage. And the receiving part arranged between the water tank in the latter stage and
A water supply facility that sends an absorbing liquid from the receiving portion to the ion exchange resin, and
A rear-stage absorption liquid circulation facility that circulates the absorption liquid between the rear-stage water tank and the rear-stage gas-liquid contact material, and
With
The system for removing air pollutants according to claim 1, wherein the chemical solution is supplied from the chemical solution supply device to the absorption liquid circulation facility in the previous stage or the water tank in the previous stage.
空気と吸収液とを気液接触させることにより空気中に含まれる汚染物質を吸収液中に溶解させて除去するための空気中汚染物質の除去システムであって、
アルカリ性溶液と酸性溶液のいずれか一方の溶液を含む薬液を吸収液とする前段のエアワッシャと、
前記前段のエアワッシャの空気流通方向の下流側に配置され、アルカリ性溶液と酸性溶液のいずれか他方の溶液を含む薬液を吸収液とする中段のエアワッシャと、
前記前段のエアワッシャ及び前記中段のエアワッシャに薬液を供給する薬液供給装置と、
前記中段のエアワッシャの空気流通方向の下流側に配置され、純水を吸収液とする後段のエアワッシャと、
前記後段のエアワッシャの吸収液が通過する陽イオン交換樹脂及び陰イオン交換樹脂と、
前記陽イオン交換樹脂と前記陰イオン交換樹脂をそれぞれ通過した吸収液の導電率に基づき、前記前段のエアワッシャに流入する空気中に含まれる汚染物質の濃度を推定することで、前記薬液供給装置から前記前段のエアワッシャと前記中段のエアワッシャに供給される薬液の量をそれぞれ演算する制御ユニットと、
を備えていることを特徴とする空気中汚染物質の除去システム。
It is an air pollutant removal system for dissolving and removing pollutants contained in the air in the absorption liquid by bringing the air and the absorption liquid into gas-liquid contact.
An air washer in the previous stage that uses a chemical solution containing either an alkaline solution or an acidic solution as an absorption solution,
An air washer in the middle stage, which is arranged on the downstream side in the air flow direction of the air washer in the previous stage and uses a chemical solution containing either an alkaline solution or an acidic solution as an absorption solution.
A chemical solution supply device that supplies a chemical solution to the air washer in the front stage and the air washer in the middle stage,
An air washer in the latter stage, which is arranged on the downstream side in the air flow direction of the air washer in the middle stage and uses pure water as an absorbing liquid,
The cation exchange resin and the anion exchange resin through which the absorption liquid of the air washer in the subsequent stage passes, and
The chemical solution supply device estimates the concentration of pollutants contained in the air flowing into the air washer in the previous stage based on the conductivity of the absorbing solution that has passed through the cation exchange resin and the anion exchange resin, respectively. A control unit that calculates the amount of chemicals supplied to the air washer in the previous stage and the air washer in the middle stage, respectively.
An air pollutant removal system characterized by being equipped with.
前記前段のエアワッシャは、
空気と吸収液とを気液接触させるための前段の気液接触材と、
前記前段の気液接触材を通過した吸収液を貯留する前段の水槽と、
前記前段の水槽と前記前段の気液接触材との間で吸収液を循環させる前段の吸収液循環設備と、
を備え、
前記中段のエアワッシャは、
空気と吸収液とを気液接触させるための中段の気液接触材と、
前記中段の気液接触材を通過した吸収液を貯留する中段の水槽と、
前記中段の水槽と前記中段の気液接触材との間で吸収液を循環させる中段の吸収液循環設備と、
を備え、
前記後段のエアワッシャは、
空気と吸収液とを気液接触させるための後段の気液接触材と、
前記後段の気液接触材を通過した吸収液を貯留する後段の水槽と、
前記後段の水槽と前記後段の気液接触材との間及び前記後段の水槽と前記陽イオン交換樹脂及び前記陰イオン交換樹脂との間で吸収液を循環させる後段の吸収液循環設備と、
を備える請求項4に記載の空気中汚染物質の除去システム。
The air washer in the previous stage
The gas-liquid contact material in the previous stage for bringing the air and the absorbing liquid into gas-liquid contact,
The water tank in the previous stage for storing the absorption liquid that has passed through the gas-liquid contact material in the previous stage, and
A pre-stage absorption liquid circulation facility that circulates an absorption liquid between the pre-stage water tank and the pre-stage gas-liquid contact material,
With
The air washer in the middle stage
A gas-liquid contact material in the middle stage for making gas-liquid contact between air and absorption liquid,
A water tank in the middle stage that stores the absorption liquid that has passed through the gas-liquid contact material in the middle stage, and
An absorption liquid circulation facility in the middle stage that circulates the absorption liquid between the water tank in the middle stage and the gas-liquid contact material in the middle stage.
With
The air washer in the latter stage
A gas-liquid contact material in the subsequent stage for making air and absorption liquid in gas-liquid contact,
A water tank in the latter stage for storing the absorption liquid that has passed through the gas-liquid contact material in the latter stage, and
A subsequent absorption liquid circulation facility that circulates an absorption liquid between the latter-stage water tank and the latter-stage gas-liquid contact material and between the latter-stage water tank and the cation exchange resin and the anion exchange resin.
The system for removing air pollutants according to claim 4.
JP2019034573A 2019-02-27 2019-02-27 Air pollutant removal system Active JP6746739B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019034573A JP6746739B1 (en) 2019-02-27 2019-02-27 Air pollutant removal system
PH12019000275A PH12019000275A1 (en) 2019-02-27 2019-08-05 Removing system for contaminant in air
MYPI2019004501A MY196767A (en) 2019-02-27 2019-08-06 Removing system for contaminant in air
TW108134733A TWI732299B (en) 2019-02-27 2019-09-25 Removal system of pollutant in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034573A JP6746739B1 (en) 2019-02-27 2019-02-27 Air pollutant removal system

