JP2020129891A - Rotary electric machine and hoist system using the same for elevator - Google Patents

Rotary electric machine and hoist system using the same for elevator Download PDF

Info

Publication number
JP2020129891A
JP2020129891A JP2019021441A JP2019021441A JP2020129891A JP 2020129891 A JP2020129891 A JP 2020129891A JP 2019021441 A JP2019021441 A JP 2019021441A JP 2019021441 A JP2019021441 A JP 2019021441A JP 2020129891 A JP2020129891 A JP 2020129891A
Authority
JP
Japan
Prior art keywords
electric machine
wedge
rotor
stator
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019021441A
Other languages
Japanese (ja)
Inventor
大祐 郡
Daisuke Koori
大祐 郡
元信 飯塚
Motonobu Iizuka
元信 飯塚
豪希 原
Takeki Hara
豪希 原
雅章 遠藤
Masaaki Endo
雅章 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Products Ltd
Original Assignee
Hitachi Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Products Ltd filed Critical Hitachi Industrial Products Ltd
Priority to JP2019021441A priority Critical patent/JP2020129891A/en
Priority to CN202010058225.8A priority patent/CN111555488A/en
Publication of JP2020129891A publication Critical patent/JP2020129891A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

To provide a rotary electric machine in which deterioration in the cooling performance thereof can be suppressed and furthermore contact between a stator and a rotor is prevented.SOLUTION: A rotary electric machine 100 is constituted of a rotor 1, and a stator 2 arranged oppositely to the rotor in a radial direction at a prescribed space. The rotor has a rotor iron core 3, and a plurality of permanent magnets 5 are arranged on an outer peripheral side of the rotor iron core while changing polarity. The stator has a stator iron core 4 and a stator coil 6, a teeth 10 and a slot 11 in which a stator coil is arranged are alternately formed in the peripheral direction of the stator iron core. A wedge 12 for preventing the stator coil from dropping to inner diameter side is provided at each of the inner diameter side of the slot. A part of the wedge arranged in each inner diameter side of the slot is projected to the inside from each inner diameter surface of the teeth to be thereby formed as a wedge projection 8a, and the wedge projections are arranged at a plurality of positions in an axial direction and a peripheral direction of the stator iron core.SELECTED DRAWING: Figure 1

Description

本発明は回転電機及びこれを用いたエレベーター用巻上げ機システムに関する。 The present invention relates to a rotating electric machine and an elevator hoisting system using the same.

エレベーター用の回転電機としては、これまで誘導電動機が用いられてきたが、近年、永久磁石の低価格化や高性能なインバータの普及により、小型軽量化、高効率化を可能とする永久磁石式回転電機を採用する気運が高まっている。 Induction motors have been used as rotating electrical machines for elevators, but in recent years, permanent magnet type motors have become possible that are smaller, lighter, and more efficient due to the cost reduction of permanent magnets and the spread of high-performance inverters. Motivation to adopt a rotating electric machine is increasing.

エレベーターは,車や電車と同様に、人が搭乗するため乗り心地の良さが求められる。乗り心地を悪化させる要因としては、回転電機から発生するトルクリプルが挙げられる。また、エレベータシステムとしても、特に高速、大質量型のシステムの場合、回転電機とギアが接続されるため、トルクリプルによりギアの信頼性を低下させることになる。 Elevators, like cars and trains, are required to have good riding comfort because people board them. Torque ripple generated from the rotating electric machine is a factor that deteriorates the riding comfort. Further, also in the case of an elevator system, particularly in the case of a high-speed, large-mass type system, since the rotating electric machine and the gear are connected, torque ripple reduces the reliability of the gear.

トルクリプルを低減するために、回転電機における回転子構造は、永久磁石を回転子鉄心の表面に配置する表面磁石型の回転子構造が採用される。 In order to reduce torque ripple, a rotor structure of a rotating electric machine employs a surface magnet type rotor structure in which permanent magnets are arranged on the surface of a rotor core.

回転電機自体の回転速度はギアと接続するため数百min−1オーダーであるため、回転電機としては比較的、低回転速度となる。 Since the rotating speed of the rotating electric machine itself is on the order of several hundreds of min −1 because it is connected to a gear, the rotating electric machine has a relatively low rotating speed.

回転電機の出力は角速度とトルクの積になるため、低回転速度の回転電機の場合、高回転速度の回転電機に対して同出力を得るには大トルクが必要となる。この場合、トルクを稼ぐため回転子は大径化する。大径化した表面磁石型回転子の組立ては、小型の回転電機より困難になる。特に、表面磁石型回転子が大径化すると磁石の量が多くなり、磁気吸引力が大になるため、回転子を固定子に挿入する作業は、回転子の磁気吸引力により固定子に接触する可能性が高くなり、表面磁石型回転子の組立てが難しくなる。 Since the output of the rotating electric machine is the product of the angular velocity and the torque, in the case of the rotating electric machine of low rotation speed, a large torque is required to obtain the same output with respect to the rotating electric machine of high rotation speed. In this case, the rotor has a large diameter to generate torque. It is more difficult to assemble a surface magnet type rotor having a larger diameter than a small rotating electric machine. In particular, when the surface magnet type rotor has a large diameter, the amount of magnets increases and the magnetic attraction force increases, so when inserting the rotor into the stator, the magnetic attraction force of the rotor makes contact with the stator. And the assembling of the surface magnet type rotor becomes difficult.

回転子の磁気吸引力により固定子に接触する可能性が高くなり、これにより、回転子に破損や変形が生じることになるため、回転子を保護することが必要となる。 The magnetic attraction force of the rotor increases the possibility of contact with the stator, which causes damage or deformation of the rotor, and thus requires protection of the rotor.

回転子の保護方法で一般的なのは、回転子の外表面に金属管、樹脂、炭素繊維等で覆う構造である。この保護方法は、回転子の保護としては有効な構造ではあるが、製造工数、コストの増加が問題となる。 A common rotor protection method is a structure in which the outer surface of the rotor is covered with a metal tube, resin, carbon fiber or the like. Although this protection method has an effective structure for protecting the rotor, it poses a problem of increase in manufacturing man-hours and cost.

一方、固定子側で回転子を保護する構造も検討されており、例えば特許文献1が挙げられる。 On the other hand, a structure for protecting the rotor on the side of the stator has also been studied, for example, Patent Document 1.

特許文献1には、固定子鉄心のスロット内に固定子巻線を装着した状態で、熱伝導性を有する電気絶縁部材を、前記固定子巻線の前記固定子鉄心から軸方向両方向に突出したコイルエンド部に充填し、前記電気絶縁部材によって前記コイルエンド部をモールドするにあたり、前記電気絶縁部材を前記固定子鉄心の内周面側に充填し、前記電気絶縁部材によって前記固定子鉄心の内周面側をモールドすることが記載されている。 In Patent Document 1, an electrically insulating member having thermal conductivity is projected in both axial directions from the stator core of the stator winding in a state where the stator winding is mounted in the slot of the stator core. When filling the coil end portion and molding the coil end portion with the electric insulating member, the electric insulating member is filled on the inner peripheral surface side of the stator core, and the electric insulating member is used to fill the inside of the stator core. It is described that the peripheral surface side is molded.

