JP2020124788A - Method for manufacturing long-sized heat insulation material - Google Patents

Method for manufacturing long-sized heat insulation material Download PDF

Info

Publication number
JP2020124788A
JP2020124788A JP2019019760A JP2019019760A JP2020124788A JP 2020124788 A JP2020124788 A JP 2020124788A JP 2019019760 A JP2019019760 A JP 2019019760A JP 2019019760 A JP2019019760 A JP 2019019760A JP 2020124788 A JP2020124788 A JP 2020124788A
Authority
JP
Japan
Prior art keywords
resin foam
phenol
heat insulating
based resin
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019019760A
Other languages
Japanese (ja)
Inventor
知樹 中野
Tomoki Nakano
知樹 中野
国宏 市川
Kunihiro Ichikawa
国宏 市川
佳明 岡本
Yoshiaki Okamoto
佳明 岡本
弘幸 堀江
Hiroyuki Horie
弘幸 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WING KOGYO KK
Asahi Kasei Construction Materials Corp
Original Assignee
WING KOGYO KK
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WING KOGYO KK, Asahi Kasei Construction Materials Corp filed Critical WING KOGYO KK
Priority to JP2019019760A priority Critical patent/JP2020124788A/en
Publication of JP2020124788A publication Critical patent/JP2020124788A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

To inexpensively manufacture a long-sized heat insulation material from a phenol-based resin foam.SOLUTION: A plate-like phenol-based resin foam laminated plate P pushes and passes through a cutting die 20 having a through hole having a cross-sectional shape of a heat insulation material, and a long-sized heat insulation material having a through hole in section is obtained by a cutting blade. Specifically, the plate-like phenol-based resin foam laminated plate is set on a cavity 11 of a base frame 10 having an U shape in plan view, and a press board 12 is lowered in the cavity to press down the plate-like phenol-based resin foam laminated plate. The phenol-based resin foam laminated plate pushes and passes through a die 20, and is pushed and cut by the cutting blade. The phenol-based resin foam has the most thermally/chemically stable properties among foam plastic foams, and has excellent heat insulation property. The blending is adjusted to obtain a fine bubble structure of less than 100 microns, and push and cutting is smoothly performed without causing deformation.SELECTED DRAWING: Figure 2

Description

この発明は、樹脂フォームから長尺状の断熱材を切断して製造する方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a long heat insulating material by cutting it from a resin foam.

断熱材は、内外二重壁の間にガラスウールなどを充填したり、発泡ポリウレタン等の発泡プラスチックを心材としてその内外に壁板(シート)を配したりした構成である。
その発泡プラスチックによる断熱材の製作方法として、心材となる発泡プラスチックに、凹部、穴部、切欠部の輪郭に沿ってトムソン刃からなる切断刃で切込みを入れ、その後、プレス型で前記切込み部分を圧縮・打ち抜きして所要形状の断熱材を製作するものがある(特許文献1、要約、図1〜図4参照)。
The heat insulating material has a structure in which glass wool or the like is filled between the inner and outer double walls, or foamed plastic such as foamed polyurethane is used as a core material and wall plates (sheets) are arranged inside and outside.
As a method of manufacturing a heat insulating material by the foamed plastic, a cut blade made of a Thomson blade is made along the contours of the recessed portion, the hole portion, and the cutout portion in the foamed plastic serving as the core material, and then the cut portion is formed by a press die. There is one that manufactures a heat insulating material having a required shape by compressing and punching (see Patent Document 1, abstract, FIGS. 1 to 4).

この製造方法は、冷蔵庫等の断熱壁を製造する場合には優れているが、図7に示す、高温、低温の配管1の周囲に配置する断熱材2は、長尺であってその長さ方向に配管に宛がわれる孔2aを有する。この長尺形状の断熱材2を、上記製造方法で製作することは非常に困難である。切込みを長さ方向全長に亘って形成する必要があり、その切込みをトムソン刃で形成することは困難だからである。
また、図8に示す断熱材2は、長方形のフォーム板材(スラブ材)からその長さ方向に切り出される。
このため、従来では、その切り出しは、糸状の切断刃(ワイヤーソー)によって行っており、その設備は、大型化して汎用となっておらず、その設備を有する機関(会社)は限られている。また、ワイヤーに加わる切断抵抗により、せん断域の両端と中央部では断面形状に差が生じ易く、製造した製品に反りが生じる場合があった。
This manufacturing method is excellent in the case of manufacturing a heat insulating wall such as a refrigerator, but the heat insulating material 2 arranged around the high temperature and low temperature pipes 1 shown in FIG. 7 is long and its length is long. It has a hole 2a directed in the direction to the pipe. It is very difficult to manufacture the elongated heat insulating material 2 by the above manufacturing method. This is because it is necessary to form the cut over the entire length in the length direction, and it is difficult to form the cut with the Thomson blade.
Moreover, the heat insulating material 2 shown in FIG. 8 is cut out in the length direction from a rectangular foam plate material (slab material).
For this reason, conventionally, the cutting is performed with a thread-shaped cutting blade (wire saw), and the equipment is large and not general-purpose, and the organization (company) having the equipment is limited. .. Further, due to the cutting resistance applied to the wire, a difference in cross-sectional shape is likely to occur at both ends and the central portion of the shear region, and thus the manufactured product may be warped.

