JP2020123883A - Quantum optical device - Google Patents

Quantum optical device Download PDF

Info

Publication number
JP2020123883A
JP2020123883A JP2019015342A JP2019015342A JP2020123883A JP 2020123883 A JP2020123883 A JP 2020123883A JP 2019015342 A JP2019015342 A JP 2019015342A JP 2019015342 A JP2019015342 A JP 2019015342A JP 2020123883 A JP2020123883 A JP 2020123883A
Authority
JP
Japan
Prior art keywords
tether
wiring
light
gas
signal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015342A
Other languages
Japanese (ja)
Other versions
JP7232510B2 (en
Inventor
基揚 原
Motoaki Hara
基揚 原
雄一郎 矢野
Yuichiro Yano
雄一郎 矢野
雅稔 梶田
Masatoshi Kajita
雅稔 梶田
哲也 井戸
Tetsuya Ido
哲也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2019015342A priority Critical patent/JP7232510B2/en
Publication of JP2020123883A publication Critical patent/JP2020123883A/en
Application granted granted Critical
Publication of JP7232510B2 publication Critical patent/JP7232510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

To provide a quantum optical device capable of suppressing an influence of high frequency noise generated by a high frequency signal.SOLUTION: Holding means 10 of a quantum optical device 1 selectively uses a high load-bearing structure retention tether 121, a DC signal tether 122 used for DC power supply and DC signal transmission, and a high frequency signal tether 123 used for transmission of a high frequency signal that can cause high frequency noise to hold a gas cell 20 equipped with temperature-raising means 30, a light emitting element 41, a light-receiving element 42, and a semiconductor element 50 used to realize a CPT capture function, etc. By spatially separating the wiring tether 122 for DC signals and the wiring tether 123 for high frequency signals, effects of high frequency noise is suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、レーザと原子との相互作用を利用して安定した標準周波数信号を取得する原子時計や原子コンパス、原子ジャイロ等に用いることが可能な量子光学装置に関する。 The present invention relates to a quantum optical device that can be used in an atomic clock, an atomic compass, an atomic gyro, or the like that obtains a stable standard frequency signal by utilizing the interaction between a laser and an atom.

原子時計のような量子光学装置では、レーザと原子との相互作用を利用して、ガス状のアルカリ金属元素、希ガスまたは不活性ガスより、安定した標準周波数信号を取得する。量子光学装置では、ガスを封入・密閉したガス充填容器(ガスセル)が必要不可欠であり、例えばガラス管を利用したガスセルが一般に用いられている。また、標準周波数信号となる原子の吸収線は磁場や角加速度に感度を持つことが知られており、この性質を運動量の高感度検知に利用することで、原子コンパスや原子ジャイロを構成することも出来る。近年は、量子光学装置に対する小型化への強い要望から、陽極接合やプラズマエッチングなどのウェハープロセスを使用した小型のガスセルの開発も多数、報告されている。 In a quantum optical device such as an atomic clock, a stable standard frequency signal is acquired from a gaseous alkali metal element, a rare gas or an inert gas by utilizing the interaction between a laser and an atom. In a quantum optical device, a gas filling container (gas cell) in which a gas is filled and sealed is indispensable, and for example, a gas cell using a glass tube is generally used. It is also known that the absorption lines of atoms, which are standard frequency signals, are sensitive to magnetic fields and angular acceleration, and by utilizing this property for high-sensitivity detection of momentum, atomic compasses and atomic gyros can be constructed. You can also In recent years, due to a strong demand for miniaturization of quantum optical devices, many developments of small gas cells using a wafer process such as anodic bonding and plasma etching have been reported.