特開2005−328689号公報JP, 2005-328689, A

特許文献1には、固定子に配置されたコイルを固定するために、電気絶縁部材を充填しやすくするための構造が開示されている。この特許文献1の構造の場合、電気絶縁部材を充填することから樹脂等によりモールドすることになるが、固定子の内周面に沿って充填され、回転子保護の観点からは固定子内周を全周覆う方が有利である。 Patent Document 1 discloses a structure for facilitating filling of an electrically insulating member in order to fix a coil arranged on a stator. In the case of the structure of Patent Document 1, the electric insulating member is filled, and therefore, it is molded with resin or the like. However, the electric insulating member is filled along the inner peripheral surface of the stator, and from the viewpoint of protecting the rotor, the inner peripheral surface of the stator is reduced. It is advantageous to cover the entire circumference.

しかしながら、この特許文献1の構造の場合、樹脂等によりモールドするため、回転子と固定子間のギャップ面積を狭めることになる。また、電気絶縁部材を適用しているため、電磁気的な影響は小さいと考えられるが、冷却方式を通風冷却としている回転電機に対しては不利となる。 However, in the case of the structure of Patent Document 1, since the resin is molded, the gap area between the rotor and the stator is narrowed. Further, since the use of the electric insulating member is considered to have a small electromagnetic effect, it is disadvantageous for the rotating electric machine in which the cooling method is ventilation cooling.

また、通風冷却にて回転電機を冷却する場合、効果的に冷却する手段は回転子と固定子のギャップ部に冷媒を多く流すことであるが、上述した特許文献1のように、固定子内周を電気絶縁部材で覆う構造は、通風面積を縮小することとなる。つまり、通風抵抗が大きくなり冷媒が流れにくくなることを意味する。 Further, when cooling the rotating electric machine by ventilation cooling, an effective cooling means is to flow a large amount of refrigerant in the gap portion between the rotor and the stator. The structure in which the circumference is covered with the electrically insulating member reduces the ventilation area. That is, it means that the ventilation resistance is increased and the refrigerant is hard to flow.

上述したように、永久磁石を適用し回転電機を小型化にすれば、同時に発熱密度も増加することになる。回転電機として成立させるには、冷却性能の低下は致命的であると言える。また、固定子内周をモールド等の樹脂で充填し覆う場合、専用の治具、空孔を防止するために真空中で充填する必要があるため、真空中の充填に大型の設備が必要となり製造工数、コストが過大となる。 As described above, when the permanent magnet is applied to reduce the size of the rotating electric machine, the heat generation density is increased at the same time. It can be said that the reduction in cooling performance is fatal in order to be established as a rotary electric machine. Also, when filling and covering the inner circumference of the stator with resin such as a mold, it is necessary to fill in a dedicated jig and in a vacuum to prevent holes, so large equipment is required for filling in a vacuum. Manufacturing man-hours and costs will be excessive.

このようなことから、製造工数、コストを低減することは勿論、回転電機の冷却性能低下を抑制しつつ、回転子と固定子の接触を防止する構造が必要となる。 For this reason, it is necessary to reduce the manufacturing man-hours and costs, and to prevent the rotor and the stator from coming into contact with each other while suppressing the deterioration of the cooling performance of the rotating electric machine.

本発明は上述の点に鑑みなされたもので、その目的とするところは、製造工数、コストを低減することは勿論、冷却性能低下を抑制しつつ、回転子と固定子の接触を防止することができる回転電機及びこれを用いたエレベーター用巻上げ機システムを提供することにある。 The present invention has been made in view of the above points, and an object thereof is to prevent contact between the rotor and the stator while suppressing reduction in cooling performance as well as reduction in manufacturing man-hours and cost. (EN) Provided is a rotating electric machine capable of performing the above and an elevator hoisting system using the same.

本発明の回転電機は、上記目的を達成するために、回転子と、該回転子と径方向に所定の間隙をもって対向配置された固定子とから成り、前記回転子は回転子鉄心を有し、前記回転子鉄心の外周側に、複数の永久磁石が周方向に極性を変えながら配置され、前記固定子は固定子鉄心及び固定子コイルを有し、前記固定子鉄心の周方向にはティースと、前記固定子コイルが配置されるスロットとが交互に形成され、前記スロットの各々の内径側には、前記固定子コイルの内径側への脱落を防止する楔が設けられている回転電機であって、前記スロットの各々の内径側に配置されている前記楔の一部は、前記ティースの内径面よりも内側に突出して形成され、前記楔の突出部は、前記固定子鉄心の軸方向と周方向に複数個所配置されていることを特徴とする。 In order to achieve the above object, the rotating electrical machine of the present invention comprises a rotor and a stator that is arranged to face the rotor with a predetermined gap in the radial direction, and the rotor has a rotor core. , A plurality of permanent magnets are arranged on the outer peripheral side of the rotor core while changing the polarity in the circumferential direction, the stator has a stator core and a stator coil, and teeth are provided in the circumferential direction of the stator core. And a slot in which the stator coil is arranged are alternately formed, and a wedge is provided on each inner diameter side of the slot to prevent the stator coil from falling off to the inner diameter side. And a part of the wedge arranged on the inner diameter side of each of the slots is formed so as to protrude inward from the inner diameter surface of the tooth, and the protrusion of the wedge is formed in the axial direction of the stator core. And a plurality of locations are arranged in the circumferential direction.

また、本発明のエレベーター用巻上げ機システムは、上記目的を達成するために、シーブを備える巻上げ機と、前記シーブに接続された回転電機とを備えたエレベーター用巻上げ機システムであって、前記回転電機は、上記構成の回転電機であることを特徴とする。 Further, in order to achieve the above object, the elevator hoisting system of the present invention is an elevator hoisting system including a hoisting machine having a sheave and a rotating electric machine connected to the sheave, The electric machine is a rotating electric machine having the above configuration.

本発明によれば、製造工数、コストを低減することは勿論、冷却性能低下を抑制しつつ、回転子と固定子の接触を防止することができる。 According to the present invention, it is possible to prevent contact between the rotor and the stator while suppressing a decrease in cooling performance as well as reducing manufacturing man-hours and costs.