特開平9−196551号公報JP 9-196551A

上記のワイヤーソーによる切り出しに代わる長尺状断熱材の製造方法が望まれた。
この発明は、そのワイヤーソーによる切り出しに代わる安価な製造方法を提供することを課題とする。
A method for producing a long heat insulating material, which is an alternative to the above-mentioned cutting with a wire saw, has been desired.
An object of the present invention is to provide an inexpensive manufacturing method that replaces the cutting with the wire saw.

上記課題を達成するために、この発明は、刃となるダイに樹脂フォームを押し通して所要の形状のその樹脂フォームからなる断熱材を得ることとしたのである。
押し通しによる押し切りは、その押し通し方向が長尺状断熱材の長さ方向であれば、その押し出し方向の長さを調節することによって所要長さの断熱材を得ることができる。ダイの透孔(刃先)は周縁の一部が開口していてもよい。
In order to achieve the above object, the present invention is to push a resin foam through a die serving as a blade to obtain a heat insulating material made of the resin foam having a required shape.
In the push-cutting by pushing, if the pushing direction is the length direction of the long heat insulating material, the heat insulating material having a required length can be obtained by adjusting the length in the pushing direction. A part of the peripheral edge of the through hole (blade edge) of the die may be opened.

なお、上記樹脂フォームは、発泡プラスチックであって、合成樹脂中にガスを細かく分散させ、発泡状(フォーム)または多孔質形状に成形されたものを言い、固体である合成樹脂と気体の不均一分散系とも定義される。また、プラスチックフォーム、セルラープラスチックス、プラスチック発泡体、合成樹脂フォーム、合成樹脂発泡体、樹脂発泡体、海綿状プラスチック、発泡合成樹脂等とも称される。合成樹脂に限定しなければ、高分子発泡体とも呼ばれ、特に気泡が小さいものをマイクロセルプラスチック、マイクロセルプラスチックフォームとも呼ぶ。
この発明における「樹脂フォーム(樹脂発泡体)」は断熱材とし得る上記の各フォーム材を含む。
The above-mentioned resin foam is a foamed plastic and is one in which a gas is finely dispersed in a synthetic resin and molded into a foamed (foam) or porous shape. The synthetic resin which is a solid and the gas are non-uniform. Also defined as a distributed system. It is also referred to as plastic foam, cellular plastics, plastic foam, synthetic resin foam, synthetic resin foam, resin foam, spongy plastic, expanded synthetic resin, or the like. If not limited to synthetic resin, it is also called a polymer foam, and one having particularly small bubbles is also called a microcell plastic or a microcell plastic foam.
The “resin foam (resin foam)” in the present invention includes the above foam materials that can be heat insulating materials.

この発明は、具体的には、所定形状の透孔を有する切断刃に、長尺形状樹脂フォームの横断面を押し通し、前記切断刃によって前記透孔と同じ断面形状を有する長尺状断熱材を製造するようにしたのである。
その切断刃の切刃の上記透孔の反対側に逃げ面を形成すれば、切断される樹脂フォームのロス部分が切刃に衝突しなくなるため、押し切りが円滑に行われる。
上記樹脂フォームとしては、上記の各フォーム材を適宜に採用すれば良いが、樹脂の種類としてはフェノール系が好ましい。フェノール系樹脂発泡体は、押し切りによっても、形が崩れることなく、長尺状断熱材を得ることができる。
This invention specifically pushes a cross section of a long resin foam through a cutting blade having a through hole of a predetermined shape, and a long heat insulating material having the same cross-sectional shape as the through hole is cut by the cutting blade. It was manufactured.
If a flank is formed on the side of the cutting blade opposite to the through hole, the loss portion of the resin foam to be cut does not collide with the cutting blade, so that the push-cut is smoothly performed.
As the resin foam, the above foam materials may be appropriately adopted, but the type of resin is preferably phenolic. The phenolic resin foam can obtain a long heat insulating material without losing its shape even when pressed.

