JP2020133592A - Controller of internal combustion engine - Google Patents

Controller of internal combustion engine Download PDF

Info

Publication number
JP2020133592A
JP2020133592A JP2019032265A JP2019032265A JP2020133592A JP 2020133592 A JP2020133592 A JP 2020133592A JP 2019032265 A JP2019032265 A JP 2019032265A JP 2019032265 A JP2019032265 A JP 2019032265A JP 2020133592 A JP2020133592 A JP 2020133592A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
time
stopped
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019032265A
Other languages
Japanese (ja)
Inventor
俊雄 浅野
Toshio Asano
俊雄 浅野
克昌 倉地
Katsumasa Kurachi
克昌 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2019032265A priority Critical patent/JP2020133592A/en
Publication of JP2020133592A publication Critical patent/JP2020133592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To further enhance stability of starting of an internal combustion engine.SOLUTION: A controller of internal combustion engine is configured to expand the opening of a throttle valve in a case where an oxygen concentration in an intake passage at startup is low compared to the opening in a case where the oxygen concentration in the intake passage at startup is higher, by correcting the opening of the throttle valve at the time of starting the internal combustion engine according to at least one of the temperatures in an engine compartment at the time when the internal combustion engine is stopped and at startup after that, the elapsed time from the stop to the start of the internal combustion engine, and the temperatures of cooling water at the time when the internal combustion engine is stopped and at startup after that.SELECTED DRAWING: Figure 3

Description

本発明は、車両等に搭載される内燃機関を制御する制御装置に関する。 The present invention relates to a control device for controlling an internal combustion engine mounted on a vehicle or the like.

周知の通り、停止している内燃機関を始動するにあたっては、内燃機関の出力軸であるクランクシャフトを電動機により回転駆動しつつ、インジェクタから燃料を噴射してこれを気筒において燃焼させ、クランクシャフトの回転を加速するクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、クランクシャフトの回転速度即ちエンジン回転数が内燃機関の冷却水の温度等に応じて定まる判定値を超えたときに、完爆したものと見なして終了する。 As is well known, when starting a stopped internal combustion engine, the crankshaft, which is the output shaft of the internal combustion engine, is rotationally driven by an electric motor, fuel is injected from an injector, and this is burned in the cylinder to burn the crankshaft. Perform cranking to accelerate rotation. Cranking is when the internal combustion engine goes from the first explosion to the continuous explosion and the rotation speed of the crankshaft, that is, the engine speed exceeds the judgment value determined according to the temperature of the cooling water of the internal combustion engine, the explosion is completed. It is considered as and ends.

内燃機関を始動する際の燃料噴射量を、その始動時の冷却水の温度の高低に基づいて調整することも公知である(例えば、下記特許文献を参照)。 It is also known that the fuel injection amount when starting an internal combustion engine is adjusted based on the temperature of the cooling water at the time of starting the internal combustion engine (see, for example, the following patent documents).

特開2014−202176号公報Japanese Unexamined Patent Publication No. 2014-202176

内燃機関の始動時における吸気通路内の酸素濃度は、恒常的に一定とはならない。何れかの気筒の吸気バルブ及び排気バルブがともに開いているバルブオーバラップ状態で内燃機関の回転が停止した場合、その停止期間中に当該気筒を経由して排気通路側から吸気通路側に排気が逆流することがあり得る。さすれば、吸気通路内の酸素濃度の低下が起こる。にもかかわらず、内燃機関の始動に際してスロットルバルブの開度及び燃料噴射量を平常通りに設定すると、気筒の燃焼室に供給される酸素量が不足して燃料の燃焼の不安定化または失火を招来し、ひいては始動遅延または始動不良を招く懸念が生じる。 The oxygen concentration in the intake passage at the time of starting the internal combustion engine is not constantly constant. If the rotation of the internal combustion engine stops while the intake valve and exhaust valve of any cylinder are open, exhaust gas is discharged from the exhaust passage side to the intake passage side via the cylinder during the stop period. It can flow backwards. Then, the oxygen concentration in the intake passage is lowered. Nevertheless, if the throttle valve opening and fuel injection amount are set to normal when starting the internal combustion engine, the amount of oxygen supplied to the combustion chamber of the cylinder will be insufficient, resulting in destabilization of fuel combustion or misfire. There is a concern that it may lead to a start delay or a start failure.