上述したような量子光学装置の一例として、CPT(Coherent Population Trapping)方式の量子光学装置100の概略構成を図9に示す。電流ドライバ101より供給される定電流は、バイアス・ティ102を介して、マイクロ波発信器103よりの高周波変調信号と共に発光素子4へ供給される。発光素子104に定電流を印加することで、発光素子104は一定振動数ν0にて発光する。この印加される電流にマイクロ波発振器103から振動数νmodなる高周波変調信号を重畳すると、発光素子104からはν0−νmod、ν0mod、ν0+νmodの振動数を有する光が生成され、ガスセル5に入力され、光路OPを経た出力光を受光素子106で受信する。なお、実際にはνmodの高次項も生成されるが、その影響は無視できる程度であるから、以下では、強勢に生成される三つの振動数のみに着目する。 As an example of the quantum optical device as described above, a schematic configuration of a CPT (Coherent Population Trapping) type quantum optical device 100 is shown in FIG. The constant current supplied from the current driver 101 is supplied to the light emitting element 4 via the bias tee 102 together with the high frequency modulation signal from the microwave oscillator 103. By applying a constant current to the light emitting element 104, the light emitting element 104 emits light at a constant frequency ν 0 . When superimposing a high frequency modulated signal comprising vibration frequency [nu mod the current the applied from the microwave oscillator 103, the light emitting element from 104 ν 0 -ν mod, ν 0mod , light having a frequency of ν 0 + ν mod is generated The light received by the light receiving element 106 is input to the gas cell 5 and passed through the optical path OP. In addition, although the higher order term of ν mod is actually generated, its influence is negligible, so in the following, only three frequencies that are strongly generated will be focused.

ガスセル5には、ガス状のアルカリ金属元素が緩衝ガスとなる不活性な希ガス類とともに充填されており、光と原子との相互干渉によってCPT現象が生ずる。CPT現象は、図10に示すように、相互に禁制帯にある二つの基底準位(<1|と<2|)と一つの励起準位(<3|)とからなる3準位系で観測される共鳴現象である。この3準位系を呈するガスセル105に<3|と<1|とのエネルギー差に相当する第1励起光ExL1を導入すると、誘導吸収と誘導放出に伴う吸発光現象が観測される。同様に、<3|と<2|とのエネルギー差に相当する第2励起光ExL2をガスセル105に導入すると、誘導吸収と誘導放出に伴う吸発光現象が観測される。ここで、第1励起光ExL1と第2励起光ExL2が同時にガスセル105へ導入されると、各々のエネルギー準位間の誘導吸収と誘導放出とが相殺され、励起光との相互作用が起こらない暗共鳴が観測される。これをCPT現象、またはCPT共鳴と呼ぶ。 The gas cell 5 is filled with a gaseous alkali metal element together with an inert rare gas serving as a buffer gas, and a CPT phenomenon occurs due to mutual interference between light and atoms. As shown in FIG. 10, the CPT phenomenon is a three-level system consisting of two ground levels (<1| and <2|) and one excitation level (<3|) that are in the forbidden band with each other. This is an observed resonance phenomenon. When the first excitation light ExL1 corresponding to the energy difference between <3| and <1| is introduced into the gas cell 105 exhibiting this three-level system, an absorption/emission phenomenon associated with stimulated absorption and stimulated emission is observed. Similarly, when the second excitation light ExL2 corresponding to the energy difference between <3| and <2| is introduced into the gas cell 105, an absorption/emission phenomenon associated with stimulated absorption and stimulated emission is observed. Here, when the first excitation light ExL1 and the second excitation light ExL2 are simultaneously introduced into the gas cell 105, the stimulated absorption and the stimulated emission between the respective energy levels cancel each other out, and the interaction with the exciting light does not occur. Dark resonance is observed. This is called the CPT phenomenon or CPT resonance.

したがって、図10のようなエネルギー準位を有するガスセル105に入力する複数の振動数のうち、二つが第1励起光ExL1および第2励起光ExL2に合致したとき、CPT現象が発現する。このことから、発光素子105の定常状態での出力振動数ν0を適切に選定することで、外部入力となるマイクロ波発振器103の出力振動数νmodを用いてCPT現象の発現を制御できることがわかる。 Therefore, the CPT phenomenon occurs when two of the plurality of frequencies input to the gas cell 105 having the energy level as shown in FIG. 10 match the first excitation light ExL1 and the second excitation light ExL2. From this, by appropriately selecting the output frequency ν 0 of the light emitting element 105 in the steady state, it is possible to control the occurrence of the CPT phenomenon by using the output frequency ν mod of the microwave oscillator 103 which is an external input. Recognize.