ここで、押し切りによって長尺状断熱材を製造する場合、フォームとしては、円滑な押し切りを行うことによって得られた長尺状断熱材の断面寸法が切刃の形状および寸法通りとなること、押し切り後に断熱材にひび割れ、欠けなどが生じることなく、表層面が粗面とならないこと、以上2点の相反する性能が求められる。これらの性能を達成するためには、フェノール系樹脂発泡体の密度、10%圧縮強さ、脆性が下記に示す範囲にあることが好ましい。

「密度が20kg/m以上、45kg/m以下であり、10%圧縮強さが10N/cm以上、30N/cm以下であり、脆性が7%以上、30%以下であるフェノール系樹脂発泡体」
Here, in the case of producing a long-sized heat insulating material by push-cutting, as a foam, the cross-sectional dimensions of the long-sized heat-insulating material obtained by performing smooth push-cutting should be the same as the shape and dimensions of the cutting blade. It is required that the heat insulating material is not cracked or chipped later, the surface layer does not become a rough surface, and the above two contradictory performances are required. In order to achieve these performances, it is preferred that the phenolic resin foam has a density, a 10% compressive strength and a brittleness within the ranges shown below.
Serial "density 20 kg / m 3 or more and 45 kg / m 3 or less, 10% compressive strength of 10 N / cm 2 or more, 30 N / cm 2 or less, brittleness is more than 7%, at most 30% phenol Resin Foam"

また、その各フェノール系樹脂発泡体は、その第1の面上及び第2の面上に面材を有するフェノール系樹脂発泡体積層板としたり、 前記面材が何れもガス透過性を有するものとしたりすることができる。 Further, each of the phenolic resin foams is a phenolic resin foam laminated plate having a face material on the first surface and the second surface, or each of the face materials has gas permeability. You can

この発明は、以上のように押し切りで、長尺形状樹脂フォームから長尺状断熱材を製造するようにしたので、安価な長尺状断熱材を得ることができる。 In the present invention, since the long heat insulating material is manufactured from the long resin foam by pressing as described above, an inexpensive long heat insulating material can be obtained.

この発明に係る長尺状断熱材の製造方法の一実施形態の概略説明図Schematic explanatory drawing of one embodiment of the manufacturing method of the elongate heat insulating material which concerns on this invention 同実施形態の作用図Operation diagram of the same embodiment 同実施形態に係るダイ(切断刃)の斜視図Perspective view of the die (cutting blade) according to the embodiment 同ダイの平面図Plan view of the same die 図4の部分断面図を示し、(a)はA−A線、(b)はB−B線、(c)は従来例FIG. 4 is a partial cross-sectional view of FIG. 4, where (a) is an AA line, (b) is a BB line, and (c) is a conventional example. 長尺形状樹脂フォームから長尺状断熱材を押し切りする各例の概略説明図Schematic explanatory diagram of each example of pushing out the long insulating material from the long resin foam 長尺状断熱材の一例の省略斜視図Omitted perspective view of an example of a long heat insulator 同断熱材の部分斜視図Partial perspective view of the same insulation

この発明に係る実施形態に使用するフェノール系樹脂発泡体は100ミクロン未満の微細気泡構造であり、このフェノール系樹脂発泡体は、密度が20kg/m以上、45kg/m以下であり、10%圧縮強さが10N/cm以上、30N/cm以下であり、脆性が7%以上、30%以下であることを満たすものである。 The phenolic resin foam used in the embodiment according to the present invention has a fine cell structure of less than 100 microns, and the phenolic resin foam has a density of 20 kg/m 3 or more and 45 kg/m 3 or less and 10 % compressive strength of 10 N / cm 2 or more and 30 N / cm 2 or less, brittleness is more than 7% and satisfy 30% or less.

フェノール系樹脂発泡体の密度は、上記のように20kg/m以上、45kg/m以下が好ましく、より好ましくは23kg/m以上、35kg/m以下で、さらに好ましくは26kg/m以上、32kg/m以下である。
密度が20kg/mよりも低いと、気泡膜が薄い為、発泡時に気泡膜が破れやすくなることから高い独立気泡構造を得ることが困難となり、圧縮強さが極端に低下するため、押し切り時にひび割れ、欠け、表層面の粗面化が生じやすくなる。また、密度が45kg/mを超えて高くなり過ぎると、樹脂をはじめとする固形成分由来の固体の熱伝導が大きくなり断熱性能が低下する。
なお、上記密度は、後述の(評価)の「(1)発泡体密度」に記載の方法により測定される値をいう。
As described above, the density of the phenolic resin foam is preferably 20 kg/m 3 or more and 45 kg/m 3 or less, more preferably 23 kg/m 3 or more and 35 kg/m 3 or less, and further preferably 26 kg/m 3 As described above, it is 32 kg/m 3 or less.
If the density is lower than 20 kg/m 3 , the bubble film is thin, and the bubble film is easily broken during foaming, making it difficult to obtain a high closed cell structure, and the compressive strength is extremely reduced. Cracks, chips, and roughening of the surface layer are likely to occur. Further, if the density exceeds 45 kg/m 3 and becomes too high, the heat conduction of solids derived from solid components such as resin is increased and the heat insulating performance is deteriorated.
In addition, the said density says the value measured by the method as described in "(1) Foam density" of (Evaluation) mentioned later.