本発明の回転電機の実施例1における回転子と固定子を示す1/8断面図である。It is a 1/8 sectional view which shows the rotor and stator in Example 1 of the rotary electric machine of this invention. 図1のA−A´線に沿った断面図である。FIG. 2 is a sectional view taken along the line AA′ of FIG. 1. 本発明の回転電機の実施例1の概略構成を示す軸方向断面図である。It is an axial sectional view showing the schematic structure of Example 1 of the rotary electric machine of the present invention. 本発明の回転電機の実施例1における突楔の突出部周方向配置数と冷媒流量の関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between the number of protrusion wedges arranged in the circumferential direction and the refrigerant flow rate in the first embodiment of the rotating electric machine of the present invention. 本発明の回転電機の実施例2の概略構成を示す軸方向部分断面図である。It is an axial direction partial sectional view showing a schematic structure of Example 2 of a rotary electric machine of the present invention. 発明の回転電機の実施例2における突楔の形状と冷媒流量の関係を示す説明図である。It is explanatory drawing which shows the relationship of the shape of a protrusion wedge and refrigerant|coolant flow rate in Example 2 of the rotary electric machine of invention. 本発明の回転電機の実施例3における固定子を示す部分断面図である。It is a fragmentary sectional view showing the stator in Example 3 of the rotary electric machine of the present invention. 本発明の回転電機の実施例4における突楔の材料と衝撃強さの関係を示す説明図である。It is explanatory drawing which shows the relationship between the material of the protrusion wedge and impact strength in Example 4 of the rotary electric machine of this invention. 本発明の回転電機の実施例5における固定子を示す部分断面図である。It is a partial cross section figure which shows the stator in Example 5 of the rotary electric machine of this invention. 本発明の回転電機の実施例6における固定子を示す部分断面図である。It is a partial cross section figure which shows the stator in Example 6 of the rotary electric machine of this invention. 本発明の実施例7として、エレベーター用巻上げ機システムの一例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of an example of the elevator hoisting machine system as Example 7 of this invention. 本発明の実施例7として、エレベーター用巻上げ機システムの他の例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the other example of the elevator winding machine system as Example 7 of this invention.

以下、図示した実施例に基づいて本発明の回転電機及びこれを用いたエレベーター用巻上げ機システムを説明する。なお、各実施例において、同一構成部分には同符号を使用する。 Hereinafter, a rotating electric machine of the present invention and an elevator hoisting system using the same will be described based on the illustrated embodiments. In each embodiment, the same reference numerals are used for the same components.

図1及び図2に、本発明の回転電機の実施例1を示す。図1は、本発明の回転電機の実施例1における回転子と固定子を示す1/8断面図であり、図2は、図1のA−A´線に沿った断面図である
図1及び図2に示す本実施例の回転電機100は、主にエレベーターの巻上げ機用に使用する回転電機で、出力は数百kW、回転速度は数百min−1クラスの回転電機100であり、高速及び大荷重用に適用される。
Example 1 of the rotary electric machine of this invention is shown in FIG.1 and FIG.2. 1 is a 1/8 sectional view showing a rotor and a stator in a rotating electric machine according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view taken along the line AA′ in FIG. The rotary electric machine 100 of the present embodiment shown in FIG. 2 is a rotary electric machine mainly used for elevator hoisting machines, and has an output of several hundred kW and a rotational speed of several hundred min −1 class. Applied for high speed and heavy loads.

図1及び図2に示すように、本実施例の回転電機100は、回転子1と、この回転子1と径方向に所定の間隙(ギャップ7)をもって対向配置された固定子2とから成り、回転子1は回転子鉄心3を有し、回転子鉄心3の外周側には、複数の永久磁石5が周方向に極性を変えながら配置され、一方、固定子2は固定子鉄心4及び固定子コイル6を有し、固定子鉄心4の周方向にはティース10と、固定子コイル6が配置されるスロット11とが交互に形成され、スロット11の各々の内径側には、固定子コイル6の内径側への脱落を防止する楔12が設けられている。 As shown in FIGS. 1 and 2, a rotary electric machine 100 of the present embodiment includes a rotor 1 and a stator 2 that is arranged to face the rotor 1 with a predetermined gap (gap 7) in the radial direction. The rotor 1 has a rotor core 3, and a plurality of permanent magnets 5 are arranged on the outer peripheral side of the rotor core 3 while changing the polarities in the circumferential direction, while the stator 2 has a stator core 4 and A stator coil 6 is provided, and teeth 10 and slots 11 in which the stator coils 6 are arranged are alternately formed in the circumferential direction of the stator core 4, and the stator is provided on the inner diameter side of each slot 11. A wedge 12 is provided to prevent the coil 6 from falling off toward the inner diameter side.

具体的には、永久磁石5は回転子鉄心3の外側に配置され、表面磁石型回転子を構成している。図1及び図2では、回転子1が固定子2に配置された状態の図であるが、実際に組み立てる場合は、回転子1を軸方向から固定子2に挿入することになる。この時、回転子1は着磁済みの永久磁石5が組み込まれているため、永久磁石5から発生する磁束により磁気吸引力が発生することになる。 Specifically, the permanent magnet 5 is arranged outside the rotor core 3 and constitutes a surface magnet type rotor. 1 and 2 show the state in which the rotor 1 is arranged on the stator 2, but when actually assembling, the rotor 1 is inserted into the stator 2 from the axial direction. At this time, since the rotor 1 has the magnetized permanent magnet 5 incorporated therein, magnetic attraction force is generated by the magnetic flux generated from the permanent magnet 5.

つまり、回転子1は固定子2へ挿入され軸受9(図3参照)等で固定されない限り、磁気吸引力の影響により磁性材料と接触する可能性が高くなる。この回転子1の挿入作業の時が最も、回転子1と固定子2が接触する可能性が高いと言える。 That is, unless the rotor 1 is inserted into the stator 2 and fixed by the bearing 9 (see FIG. 3) or the like, there is a high possibility that the rotor 1 will come into contact with the magnetic material due to the influence of the magnetic attraction force. It can be said that the rotor 1 and the stator 2 are most likely to come into contact with each other during the insertion work of the rotor 1.

特に、上記した[背景技術]で記載したように、本実施例の回転子1も大型であるため、回転子1と固定子2が接触したときの回転子1の変形、破損の影響が大きくなる。 In particular, as described in the above-mentioned [Background Art], the rotor 1 of this embodiment is also large in size, so that the deformation and damage of the rotor 1 when the rotor 1 and the stator 2 come into contact with each other are large. Become.

そこで、本実施例では、スロット11の内径側に配置されている楔12の一部を、図2に示すように、ティース10の内径面よりも内側に突出させた突楔8aとし、この突楔8aを固定子鉄心4の軸方向と周方向に複数個(本実施例では、軸方向には二ヶ所、周方向には三ヶ所)配置し、しかも、突楔8aに非磁性材料を適用している。 Therefore, in this embodiment, a part of the wedge 12 arranged on the inner diameter side of the slot 11 is used as a protruding wedge 8a that is protruded inward from the inner diameter surface of the tooth 10 as shown in FIG. A plurality of wedges 8a are arranged in the axial direction and the circumferential direction of the stator core 4 (in this embodiment, two locations in the axial direction and three locations in the circumferential direction), and a non-magnetic material is applied to the projecting wedge 8a. doing.

このように構成することで、回転子1と固定子2(厳密にはティース10の内径側先端)との接触を防止することが可能となる。 With this configuration, it is possible to prevent contact between the rotor 1 and the stator 2 (strictly speaking, the inner diameter side tips of the teeth 10).

そもそも、楔12を配置する目的は、スロット11に収められた固定子コイル6が内径側に脱落しないようにすることである。即ち、回転子1の接触の有無に限らず、固定子2を成立さるために必要な部品である。 In the first place, the purpose of disposing the wedge 12 is to prevent the stator coil 6 housed in the slot 11 from falling off toward the inner diameter side. That is, it is a component necessary for establishing the stator 2 regardless of whether or not the rotor 1 is in contact.

