JP2020129471A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2020129471A
JP2020129471A JP2019021388A JP2019021388A JP2020129471A JP 2020129471 A JP2020129471 A JP 2020129471A JP 2019021388 A JP2019021388 A JP 2019021388A JP 2019021388 A JP2019021388 A JP 2019021388A JP 2020129471 A JP2020129471 A JP 2020129471A
Authority
JP
Japan
Prior art keywords
heated
induction heating
heated body
auxiliary base
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019021388A
Other languages
Japanese (ja)
Other versions
JP7199987B2 (en
Inventor
勝康 稲冨
Katsuyasu Inatomi
勝康 稲冨
康章 鳥居
Yasuaki Torii
康章 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019021388A priority Critical patent/JP7199987B2/en
Publication of JP2020129471A publication Critical patent/JP2020129471A/en
Application granted granted Critical
Publication of JP7199987B2 publication Critical patent/JP7199987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • General Induction Heating (AREA)

Abstract

To prevent temperature distribution of a heated body from getting worse due to heat storage in a grip member by heat conduction from the heated body, in continuous production, when a thick adiabator is used as a grip member of the heated body, in induction heating.SOLUTION: An induction heating apparatus comprising an induction heating coil 100 having a cylindrical heated body placed inside, and assistance backing materials 111a, 111b placed in the induction heating coil, and generating heat by producing an eddy current, further includes grip members 110a, 110b interposing between a heated body 120 and the assistance backing materials and supporting the heated body. The induction heating apparatus can support a first heated body, and a second heated body having an outer diameter larger than that of the first heated body. The grip members 110a, 110b support the heated body so that the distance between one end of the first heated body and the assistance backing material becomes longer than the distance between one end of the second heated body and the assistance backing material when the second heated body is placed in the induction heating coil, and is composed of a non-magnetic material.SELECTED DRAWING: Figure 1

Description

本発明は円筒状の被加熱体を誘導加熱する装置に関するものである。 The present invention relates to a device for induction heating a cylindrical object to be heated.

電子写真装置に搭載される電子写真感光体(以下、感光ドラムとも記載する)は円筒状の金属製の基層の上に感光層が形成されたものが一般的である。また、上記感光層の表面に保護層を形成し、電子線照射と加熱とにより保護層を硬化させることで、感光ドラムの耐久性を向上させる方法が知られている。このとき、保護層の硬度ばらつきを小さくする目的で、感光ドラムを均一に加熱できる加熱装置が求められている。 An electrophotographic photosensitive member (hereinafter also referred to as a photosensitive drum) mounted on an electrophotographic apparatus generally has a cylindrical metal base layer on which a photosensitive layer is formed. Further, a method is known in which a protective layer is formed on the surface of the photosensitive layer, and the protective layer is cured by electron beam irradiation and heating to improve the durability of the photosensitive drum. At this time, there is a demand for a heating device capable of uniformly heating the photosensitive drum for the purpose of reducing the hardness variation of the protective layer.

感光ドラムの加熱には熱風加熱、光加熱、誘導加熱を用いた方法が試みられてきた。特に、短時間で加熱できるために、誘導加熱を用いた方法が有効である。誘導加熱とは、磁界が導電性材料を横切って変化したとき、導電性材料の表面付近に渦電流が発生し、そのジュール発熱により被加熱体を加熱する加熱方法である。このとき、導電性材料に流れる渦電流により、磁界の変化を妨げるような磁界が生成される。誘導加熱では導電性材料のみが加熱され、電気伝導率が充分に低い材料であれば磁界発生領域内にあっても加熱されないという特徴がある。 A method using hot air heating, light heating, or induction heating has been tried to heat the photosensitive drum. In particular, the method using induction heating is effective because it can be heated in a short time. Induction heating is a heating method in which when a magnetic field changes across a conductive material, an eddy current is generated near the surface of the conductive material, and the object to be heated is heated by its Joule heat generation. At this time, an eddy current flowing in the conductive material generates a magnetic field that prevents the change of the magnetic field. In the induction heating, only the conductive material is heated, and if the material has sufficiently low electric conductivity, it is not heated even in the magnetic field generation region.

また、被加熱体の発熱量は被加熱体の比透磁率によって異なる。被加熱体が鉄やニッケルなどの比透磁率が高い材料(強磁性体)であれば、少しの磁界の変化でも多くの渦電流が発生し、発熱量が大きくなる。逆に、被加熱体がアルミや銅などの比透磁率が低い材料(非磁性体)であれば、渦電流の発生量が少なく、強磁性体に比べて発熱量は小さくなる。さらに、円筒状の被加熱体の発熱量は被加熱体の外径によっても異なる。被加熱体の外径が大きいほど、多くの渦電流が発生し、発熱量が大きくなる。 Further, the amount of heat generated by the heated body differs depending on the relative magnetic permeability of the heated body. If the object to be heated is a material having a high relative magnetic permeability (ferromagnetic material) such as iron or nickel, a large amount of eddy current will be generated even with a slight change in the magnetic field, and the amount of heat generated will increase. On the contrary, if the object to be heated is a material (nonmagnetic material) having a low relative magnetic permeability such as aluminum or copper, the amount of eddy current generated is small, and the amount of heat generated is smaller than that of a ferromagnetic material. Furthermore, the amount of heat generated by the cylindrical object to be heated also differs depending on the outer diameter of the object to be heated. The larger the outer diameter of the object to be heated, the more eddy current is generated and the larger the amount of heat generation.

感光ドラムのように長さを有する円筒状の被加熱体を加熱するためには、スパイラル形状の誘導加熱コイルがよく用いられる。また、長さや径の異なる複数種類の被加熱体を共通の誘導加熱コイルで加熱する場合には、誘導加熱コイルにより発生する磁界発生領域と一番長い被加熱体の長さとが合致するような誘導加熱コイルを用いるのが一般的である。しかし上記の誘導加熱コイルを用いて長さの短い被加熱体を加熱した場合、被加熱体の端部が他の部分に比べて過剰に発熱してしまうという問題がある。これは被加熱体の端部において、被加熱体外面の表面付近と、被加熱体端面の表面付近の両方に渦電流が発生することで、他の部分よりも端部の発熱量が大きくなるためであり、この現象はエッジ効果と呼ばれる。 A spiral induction heating coil is often used to heat a cylindrical object to be heated, such as a photosensitive drum. Further, when heating a plurality of types of objects to be heated having different lengths and diameters with a common induction heating coil, the magnetic field generation region generated by the induction heating coil and the length of the longest object to be heated may match. It is common to use induction heating coils. However, when a short length of the object to be heated is heated by using the induction heating coil, there is a problem that the end portion of the object to be heated generates excessive heat as compared with other portions. This is because at the end of the heated body, eddy currents are generated both near the surface of the outer surface of the heated body and near the surface of the end surface of the heated body, and the amount of heat generated at the end becomes larger than at other parts. This is because this phenomenon is called the edge effect.

このエッジ効果による端部の過剰加熱を解決するための手段として、被加熱体の端部に導電性の補助基材を配置するという手段が特許文献1に開示されている。また、補助基材自身の発熱による被加熱体の温度均一性への影響を抑制するために、補助基材と被加熱体との間に断熱部材を介在させるという手段が特許文献2に開示されている。 As a means for solving the excessive heating of the end portion due to the edge effect, Patent Document 1 discloses a means of disposing a conductive auxiliary base material at the end portion of the object to be heated. Further, Patent Document 2 discloses means for interposing a heat insulating member between the auxiliary base material and the object to be heated in order to suppress the influence of heat generation of the auxiliary base material on the temperature uniformity of the object to be heated. ing.