フェノール系樹脂発泡体の10%圧縮強さは、上記のように10N/cm以上、30N/cm以下が好ましく、より好ましくは10N/cm以上、20N/cm以下である。
10%圧縮強さが10N/cmよりも低いと、押し切り時にひび割れ、欠け、表層面の粗面化が生じやすくなる。また、10%圧縮強さが30N/cmよりも高いと、押し切りの抵抗が大きくなるため、長尺状断熱材の断面寸法を所定の値とすることが困難となる。
なお、上記10%圧縮強さは、後述の(評価)の「(2)10%圧縮強さ」に記載の方法により測定される値をいう。
10% compressive strength of the phenol resin foam, as described above 10 N / cm 2 or more, preferably 30 N / cm 2 or less, more preferably 10 N / cm 2 or more and 20 N / cm 2 or less.
When the 10% compressive strength is lower than 10 N/cm 2 , cracking, chipping, and roughening of the surface layer are likely to occur at the time of pressing. If the 10% compressive strength is higher than 30 N/cm 2 , the resistance to push-cutting increases, and it becomes difficult to set the cross-sectional dimension of the long heat insulating material to a predetermined value.
The 10% compressive strength is a value measured by the method described in "(2) 10% compressive strength" of (Evaluation) below.

フェノール系樹脂発泡体の脆性は、上記のように7%以上、30%以下が好ましく、より好ましくは7%以上、13%以下である。
脆性が7%より低い、すなわち粘性が高い場合は円滑な押し切りや押し切り後の製品寸法の精度維持が困難になり、脆性が30%より高いと、押し切り後に長尺状断熱材にひび割れ、欠けが発生しやすく、かつ表層面が粗面となりやすい。
なお、上記脆性は、後述の(評価)の「(3)脆性」に記載の方法により測定される値をいう。
As described above, the brittleness of the phenolic resin foam is preferably 7% or more and 30% or less, and more preferably 7% or more and 13% or less.
If the brittleness is lower than 7%, that is, if the viscosity is high, it becomes difficult to maintain smooth press-cutting or accuracy of the product dimension after the press-cutting. It is likely to occur and the surface layer is likely to be rough.
The brittleness is a value measured by the method described in "(3) Brittleness" in (Evaluation) described later.

フェノール系樹脂発泡体は、例えば、上述の発泡性フェノール系樹脂組成物を走行する面材上に連続的に吐出することと、発泡性フェノール系樹脂組成物の、面材と接触する面とは反対側の面を他の面材で被覆することと、発泡性フェノール系樹脂組成物を発泡及び加熱硬化させることとを含む連続生産方式により得ることができる。また、その他の生産方式としては、上述の発泡性フェノール系樹脂組成物を、面材によって内側が被覆された型枠内、または離型剤が塗布された型枠内に流し込み、発泡及び加熱硬化させるバッチ生産方式によって得ることもできる。前記バッチ生産方式によって得られたフェノール系樹脂発泡体は、必要に応じて厚み方向にスライスして用いることもできる。
なお、この明細書において、面材上にフェノール系樹脂発泡体が積層した積層板(面材とフェノール系樹脂発泡体を含む積層板)を、フェノール系樹脂発泡体積層板と称する場合がある。フェノール系樹脂発泡体積層板は、1枚の面材を有していてもよいし、2枚の面材(フェノール系樹脂発泡体の第1の面上(上面)及び第2の面上(下面)に設けられた面材(上面材及び下面材))を有していてもよい。上記面材は、フェノール系樹脂発泡体に接する形態で設けられていることが好ましい。
Phenolic resin foam, for example, the continuous discharge of the foamable phenolic resin composition on the running surface material, and the surface of the foamable phenolic resin composition in contact with the surface material It can be obtained by a continuous production method including coating the opposite surface with another surface material, and foaming and heat curing the foamable phenolic resin composition. As another production method, the foamable phenolic resin composition described above is poured into a mold whose inside is coated with a face material or a mold coated with a release agent, and foaming and heat curing. It can also be obtained by a batch production method. The phenolic resin foam obtained by the batch production method can be sliced in the thickness direction and used as necessary.
In this specification, a laminated board in which a phenolic resin foam is laminated on a face material (a laminated board containing a face material and a phenolic resin foam) may be referred to as a phenolic resin foam laminated board. The phenolic resin foam laminate may have one face material, or two face materials (on the first surface (upper surface) and on the second surface of the phenolic resin foam ( It may have face materials (upper surface material and lower surface material) provided on the lower surface). The face material is preferably provided in a form in contact with the phenolic resin foam.