本発明は、以上の問題に初めて着目してなされたものであって、内燃機関の始動の安定性を高めることを所期の目的とする。 The present invention has been made by paying attention to the above problems for the first time, and an object of the present invention is to improve the starting stability of an internal combustion engine.

上述した課題を解決するべく、本発明では内燃機関の停止時及びその後の始動時のエンジンコンパートメント内の温度、内燃機関の停止から始動までの経過時間、内燃機関の停止時及びその後の始動時の冷却水の温度のうちの少なくとも一つに応じて、内燃機関の始動の際のスロットルバルブの開度を補正することにより、始動時の吸気通路内の酸素濃度が低い場合のスロットルバルブの開度を、始動時の吸気通路内の酸素濃度がより高い場合の開度と比較して拡大する内燃機関の制御装置を構成した。 In order to solve the above-mentioned problems, in the present invention, the temperature in the engine compartment when the internal combustion engine is stopped and when it is started thereafter, the elapsed time from the stop to the start of the internal combustion engine, when the internal combustion engine is stopped and when it is started thereafter. By correcting the opening of the throttle valve at the time of starting the internal combustion engine according to at least one of the temperatures of the cooling water, the opening of the throttle valve when the oxygen concentration in the intake passage at the time of starting is low. Constructed a control device for an internal combustion engine that expands in comparison with the opening degree when the oxygen concentration in the intake passage at the time of starting is higher.

本発明によれば、内燃機関の始動の安定性をより一層高めることができる。 According to the present invention, the starting stability of the internal combustion engine can be further improved.

本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。The figure which shows the schematic structure of the internal combustion engine for a vehicle and the control device in one Embodiment of this invention. 三気筒内燃機関の各気筒の行程及びバルブオーバラップ状態となるクランク角度を示すタイミング図。A timing diagram showing the stroke of each cylinder of a three-cylinder internal combustion engine and the crank angle in which the valve overlaps. 同実施形態の内燃機関の制御装置がプログラムに従い実行する処理の手順例を示すフロー図。The flow chart which shows the procedure example of the process which the control device of the internal combustion engine of the same embodiment executes according to a program. 内燃機関の停止時間の長さと、吸気通路内に滞留している空気の酸素濃度との関係を示す図。The figure which shows the relationship between the length of the stop time of an internal combustion engine and the oxygen concentration of the air which stays in an intake passage. 内燃機関の停止時間の長さと、その後の内燃機関の始動の際のスロットルバルブ開度の補正量との関係を示す図。The figure which shows the relationship between the length of the stop time of an internal combustion engine and the correction amount of the throttle valve opening at the time of the subsequent start of an internal combustion engine.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(例えば、三気筒。図1には、そのうち一つを図示)を具備している。各気筒1の吸気ポート近傍には、吸気ポートに向けて燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle according to the present embodiment. The internal combustion engine in the present embodiment is a spark-ignition type 4-stroke engine, and includes a plurality of cylinders 1 (for example, three cylinders, one of which is shown in FIG. 1). An injector 11 for injecting fuel toward the intake port is provided in the vicinity of the intake port of each cylinder 1. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives an induction voltage generated by the ignition coil and induces a spark discharge between the center electrode and the ground electrode.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. An air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream on the intake passage 3.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 to the outside from the exhaust port of each cylinder 1. An exhaust manifold 42 and a three-way catalyst 41 for purifying exhaust gas are arranged on the exhaust passage 4.