特開2014−56197号公報JP, 2014-56197, A 特開2018−32511号公報JP, 2018-32511, A

補助基材の外径よりも被加熱体の外径が小さい場合には、補助基材に被加熱体より多くの渦電流が流れることで被加熱体の端部近傍の磁束密度が小さくなり、被加熱体の端部の温度が低くなってしまう。その際には、補助基材と被加熱体との距離を離して、被加熱体の端部近傍の磁束密度を上げることで、被加熱体の温度均一性を保つことができる。特許文献2に記載の誘導加熱方法では、断熱部材の厚みを厚くすることで、補助基材と被加熱体との距離を離すことができるが、連続生産においては、断熱部材の蓄熱という課題が発生する。連続生産において、被加熱体の温度均一性を安定して実現するためには、被加熱体と接触している断熱材を所定の温度範囲に抑える必要がある。しかしながら、特に被加熱体の加熱温度が高く、かつ短サイクルタイムでの生産においては、被加熱体加熱時に被加熱体からの熱伝導により昇温した断熱部材が、次の被加熱体の加熱までの間に初期温度まで回復することが難しく、連続生産の中で徐々に蓄熱する。その結果、断熱材が所定温度を超え、被加熱体の温度均一性を低下させてしまう。
本発明は、上記課題に鑑みなされたものであり、被加熱体の外径が小さくても大きくても、誘導加熱コイルや把持機構を交換することなく、かつ短サイクルタイムで、被加熱体を均一に加熱することが可能な誘導加熱装置を提供することを目的とする。
When the outer diameter of the object to be heated is smaller than the outer diameter of the auxiliary substrate, the magnetic flux density in the vicinity of the end of the object to be heated becomes smaller because more eddy current flows in the auxiliary substrate than the object to be heated, The temperature of the end of the heated object becomes low. At that time, the temperature uniformity of the object to be heated can be maintained by increasing the magnetic flux density near the end of the object to be heated by separating the distance between the auxiliary base material and the object to be heated. In the induction heating method described in Patent Document 2, it is possible to increase the distance between the auxiliary base material and the object to be heated by increasing the thickness of the heat insulating member, but in continuous production, there is a problem of heat storage of the heat insulating member. appear. In continuous production, in order to stably realize temperature uniformity of the object to be heated, it is necessary to suppress the heat insulating material in contact with the object to be heated within a predetermined temperature range. However, especially when the heating temperature of the object to be heated is high and the production is performed in a short cycle time, the heat insulating member heated by heat conduction from the object to be heated during heating the object to be heated is not heated until the next object to be heated. It is difficult to recover the initial temperature during, and gradually accumulate heat in continuous production. As a result, the heat insulating material exceeds a predetermined temperature, and the temperature uniformity of the object to be heated is reduced.
The present invention has been made in view of the above problems, and even if the outer diameter of the object to be heated is small or large, the object to be heated can be heated in a short cycle time without replacing the induction heating coil or the gripping mechanism. It is an object of the present invention to provide an induction heating device capable of heating uniformly.

円筒状の被加熱体が内部に配置される誘導加熱コイルと、該誘導加熱コイルの内部に配置され、該誘導加熱コイルによって渦電流を発生し発熱する補助基材と、を具備する誘導加熱装置であって、
該誘導加熱コイルの内部に該被加熱体が配置されたときに、該被加熱体と該補助基材との間に介在して、該被加熱体を支持する把持部材をさらに具備し、
該誘導加熱装置は、第1の被加熱体と、該第1の被加熱体よりも大きい外径を有する第2の被加熱体と、を支持可能であり、
該把持部材は、
該第1の被加熱体が該誘導加熱コイルの内部に配置されたときの該第1の被加熱体の一端と該補助基材との距離が、該第2の被加熱体が該誘導加熱コイルの内部に配置されたときの該第2の被加熱体の一端と該補助基材との距離よりも、長くなるように該被加熱体を支持するものであり、かつ、
非磁性体で構成されており、
該把持部材の該被加熱体との接触部は、厚み方向の熱伝導率が1.0W/(m・K)以下の材料からなり、
該把持部材の該被加熱体との接触部から該補助基材との接触部に至るまでの熱伝導率が、3.5W/(m・K)以上である、ことを特徴とする誘導加熱装置が提供される。
An induction heating apparatus comprising: an induction heating coil in which a cylindrical object to be heated is disposed; and an auxiliary base material disposed inside the induction heating coil and generating an eddy current by the induction heating coil to generate heat. And
When the object to be heated is placed inside the induction heating coil, the object further includes a gripping member interposed between the object to be heated and the auxiliary base material to support the object to be heated,
The induction heating device is capable of supporting a first heated body and a second heated body having an outer diameter larger than that of the first heated body,
The gripping member is
The distance between the one end of the first object to be heated and the auxiliary base material when the first object is placed inside the induction heating coil is the second object to be heated by the induction heating. The object to be heated is supported so as to be longer than the distance between one end of the second object to be heated and the auxiliary base material when arranged inside the coil, and
It is made of non-magnetic material,
The contact portion of the gripping member with the object to be heated is made of a material whose thermal conductivity in the thickness direction is 1.0 W/(m·K) or less,
Induction heating, wherein the thermal conductivity from the contact portion of the gripping member with the object to be heated to the contact portion with the auxiliary base material is 3.5 W/(m·K) or more. A device is provided.

本発明によれば、被加熱体の加熱中には、被加熱体から補助基材への熱の逃げを抑制することができ、被加熱体を均一に加熱することができる。同時に、連続生産においても、把持部材の蓄熱を抑制することができるため、被加熱体の均一加熱を長期に安定して担保する誘導加熱装置を提供することができる。 According to the present invention, it is possible to suppress the escape of heat from the object to be heated to the auxiliary base material while heating the object to be heated, and it is possible to uniformly heat the object to be heated. At the same time, since it is possible to suppress the heat storage of the gripping member even in the continuous production, it is possible to provide an induction heating device that stably ensures uniform heating of the object to be heated for a long period of time.

本発明の誘導加熱装置の装置概要を示す図である。It is a figure which shows the apparatus outline|summary of the induction heating apparatus of this invention. 本発明の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of this invention. 本発明の実施例1に係る把持部材の断面図である。It is a sectional view of a grasping member concerning Example 1 of the present invention. 従来技術に係る誘導加熱装置の構成の概要を示す図である。It is a figure which shows the outline of a structure of the induction heating apparatus which concerns on a prior art. 本発明の変形例1に係る把持部材の平面図及び断面図である。It is a top view and a sectional view of a grasping member concerning modification 1 of the present invention.

以下、本発明の実施の形態について図面を参照して説明する。ただし、本発明は以下の実施形態に限定されるものではない。
図1は、本発明の誘導加熱装置の装置概要を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
FIG. 1 is a diagram showing an outline of the induction heating apparatus of the present invention.