(評価)
(1)発泡体密度
フェノール系樹脂発泡体積層板から、20cm角のボードを切り出し、面材を取り除いて、フェノール系樹脂発泡体の質量と見かけ容積を測定する。求めた質量及び見かけ容積を用いて、JIS K 7222に従い、密度(見かけ密度)を算出する。
(Evaluation)
(1) Foam density A 20 cm square board is cut out from the phenol resin foam laminate, the face material is removed, and the mass and apparent volume of the phenol resin foam are measured. Using the obtained mass and apparent volume, the density (apparent density) is calculated according to JIS K7222.

(2)10%圧縮強さ
フェノール系樹脂発泡体積層板から、長さ100mm、幅100mmの試験片を切り出し、面材を取り除いて試験片を得る。得た試験片を、温度23℃、相対湿度50%の雰囲気下で、24時間間隔で行う2回の秤量値の差が0.1%以下になるまで養生する。養生後の試験片をJIS K 7220に準拠して10%圧縮強さを求める。
(2) 10% compressive strength A test piece with a length of 100 mm and a width of 100 mm is cut out from the phenolic resin foam laminate, and the face material is removed to obtain a test piece. The obtained test piece is aged under an atmosphere of a temperature of 23° C. and a relative humidity of 50% until the difference between the two weighing values performed at intervals of 24 hours becomes 0.1% or less. The 10% compressive strength of the test piece after curing is determined according to JIS K 7220.

(3)脆性
脆性はJIS A 9511(2003)5.14に準拠して、以下のようにして算出する。フェノール系樹脂発泡体積層板から表面の面材をはがし、一つの面に面材をはがした面を含むように25±1.5mmの立方体状に切り出した試験片を12個作製し、質量を±1%の精度で測定する。試験装置は、箱の一面にドアを付け、ほこりが箱の外に出ないように密閉できる、内径が191×197×197mmの樫製の木箱の197mm面の中央部の外側にシャフトを取り付け、毎分60±2回転で回転できるものとする。乾燥した比重0.65、寸法19±0.8mmの樫製のさいころ24個を試験片と一緒に測定装置に入れて密閉した後、木箱を600±3回転させる。回転終了後、箱の中身を注意深くJIS Z 8801の網ふるい呼び寸法9.5mmの網に移し、ふるい分けをして小片を取り除き、網から残った試験片を採取し、質量を測定する。脆性は以下の式によって求める。
脆性(%)=100×(m−m)/m
(ここで、m:試験前の試験片の質量(g)、m:試験後の試験片の質量(g))
(3) Brittleness Brittleness is calculated as follows in accordance with JIS A 9511 (2003) 5.14. Peel off the surface material from the phenolic resin foam laminate, and prepare 12 test pieces cut into a cube of 25 ± 1.5 mm so that one surface includes the surface material. Is measured with an accuracy of ±1%. The test equipment has a door on one side of the box, which can be sealed so that dust does not come out of the box. A shaft is attached to the outside of the center of the 197 mm surface of an oak wooden box with an inside diameter of 191 x 197 x 197 mm , 60±2 rotations per minute. Twenty-four oak dice having a specific gravity of 0.65 and a size of 19±0.8 mm, together with the test piece, were placed in the measuring apparatus and sealed, and then the wooden box was rotated 600±3 times. After the completion of the rotation, the contents of the box are carefully transferred to a mesh having a mesh sieving nominal size of JIS Z 8801 of 9.5 mm, sieved to remove the small pieces, and the remaining test pieces are collected from the net and weighed. Brittleness is calculated by the following formula.
Brittleness (%)=100×(m 0 −m 1 )/m 0
(Where, m 0 : mass (g) of test piece before test, m 1 : mass (g) of test piece after test)