このことから、楔12の一部を内径側に突出させた突楔8aとしても、製造過程、工数、コストへの影響はほとんど無い。よって、容易に回転子1を保護することができる。 From this, even if the protruding wedge 8a is formed by protruding a part of the wedge 12 toward the inner diameter side, there is almost no influence on the manufacturing process, man-hours and cost. Therefore, the rotor 1 can be easily protected.

ところで、図1では、突楔8aが1箇所のみ図示されており、その他のスロット11に配置されている楔12は、通常の楔12としている。図1は回転子1、固定子2の対称性を考慮し1/8断面としているが、本実施例での突楔8aは、対称性に限定されるものではない。 By the way, in FIG. 1, only one protruding wedge 8a is shown, and the wedges 12 arranged in the other slots 11 are normal wedges 12. Although FIG. 1 has a 1/8 cross section in consideration of the symmetry of the rotor 1 and the stator 2, the protruding wedge 8a in the present embodiment is not limited to the symmetry.

つまり、突楔8aは、回転子1と固定子2の接触を防止することが目的であるため、必要最小限の周方向の配置数は3箇所でよい。突楔8aの周方向に配置する理想位置は120°ピッチとなる。無論、この突楔8aを設ける個数は、回転子1の形状等に合わせて、3箇所以上としても良い。 That is, since the projection wedge 8a is intended to prevent the rotor 1 and the stator 2 from coming into contact with each other, the minimum necessary number of circumferentially arranged protrusions 8a may be three. The ideal positions of the protruding wedges 8a arranged in the circumferential direction are 120° pitch. Of course, the number of the protruding wedges 8a to be provided may be three or more depending on the shape of the rotor 1 and the like.

次に、図2を用いて軸方向の突楔8aを設ける位置について説明する。 Next, the position where the axial protruding wedge 8a is provided will be described with reference to FIG.

上述したように、突楔8aは、回転子1と固定子2の接触を防止することが目的であるため、必要最小限の軸方向の配置数は2箇所でよい。突楔8aを配置する理想位置は、固定子2の軸方向両端部となる。無論、軸方向に設ける突楔8aの個数は、回転子1の撓みや形状を考慮して、2箇所以上としても良い。 As described above, since the projecting wedge 8a is intended to prevent the rotor 1 and the stator 2 from coming into contact with each other, the minimum necessary number of axially arranged elements may be two. The ideal positions for arranging the protruding wedges 8a are both axial ends of the stator 2. Of course, the number of the protruding wedges 8a provided in the axial direction may be two or more in consideration of the bending and the shape of the rotor 1.

次に、本実施例の構成における冷却性能との関係について、図3を用いて説明する。図3は、実施例1の回転電機100の軸方向断面図を示す。 Next, the relationship with the cooling performance in the configuration of this embodiment will be described with reference to FIG. FIG. 3 shows an axial sectional view of the rotary electric machine 100 of the first embodiment.

図3に示すように、固定子2はフレーム13に固定され、フレーム13の軸方向端部には、ファン14が配置されている。ファン14にて冷媒15が回転子1と固定子2間のギャップ7の軸方向に流れ、冷媒出口16を通り大気へ解放される。 As shown in FIG. 3, the stator 2 is fixed to the frame 13, and a fan 14 is arranged at the axial end of the frame 13. In the fan 14, the refrigerant 15 flows in the axial direction of the gap 7 between the rotor 1 and the stator 2, passes through the refrigerant outlet 16 and is released to the atmosphere.

ここで、本実施例における突楔8aの周方向の配置数と冷媒流量の関係を、図4を用いて説明する。 Here, the relationship between the number of circumferentially arranged protruding wedges 8a and the refrigerant flow rate in this embodiment will be described with reference to FIG.

図4は、本実施例の回転電機100における突楔8aの突出部の周方向配置数と冷媒流量の関係を示す特性図である。 FIG. 4 is a characteristic diagram showing the relationship between the number of circumferentially arranged protruding portions of the protruding wedges 8a and the refrigerant flow rate in the rotary electric machine 100 of the present embodiment.

図4では、突楔8aが無い楔12だけの時の冷媒流量を1.0と規格化している。また、突楔8aの径方向内径側の突出長さは、ギャップ7の幅の1/2と統一している。 In FIG. 4, the refrigerant flow rate when only the wedge 12 without the protruding wedge 8a is standardized to 1.0. Further, the protruding length of the protruding wedge 8a on the radially inner side is unified with 1/2 of the width of the gap 7.

図4に示すように、突楔8aの配置数が多くなると冷媒流量は低下していくことがわかる。また、突楔8aの周方向の配置数を3箇所(120°ピッチ)とした場合、風量の低下は僅かであるため、冷却性能の低下はほとんど無いと言える。 As shown in FIG. 4, it can be seen that the coolant flow rate decreases as the number of the protruding wedges 8a arranged increases. Further, when the number of protrusion wedges 8a arranged in the circumferential direction is three (120° pitch), it can be said that there is almost no decrease in cooling performance because the decrease in air flow is slight.

一方、突楔8aをスロット数の1/2配置した場合(1スロットおき)、冷媒流量は約15%低下し、特許文献1のように全周覆った場合は約半分となる。 On the other hand, when the protruding wedges 8a are arranged in half the number of slots (every other slot), the refrigerant flow rate is reduced by about 15%, and when the entire circumference is covered as in Patent Document 1, it is about half.

このことから、突楔8aの配置数を増やすと冷却性能が低下していく。よって、回転子1と固定子2の接触防止と冷却性能の維持には、上述したように、突楔8aを最小配置数は3箇所が理想である。 For this reason, the cooling performance decreases as the number of the protruding wedges 8a arranged increases. Therefore, in order to prevent the contact between the rotor 1 and the stator 2 and maintain the cooling performance, it is ideal that the minimum number of the protruding wedges 8a is three, as described above.

なお、本実施例の回転電機100の冷却構造は、ファン14により冷媒15を回転電機100の外部へ放出する開放型構造であるが、ファン14を回転電機100の内部に設け、冷媒15も回転電機100内を循環させる、全閉型構造の回転電機でも同様の冷却性能となる。 Although the cooling structure of the rotating electric machine 100 of the present embodiment is an open type structure in which the fan 14 discharges the refrigerant 15 to the outside of the rotating electric machine 100, the fan 14 is provided inside the rotating electric machine 100 and the refrigerant 15 also rotates. The same cooling performance can be obtained even in the rotating electric machine having a fully closed structure that circulates in the electric machine 100.

このようなことから、本実施例によれば、冷却構造に関係なく回転子1と固定子2の接触防止と冷却性能の維持を図ることが可能となる。また、冷媒流量と突楔8aの周方向配置数を示した図3では、上述したように、突楔8aの径方向内径側の突出長さはギャップ7の幅の1/2としているが、ギャップ7の幅とほぼ同等の突出長さにした方が、回転子1と固定子2の接触防止は、より回避しやすくなる。 Therefore, according to this embodiment, it is possible to prevent contact between the rotor 1 and the stator 2 and maintain the cooling performance regardless of the cooling structure. Further, in FIG. 3 showing the refrigerant flow rate and the number of circumferentially arranged protruding wedges 8a, as described above, the protruding length of the protruding wedge 8a on the radially inner diameter side is 1/2 of the width of the gap 7. It is easier to avoid contact between the rotor 1 and the stator 2 if the protrusion length is substantially equal to the width of the gap 7.