外部EGR(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものである。EGR装置2は、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。 The external EGR (Exhaust Gas Recirculation) device 2 realizes a so-called high-pressure loop EGR. The EGR device 2 includes an external EGR passage 21 that connects the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR passage 21. The element is an EGR valve 23 that opens and closes and controls the flow rate of the EGR gas flowing through the EGR passage 21. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined position downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined position downstream of the throttle valve 32 in the intake passage 3, specifically, the surge tank 33.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラが、CAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 The ECU (Electronic Control Unit) 0, which is a control device for an internal combustion engine of the present embodiment, is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The ECU 0 may be a plurality of ECUs or controllers connected to each other so as to be communicable with each other via a telecommunication line such as CAN (Control Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサ(エンジン回転センサ)から出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(運転者が要求するエンジン出力、要求負荷率)として検出するセンサから出力されるアクセル開度信号c、ブレーキペダルの踏込量を検出するセンサまたはマスタシリンダから吐出される作動液の圧力であるマスタシリンダ圧を検出するセンサから出力されるブレーキ踏量信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、内燃機関の冷却水の温度(内燃機関の温度を示唆する)を検出する水温センサから出力される冷却水温信号f、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号g、車体における内燃機関を収容するエンジンコンパートメント(または、エンジンルーム)内の温度を検出する温度センサから出力されるエンジンコンパートメント温度信号h等が入力される。 The input interface of ECU0 is output from the vehicle speed signal a output from the vehicle speed sensor that detects the actual vehicle speed of the vehicle, the rotation angle of the crankshaft of the internal combustion engine, and the crank angle sensor (engine rotation sensor) that detects the engine rotation speed. Crank angle signal b, accelerator opening signal c output from a sensor that detects the accelerator pedal depression amount or throttle valve 32 opening as accelerator opening (engine output requested by the driver, required load factor), brake The brake depression amount signal d output from the sensor that detects the pedal depression amount or the sensor that detects the master cylinder pressure, which is the pressure of the hydraulic fluid discharged from the master cylinder, is in the intake passage 3 (particularly, the surge tank 33). Intake temperature / intake pressure signal e output from the temperature / pressure sensor that detects the intake air temperature and pressure, and cooling output from the water temperature sensor that detects the temperature of the cooling water of the internal combustion engine (indicating the temperature of the internal combustion engine). From the water temperature signal f, the cam angle signal g output from the cam angle sensor at a plurality of cam angles of the intake cam shaft, and the temperature sensor that detects the temperature in the engine compartment (or engine room) accommodating the internal combustion engine in the vehicle body. The output engine compartment temperature signal h and the like are input.

出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。 From the output interface, the ignition signal i for the igniter of the spark plug 12, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, and the opening operation signal l for the EGR valve 23. Etc. are output.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気量を推算する。そして、吸入空気量に見合った要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGRガス量)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。 The processor of ECU 0 interprets and executes a program stored in the memory in advance, calculates an operation parameter, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for the operation control of the internal combustion engine via the input interface, obtains the engine speed, and is sucked into the cylinder 1. Estimate the amount of air. Then, various operations such as required fuel injection amount, fuel injection timing (including the number of fuel injections for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR gas amount), etc., corresponding to the intake air amount. Determine the parameters. The ECU 0 applies various control signals i, j, k, l corresponding to the operation parameters via the output interface.