スパイラル形状の誘導加熱コイル100は、コイル支持部材101により固定され、台座102に取り付けられている。誘導加熱コイル100は整合器103を介して高周波電源104に接続されている。高周波電源104は制御部115に接続されており、制御部115からの出力指令に応じた高周波電流を誘導加熱コイル100に流すことで、誘導加熱コイル内部に配置した被加熱体120を加熱することができる。 The spiral induction heating coil 100 is fixed by a coil supporting member 101 and attached to a pedestal 102. The induction heating coil 100 is connected to a high frequency power supply 104 via a matching unit 103. The high-frequency power source 104 is connected to the control unit 115, and heats the object 120 to be heated arranged inside the induction heating coil by passing a high-frequency current according to an output command from the control unit 115 to the induction heating coil 100. You can

補助基材111a、111bは軸受部112a、112bに保持され、昇降機構114a、114bに取り付けられている。昇降機構114a、114bは制御部115に接続されており、制御部からの位置移動指令に応じて動作可能である。誘導加熱コイル100の内部に被加熱体120を配置する際には、補助基材111a、111bに接続された把持部材110a、110bで被加熱体120を挟むことで被加熱体120を接触把持可能である。把持部材110aは被加熱体120と補助基材111aとの間に介在し、把持部材110bは被加熱体120と補助基材111bとの間に介在する。 The auxiliary base materials 111a and 111b are held by the bearing portions 112a and 112b, and attached to the elevating mechanisms 114a and 114b. The elevating mechanisms 114a and 114b are connected to the control unit 115 and can operate in response to a position movement command from the control unit. When arranging the heated body 120 inside the induction heating coil 100, the heated body 120 can be contact-held by sandwiching the heated body 120 with gripping members 110a and 110b connected to the auxiliary base materials 111a and 111b. Is. The gripping member 110a is interposed between the heated object 120 and the auxiliary base material 111a, and the gripping member 110b is interposed between the heated object 120 and the auxiliary base material 111b.

把持部材110a、110bの少なくとも一方は回転機構113に接続されており、把持した被加熱体120を回転可能な構造になっている。図1に示す例では、把持部材110aは補助基材111aと共に回転機構113によって回転される。そして、被加熱体120、把持部材110b及び補助基材111bは、補助基材111aによって回転される。誘導加熱コイル100の回転対称軸と被加熱体120の回転軸は図示しない調整機構により略同軸に調整可能である。 At least one of the gripping members 110a and 110b is connected to the rotating mechanism 113, and has a structure in which the heated object 120 gripped can be rotated. In the example shown in FIG. 1, the gripping member 110a is rotated by the rotating mechanism 113 together with the auxiliary base material 111a. Then, the heated body 120, the grip member 110b, and the auxiliary base material 111b are rotated by the auxiliary base material 111a. The rotational symmetry axis of the induction heating coil 100 and the rotational axis of the heated object 120 can be adjusted substantially coaxially by an adjusting mechanism (not shown).

図2は本発明の原理を説明するための模式図である。
誘導加熱コイル100の長さ(図2中のL)は、誘導加熱コイル100に高周波電流を流すことによって被加熱体120だけでなく、補助基材111a、111bにも渦電流が発生する範囲の長さである。
FIG. 2 is a schematic diagram for explaining the principle of the present invention.
The length of the induction heating coil 100 (L in FIG. 2) is in a range in which eddy current is generated not only in the heated object 120 by flowing a high frequency current in the induction heating coil 100, but also in the auxiliary base materials 111a and 111b. Is the length.

補助基材111a、111bは導電性材料で構成されている。補助基材111a、111bに渦電流が流れ、誘導加熱コイル100が生成した磁界を弱める向きに磁界を生成することで、被加熱体120の端部近傍の磁束密度を調整し、端部の過剰な発熱を抑制することが可能である。被加熱体120の端部近傍とは、被加熱体120の上端部の近傍(把持部材110aに近い端部の近傍)及び被加熱体120の下端部の近傍(把持部材110bに近い端部の近傍)を意味する。 The auxiliary base materials 111a and 111b are made of a conductive material. An eddy current flows through the auxiliary base materials 111a and 111b, and a magnetic field is generated in a direction in which the magnetic field generated by the induction heating coil 100 is weakened, thereby adjusting the magnetic flux density near the end of the heated object 120 and excess of the end. It is possible to suppress excessive heat generation. The vicinity of the end of the heated body 120 means the vicinity of the upper end of the heated body 120 (the vicinity of the end near the gripping member 110a) and the lower end of the heated body 120 (the end near the gripping member 110b). Neighborhood) is meant.

補助基材111a、111bは円柱状または円筒状の形状であり、被加熱体120の外径と同径または、被加熱体120の外径より大きな外径を有している。つまり、本発明に係る誘導加熱装置の補助基材111a、111bは、最大の外径を有する被加熱体の外径以上の外径を有する。
そして、本発明に係る誘導加熱装置は、第1の被加熱体と、該第1の被加熱体よりも大きい外径を有する第2の被加熱体と、を支持可能である。
The auxiliary base materials 111a and 111b have a cylindrical shape or a cylindrical shape, and have the same diameter as the outer diameter of the heated body 120 or an outer diameter larger than the outer diameter of the heated body 120. That is, the auxiliary base materials 111a and 111b of the induction heating device according to the present invention have an outer diameter that is equal to or larger than the outer diameter of the heated object having the largest outer diameter.
The induction heating device according to the present invention can support the first heated object and the second heated object having an outer diameter larger than that of the first heated object.

把持部材110a、110bは、少なくとも2種類の非磁性で発熱しない材料から構成されている。これは誘導加熱コイル100および補助基材111a、111bによって生成された磁界に影響を与えないためである。 The grip members 110a and 110b are made of at least two kinds of non-magnetic materials that do not generate heat. This is because it does not affect the magnetic field generated by the induction heating coil 100 and the auxiliary base materials 111a and 111b.

把持部材110a、110bの外形形状は補助基材111a、111bから離れるに従って縮径する形状となっており、被加熱体120の外径に応じて、補助基材111a、111bと被加熱体の一端との距離を変えることができる。補助基材111a、111bの外径に対し被加熱体120の外径が小さい場合に、補助基材111a、111bと被加熱体120の一端との距離を長くすることで、外径の小さな被加熱体を加熱する場合でも端部近傍の温度が低くならないようにするためである。 The outer shape of each of the gripping members 110a and 110b is such that the diameter of the gripping members 110a and 110b is reduced as the distance from the auxiliary base materials 111a and 111b increases. You can change the distance between and. When the outer diameter of the object 120 to be heated is smaller than the outer diameter of the auxiliary base materials 111a and 111b, the distance between the auxiliary base materials 111a and 111b and one end of the object 120 to be heated is increased, so that the object having the smaller outer diameter is This is to prevent the temperature in the vicinity of the end portion from decreasing even when the heating body is heated.

端部近傍の磁束密度の調整を安定して行うためには、補助基材111a、111bは被加熱体120と同程度の比透磁率を有する材料で構成されることが好ましい。また、補助基材111a、111bの形状が円筒状である場合、補助基材111a、111bの厚さは補助基材111a、111bの表皮深さの5倍以上であることが好ましい。この「補助基材の厚さ」とは、{(補助基材の外径−補助基材の内径)/2}である。また、「表皮深さ」とは「ある物質に入射した電磁界が1/e(≒1/2.718)に減衰する深さ」である。 In order to stably adjust the magnetic flux density near the ends, the auxiliary base materials 111a and 111b are preferably made of a material having a relative magnetic permeability similar to that of the heated body 120. When the auxiliary base materials 111a and 111b have a cylindrical shape, the thickness of the auxiliary base materials 111a and 111b is preferably 5 times or more the skin depth of the auxiliary base materials 111a and 111b. The "thickness of the auxiliary base material" is {(outer diameter of the auxiliary base material-inner diameter of the auxiliary base material)/2}. The "skin depth" is the "depth at which the electromagnetic field incident on a certain substance is attenuated to 1/e (≈1/2.718)".