しかしながら、回転子1と固定子2の接触防止は、より回避しやすくなるが、回転子1が回転した時の撓み等で回転中に接触する可能性があるので、適切な突出量にすることが好ましい。例えば、回転子1の撓み量がギャップ7の幅の10%以下であれば、図3に示すように、突楔8aの径方向内径側の突出長さをLrとしギャップ7の幅をgとすると、突楔8aの突出部の径方向内径側の突出長さLrは、固定子2と回転子1間のギャップ7の幅gよりも小さいこと、具体的には、突楔8aの径方向内径側の突出長さLrは、Lr<g×0.9とするべきである。つまり、回転子1の撓み量を考慮して、突楔8aの径方向内径側の突出長さLrを設定する必要がある。 However, prevention of contact between the rotor 1 and the stator 2 is easier to avoid, but there is a possibility of contact during rotation due to bending when the rotor 1 rotates, so an appropriate protrusion amount should be used. Is preferred. For example, if the amount of flexure of the rotor 1 is 10% or less of the width of the gap 7, as shown in FIG. 3, the protruding length of the protruding wedge 8a on the radially inner side is Lr, and the width of the gap 7 is g. Then, the protrusion length Lr of the protruding portion of the protruding wedge 8a on the radially inner side is smaller than the width g of the gap 7 between the stator 2 and the rotor 1, specifically, the protruding direction of the protruding wedge 8a in the radial direction. The protrusion length Lr on the inner diameter side should be Lr<g×0.9. That is, it is necessary to set the protrusion length Lr of the protrusion wedge 8a on the radially inner side in consideration of the bending amount of the rotor 1.

本実施例で示した、回転電機100は極数56極、スロット数72であるが、他の極数、スロット数としても本発明の効果は得られる。また、固定子コイル6の巻線方式は集中巻としているが、その他の巻線方式としても問題無い。 Although the rotating electrical machine 100 shown in this embodiment has 56 poles and 72 slots, the effects of the present invention can be obtained with other poles and slots. Further, the winding method of the stator coil 6 is concentrated winding, but there is no problem with other winding methods.

以上説明した本実施例によれば、製造工数、コストを低減することは勿論、冷却性能低下を抑制しつつ、回転子1と固定子2の接触を防止することができる。 According to the present embodiment described above, it is possible to prevent the rotor 1 and the stator 2 from coming into contact with each other while suppressing the reduction of cooling performance as well as the reduction of manufacturing man-hours and costs.

図5に、本発明の回転電機100の実施例2を示す。 Example 2 of Example 2 of the rotary electric machine 100 of this invention is shown in FIG.

図5に示すように、本実施例の回転電機100は、冷媒15が流入する固定子2の端面の突楔8bの形状を、突楔8bの軸方向端部から軸方向中心(図5の右方向)に向かって漸増するように、即ち、突楔8bは、軸方向端部が最も細く、ここから軸方向中心に向かって漸増するように形成されている。これは、見方を変えれば、突楔8bは、外径側から内径側(図5の上から下)に向って順次細くなる三角形状に形成されていることでもある。他の構成は、実施例1と同様である。 As shown in FIG. 5, in the rotary electric machine 100 of the present embodiment, the shape of the protruding wedge 8b on the end surface of the stator 2 into which the refrigerant 15 flows is determined from the axial end of the protruding wedge 8b to the axial center (see FIG. 5). The protruding wedge 8b is formed so as to gradually increase in the right direction), that is, the end portion in the axial direction is thinnest, and the protruding wedge 8b gradually increases toward the center in the axial direction. This means that, from a different point of view, the protruding wedge 8b is formed in a triangular shape that gradually becomes thinner from the outer diameter side toward the inner diameter side (from top to bottom in FIG. 5). Other configurations are similar to those of the first embodiment.

突楔8bは、図5に矢印で示すように、冷媒15がギャップ7に流入していく流入口となるため、ギャップ7に流入していく冷媒15の流量への影響が大きくなる。 As shown by the arrow in FIG. 5, the projecting wedge 8b serves as an inflow port for the refrigerant 15 to flow into the gap 7, so that the flow rate of the refrigerant 15 flowing into the gap 7 is greatly affected.

図6に、図5に示した突楔8bの形状の違いによる、冷媒流量の関係を示している。 FIG. 6 shows the relationship between the refrigerant flow rates depending on the shape of the protruding wedge 8b shown in FIG.

図6に示す「無し」が突楔8bに、軸方向端部から軸方向中心に向かって漸増する漸増部が無い形状を示しており、その時の流量を1.0と規格化している。また、図6に示すように、突楔8bに、軸方向端部から軸方向中心に向かって漸増する漸増部を設けることで、風量が約1.3倍増加していることが分かる。 “None” shown in FIG. 6 indicates a shape in which the protruding wedge 8b has no gradually increasing portion that gradually increases from the axial end portion toward the axial center, and the flow rate at that time is standardized to 1.0. Further, as shown in FIG. 6, it is understood that the air volume is increased by about 1.3 times by providing the projecting wedge 8b with the gradually increasing portion that gradually increases from the axial end portion toward the axial center.

これは、流体の流入面の損失が形状により大きく変化し、突楔8bに、軸方向端部から軸方向中心に向かって漸増する漸増部を形成することで損失が低減するためである。 This is because the loss of the inflow surface of the fluid largely changes depending on the shape, and the projecting wedge 8b is formed with a gradually increasing portion that gradually increases from the axial end portion toward the axial center, thereby reducing the loss.

本実施例の突楔8bの形状にすることで、図4に示した突楔8aを適用しない場合の冷媒流量との差は更に小さくなると言える。 It can be said that by adopting the shape of the projecting wedge 8b of the present embodiment, the difference from the refrigerant flow rate when the projecting wedge 8a shown in FIG. 4 is not applied is further reduced.

よって、本実施例の突楔8bの形状を適用することで、回転子1と固定子2の接触防止と更なる冷却性能の維持を図ることが可能となる。 Therefore, by applying the shape of the protruding wedge 8b of the present embodiment, it is possible to prevent contact between the rotor 1 and the stator 2 and further maintain cooling performance.

図7に、本発明の回転電機100の実施例3を示す。 FIG. 7 shows a rotating electric machine 100 according to a third embodiment of the present invention.

図7に示すように、本実施例では、突楔8aを径方向に2分割しており、内径側を非磁性材の突楔8aとし、外径側を磁性楔17としている。他の構成は、実施例1と同様である。 As shown in FIG. 7, in this embodiment, the projecting wedge 8a is divided into two in the radial direction, the inner diameter side is the non-magnetic material projecting wedge 8a, and the outer diameter side is the magnetic wedge 17. Other configurations are similar to those of the first embodiment.