また、ECU0は、停止した内燃機関を始動(冷間始動であることもあれば、アイドリングストップからの再始動であることもある)するに際して、電動機(スタータモータまたはISG(Integrated Starter Generator)。図示せず)に制御信号oを入力し、当該電動機によりクランクシャフトを回転駆動しながら燃料噴射及び火花点火を行うクランキングを実行する。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数が内燃機関の冷却水温等に応じて定まる判定値を超えたときに、内燃機関が完爆したものと見なして終了する。 Further, when the ECU0 starts the stopped internal combustion engine (it may be a cold start or a restart from an idling stop), the electric motor (starter motor or ISG (Integrated Starter Generator)) is not shown. ), The control signal o is input, and cranking for fuel injection and spark ignition is executed while the crankshaft is rotationally driven by the electric motor. Cranking ends when the internal combustion engine goes from the initial explosion to the continuous explosion and the engine speed exceeds the judgment value determined according to the cooling water temperature of the internal combustion engine, etc., assuming that the internal combustion engine has completely exploded. ..

内燃機関の運転を停止したとき、何れかの気筒1の吸気バルブ及び排気バルブがともに開いているバルブオーバラップ状態となることがある。図2に示すように、三気筒エンジンでは、一つの気筒1が吸気行程から圧縮行程に差し掛かるタイミングT、換言すれば同気筒1のピストンが吸気下死点に至った後圧縮上死点に向かって上昇し始めるタイミングで停止することが間々ある。この場合において、他の何れかの気筒1は排気行程から吸気行程に差し掛かっており、当該気筒1の吸気バルブ及び排気バルブは両方とも開弁する。 When the operation of the internal combustion engine is stopped, the intake valve and the exhaust valve of any cylinder 1 may be in a valve overlap state in which both are open. As shown in FIG. 2, in a three-cylinder engine, the timing T at which one cylinder 1 approaches the compression stroke from the intake stroke, in other words, the piston of the same cylinder 1 reaches the compression top dead center after reaching the intake bottom dead center. Sometimes it stops when it starts to rise. In this case, any of the other cylinders 1 is approaching the intake stroke from the exhaust stroke, and both the intake valve and the exhaust valve of the cylinder 1 are opened.

その状態で内燃機関が停止している間、当該気筒1を経由して、排気通路4側から吸気通路3側に排気が逆流すると、吸気通路3のスロットルバルブ32よりも下流の部位、特にサージタンク33及び/または吸気マニホルド34内に滞留する空気の酸素濃度が低下する。その後にクランキングを開始して内燃機関を始動しようとすると、吸気通路3から気筒1に酸素濃度の低い吸気が流入し、燃焼室に供給される酸素量が不足して、混合気の燃料の燃焼の不安定化または失火を招くおそれがある。 If the exhaust gas flows back from the exhaust passage 4 side to the intake passage 3 side via the cylinder 1 while the internal combustion engine is stopped in that state, a portion downstream of the throttle valve 32 of the intake passage 3, particularly a surge. The oxygen concentration of the air staying in the tank 33 and / or the intake manifold 34 is reduced. After that, when cranking is started to start the internal combustion engine, intake air having a low oxygen concentration flows into the cylinder 1 from the intake passage 3, and the amount of oxygen supplied to the combustion chamber is insufficient, so that the fuel of the air-fuel mixture becomes insufficient. It may cause instability of combustion or misfire.

そこで、図3に示すように、本実施形態のECU0は、内燃機関を始動するにあたり、直近の内燃機関の停止時の各気筒1の行程、換言すれば停止時の各気筒1のピストンの位置を判定し、何れかの気筒1で吸気バルブ及び排気バルブがともに開弁したバルブオーバラップ状態で停止しているか否かを確認する(ステップS1)。ステップS1にて、ECU0は、エンジン回転が停止するに至る過程でのクランク角センサ及びカム角センサの出力信号b、gを参照し、内燃機関の停止時の各気筒1の行程を実測するか推定する。 Therefore, as shown in FIG. 3, when the ECU 0 of the present embodiment starts the internal combustion engine, the stroke of each cylinder 1 when the latest internal combustion engine is stopped, in other words, the position of the piston of each cylinder 1 when stopped. Is determined, and it is confirmed whether or not the intake valve and the exhaust valve are both stopped in the valve overlapping state in which the valve is opened in any of the cylinders 1 (step S1). In step S1, the ECU 0 refers to the output signals b and g of the crank angle sensor and the cam angle sensor in the process of stopping the engine rotation, and actually measures the stroke of each cylinder 1 when the internal combustion engine is stopped. presume.