図3は後述する実施例1に係る把持部材110a、110bの断面図である。図3に示すように、実施例1に係る把持部材110aは、第1の部材150a、第2の部材151aの2種類の材料から構成され、把持部材110bも、第1の部材150b、第2の部材151bの2種類の材料から構成される。
被加熱体側に位置する第1の部材150a,150bは厚み方向の熱伝導率が1.0W/(m・K)以下の材料とする。
また、補助基材側に位置する第2の部材151aは、第1の部材150aの被加熱体との接触部から補助基材111aとの接触部に至るまでの熱伝導率が、各材料間での熱伝導率の低下を考慮した上で3.5W/(m・K)以上になる材料とする。
補助基材側に位置する第2の部材151bも同様に、第1の部材150bの被加熱体との接触部から補助基材111bとの接触部に至るまでの熱伝導率が、3.5W/(m・K)以上になる材料とする。
FIG. 3 is a cross-sectional view of gripping members 110a and 110b according to Example 1 described later. As shown in FIG. 3, the gripping member 110a according to the first embodiment is composed of two kinds of materials, a first member 150a and a second member 151a, and the gripping member 110b also includes the first member 150b and the second member 151a. The member 151b is made of two kinds of materials.
The first members 150a and 150b located on the side of the object to be heated are made of a material having a thermal conductivity in the thickness direction of 1.0 W/(m·K) or less.
In addition, the second member 151a located on the auxiliary base material side has a thermal conductivity from the contact portion of the first member 150a with the object to be heated to the contact portion with the auxiliary base material 111a between the materials. In consideration of the decrease in thermal conductivity at 3, the material should be 3.5 W/(m·K) or more.
Similarly, the second member 151b located on the auxiliary base material side has a thermal conductivity of 3.5 W from the contact portion of the first member 150b with the body to be heated to the contact portion with the auxiliary base material 111b. Use a material that exceeds /(m·K).

被加熱体の加熱時には被加熱体から補助基材への熱の逃げを抑制し、また加熱後には、速やかに把持部材の温度を所定の温度まで回復することで、均一な温度分布での加熱を連続的に実現可能とするためである。
なお、図3に記載の数値は後述する実施例で用いられた際のサイズを示すものであり、これらの数値は本発明の技術的範囲をなんら制限するものではない。
When the object to be heated is heated, the escape of heat from the object to be heated to the auxiliary base material is suppressed, and after heating, the temperature of the gripping member is quickly restored to a predetermined temperature, thereby heating with a uniform temperature distribution. This is because it is possible to realize continuously.
The numerical values shown in FIG. 3 indicate sizes when used in Examples described later, and these numerical values do not limit the technical scope of the present invention.

補助基材111a、111bも被加熱体とともに誘導加熱によって加熱されるため、連続加熱時には把持部材を温度回復することの妨げとなる。そのため、補助基材111a、111bは冷却機構を有し、所定の温度範囲に制御することが好ましい。 Since the auxiliary base materials 111a and 111b are also heated by induction heating together with the object to be heated, it hinders temperature recovery of the gripping member during continuous heating. Therefore, it is preferable that the auxiliary base materials 111a and 111b have a cooling mechanism and be controlled within a predetermined temperature range.

以下、実施例及び比較例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〈実施例1〉
図1に示す誘導加熱装置を用いて連続加熱試験を行った。
本実施例で使用した被加熱体120の外径、内径及び長さを表1に示す。本発明は複数の外径の被加熱体に対応できるものであるが、より連続加熱における条件が厳しくなるように被加熱体の種類を選定した。
被加熱体120の基層はアルミニウム合金で構成され、比透磁率はおよそ1.0である。被加熱体120の最外層には膜厚5.0μm程度の保護層が形成されている。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
<Example 1>
A continuous heating test was performed using the induction heating device shown in FIG.
Table 1 shows the outer diameter, the inner diameter, and the length of the object 120 to be heated used in this example. Although the present invention can be applied to a plurality of objects having a plurality of outer diameters, the kind of the object to be heated is selected so that the conditions for continuous heating become more severe.
The base layer of the body to be heated 120 is made of an aluminum alloy and has a relative magnetic permeability of about 1.0. A protective layer having a thickness of about 5.0 μm is formed on the outermost layer of the object to be heated 120.

誘導加熱コイル100は線形8mmの銅管を曲げてスパイラル形状にしたものを使用した。誘導加熱コイル100の全長(図2中のL)は450mm、外径(図2中のD)は88mmで巻き数は23ターンとした。銅管内部には冷却水を供給し、冷却を行った。誘導加熱コイル100はベークライトで構成されたコイル支持部材101に固定した。 As the induction heating coil 100, a linear 8 mm copper tube was bent to form a spiral shape. The induction heating coil 100 had a total length (L in FIG. 2) of 450 mm, an outer diameter (D in FIG. 2) of 88 mm, and a winding number of 23 turns. Cooling water was supplied to the inside of the copper tube for cooling. The induction heating coil 100 was fixed to a coil supporting member 101 made of bakelite.

誘導加熱コイル100は整合器103を介して高周波電源104に接続した。また、図示しない放射温度計により被加熱体120の長手中央位置の温度を測定し、測定した温度を制御部115に入力することでフィードバック制御による加熱が可能な構成とした。
加熱は、高周波電源104により、誘導加熱コイル100に高周波電流を流すことで行う。初期温度である23℃から目標温度である117℃まで10秒で加熱できるような設定とした。
The induction heating coil 100 was connected to a high frequency power source 104 via a matching unit 103. In addition, the temperature at the longitudinal center position of the object to be heated 120 is measured by a radiation thermometer (not shown), and the measured temperature is input to the control unit 115 to perform heating by feedback control.
The heating is performed by applying a high frequency current to the induction heating coil 100 by the high frequency power supply 104. The initial temperature was set to 23° C. and the target temperature was set to 117° C. in 10 seconds.

補助基材111a、111bは被加熱体120の基層と同材料であるアルミニウム合金で構成され、外径は30mmの円柱形状とした。これは複数の外径の被加熱体の中で最大外径をもつ被加熱体と略同径である。また補助基材111a、111bには回転継手141a、141bを接続し、冷却水循環機構142から冷却水を供給することで、冷却を行った。 The auxiliary base materials 111a and 111b are made of an aluminum alloy, which is the same material as the base layer of the object 120 to be heated, and have a columnar shape with an outer diameter of 30 mm. This is approximately the same diameter as the heated body having the largest outer diameter among the heated bodies having a plurality of outer diameters. Further, the rotary joints 141a and 141b were connected to the auxiliary base materials 111a and 111b, and cooling water was supplied from the cooling water circulation mechanism 142 to perform cooling.