上記100ミクロン未満の微細気泡構造を持ち、かつ各物性値を満足する板状のフェノール系樹脂発泡体積層板Pであるネオマフォーム(旭化成建材株式会社、登録商標)でもって、図1〜図4に示す成形機Aにより、図8に示す配管1用断熱材2を製作する。なお、ネオマフォームの密度、10%圧縮強さ、脆性のそれぞれの値は、概ね27kg/m、16N/cm、10%である。 1 to 4 with Neomafoam (Asahi Kasei Corporation, registered trademark), which is a plate-shaped phenolic resin foam laminate P having a fine cell structure of less than 100 microns and satisfying each physical property value. With the molding machine A shown, the heat insulating material 2 for the pipe 1 shown in FIG. 8 is manufactured. The values of the density, 10% compressive strength, and brittleness of neomafoam are approximately 27 kg/m 3 , 16 N/cm 2 , and 10%, respectively.

成形機Aは、図示しないフレーム上に、平面視コ字状の基枠10を設け、その基枠10のキャビティ11にフェノール系樹脂発泡体積層板(ネオマフォーム)Pをセッティングする。キャビティ11には、プレス盤12が進退可能となっている。このプレス盤12は、ウエイト、油圧シリンダ等によって昇降可能となっている。基枠10の下端面には、押し切り用切断刃であるダイ20が設けられている。 The molding machine A provides a U-shaped base frame 10 in a plan view on a frame (not shown), and sets a phenolic resin foam laminate (neoma foam) P in a cavity 11 of the base frame 10. A press board 12 can be moved back and forth in the cavity 11. The press board 12 can be moved up and down by weights, hydraulic cylinders and the like. A die 20, which is a cutting blade for push cutting, is provided on the lower end surface of the base frame 10.

そのダイ20は、図3、図4に示すように、例えば、S50C等の鋼板から各透孔を切り出し後、焼き入れし、切刃となる部分21に砥石でそのトムソン刃を形成したものである。この実施形態においては、四角枠22内に切刃21が設けられ、その切刃21で囲まれる中央の左右対の円弧状部分(透孔)21aが図8の横断面形状となっている。このため、その部分21aを通れば、周りのトムソン刃(切刃)21によってその断面形状に押し切りされる。 As shown in FIGS. 3 and 4, the die 20 is, for example, one in which each through hole is cut out from a steel plate such as S50C and then hardened, and the Thomson blade is formed on a portion 21 to be a cutting edge with a grindstone. is there. In this embodiment, a cutting edge 21 is provided in a rectangular frame 22, and a pair of left and right arcuate portions (through holes) 21a in the center surrounded by the cutting edge 21 have a cross sectional shape of FIG. Therefore, when passing through the portion 21a, the Thomson blade (cutting blade) 21 around the portion 21a pushes it into the sectional shape.

このとき、切刃21の交差部においては、図5(a)に示すように、製品外側となるロス部分21bの切刃21の刃先を曲線状に下げて逃げ面21cを形状したり、同(b)に示すように、前記ロス部分21bの切刃21の刃先を一定長さ下げて逃げ面21cを形成したりする。この逃げ面21cを有すると、ロス部分21bのフェノール系樹脂発泡体積層板Pがその部分の切刃21と衝突することなく、押し切りが円滑に行われる。
因みに、同図(c)に示すように、両側の高さを揃えた刃先態様にすると、ロス部分21bのフェノール系樹脂発泡体積層板Pとその部分の切刃21が衝突して円滑に切断できない場合が生じやすい。
At this time, at the intersection of the cutting blades 21, as shown in FIG. 5A, the cutting edge 21 of the cutting blade 21 of the loss portion 21b, which is the outer side of the product, is lowered in a curved shape to form a flank 21c. As shown in (b), the cutting edge 21 of the loss portion 21b is lowered by a certain length to form a flank 21c. With this flank 21c, the push-cut is smoothly performed without the phenolic resin foam laminate P of the loss portion 21b colliding with the cutting edge 21 of that portion.
Incidentally, as shown in FIG. 7C, when the heights of both sides are made uniform, the phenol resin foam laminate P of the loss portion 21b collides with the cutting blade 21 of that portion to cut smoothly. There are many cases where it is not possible.