直近の内燃機関の停止時に何れかの気筒1がバルブオーバラップ状態となっている場合、ECU0は、その後の内燃機関の始動において、ステップS2以下の補正制御を実施する。まず、平常の(ステップS1の条件が成立していない場合と同等の)スロットルバルブ32開度及び燃料噴射量にてクランキングの実行を開始する。そして、特段の遅れなく初爆が起こったかどうかを確認する(ステップS2)。ステップS2では、例えば、クランク角信号bを参照して知得されるエンジン回転数がある閾値を超越した時点、またはエンジン回転数の単位時間あたりの上昇量(加速度)がある閾値を上回った時点を初爆が起こった時点と見なし、クランキングの開始から所要の時間内に初爆が起こったか否かを判定する。クランキングの開始から所要の時間内に初爆が起こったならば、以後、平常の制御と同様にクランキングを続行する。 If any of the cylinders 1 is in the valve overlap state when the internal combustion engine is stopped most recently, the ECU 0 performs the correction control in step S2 or lower when the internal combustion engine is started thereafter. First, the execution of cranking is started with the normal throttle valve 32 opening degree and fuel injection amount (equivalent to the case where the condition of step S1 is not satisfied). Then, it is confirmed whether or not the first explosion has occurred without any particular delay (step S2). In step S2, for example, when the engine speed exceeds a certain threshold value, which is known by referring to the crank angle signal b, or when the amount of increase (acceleration) of the engine speed per unit time exceeds a certain threshold value. Is regarded as the time when the first explosion occurred, and it is determined whether or not the first explosion occurred within the required time from the start of cranking. If the first explosion occurs within the required time from the start of cranking, the cranking will continue as in normal control.

これに対し、クランキングの開始から所要の時間が経過してもなお初爆が起こらず、初爆が遅れているならば、ECU0は、クランキング中のスロットルバルブ32の開度及び/または燃料噴射量に補正を加える(ステップS3)。より具体的には、クランキング中のスロットルバルブ32の開度を平常よりも拡大し、及び/または、クランキング中の燃料噴射量を平常よりも減量する。ステップS3にて、ECU0は、直近の内燃機関の停止時及びその後の始動時のエンジンコンパートメント内の温度、内燃機関の停止時間即ち直近の内燃機関の停止からその後の始動までの経過時間、直近の内燃機関の停止時及びその後の始動時の冷却水の温度のうちの少なくとも一つに応じて、補正量の多寡を決定する。 On the other hand, if the initial explosion does not occur even after the required time has passed from the start of cranking and the initial explosion is delayed, the ECU 0 determines the opening and / or fuel of the throttle valve 32 during cranking. A correction is added to the injection amount (step S3). More specifically, the opening degree of the throttle valve 32 during cranking is expanded more than usual, and / or the fuel injection amount during cranking is reduced than normal. In step S3, the ECU 0 determines the temperature in the engine compartment at the time of the latest internal combustion engine stop and subsequent start, the stop time of the internal combustion engine, that is, the elapsed time from the latest internal combustion engine stop to the subsequent start, and the latest. The amount of correction is determined according to at least one of the temperatures of the cooling water when the internal combustion engine is stopped and when the internal combustion engine is started thereafter.