図3に把持部材110a、110bの断面形状を示す。補助基材内部には冷却水循環用の流路140が設けられている。被加熱体120との接触部は補助基材111a、111bから離れるに従って縮径するテーパー形状とした。把持部材110a、110bが被加熱体120を接触把持するとき、被加熱体120の一端と補助基材111a、111bとの距離は事前に加熱実験を行い求めた表1の値になるようにした。「被加熱体120の一端と補助基材111a、111bとの距離」とは、「被加熱体120の上端と補助基材111aの下端との距離」及び「被加熱体120の下端と補助基材111bの上端との距離」を意味する。 FIG. 3 shows cross-sectional shapes of the gripping members 110a and 110b. A channel 140 for circulating cooling water is provided inside the auxiliary base material. The contact portion with the object 120 to be heated has a tapered shape in which the diameter is reduced as the distance from the auxiliary base materials 111a and 111b increases. When the gripping members 110a and 110b contact and grip the object 120 to be heated, the distance between one end of the object 120 to be heated and the auxiliary base materials 111a and 111b is set to the value shown in Table 1 obtained by performing a heating experiment in advance. .. "The distance between one end of the heated body 120 and the auxiliary base materials 111a and 111b" means "the distance between the upper end of the heated body 120 and the lower end of the auxiliary base material 111a" and "the lower end of the heated body 120 and the auxiliary base". “Distance from the upper end of the material 111b”.

把持部材110a、110bは2種類の材料を積層して構成した。
被加熱体120側の第1の部材150としては、熱伝導率が0.9W/(m・K)のPEEK(ポリエーテルエーテルケトン)材を用いた。
つまり、表1に示すように、把持部材の被加熱体との接触部は、厚み方向の熱伝導率が0.9W/(m・K)である。
補助基材111a、111b側の第2の部材151としては、熱伝導率が160W/(m・K)の窒化アルミニウムを用いた。
つまり、補助基材から第1の部材に至る材料の順序は下記のとおりである。
・アルミニウム合金(補助基材111)
・窒化アルミニウム(第2の部材151)
・PEEK (第1の部材150)
さらに、PEEKと窒化アルミニウムとの間や、窒化アルミニウムと補助基材との間の微小な空気層による熱伝達の低下を抑制するために、各部品間に下記のエポキシ系接着剤を充填した上で、非図示のボルトにより、補助基材111a、111bと固定した。
・エポキシ系接着剤アラルダイト(登録商標) ハンツマン・アドバンスド・マテリアルズ社製
このようにして第1の部材と前記第2の部材との間に接着剤層を形成した。
The gripping members 110a and 110b are formed by laminating two kinds of materials.
As the first member 150 on the heated body 120 side, a PEEK (polyetheretherketone) material having a thermal conductivity of 0.9 W/(m·K) was used.
That is, as shown in Table 1, the contact portion of the gripping member with the object to be heated has a thermal conductivity in the thickness direction of 0.9 W/(m·K).
As the second member 151 on the side of the auxiliary base materials 111a and 111b, aluminum nitride having a thermal conductivity of 160 W/(m·K) was used.
That is, the order of materials from the auxiliary base material to the first member is as follows.
・Aluminum alloy (auxiliary substrate 111)
-Aluminum nitride (second member 151)
・PEEK (first member 150)
Further, in order to suppress a decrease in heat transfer due to a minute air layer between PEEK and aluminum nitride or between aluminum nitride and the auxiliary base material, the following epoxy adhesive is filled between the respective parts. Then, the auxiliary base materials 111a and 111b were fixed with bolts (not shown).
-Epoxy adhesive Araldite (registered trademark) manufactured by Huntsman Advanced Materials Co., Ltd. Thus, an adhesive layer was formed between the first member and the second member.

なお、把持部材110a、110bの被加熱体120側の材料は、被加熱体120に傷をつけないように、被加熱体120の基層のアルミニウム合金よりも柔らかい材料にする必要がある。本実施例においては、アルミニウム合金よりも柔らかいPEEK材を用いることによって、被加熱体120への傷付き抑制と所望の熱伝導率の実現の両立を図った。 The material of the gripping members 110a and 110b on the heated body 120 side must be softer than the aluminum alloy of the base layer of the heated body 120 so as not to damage the heated body 120. In the present embodiment, by using a PEEK material that is softer than an aluminum alloy, it is possible to achieve both suppression of scratches on the heated object 120 and realization of desired thermal conductivity.

前記部材から構成された、把持部材110a、把持部材110bの被加熱体120との接触部から補助基材111a、111bに至るまでの熱伝導率を、熱伝導率の測定方法として一般的に知られている熱流計法を用いて算出した。熱流計法とは、熱伝導率を測りたい試料において、片側を高温、反対側を低温とし、その温度勾配を測ることで熱伝導率を算出する方法である。本実施例においては、本実施例の構成に近くなるような測定構成を再現することで測定を行った。測定構成及び測定結果を以下に示す。 The thermal conductivity from the contact portion of the gripping member 110a and the gripping member 110b that contacts the heated object 120 to the auxiliary base materials 111a and 111b, which are configured by the above-described members, is generally known as a method for measuring the thermal conductivity. It was calculated using a known heat flow meter method. The heat flow meter method is a method of calculating the thermal conductivity by measuring the temperature gradient of a sample whose thermal conductivity is desired to be measured, one side being high temperature and the other side being low temperature. In this example, the measurement was performed by reproducing a measurement configuration close to the configuration of this example. The measurement configuration and measurement results are shown below.

測定構成は、低温源は冷却水を通した冷却ブロック、高温源はヒーターを内蔵した加熱ブロックで構成した。そして、低温側から高温側にかけて、本実施例の構成と同一となるようアルミニウム合金、窒化アルミニウム、PEEKの順になるように、計5部品を積層した構成とした。つまり、測定構成における材料の順序は下記のとおりである。
・冷却ブロック(低温側)
・アルミニウム合金
・窒化アルミニウム
・PEEK
・加熱ブロック(高温側)
The measurement configuration was such that the low temperature source was a cooling block through which cooling water was passed and the high temperature source was a heating block with a built-in heater. Then, from the low temperature side to the high temperature side, a total of 5 parts were laminated in the order of aluminum alloy, aluminum nitride and PEEK so as to have the same structure as that of the present embodiment. That is, the order of materials in the measurement configuration is as follows.
・Cooling block (low temperature side)
・Aluminum alloy・Aluminum nitride・PEEK
・Heating block (high temperature side)