本実施例のように、突楔8aを径方向に2分割し外径側を磁性楔17にすることで、スロットリップルによる影響を低減することができる。スロットリップルの影響は、主にトルクリプルや損失に関係することから、スロットリップルによる影響が低減されれば、回転電機100の性能を向上につながる。 As in the present embodiment, the projecting wedge 8a is divided into two in the radial direction and the outer diameter side is made the magnetic wedge 17, so that the influence of the slot ripple can be reduced. Since the influence of the slot ripple is mainly related to the torque ripple and the loss, if the influence of the slot ripple is reduced, the performance of the rotary electric machine 100 will be improved.

このような本実施例とすることにより、実施例1と同様な効果が得られることは勿論、トルクリプルや損失を低減できるため、回転電機100の性能を向上することができる。 With this embodiment, the same effects as those of the first embodiment can be obtained, and the torque ripple and the loss can be reduced, so that the performance of the rotary electric machine 100 can be improved.

図8に、本発明の回転電機100の実施例4における突楔8aの材料の衝撃強さを比較して示す。 FIG. 8 shows the impact strength of the material of the protruding wedge 8a in the fourth embodiment of the rotary electric machine 100 of the present invention in comparison.

上述した実施例1では、突楔8aは、回転子1と固定子2の接触を防止するために、非磁性材料が前提になることを説明した。 In the above-described first embodiment, it has been described that the protruding wedge 8a is premised on the non-magnetic material in order to prevent the contact between the rotor 1 and the stator 2.

しかしながら、非磁性材料としては金属(アルミニウム、銅)、樹脂、プラスチック等が挙げられるが、突楔8aの目的は、上述したように、回転子1と固定子2の接触及び固定子コイル6の脱落防止である。つまり、回転電機100の主性能となる出力、効率等には、一切関係しないことになる。 However, examples of the non-magnetic material include metals (aluminum, copper), resin, plastic, etc. The purpose of the protruding wedge 8a is, as described above, the contact between the rotor 1 and the stator 2 and the stator coil 6. It is a fallout prevention. That is, the output, efficiency, etc., which are the main performances of the rotary electric machine 100, have nothing to do with it.

更に、突楔8aの突部に限定して言えば、実施例1−3で示している形状を必ずしも維持するが必要ないことになる。つまり、突楔8aの突部が、回転子1と接触して変形や破損しても良いことになる(回転電機100の主性能となる出力、効率等の観点から、回転子1が変形や破損するよりも、突楔8aの突部が回転子1と接触して変形や破損しても良い)。 Further, if it is limited to the protruding portion of the protruding wedge 8a, it is not always necessary to maintain the shape shown in the embodiment 1-3. That is, the protrusions of the protruding wedge 8a may come into contact with the rotor 1 to be deformed or damaged (from the viewpoint of output and efficiency, which are main performances of the rotating electric machine 100, the rotor 1 may be deformed or damaged). Rather than damage, the protrusions of the protruding wedges 8a may come into contact with the rotor 1 to be deformed or damaged).

ここで、回転子1の表面は、一般的にはほとんどが金属である。この場合、突楔8aの突部は、上述した理由から、非磁性材で、かつ、金属よりも柔らかく、脆い材料を適用した方が良いと言える。即ち、突楔8aの突出部の硬さは、回転子1の表面の硬さよりも柔らかい方が良いと言える。 Here, the surface of the rotor 1 is generally mostly metal. In this case, it can be said that it is better to apply a non-magnetic material, which is softer than metal and brittle, to the projection of the projection wedge 8a for the reason described above. That is, it can be said that the hardness of the protruding portion of the protruding wedge 8a is preferably softer than the hardness of the surface of the rotor 1.

このことから、図8に示すように、回転子1の表面を鉄とした場合、突楔8aの突出部を樹脂にすれば、衝撃強さは鉄の約5%程になるため、回転子1の変形、破損を防止することができる。 From this, as shown in FIG. 8, when the surface of the rotor 1 is made of iron, if the protruding portion of the protruding wedge 8a is made of resin, the impact strength becomes about 5% of that of iron. It is possible to prevent the deformation and damage of No. 1.

よって、突楔8aの突出部の材料は、回転子1の表面の材料よりも非磁性で柔らかい材料にする方が好ましい。 Therefore, it is preferable that the material of the protruding portion of the protruding wedge 8a is a non-magnetic and soft material than the material of the surface of the rotor 1.

図9に、本発明の回転電機100の実施例5を示す。 Example 5 of the rotary electric machine 100 of this invention is shown in FIG.

図9に示すように、本実施例では、突楔8cの突出部の周方向幅をスロット11の周方向幅よりも大きくしている。他の構成は、実施例1と同様である。 As shown in FIG. 9, in this embodiment, the circumferential width of the projecting portion of the projecting wedge 8c is larger than the circumferential width of the slot 11. Other configurations are similar to those of the first embodiment.

このような本実施例の構成とすることで、実施例1と同様な効果が得られることは勿論、突楔8の配置数が少なくても、回転子1と固定子2の接触を防止しやすくなる。 With such a configuration of this embodiment, the same effect as that of the first embodiment can be obtained, and even if the number of the protruding wedges 8 is small, the contact between the rotor 1 and the stator 2 is prevented. It will be easier.

また、仮に、回転子1と突楔8cが接触した場合、本実施例のように突部の周方向幅が広いため、回転子1との接触面も広くなることから、回転子1と突楔8cが接触したとしても、集中応力が発生しにくくなるため、回転子1の変形や破損の可能性を低減することができる。 Further, if the rotor 1 and the protruding wedge 8c contact each other, since the circumferential width of the protruding portion is wide as in the present embodiment, the contact surface with the rotor 1 is also wide, and thus the rotor 1 and the protruding portion 8c are protruded. Even if the wedges 8c come into contact with each other, concentrated stress is less likely to occur, so that the possibility of deformation or damage of the rotor 1 can be reduced.

図10に、本発明の回転電機100の実施例6を示す。 FIG. 10 shows Embodiment 6 of the rotating electric machine 100 of the present invention.

図10に示すように、本実施例では、突楔8dの突出部の周方向幅wを、ギャップ7の径方向長さgよりも短くしている。 As shown in FIG. 10, in the present embodiment, the circumferential width w of the protruding portion of the protruding wedge 8d is shorter than the radial length g of the gap 7.

このような本実施例の構成によれば、突楔8dが仮に破損して脱落したとしても、突楔8dの突出部の周方向幅wがギャップ7の径方向長さgよりも短ければ、突部8dの破片が回転子1と固定子2の間に挟まることを防止できる。 According to the configuration of this embodiment, even if the protruding wedge 8d is damaged and falls off, if the circumferential width w of the protruding portion of the protruding wedge 8d is shorter than the radial length g of the gap 7, It is possible to prevent the fragments of the protrusion 8d from being caught between the rotor 1 and the stator 2.

特に、回転子1が回転中で突楔8dが破損して、その破片が固定子2の内径側に留まっても、干渉することなく回転子1は回転することができる。 In particular, even if the protruding wedge 8d is damaged while the rotor 1 is rotating and the fragment remains on the inner diameter side of the stator 2, the rotor 1 can rotate without interference.

よって、本実施例を適用することで、実施例1と同様な効果が得られることは勿論、回転電機100の信頼性を高くすることができる。 Therefore, by applying the present embodiment, it is possible to obtain the same effect as that of the first embodiment and, of course, increase the reliability of the rotary electric machine 100.