図4に、何れかの気筒1がバルブオーバラップ状態となって内燃機関が停止した場合の停止時間の長さと、吸気通路3のスロットルバルブ32よりも下流の部位に滞留している空気の酸素濃度の変動の推移との関係を示す。内燃機関の停止中、バルブオーバラップ状態となった気筒1を経由して、排気通路4側から吸気通路3側に排気が逆流し、その帰結として吸気通路3内に残存する空気の酸素濃度が徐々に低下してゆく。吸気通路3内の酸素濃度は、内燃機関の停止時間が長引くにつれて低下し、内燃機関を停止してから数時間程度経過した時点で極小となる。図4中、内燃機関の停止時間の長さがDを超えた領域が、その後の内燃機関の始動の遅延または不良を招くリスクの高い領域である。 FIG. 4 shows the length of the stop time when one of the cylinders 1 is in the valve overlapping state and the internal combustion engine is stopped, and the oxygen of the air staying in the portion downstream of the throttle valve 32 of the intake passage 3. The relationship with the transition of concentration fluctuations is shown. While the internal combustion engine is stopped, the exhaust gas flows back from the exhaust passage 4 side to the intake passage 3 side via the cylinder 1 in the valve overlapping state, and as a result, the oxygen concentration of the air remaining in the intake passage 3 increases. It gradually decreases. The oxygen concentration in the intake passage 3 decreases as the internal combustion engine is stopped for a long time, and becomes extremely minimum when several hours have passed since the internal combustion engine was stopped. In FIG. 4, the region where the length of the internal combustion engine stop time exceeds D is the region where there is a high risk of causing a delay or failure in the subsequent start of the internal combustion engine.

ステップS3にて、ECU0は、直近の内燃機関の停止時のエンジンコンパートメント内温度または冷却水温と、その後の始動時のエンジンコンパートメント内温度または冷却水温との差分を求め、それを基に内燃機関の直近の停止からその後の始動までの停止時間の長さを推測する。原則として、直近の停止時の温度と始動時の温度との差分が大きいほど、内燃機関の停止時間が長いものと考えられる。無論、ECU0が、内燃機関の直近の停止からその後の始動までの経過時間を直接に計数しても構わない。 In step S3, ECU 0 obtains the difference between the temperature in the engine compartment or the cooling water temperature when the most recent internal combustion engine is stopped and the temperature in the engine compartment or the cooling water temperature when the engine is started after that, and based on this, obtains the difference between the temperature in the engine compartment or the cooling water temperature. Estimate the length of stop time from the most recent stop to the subsequent start. As a general rule, it is considered that the larger the difference between the temperature at the latest stop and the temperature at the start, the longer the stop time of the internal combustion engine. Of course, the ECU 0 may directly count the elapsed time from the latest stop of the internal combustion engine to the subsequent start.

その上で、内燃機関の始動前の停止時間が長いほど、つまりは始動時における吸気通路3のスロットルバルブ32よりも下流の部位の空気の酸素濃度が低いほど、スロットルバルブ32の開度をより大きく拡開し、及び/または、インジェクタ11からの燃料噴射量をより少なく減量する補正を加える。図5に、内燃機関の停止時間と、ステップS3にてスロットルバルブ32開度及び/または燃料噴射量に加える補正量との関係を示している。内燃機関の停止時間の長さがD未満である場合には、内燃機関の始動遅延または始動不良を招くリスクが低いことから、ステップS3にてスロットルバルブ32開度及び/または燃料噴射量に補正を加える必要はない。 On top of that, the longer the stop time before starting the internal combustion engine, that is, the lower the oxygen concentration of the air in the portion downstream of the throttle valve 32 of the intake passage 3 at the time of starting, the higher the opening degree of the throttle valve 32. A correction is made to widen the valve and / or reduce the fuel injection amount from the injector 11. FIG. 5 shows the relationship between the stop time of the internal combustion engine and the correction amount added to the throttle valve 32 opening and / or the fuel injection amount in step S3. If the length of the internal combustion engine stop time is less than D, there is a low risk of causing an internal combustion engine start delay or start failure. Therefore, the throttle valve 32 opening and / or fuel injection amount is corrected in step S3. There is no need to add.