また、温度勾配測定のため、冷却ブロック‐アルミニウム合金間と、アルミニウム合金‐窒化アルミニウム間と、PEEK‐加熱ブロック間の3箇所にはそれぞれ熱電対を設置した。その上で、さらにアルミニウム合金‐窒化アルミニウム間と、窒化アルミニウム−PEEK間にはエポキシ系接着剤アラルダイト(登録商標)を充填し、冷却ブロックと加熱ブロックを両側から挟み込み圧接固定した。なお、5部品の形状はすべて縦100mmかつ横100mmの正方形であり、厚みは冷却ブロック、アルミニウム合金、及び加熱ブロックは5mm、窒化アルミニウムは7mm、PEEKは2mmとした。また、5部品の外周を断熱材で覆い、各部品間以外の熱交換を抑制するように構成した。
この構成に基づく、加熱ブロック側のPEEK表面からアルミニウム合金側の窒化アルミニウム表面に至るまでの算出熱伝導率が、把持部材110aの被加熱体120との接触部から補助基材111aとの接触部に至るまでの熱伝導率を示すものとなる。
同様に、前記算出熱伝導率は、把持部材110bの被加熱体120との接触部から補助基材111bとの接触部に至るまでの熱伝導率を示すものとなる。
In order to measure the temperature gradient, thermocouples were installed at three locations between the cooling block and the aluminum alloy, between the aluminum alloy and aluminum nitride, and between the PEEK and the heating block. Further, an epoxy adhesive Araldite (registered trademark) was filled between the aluminum alloy-aluminum nitride and between the aluminum nitride-PEEK, and the cooling block and the heating block were sandwiched from both sides and fixed by pressure welding. All five parts had a square shape of 100 mm in length and 100 mm in width, and the thickness was 5 mm for the cooling block, aluminum alloy, and heating block, 7 mm for aluminum nitride, and 2 mm for PEEK. Further, the outer periphery of the five parts was covered with a heat insulating material to suppress heat exchange between parts other than each part.
Based on this configuration, the calculated thermal conductivity from the PEEK surface on the heating block side to the aluminum nitride surface on the aluminum alloy side is calculated from the contact portion of the holding member 110a with the heated body 120 to the contact portion of the auxiliary base material 111a. It shows the thermal conductivity up to.
Similarly, the calculated thermal conductivity indicates the thermal conductivity from the contact portion of the holding member 110b with the heated body 120 to the contact portion with the auxiliary base material 111b.

上記測定構成に基づき、冷却ブロックを冷却水により25℃、加熱ブロックをヒーターにより120℃に設定したときの各部品間の熱電対の値を測定した。その結果は下記のとおりであった。
・冷却ブロック‐アルミニウム合金間温度 :26℃
・アルミニウム合金‐窒化アルミニウム間温度:27.5℃
・PEEK‐加熱ブロック間温度 :119℃
アルミニウム合金を通過する熱量と、窒化アルミニウム及びPEEKを通過する熱量が一致し、アルミニウム合金の熱伝導率が既知である。
このため、加熱ブロック側のPEEK表面(把持部材の被加熱体との接触部)からアルミニウム合金側の窒化アルミニウム表面(把持部材の補助基材との接触部)に至るまでの熱伝導率が算出できる。算出の結果、熱伝導率は3.5W/(m・K)となった。
つまり、表1に示すように、把持部材の被加熱体との接触部から補助基材との接触部に至るまでの熱伝導率は、3.5W/(m・K)である。
Based on the above measurement configuration, the thermocouple values between the respective parts were measured when the cooling block was set to 25° C. with cooling water and the heating block was set to 120° C. with a heater. The results are shown below.
・Temperature between cooling block and aluminum alloy: 26℃
・Temperature between aluminum alloy and aluminum nitride: 27.5℃
・PEEK-heating block temperature: 119℃
The amount of heat passing through the aluminum alloy matches the amount of heat passing through the aluminum nitride and PEEK, and the thermal conductivity of the aluminum alloy is known.
Therefore, the thermal conductivity from the PEEK surface on the heating block side (the contact portion of the gripping member with the heated body) to the aluminum nitride surface on the aluminum alloy side (the contact portion of the gripping member with the auxiliary base material) is calculated. it can. As a result of the calculation, the thermal conductivity was 3.5 W/(m·K).
That is, as shown in Table 1, the thermal conductivity from the contact portion of the gripping member with the body to be heated to the contact portion with the auxiliary base material is 3.5 W/(m·K).

補助基材111aは軸受部112aに保持され、軸受部112aは昇降機構114aに取り付けられた。補助基材111bは軸受部112bに保持され、軸受部112bは昇降機構114bに取り付けられた。昇降機構114a、114bは単軸ロボットとコントローラーとによって構成され、PLC(プログラマブル・ロジック・コントローラ)により構成される制御部115に接続され、制御部115からの位置移動指令に応じて各動作の位置座標に移動可能とした。 The auxiliary base material 111a was held by the bearing portion 112a, and the bearing portion 112a was attached to the elevating mechanism 114a. The auxiliary base material 111b was held by the bearing 112b, and the bearing 112b was attached to the elevating mechanism 114b. The elevating mechanisms 114a and 114b are configured by a single-axis robot and a controller, are connected to a control unit 115 configured by a PLC (Programmable Logic Controller), and position of each operation according to a position movement command from the control unit 115. Allowed to move to coordinates.

被加熱体120の上下方向の位置は昇降機構114bの上昇位置により制御される。昇降機構114bを下降させ、把持部材110bの上に被加熱体120を置き、その後に昇降機構114bを上昇させることによって、被加熱体120は誘導加熱コイル100の内部に配置される。 The vertical position of the heated object 120 is controlled by the raised position of the elevating mechanism 114b. The object 120 to be heated is placed inside the induction heating coil 100 by lowering the elevating mechanism 114b, placing the object 120 to be heated on the gripping member 110b, and then elevating the object elevating mechanism 114b.

昇降機構114aと軸受部112aとの間には、ばねを有する図示しない押圧機構を設けた。昇降機構114aの位置は、昇降機構114bの上昇位置と被加熱体120の長さに応じて決められる。本実施例においては、昇降機構114bの上昇位置は、被加熱体120の長手方向の中心と誘導加熱コイル100の長手方向の中心とが一致する位置とし、昇降機構114aの位置は、被加熱体120を10〜20Nの力で挟み込める位置、とした。 A pressing mechanism (not shown) having a spring was provided between the elevating mechanism 114a and the bearing 112a. The position of the lifting mechanism 114a is determined according to the raised position of the lifting mechanism 114b and the length of the heated object 120. In this embodiment, the ascending position of the elevating mechanism 114b is the position where the longitudinal center of the object 120 to be heated and the longitudinal center of the induction heating coil 100 coincide with each other, and the elevating mechanism 114a is located at the position to be heated. The position where 120 can be sandwiched by the force of 10 to 20 N is set.

把持部材110a、110bの少なくとも一方は回転機構113に接続されており、把持した被加熱体120を回転可能な構造とし、回転数はおよそ100rpmに設定した。
把持部材110a、110bと被加熱体120とは10〜20Nの力で押圧されているため滑ることなく、把持部材110a、110bと被加熱体120とは同じ速度で回転することができる。加熱時に被加熱体120を回転させることによって、被加熱体の周方向に温度ムラが生じることを抑制する。
At least one of the gripping members 110a and 110b is connected to the rotating mechanism 113, and the heated object 120 gripped has a rotatable structure, and the rotation speed is set to about 100 rpm.
Since the gripping members 110a and 110b and the heated object 120 are pressed with a force of 10 to 20 N, the gripping members 110a and 110b and the heated object 120 can rotate at the same speed without slipping. By rotating the heated body 120 during heating, it is possible to suppress temperature unevenness in the circumferential direction of the heated body.

加熱終了後の被加熱体120及び把持部材110a,110bの温度測定にはサーモビューワを使用した。 A thermoviewer was used to measure the temperature of the object to be heated 120 and the gripping members 110a and 110b after heating.