Publications (2)

Publication Number Publication Date
JP6746739B1 JP6746739B1 (en) 2020-08-26
JP2020137686A true JP2020137686A (en) 2020-09-03

Family

ID=72146194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034573A Active JP6746739B1 (en) 2019-02-27 2019-02-27 Air pollutant removal system

Country Status (4)

Country Link
JP (1) JP6746739B1 (en)
MY (1) MY196767A (en)
PH (1) PH12019000275A1 (en)
TW (1) TWI732299B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079319A (en) * 1998-09-07 2000-03-21 Takasago Thermal Eng Co Ltd Apparatus for removing impurity in gas
JP2005257220A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Air washer
JP2008264643A (en) * 2007-04-18 2008-11-06 Dai-Dan Co Ltd Gas impurity removal apparatus
JP2009213961A (en) * 2008-03-07 2009-09-24 Sanken Setsubi Kogyo Co Ltd Air washer
US20100008820A1 (en) * 2006-06-02 2010-01-14 Odoroff Oy Procedure and apparatus for cleaning of gas, like air from unwanted gaseous compounds
JP2010172834A (en) * 2009-01-30 2010-08-12 Shinryo Corp Apparatus for removing contaminant in air

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079319A (en) * 1998-09-07 2000-03-21 Takasago Thermal Eng Co Ltd Apparatus for removing impurity in gas
JP2005257220A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Air washer
US20100008820A1 (en) * 2006-06-02 2010-01-14 Odoroff Oy Procedure and apparatus for cleaning of gas, like air from unwanted gaseous compounds
JP2008264643A (en) * 2007-04-18 2008-11-06 Dai-Dan Co Ltd Gas impurity removal apparatus
JP2009213961A (en) * 2008-03-07 2009-09-24 Sanken Setsubi Kogyo Co Ltd Air washer
JP2010172834A (en) * 2009-01-30 2010-08-12 Shinryo Corp Apparatus for removing contaminant in air

Also Published As

Publication number Publication date
PH12019000275A1 (en) 2021-01-18
JP6746739B1 (en) 2020-08-26
TW202031343A (en) 2020-09-01
MY196767A (en) 2023-05-03
TWI732299B (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US7803219B2 (en) Method and apparatus for processing inorganic acidic gas
WO2001090001A1 (en) Cooling tower maintenance
KR20130122519A (en) Air purifier and humidifier
JP5136830B2 (en) Cooling tower makeup water quality control device
CN211069599U (en) Ammonia desulphurization system for removing chloride ions
JP2010194402A (en) Water treatment system and treatment method of cooling system circulating water
JP2020137686A (en) System for removing contaminant in air
JP2009039218A (en) Atomization system of ozone-containing active water
JP5703552B2 (en) Water treatment system
NL2001538C2 (en) Air washer for removing ammonia from ammonia contaminated air produced in intensive livestock stables, has controller to open valve for supplying washing fluid if current value of mass-related parameter exceeds predetermined limit
JP5032516B2 (en) Air pollutant removal device
JP2005013788A (en) AIR CLEANER AND METHOD FOR CONTROLLING pH VALUE OF TREATING LIQUID
JP2007038173A (en) Oil and water separating method and oil and water separating apparatus
CN114618290A (en) Device and method for controlling migration of chlorine element by low-temperature flue gas concentration and desulfurization wastewater process
JP4545329B2 (en) Impurity removal equipment
JP2008104907A (en) Control method of wet air purification system
RU2009126765A (en) GAS FLOW PROCESSING METHOD
JP2003334416A (en) Removal apparatus for soluble gas component and operation method thereof
JP4514970B2 (en) Impurity removal equipment
CN217312721U (en) Chlorine migration control device for low-temperature flue gas concentration desulfurization wastewater process
JP4084778B2 (en) Air-soluble gas removal device
CN220426150U (en) Water-saving cleaning device in OSP copper protection wire and OSP copper protection wire
JPH09253442A (en) Device for removing soluble gas in air
JP2017058035A (en) Heat exchanger sprinkling system and heat exchanger sprinkling method
JP3979172B2 (en) Method and apparatus for producing pure water and scale monitor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6746739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250