図11に、本発明の実施例7としてレベーター用巻上げ機システムを示す。 [Embodiment 7] Fig. 11 shows a hoisting system for a levitator as Embodiment 7 of the present invention.

図11に示すように、本実施例のレベーター用巻上げ機システムは、実施例1から実施例6で説明した回転電機100のいずれか1つを、シーブ22にカップリング23を介して直結して駆動するようにしたものである。 As shown in FIG. 11, in the hoisting system for a elevator of the present embodiment, any one of the rotary electric machines 100 described in the first to sixth embodiments is directly connected to the sheave 22 via a coupling 23. It is designed to be driven.

図12には、実施例1から実施例6で説明した回転電機100のいずれか1つを、シーブ22にカップリング23を介して直結した例を示す。 FIG. 12 shows an example in which any one of the rotary electric machines 100 described in the first to sixth embodiments is directly connected to the sheave 22 via the coupling 23.

図12に示すように、回転電機100の直結側の軸受9を無くして、シーブ22と直結している。つまり、回転電機100の片側の支持を、シーブ22で支持する構造となる。 As shown in FIG. 12, the bearing 9 on the direct coupling side of the rotary electric machine 100 is eliminated and the rotary electric machine 100 is directly coupled to the sheave 22. That is, the structure is such that one side of the rotating electric machine 100 is supported by the sheave 22.

このようにすることで、エレベーター用の上げ機システムの軸方向の長さを縮小できる。また、軸受9を無くすことができるため、回転電機100の部品数を低減する効果を得られる。 By doing so, the axial length of the elevator system for elevators can be reduced. Further, since the bearing 9 can be eliminated, the effect of reducing the number of parts of the rotary electric machine 100 can be obtained.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.

1…回転子、2…固定子、3…回転子鉄心、4…固定子鉄心、5…永久磁石、6…固定子コイル、7…ギャップ、8a、8b、8c、8d…突楔、9…軸受、10…ティース、11…スロット、12… 楔、13…フレーム、14…ファン、16…冷媒、16…冷媒出口、17…磁性楔、22…シーブ、23…カップリング、100…回転電機。 1... Rotor, 2... Stator, 3... Rotor core, 4... Stator core, 5... Permanent magnet, 6... Stator coil, 7... Gap, 8a, 8b, 8c, 8d... Projection wedge, 9... Bearing, 10... Teeth, 11... Slot, 12... Wedge, 13... Frame, 14... Fan, 16... Refrigerant, 16... Refrigerant outlet, 17... Magnetic wedge, 22... Sieve, 23... Coupling, 100... Rotating electric machine.

Claims (15)

回転子と、該回転子と径方向に所定の間隙をもって対向配置された固定子とから成り、
前記回転子は回転子鉄心を有し、前記回転子鉄心の外周側に、複数の永久磁石が周方向に極性を変えながら配置され、
前記固定子は固定子鉄心及び固定子コイルを有し、前記固定子鉄心の周方向にはティースと、前記固定子コイルが配置されるスロットとが交互に形成され、前記スロットの各々の内径側には、前記固定子コイルの内径側への脱落を防止する楔が設けられている回転電機であって、
前記スロットの各々の内径側に配置されている前記楔の一部は、前記ティースの内径面よりも内側に突出して形成され、前記楔の突出部は、前記固定子鉄心の軸方向と周方向に複数個所配置されていることを特徴とする回転電機。
A rotor and a stator arranged to face the rotor with a predetermined gap in the radial direction,
The rotor has a rotor core, the outer peripheral side of the rotor core, a plurality of permanent magnets are arranged while changing the polarity in the circumferential direction,
The stator has a stator core and a stator coil, and teeth and slots in which the stator coil is arranged are alternately formed in the circumferential direction of the stator core, and the inner diameter side of each of the slots is formed. Is a rotary electric machine provided with a wedge for preventing the stator coil from falling off toward the inner diameter side,
A part of the wedge arranged on the inner diameter side of each of the slots is formed so as to protrude inward from the inner diameter surface of the tooth, and the protruding portion of the wedge has an axial direction and a circumferential direction of the stator core. A rotating electric machine, characterized in that a plurality of locations are provided in each.
請求項1に記載の回転電機であって、
前記楔の突出部は、軸方向には二ヶ所以上、周方向には三ヶ所以上形成されていることを特徴とする回転電機。
The rotating electric machine according to claim 1,
The rotary electric machine is characterized in that the protrusions of the wedge are formed in two or more locations in the axial direction and three or more locations in the circumferential direction.
請求項2に記載の回転電機であって、
周方向に三ヶ所形成されている前記楔の突出部は、周方向に120°ピッチで配置されていることを特徴とする回転電機。
The rotating electric machine according to claim 2,
The rotary electric machine according to claim 1, wherein the protrusions of the wedges formed at three locations in the circumferential direction are arranged at a pitch of 120° in the circumferential direction.
請求項2又は3に記載の回転電機であって、
軸方向に二ヶ所形成されている前記楔の突出部は、軸方向両端部に配置されていることを特徴とする回転電機。
The rotating electric machine according to claim 2 or 3, wherein
A rotary electric machine, wherein the protrusions of the wedge formed at two locations in the axial direction are arranged at both ends in the axial direction.
請求項1乃至4のいずれか1項に記載の回転電機であって、
前記楔の突出部は、その周方向幅が前記固定子のスロットの周方向幅よりも大きいことを特徴とする回転電機。
The rotary electric machine according to any one of claims 1 to 4,
The rotary electric machine according to claim 1, wherein the protrusion of the wedge has a circumferential width larger than a circumferential width of a slot of the stator.
請求項1乃至4のいずれか1項に記載の回転電機であって、
前記楔の突出部は、その周方向幅が前記ギャップの径方向幅よりも小さいことを特徴とする回転電機。
The rotary electric machine according to any one of claims 1 to 4,
The rotating electrical machine according to claim 1, wherein the protrusion of the wedge has a circumferential width smaller than a radial width of the gap.
請求項1乃至4のいずれか1項に記載の回転電機であって、
前記楔の突出部は、径方向に2分割され、この2分割された内径側の前記楔を非磁性材料とし、外径側の前記楔を磁性材料にしたことを特徴とする回転電機。
The rotary electric machine according to any one of claims 1 to 4,
The rotary electric machine is characterized in that the protruding portion of the wedge is divided into two in the radial direction, the wedge on the inner diameter side divided into two is made of a nonmagnetic material, and the wedge on the outer diameter side is made of a magnetic material.
請求項1乃至6のいずれか1項に記載の回転電機であって、
前記楔は、非磁性材料であることを特徴とする回転電機。
The rotary electric machine according to any one of claims 1 to 6,
The rotating electric machine, wherein the wedge is made of a non-magnetic material.
請求項8に記載の回転電機であって、
前記非磁性材料は金属、樹脂或いはプラスチックのいずれかであることを特徴とする回転電機。
The rotating electric machine according to claim 8,
The rotating electric machine, wherein the non-magnetic material is metal, resin, or plastic.
請求項9に記載の回転電機であって、
前記楔の突出部の硬さは、前記回転子の表面の硬さよりも柔らかいことを特徴とする回転電機。
The rotating electric machine according to claim 9,
The hardness of the protrusion of the wedge is softer than the hardness of the surface of the rotor.
請求項4に記載の回転電機であって、
前記楔の突出部は、前記楔の突出部の軸方向端部から軸方向中心に向かって漸増するように形成されていることを特徴とする回転電機。
The rotating electric machine according to claim 4,
The rotating electrical machine according to claim 1, wherein the protruding portion of the wedge is formed so as to gradually increase from an axial end portion of the protruding portion of the wedge toward an axial center.
請求項11に記載の回転電機であって、
前記楔の突出部は、外径側から内径側に向って順次細くなる三角形状に形成されていることを特徴とする回転電機。
The rotary electric machine according to claim 11,
The rotating electrical machine according to claim 1, wherein the protruding portion of the wedge is formed in a triangular shape that becomes thinner gradually from the outer diameter side toward the inner diameter side.
請求項1乃至12のいずれか1項に記載の回転電機であって、
前記楔の突出部の径方向内径側の突出長さは、前記固定子と前記回転子間のギャップ幅よりも小さいことを特徴とする回転電機。
The rotary electric machine according to any one of claims 1 to 12,
A rotary electric machine, wherein a protrusion length of the protrusion of the wedge on the inner diameter side in the radial direction is smaller than a gap width between the stator and the rotor.
請求項13に記載の回転電機であって、
前記楔の突出部の径方向内径側の突出長さをLrとし、前記固定子と前記回転子間のギャップ幅をgとすると、突出長さLrは、Lr<g×0.9であることを特徴とする回転電機。
The rotary electric machine according to claim 13,
When the protrusion length of the protruding portion of the wedge on the radially inner side is Lr and the gap width between the stator and the rotor is g, the protrusion length Lr is Lr<g×0.9. A rotating electric machine characterized by.
シーブを備える巻上げ機と、前記シーブに接続された回転電機とを備えたエレベーター用巻上げ機システムであって、
前記回転電機は、請求項1乃至14のいずれか1項に記載の回転電機であることを特徴とするエレベーター用巻上げ機システム。
A hoisting system for elevators, comprising a hoisting machine having a sheave and a rotating electric machine connected to the sheave,
An elevator hoisting machine system, wherein the rotating electric machine is the rotating electric machine according to any one of claims 1 to 14.
JP2019021441A 2019-02-08 2019-02-08 Rotary electric machine and hoist system using the same for elevator Pending JP2020129891A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019021441A JP2020129891A (en) 2019-02-08 2019-02-08 Rotary electric machine and hoist system using the same for elevator
CN202010058225.8A CN111555488A (en) 2019-02-08 2020-01-19 Rotating electric machine and elevator hoist system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021441A JP2020129891A (en) 2019-02-08 2019-02-08 Rotary electric machine and hoist system using the same for elevator