次に実施例1で行った連続加熱実験の手順について説明する。
まず、昇降機構114bを下降させた状態で被加熱体120を把持部材111bの上に載置する。その後、昇降機構114bを上昇させ、誘導加熱コイル100の内部に被加熱体を挿入し、把持部材110aと110bとで被加熱体120を上下から挟み込む。
Next, the procedure of the continuous heating experiment performed in Example 1 will be described.
First, the object 120 to be heated is placed on the gripping member 111b with the elevating mechanism 114b being lowered. After that, the elevating mechanism 114b is raised, the object to be heated is inserted into the induction heating coil 100, and the object to be heated 120 is sandwiched between the gripping members 110a and 110b from above and below.

被加熱体120の把持が完了したら、被加熱体120の回転と加熱を開始する。
約10秒後、被加熱体120の長手中央温度が目標温度である117℃に到達すると、加熱と回転が停止される。
When the grasping of the heated body 120 is completed, rotation and heating of the heated body 120 are started.
After about 10 seconds, when the longitudinal center temperature of the object to be heated 120 reaches the target temperature of 117° C., heating and rotation are stopped.

加熱及び回転が停止された後、昇降機構114bにより誘導加熱コイル100の下方へ被加熱体120を下降させ、被加熱体120を取り出す。 After heating and rotation are stopped, the object 120 to be heated is lowered below the induction heating coil 100 by the elevating mechanism 114b, and the object 120 to be heated is taken out.

この手順を1サイクルタイム 14秒で10サイクル繰り返した。 This procedure was repeated 10 cycles with a cycle time of 14 seconds.

表2に、サーモビューワによって測定された加熱終了後の下記の温度の推移、及び温度差の推移を示す。
・把持部材110aの表面温度
・被加熱体120の中央部(被加熱体120の長手中央位置)の温度
・上部(被加熱体120の上端から10mm下方の位置)の温度
・中央部と上部との温度差
把持部材110aの表面温度の変化が極めて小さく、被加熱体の上部の温度変化も1℃以下であった。
なお、今回の実験においては、上下対称の構成であり、把持部材110bの表面温度は把持部材110aの表面温度と同じであり、被加熱体120の下部の温度は被加熱体120の上部の温度と同じであった。このため、把持部材110bの表面温度及び被加熱体120の下部の温度については記載を省略した。
また、本実施例においては、把持部材110a、110bの被加熱体120との接触部は全周テーパー形状とした。より被加熱体120加熱時の被加熱体120と把持部材110a、110bの熱の移動を抑制したい場合は、把持部材110a、110bの被加熱体120との当接面に凹凸や溝を形成し、被加熱体120との接触面積を減らす構成としても良い。
Table 2 shows the transition of the following temperature and the transition of the temperature difference after the heating, which was measured by a thermoviewer.
-Surface temperature of the gripping member 110a-Temperature of the central part of the heated object 120 (longitudinal center position of the heated object 120)-Upper temperature (position 10 mm below the upper end of the heated object 120)-Central part and upper part The temperature change of the gripping member 110a was extremely small, and the temperature change of the upper part of the object to be heated was 1° C. or less.
In this experiment, the structure is vertically symmetrical, the surface temperature of the gripping member 110b is the same as the surface temperature of the gripping member 110a, and the temperature of the lower part of the heated object 120 is the upper temperature of the heated object 120. Was the same as Therefore, the description of the surface temperature of the grip member 110b and the temperature of the lower portion of the heated object 120 is omitted.
In addition, in the present embodiment, the contact portions of the gripping members 110a and 110b with the object 120 to be heated are tapered all around. When it is desired to suppress heat transfer between the heated body 120 and the gripping members 110a and 110b when heating the heated body 120, unevenness or a groove is formed on the contact surface of the gripping members 110a and 110b with the heated body 120. Alternatively, the contact area with the heated object 120 may be reduced.

図5に、変形例1に係る把持部材の平面図及び断面図を示す。図5は、把持部材と被加熱体との接触面積を減らすために、把持部材110bの被加熱体120との当接面に形成された凹凸の一例を示す。なお、被加熱体120は図5には図示しない。
図5は、円錐台形状の把持部材110bの側面に、ほぼ同じ形状かつ大きさの凸部501bと凹部502bとを、放射線状にかつ交互に設けた例である。把持部材110bの被加熱体120との当接面を図5に示したような凹凸形状とした場合、凸部501bは被加熱体120と接触するが、凹部502bは被加熱体120と接触しない。このため、把持部材110bと被加熱体120との接触面積は、把持部材110bに凸部501b及び凹部502bを形成しない場合の接触面積と比べて、ほぼ半分に減少する。
FIG. 5 shows a plan view and a sectional view of the holding member according to the first modification. FIG. 5 shows an example of unevenness formed on the contact surface of the gripping member 110b with the heated object 120 in order to reduce the contact area between the gripping member and the heated object. The heated object 120 is not shown in FIG.
FIG. 5 is an example in which convex portions 501b and concave portions 502b having substantially the same shape and size are provided radially and alternately on the side surface of the truncated cone-shaped gripping member 110b. When the contact surface of the gripping member 110b with the heated object 120 has an uneven shape as shown in FIG. 5, the convex portion 501b contacts the heated object 120, but the recessed portion 502b does not contact the heated object 120. .. Therefore, the contact area between the gripping member 110b and the body 120 to be heated is reduced to almost half the contact area when the projections 501b and the recesses 502b are not formed on the gripping member 110b.

〈比較例〉
図4に示す把持部材を用いて、実施例1と同様の加熱試験を行った。
図4に示す把持部材410a、410bはPEEKのバルクで構成され、外形形状は実施例1において用いた把持部材110a、110bと同じである。把持部材110aに代えて把持部材410aを、把持部材110bに代えて把持部材410bを用いた以外は実施例1と同じ条件とした。
<Comparative example>
Using the gripping member shown in FIG. 4, the same heating test as in Example 1 was performed.
The gripping members 410a and 410b shown in FIG. 4 are made of PEEK bulk and have the same outer shape as the gripping members 110a and 110b used in the first embodiment. The same conditions as in Example 1 were used except that the gripping member 410a was used instead of the gripping member 110a, and the gripping member 410b was used instead of the gripping member 110b.

表3に、サーモビューワによって測定された加熱終了後の下記の温度の推移、及び温度差の推移を示す。
・把持部材410aの表面温度
・被加熱体120の中央部(被加熱体120の長手中央位置)の温度
・上部(被加熱体120の上端から10mm下方の位置)の温度
・中央部と上部との温度差
把持部材410a,410bの表面温度の変化が大きく、被加熱体120の温度差の変化が2.5℃であった。
Table 3 shows the transition of the following temperature and the transition of the temperature difference after the heating, which was measured by the thermoviewer.
-Surface temperature of the gripping member 410a-Temperature of the central part of the heated object 120 (longitudinal center position of the heated object 120)-Upper temperature (position 10 mm below the upper end of the heated object 120)-Central part and upper part The temperature difference between the gripping members 410a and 410b was large, and the temperature difference between the objects to be heated 120 was 2.5°C.