この成形機Aは以上の構成であり、図1に示す基枠10内に板状フェノール系樹脂発泡体積層板Pをセッティングした状態で、プレス盤12を下降させてキャビティ11内に移行させると、その下降に伴って板状フェノール系樹脂発泡体積層板Pが押し下げられる。すると、図2に示すように、その板状フェノール系樹脂発泡体積層板Pは、ダイ20に押し通され、切刃21によって押し切りされる。このため、上記円弧状部分21aを通った板状フェノール系樹脂発泡体積層板Pは、図8に示す、断面円弧状の長尺状断熱材2となって押し切りされる。
このとき、板状フェノール系樹脂発泡体積層板Pは、上記組成からなって100ミクロン未満の微細気泡構造からなるため、押し切りであっても、型くずれすることなく、円滑に図8の形状に押し切りされる。
This molding machine A has the above-mentioned configuration. When the plate-shaped phenolic resin foam laminate P is set in the base frame 10 shown in FIG. 1, the press platen 12 is moved down into the cavity 11. The plate-shaped phenolic resin foam laminate P is pushed down with the descending. Then, as shown in FIG. 2, the plate-shaped phenolic resin foam laminate P is pushed through the die 20 and cut by the cutting blade 21. For this reason, the plate-shaped phenolic resin foam laminate P that has passed through the arc-shaped portion 21a becomes the elongated heat insulating material 2 having the arc-shaped cross section shown in FIG.
At this time, since the plate-shaped phenolic resin foam laminated plate P has the above-mentioned composition and has a fine cell structure of less than 100 microns, even if it is pressed out, it does not lose its shape and is smoothly pressed into the shape of FIG. To be done.

なお、断熱材2の板状フェノール系樹脂発泡体積層板Pからの取り方(配置)としては、上記ダイ20に限らず、有効に取れる、例えば、図6(a)、(b)に示す配置等の種々の態様が考えられる。
また、実施形態の断熱材は、図8に示す横断面円弧状の配管用であったが、この発明は、長尺状断熱材であれば種々のものに適用できることは勿論である。
さらに、フェノール系樹脂発泡体積層板Pはネオマフォームに限らず、上記記載の他の種々の長尺形状樹脂フォームによる長尺状断熱材の製造にもこの発明は採用できることは勿論である。
このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The method (arrangement) of the heat insulating material 2 from the plate-shaped phenolic resin foam laminate P is not limited to the die 20 described above, but can be taken effectively, for example, shown in FIGS. 6(a) and 6(b). Various modes such as arrangement are possible.
Further, the heat insulating material of the embodiment is for pipes having an arcuate cross section as shown in FIG. 8, but the present invention can be applied to various kinds of long heat insulating materials as a matter of course.
Further, the phenol-based resin foam laminated plate P is not limited to Neomafoam, and needless to say, the present invention can be applied to the manufacture of long-sized heat insulating materials using various other long-shaped resin foams described above.
As described above, it should be considered that the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

A 成形機
P 板状のフェノール系樹脂発泡体積層板(ネオマフォーム)
1 配管
2 配管用断熱材
10 成形機の基枠
11 基枠のキャビティ
12 同プレス盤
20 切刃付ダイ(切断刃)
21 切刃(トムソン刃)
21a 円弧状部分(透孔)
21b ロス部分
21c 逃げ面
22 四角枠
A Molding machine P Plate-shaped phenol resin foam laminate (Neomafoam)
1 Piping 2 Piping Heat Insulation Material 10 Base Frame 11 of Molding Machine Cavity of Base Frame 12 Pressing Machine 20 Cutting Die with Cutting Blade (Cutting Blade)
21 Cutting edge (Thomson blade)
21a Arc-shaped part (through hole)
21b loss part 21c flank 22 square frame

Claims (4)

所定形状の透孔(21a)を有する切断刃(20)に、長尺形状樹脂フォーム(P)の横断面を押し通し、前記切断刃(20)によって前記透孔(21a)と同じ断面形状を有する長尺状断熱材(2)を製造する断熱材製造方法。 The cross section of the elongated resin foam (P) is pushed through a cutting blade (20) having a through hole (21a) of a predetermined shape, and the cutting blade (20) has the same cross-sectional shape as the through hole (21a). A heat insulating material manufacturing method for manufacturing a long heat insulating material (2). 上記切断刃(20)の切刃(21)の上記透孔(21a)の反対側に逃げ面(21c)を形成した請求項1に記載の断熱材製造方法。 The heat insulating material manufacturing method according to claim 1, wherein a flank (21c) is formed on the opposite side of the through hole (21a) of the cutting blade (21) of the cutting blade (20). 上記長尺形状樹脂フォーム(P)は、フェノール系樹脂発泡体からなる請求項1又は2に記載の断熱材製造方法。 The heat insulating material manufacturing method according to claim 1 or 2, wherein the elongated resin foam (P) is made of a phenolic resin foam. 上記フェノール系樹脂発泡体は、密度が20kg/m以上、45kg/m以下であり、10%圧縮強さが10N/cm以上、30N/cm以下であり、脆性が7%以上、30%以下であることを特徴とする請求項3に記載の断熱材製造方法。 The phenolic resin foam has a density of 20 kg / m 3 or more and 45 kg / m 3 or less, 10% compressive strength of 10 N / cm 2 or more, 30 N / cm 2 or less, brittleness is more than 7%, It is 30% or less, The heat insulating material manufacturing method of Claim 3 characterized by the above-mentioned.
JP2019019760A 2019-02-06 2019-02-06 Method for manufacturing long-sized heat insulation material Pending JP2020124788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019760A JP2020124788A (en) 2019-02-06 2019-02-06 Method for manufacturing long-sized heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019760A JP2020124788A (en) 2019-02-06 2019-02-06 Method for manufacturing long-sized heat insulation material