Publications (1)

Publication Number Publication Date
JP2020129891A true JP2020129891A (en) 2020-08-27

Family

ID=72007230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021441A Pending JP2020129891A (en) 2019-02-08 2019-02-08 Rotary electric machine and hoist system using the same for elevator

Country Status (2)

Country Link
JP (1) JP2020129891A (en)
CN (1) CN111555488A (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559967B1 (en) * 1984-02-17 1988-02-26 Sarelem BIAISE HOLDER
JPH10243596A (en) * 1997-02-25 1998-09-11 Toshiba Corp Motor
JP2002238223A (en) * 2001-02-06 2002-08-23 Meidensha Corp Rotational balance correcting structure of permanent magnet type electric rotating machine
JP2003079087A (en) * 2001-09-05 2003-03-14 Tma Electric Corp Dynamo-electric stator
JP3749165B2 (en) * 2001-12-25 2006-02-22 本田技研工業株式会社 Stator and stator manufacturing method
JP2004201446A (en) * 2002-12-19 2004-07-15 Aisin Aw Co Ltd Wedge for stator core
JP2004312868A (en) * 2003-04-07 2004-11-04 Fuji Electric Systems Co Ltd Rotary electric machine using magnetic wedge
JP2006289571A (en) * 2005-04-13 2006-10-26 Hitachi Koki Co Ltd Power tool
JP5098611B2 (en) * 2007-12-07 2012-12-12 三菱電機株式会社 Coil / wedge insertion device and coil / wedge insertion method.
US7821171B2 (en) * 2008-12-02 2010-10-26 Hamilton Sundstrand Corporation Generator wedge with reduced eddy current losses
JP5260591B2 (en) * 2010-03-30 2013-08-14 株式会社日立製作所 Permanent magnet rotating electrical machine and wind power generation system
JP5419956B2 (en) * 2011-12-20 2014-02-19 三菱電機株式会社 Electric motor stator and insulating sheet manufacturing method
DE102014202284A1 (en) * 2014-02-07 2015-08-13 Bühler Motor GmbH Canned motor for an oil pump
US9653958B2 (en) * 2015-01-16 2017-05-16 Hamilton Sundstrand Corporation Rotor wedge with arms
CN104821677B (en) * 2015-05-14 2018-08-17 北京交通大学 The stator major-minor slot wedge of large turbo-type generator
KR101855763B1 (en) * 2016-06-03 2018-05-09 현대자동차 주식회사 Wrsm motor
JP6473111B2 (en) * 2016-08-02 2019-02-20 東芝三菱電機産業システム株式会社 Rotating electric machine
CN107231052A (en) * 2017-06-24 2017-10-03 郭自刚 A kind of motor stator of use mild steel slot wedge

Also Published As

Publication number Publication date
CN111555488A (en) 2020-08-18

Similar Documents

Publication Publication Date Title
TWI420783B (en) Axial motor
JP4389918B2 (en) Rotating electric machine and AC generator
KR100901588B1 (en) Twin rotor type motor
JP5220765B2 (en) AFPM coreless multi-generator and motor
US11031831B2 (en) Electric motor and air conditioner
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
US20090015090A1 (en) Permanent magnet rotating electrical machine and permanent magnet rotating electrical machine system
JP2006109549A (en) Permanent magnet dynamo-electric machine and wind force power generating system
JP2008148397A (en) Rotary electric machine
JP5548046B2 (en) Permanent magnet rotating electric machine
JP6630690B2 (en) Rotating electric machine rotor
JP5605721B2 (en) Rotating electric machine
JP5439904B2 (en) Rotating electric machine
JP6610418B2 (en) Rotor, rotating electrical machine, and method of manufacturing rotor
JP4881708B2 (en) Vehicle alternator and rotating electric machine
JP2010161832A (en) Permanent magnet rotating electrical machine
US8987971B2 (en) Rotor core for an electric machine
JP2020129891A (en) Rotary electric machine and hoist system using the same for elevator
JP2016129447A (en) Rotary electric machine
TWI678053B (en) Slotless motor and electric blower or vacuum cleaner using the same
JP6169496B2 (en) Permanent magnet rotating electric machine
JP2007166796A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
TWI260122B (en) Rotor for a permanent magnet type generator
JP5884464B2 (en) Rotating electric machine
JP6733568B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200115