CPT現象の発現は、ガスセル105を透過する光量を最大化し、受光素子106の出力を最大化する。また、ガスセル105に封入されているガス成分が気体状態を保持するように、ヒータ等の昇温手段107によって高温に温度管理されると共に、保持手段108によって定位置に保持される。保持手段108の一例を図11に示す。主フレーム1081によって第1テザー1082aと第2テザー1082bを保持し、第1,第2テザー1082a,1082bによってガスセル105、発光素子104、受光素子106を定位置に固定する。 The manifestation of the CPT phenomenon maximizes the amount of light that passes through the gas cell 105 and maximizes the output of the light receiving element 106. Further, the temperature of the gas component enclosed in the gas cell 105 is controlled by the temperature raising means 107 such as a heater to a high temperature so that the gas component is kept in a gas state, and the holding means 108 holds the gas component at a fixed position. An example of the holding means 108 is shown in FIG. The main frame 1081 holds the first tether 1082a and the second tether 1082b, and the first and second tethers 1082a and 1082b fix the gas cell 105, the light emitting element 104, and the light receiving element 106 in place.

保持手段108によって、発光素子104の発光部から受光素子106の受光部に向けて、光路OPを経てガスセル105内をレーザ光が通過する配置を安定的に保持する。そして、受光素子105の出力を、判別器109とループフィルタ110とを用いて常に出力ピークを捕捉するようにマイクロ波発振器103の出力振動数をフィードバック制御する。すなわち、マイクロ波発振器103の出力となる高周波変調信号が所望の出力振動数となるよう、ガスセル105内原子のエネルギー準位によって安定化が図られる。このように、CPT共鳴の捕捉を行う機能手段は、半導体製造プロセスにより微細化した1つ以上の半導体素子で構成できる。なお、全ての機能をパッケージングして1つの半導体素子で構成することも可能である。上述した量子光学部やCPT共鳴捕捉機能は、減圧された密閉容器111内に収納される。 The holding unit 108 stably holds the arrangement in which the laser light passes through the gas cell 105 through the optical path OP from the light emitting portion of the light emitting element 104 toward the light receiving portion of the light receiving element 106. Then, the output frequency of the microwave oscillator 103 is feedback-controlled so that the output of the light receiving element 105 is always captured by using the discriminator 109 and the loop filter 110. That is, stabilization is achieved by the energy level of the atoms in the gas cell 105 so that the high frequency modulation signal that is the output of the microwave oscillator 103 has a desired output frequency. As described above, the functional means for capturing the CPT resonance can be configured by one or more semiconductor elements miniaturized by the semiconductor manufacturing process. It is also possible to package all functions and configure one semiconductor element. The quantum optical unit and the CPT resonance capturing function described above are housed in a decompressed closed container 111.

量子光学装置100の量子光学部は、磁気シールドなどによってガスセル105が遮蔽されており、また、装置全体に加速度運動が加えられていないことを前提として、標準周波数信号を得られる装置である。しかしながら、磁気や慣性運動が加わった場合は、エネルギー準位も鋭敏に反応し、出力周波数はそれに応じて変動する。そこで、図12に示す量子光学装置100′のように、外部磁気を作用させた出力信号Sを取り出すことで、原子コンパスとして利用することができる。また、図13に示す量子光学装置100″のように、加速度運動が加えられた標準周波数信号と基準クロック源112からの基準クロックとを比較器113で比較し、差分波長の出力信号Sを取り出すことで、原子ジャイロとして利用することができる。 The quantum optical unit of the quantum optical device 100 is a device that can obtain a standard frequency signal on the assumption that the gas cell 105 is shielded by a magnetic shield or the like and that no acceleration motion is applied to the entire device. However, when magnetism or inertial motion is applied, the energy level also reacts sensitively, and the output frequency fluctuates accordingly. Therefore, as in the quantum optical device 100 ′ shown in FIG. 12, it is possible to use it as an atomic compass by extracting the output signal S on which external magnetism is applied. Further, as in the quantum optical device 100″ shown in FIG. 13, the comparator 113 compares the standard frequency signal to which the acceleration motion is applied with the reference clock from the reference clock source 112, and extracts the output signal S of the difference wavelength. It can be used as an atomic gyro.