本実施形態では、内燃機関の停止時及びその後の始動時のエンジンコンパートメント内の温度、内燃機関の停止から始動までの経過時間、内燃機関の停止時及びその後の始動時の冷却水の温度のうちの少なくとも一つに応じて、内燃機関の始動の際のスロットルバルブ32の開度を補正する(ステップS3)ことにより、始動時の吸気通路3内の酸素濃度が低い場合のスロットルバルブ32の開度を、始動時の吸気通路3内の酸素濃度がより高い場合の開度と比較して拡大する内燃機関の制御装置0を構成した。 In the present embodiment, of the temperature in the engine compartment when the internal combustion engine is stopped and when it is started thereafter, the elapsed time from the stop of the internal combustion engine to the start, and the temperature of the cooling water when the internal combustion engine is stopped and when it is started thereafter. By correcting the opening degree of the throttle valve 32 at the time of starting the internal combustion engine according to at least one of (step S3), the throttle valve 32 is opened when the oxygen concentration in the intake passage 3 at the time of starting is low. The control device 0 of the internal combustion engine is configured to increase the degree as compared with the opening degree when the oxygen concentration in the intake passage 3 at the time of starting is higher.

本実施形態によれば、何れかの気筒1がバルブオーバラップ状態となって内燃機関が停止した場合にも、その後の内燃機関の始動を確実に遂行することが可能となる。 According to the present embodiment, even when any of the cylinders 1 is in a valve overlapping state and the internal combustion engine is stopped, it is possible to reliably start the internal combustion engine thereafter.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、内燃機関の始動のためのクランキングの開始後、初爆の遅れを確認した(ステップS2)ことを条件として、クランキング中のスロットルバルブ32開度及び/または燃料噴射量を補正することとしていた。だが、何れかの気筒1がバルブオーバラップ状態となって内燃機関が停止した場合には、初爆の遅れの有無にかかわらず、クランキング中のスロットルバルブ32開度及び/または燃料噴射量を補正するようにしてもよい。 The present invention is not limited to the embodiments described in detail above. For example, in the above embodiment, after the start of cranking for starting the internal combustion engine, the throttle valve 32 opening and / or fuel injection during cranking is confirmed on condition that the delay of the initial explosion is confirmed (step S2). It was supposed to correct the amount. However, when any of the cylinders 1 is in a valve overlapping state and the internal combustion engine is stopped, the throttle valve 32 opening and / or the fuel injection amount during cranking is adjusted regardless of whether or not the initial explosion is delayed. It may be corrected.

その他、各部の具体的構成や処理の内容等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part, the content of the process, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の始動制御に適用することができる。 The present invention can be applied to start control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
12…点火プラグ
3…吸気通路
32…スロットルバルブ
4…排気通路
b…クランク角信号
e…吸気温・吸気圧信号
f…冷却水温信号
g…カム角信号
h…エンジンコンパートメント温度信号
i…点火信号
j…燃料噴射信号
k…開度操作信号
o…クランキング用の電動機の制御信号
0 ... Control unit (ECU)
1 ... Cylinder 11 ... Injector 12 ... Spark plug 3 ... Intake passage 32 ... Throttle valve 4 ... Exhaust passage b ... Crank angle signal e ... Intake temperature / intake pressure signal f ... Cooling water temperature signal g ... Cam angle signal h ... Engine compartment temperature Signal i ... Ignition signal j ... Fuel injection signal k ... Opening operation signal o ... Control signal of electric motor for cranking

Claims (1)