Publications (1)

Publication Number Publication Date
JP2020124788A true JP2020124788A (en) 2020-08-20

Family

ID=72083330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019760A Pending JP2020124788A (en) 2019-02-06 2019-02-06 Method for manufacturing long-sized heat insulation material

Country Status (1)

Country Link
JP (1) JP2020124788A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142938A (en) * 2008-12-22 2010-07-01 Hirano Seisakusho:Kk Decorative cutter of fruit and vegetables, and decorative cutting apparatus therefor
JP2010185061A (en) * 2009-01-19 2010-08-26 Asahi Organic Chem Ind Co Ltd Expandable resol-type phenolic resin molding material, method for producing the same, and phenolic resin foam
JP2015505738A (en) * 2011-12-09 2015-02-26 カボニ, ミケーレCABONI, Michele CNC machining center for machining bulging material
WO2015140715A1 (en) * 2014-03-18 2015-09-24 Fantini Valentino Method for producing a slab of insulating material for use in buildings, tailored-module system comprising such a slab and method for making a composite wall using such a slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142938A (en) * 2008-12-22 2010-07-01 Hirano Seisakusho:Kk Decorative cutter of fruit and vegetables, and decorative cutting apparatus therefor
JP2010185061A (en) * 2009-01-19 2010-08-26 Asahi Organic Chem Ind Co Ltd Expandable resol-type phenolic resin molding material, method for producing the same, and phenolic resin foam
JP2015505738A (en) * 2011-12-09 2015-02-26 カボニ, ミケーレCABONI, Michele CNC machining center for machining bulging material
WO2015140715A1 (en) * 2014-03-18 2015-09-24 Fantini Valentino Method for producing a slab of insulating material for use in buildings, tailored-module system comprising such a slab and method for making a composite wall using such a slab

Similar Documents

Publication Publication Date Title
JP5620487B2 (en) Thermal insulation polymer foam / airgel composite article
JP5923623B2 (en) Reinforced phenol foam board
CN102482446B (en) Thermal insulating panel composite
TW460518B (en) Preparing process of cellular thermoplastic polymer foam and manufactured products thereof, and foam suitable for use therein
CN103847163A (en) Foam-filled honeycomb aluminum core sandwich structure and preparation method thereof
EP2963081B1 (en) Phenolic resin foam board, and method for manufacturing same
CA2640923C (en) A phenolic foam board
JPH071479A (en) Manufacture of heat-insulating structure
Baferani et al. Effects of Silicone Surfactant on the Properties of Open‐Cell Flexible Polyurethane Foams
EP2514786A1 (en) Phenolic resin foamed plate and method for producing same
JPWO2010047274A1 (en) Production method of thermoplastic resin foam film and thermoplastic resin foam film
JP2020124788A (en) Method for manufacturing long-sized heat insulation material
CN105377522B (en) Method for being sealed to porous foams surface
JP2002504879A (en) Composite vacuum insulation panel of polystyrene and polyurethane and its use for manufacturing insulation members
JP6300041B2 (en) Phenolic foam
WO2003080719A1 (en) Reinforced phenolic foam
JPH1086255A (en) Vacuum heat insulation material
CN111572125A (en) Composite board
JP2017094574A (en) Method for producing heat insulation material
Booth et al. The Effective Diffusivity of Cyclopentane and n-Pentane in PU and PUIR Foams by Thin-Slice Gravimetric Analysis
Kim et al. Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test
JPS5834499B2 (en) styrene cage styrene
CN109437788B (en) Non-combustible composite expanded polystyrene insulation board and pressing method thereof
WO2017025977A1 (en) Method for preparing chemical cross linked polyethylene closed cell foam with air gaps designed to achieve desired efficacy.
KR100609838B1 (en) Method for manufacturing impact sound insulation materials based on styrenic polymer, styreic polymer foam molding manufactured by the method and floating floor structure using the styreic polymer foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411