100 誘導加熱コイル
101 コイル支持部材
102 コイル台座
103 整合器
104 高周波電源
110 把持部材
111 補助基材
112 軸受部
113 回転機構
114 昇降機構
115 制御部
120 被加熱物
130 位置調整手段
140 冷却水循環用流路
141 回転継手
142 冷却水循環機構
150 第1の部材
151 第2の部材
210 情報蓄積部

100 Induction heating coil 101 Coil support member 102 Coil pedestal 103 Matching device 104 High frequency power supply 110 Gripping member 111 Auxiliary base material 112 Bearing 113 Rotating mechanism 114 Elevating mechanism 115 Control part 120 Heated object 130 Position adjusting means 140 Cooling water circulation flow path 141 rotary joint 142 cooling water circulation mechanism 150 first member 151 second member 210 information storage unit

Claims (4)

円筒状の被加熱体が内部に配置される誘導加熱コイルと、該誘導加熱コイルの内部に配置され、該誘導加熱コイルによって渦電流を発生し発熱する補助基材と、を具備する誘導加熱装置であって、
該誘導加熱コイルの内部に該被加熱体が配置されたときに、該被加熱体と該補助基材との間に介在して、該被加熱体を支持する把持部材をさらに具備し、
該誘導加熱装置は、第1の被加熱体と、該第1の被加熱体よりも大きい外径を有する第2の被加熱体と、を支持可能であり、
該把持部材は、
該第1の被加熱体が該誘導加熱コイルの内部に配置されたときの該第1の被加熱体の一端と該補助基材との距離が、該第2の被加熱体が該誘導加熱コイルの内部に配置されたときの該第2の被加熱体の一端と該補助基材との距離よりも、長くなるように該被加熱体を支持するものであり、かつ、
非磁性体で構成されており、
該把持部材の該被加熱体との接触部は、厚み方向の熱伝導率が1.0W/(m・K)以下の材料からなり、
該把持部材の該被加熱体との接触部から該補助基材との接触部に至るまでの熱伝導率が、3.5W/(m・K)以上である、ことを特徴とする誘導加熱装置。
An induction heating apparatus comprising: an induction heating coil in which a cylindrical object to be heated is disposed; and an auxiliary base material disposed inside the induction heating coil and generating an eddy current by the induction heating coil to generate heat. And
When the object to be heated is placed inside the induction heating coil, the object further includes a gripping member interposed between the object to be heated and the auxiliary base material to support the object to be heated,
The induction heating device is capable of supporting a first heated body and a second heated body having an outer diameter larger than that of the first heated body,
The gripping member is
The distance between the one end of the first object to be heated and the auxiliary base material when the first object is placed inside the induction heating coil is the second object to be heated by the induction heating. The object to be heated is supported so as to be longer than the distance between one end of the second object to be heated and the auxiliary base material when arranged inside the coil, and
It is made of non-magnetic material,
The contact portion of the gripping member with the object to be heated is made of a material whose thermal conductivity in the thickness direction is 1.0 W/(m·K) or less,
Induction heating, wherein the thermal conductivity from the contact portion of the gripping member with the object to be heated to the contact portion with the auxiliary base material is 3.5 W/(m·K) or more. apparatus.
前記把持部材が、前記被加熱体の接触部を構成する第1の部材と、該第1の部材よりも前記補助基材側に位置してなる第2の部材と、を具備し、
該第1の部材がポリエーテルエーテルケトン(PEEK)からなり、
該第2の部材が窒化アルミニウムからなる請求項1に記載の誘導加熱装置。
The gripping member includes a first member that constitutes a contact portion of the object to be heated, and a second member that is located closer to the auxiliary base material side than the first member,
The first member is made of polyetheretherketone (PEEK),
The induction heating device according to claim 1, wherein the second member is made of aluminum nitride.
前記第1の部材と前記第2の部材との間に接着剤層を有する請求項2に記載の誘導加熱装置。 The induction heating device according to claim 2, further comprising an adhesive layer between the first member and the second member. 前記接着剤層が、エポキシ系接着剤からなる請求項3に記載の誘導加熱装置。


The induction heating device according to claim 3, wherein the adhesive layer is made of an epoxy adhesive.


JP2019021388A 2019-02-08 2019-02-08 induction heating device Active JP7199987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019021388A JP7199987B2 (en) 2019-02-08 2019-02-08 induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021388A JP7199987B2 (en) 2019-02-08 2019-02-08 induction heating device

Publications (2)

Publication Number Publication Date
JP2020129471A true JP2020129471A (en) 2020-08-27
JP7199987B2 JP7199987B2 (en) 2023-01-06

Family

ID=72174745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021388A Active JP7199987B2 (en) 2019-02-08 2019-02-08 induction heating device

Country Status (1)

Country Link
JP (1) JP7199987B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117599U (en) * 1984-01-18 1985-08-08 神鋼電機株式会社 Vertical induction heating device
JP2000058251A (en) * 1998-06-01 2000-02-25 Kurabe Ind Co Ltd Coil for induction heating and coil molding for induction heating
JP2005063753A (en) * 2003-08-08 2005-03-10 Japan Ajax Magnethermic Co Ltd Induction heating device and induction heating method
WO2009086488A2 (en) * 2007-12-27 2009-07-09 Inductoheat, Inc. Controlled electric induction heating of an electrically conductive workpiece in a solenoidal coil with flux compensators
JP2014056197A (en) * 2012-09-14 2014-03-27 Ricoh Co Ltd Method for manufacturing electrophotographic photoreceptor
JP2018032511A (en) * 2016-08-24 2018-03-01 キヤノン株式会社 Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117599U (en) * 1984-01-18 1985-08-08 神鋼電機株式会社 Vertical induction heating device
JP2000058251A (en) * 1998-06-01 2000-02-25 Kurabe Ind Co Ltd Coil for induction heating and coil molding for induction heating
JP2005063753A (en) * 2003-08-08 2005-03-10 Japan Ajax Magnethermic Co Ltd Induction heating device and induction heating method
WO2009086488A2 (en) * 2007-12-27 2009-07-09 Inductoheat, Inc. Controlled electric induction heating of an electrically conductive workpiece in a solenoidal coil with flux compensators
JP2014056197A (en) * 2012-09-14 2014-03-27 Ricoh Co Ltd Method for manufacturing electrophotographic photoreceptor
JP2018032511A (en) * 2016-08-24 2018-03-01 キヤノン株式会社 Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP7199987B2 (en) 2023-01-06

Similar Documents

Publication Publication Date Title
US8823404B2 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
JP4166886B2 (en) Fixing device
TWI443198B (en) Annealing method of amorphous core
JP2004211187A5 (en)
JP7199987B2 (en) induction heating device
JP2006244763A (en) Magnetic heating apparatus
JP6987601B2 (en) Induction heating device
JP4336283B2 (en) Induction heating device
JP3326406B2 (en) Electromagnetic induction heating method for cylindrical mold and electromagnetic induction heating apparatus
JP5196549B2 (en) Induction heating roller device
JP6573092B2 (en) Method for manufacturing heat-treated metal plate and heat treatment apparatus
JP4637613B2 (en) Magnetic heating device
JPH11209825A (en) Post-welding heat treatment equipment
JP7299488B2 (en) Metal heat treatment method and heat treatment apparatus
JP3392678B2 (en) Fixing device
JP6369109B2 (en) Paint drying apparatus and paint drying method
JP2003084589A (en) Fixing device
JP2008282037A (en) Fixing device
JP5216153B2 (en) Temperature control method
JP4222922B2 (en) Glass lens molding equipment
JP4423986B2 (en) Fixing device
JP2011043124A (en) Correction method for deformation in combustor liner
JP2009205989A (en) Heat treatment method using induction heating, and induction heating device
JP6796971B2 (en) Induction heating device and induction heating method
JPH044591A (en) Method and device for induction heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R151 Written notification of patent or utility model registration

Ref document number: 7199987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03