内燃機関の停止時及びその後の始動時のエンジンコンパートメント内の温度、内燃機関の停止から始動までの経過時間、内燃機関の停止時及びその後の始動時の冷却水の温度のうちの少なくとも一つに応じて、内燃機関の始動の際のスロットルバルブの開度を補正することにより、始動時の吸気通路内の酸素濃度が低い場合のスロットルバルブの開度を、始動時の吸気通路内の酸素濃度がより高い場合の開度と比較して拡大する内燃機関の制御装置。 At least one of the temperature in the engine compartment when the internal combustion engine is stopped and then started, the elapsed time from the internal combustion engine stop to the start, and the temperature of the cooling water when the internal combustion engine is stopped and then started. By correcting the opening of the throttle valve at the time of starting the internal combustion engine accordingly, the opening of the throttle valve when the oxygen concentration in the intake passage at the time of starting is low can be adjusted to the oxygen concentration in the intake passage at the time of starting. A control device for an internal combustion engine that expands compared to the opening when is higher.
JP2019032265A 2019-02-26 2019-02-26 Controller of internal combustion engine Pending JP2020133592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019032265A JP2020133592A (en) 2019-02-26 2019-02-26 Controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019032265A JP2020133592A (en) 2019-02-26 2019-02-26 Controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2020133592A true JP2020133592A (en) 2020-08-31

Family

ID=72278103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019032265A Pending JP2020133592A (en) 2019-02-26 2019-02-26 Controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2020133592A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127189A (en) * 2008-11-27 2010-06-10 Honda Motor Co Ltd Control device of internal combustion engine having function for scavenging intake pipe
JP2010164010A (en) * 2009-01-16 2010-07-29 Honda Motor Co Ltd Fuel supply control device for internal combustion engine
JP2013155615A (en) * 2012-01-26 2013-08-15 Daihatsu Motor Co Ltd Control device of internal combustion engine
JP2015117673A (en) * 2013-12-20 2015-06-25 ダイハツ工業株式会社 Control device of internal combustion engine
JP2015183522A (en) * 2014-03-20 2015-10-22 富士重工業株式会社 Engine control device
JP2018105164A (en) * 2016-12-24 2018-07-05 ダイハツ工業株式会社 Device for controlling internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127189A (en) * 2008-11-27 2010-06-10 Honda Motor Co Ltd Control device of internal combustion engine having function for scavenging intake pipe
JP2010164010A (en) * 2009-01-16 2010-07-29 Honda Motor Co Ltd Fuel supply control device for internal combustion engine
JP2013155615A (en) * 2012-01-26 2013-08-15 Daihatsu Motor Co Ltd Control device of internal combustion engine
JP2015117673A (en) * 2013-12-20 2015-06-25 ダイハツ工業株式会社 Control device of internal combustion engine
JP2015183522A (en) * 2014-03-20 2015-10-22 富士重工業株式会社 Engine control device
JP2018105164A (en) * 2016-12-24 2018-07-05 ダイハツ工業株式会社 Device for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
US7841316B2 (en) Controller for direct injection engine
EP1907682B1 (en) Control apparatus for internal combustion engine and engine system
CN100545436C (en) The control apparatus that is used for internal-combustion engine
JPH1068375A (en) Ignition timing control device for cylinder injection type internal combustion engine
JP2015132171A (en) Fuel pressure sensor abnormality determination apparatus
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2016217286A (en) Control device of engine system
JP2019132196A (en) Controller of internal combustion engine
JP2018105164A (en) Device for controlling internal combustion engine
JP2020133592A (en) Controller of internal combustion engine
JP7013090B2 (en) Internal combustion engine control device
JP2000130234A (en) Fuel injection control device for direct injection internal combustion engine
JP6569689B2 (en) Engine equipment
JP2007315309A (en) Fuel injection control device for internal combustion engine
JP6984968B2 (en) Internal combustion engine control device
JP6896331B2 (en) Internal combustion engine control device
JP5786468B2 (en) Control device for internal combustion engine
JP7337585B2 (en) Control device for internal combustion engine
JP7023129B2 (en) Internal combustion engine control device
JP2021134695A (en) Control device of internal combustion engine
JP6646367B2 (en) Control device for internal combustion engine
JP6914592B2 (en) Internal combustion engine control device
JP2021134694A (en) Control device of internal combustion engine
JP2021139315A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230322