量子光学部におけるガスセル105は、封入されたアルカリ金属元素を気体状に保持するため、60〜90℃程度に温度管理される必要がある。これは、分子運動論的に、原子の運動量を上げ、光と相互干渉する原子の数を増大させるためである。よって、ガスセル105を加熱するための昇温手段107には、ヒータ電流等を供給する配線を接続しなければならない。また、発光素子104や受光素子106はもちろん、CPT共鳴捕捉機能を実現するために用いる半導体素子に対しても電源や制御信号を供給したり、検出信号を取り出したりするための配線が必要である。しかし、コンパクトな構造とする量子光学部は、ガスセルや各種半導体素子を積層状に配置するマウント実装を行うため、立体的な配線構造が必要である。 The gas cell 105 in the quantum optics unit needs to be temperature-controlled at about 60 to 90° C. in order to hold the encapsulated alkali metal element in a gaseous state. This is because in terms of molecular kinetic theory, the momentum of atoms is increased and the number of atoms that mutually interfere with light is increased. Therefore, the heating means 107 for heating the gas cell 105 must be connected to a wiring for supplying a heater current or the like. Further, not only the light-emitting element 104 and the light-receiving element 106, but also the semiconductor element used for realizing the CPT resonance capturing function need a wiring for supplying a power supply and a control signal and extracting a detection signal. .. However, the quantum optical unit having a compact structure requires a three-dimensional wiring structure in order to mount the gas cell and various semiconductor elements in a stacked manner.

そこで、異なる層にある光源やヒータをワイヤ状の立体配線で接続する手法がある(例えば、特許文献1を参照)。また、マウント構造を支える架橋構造物に配線を作り込んで光源やヒータへの配線を行う手法も提案されている(例えば、特許文献2を参照)。 Therefore, there is a method of connecting light sources and heaters in different layers by wire-shaped three-dimensional wiring (for example, refer to Patent Document 1). Further, a method has also been proposed in which wiring is formed in a crosslinked structure that supports the mount structure and wiring is performed to a light source or a heater (see, for example, Patent Document 2).

特開2017−183869号公報JP, 2017-183869, A 特開2018−058162号公報JP, 2018-058162, A

しかしながら、特許文献1や特許文献2に記載された量子光学装置で採用されている配線構造では、ウェハープロセスにより作成する小型のガスセルを用いた量子光学装置に十分対応できるものではない。上述したように、CPT共鳴捕捉機能を実現するためには、マイクロ波発振器を含む高周波回路も必須であるから、高周波信号が流れることで生ずる高周波ノイズが他の半導体素子の動作に悪影響を与えないようにしなければならない。 However, the wiring structure adopted in the quantum optical device described in Patent Document 1 or Patent Document 2 is not sufficiently compatible with the quantum optical device using a small gas cell produced by a wafer process. As described above, in order to realize the CPT resonance capturing function, a high frequency circuit including a microwave oscillator is also indispensable, so that high frequency noise generated by flowing a high frequency signal does not adversely affect the operation of other semiconductor elements. Must be done.

例えば、原子時計などに一般に用いられるアルカリ金属原子として87Rb,85Rb,Csが挙げられ、これらのCPT共鳴周波数はそれぞれ3.417GHz、1.518GHz、4.596GHzである。したがって、図9,図12、図13に示した量子光学装置100,100′,100″における信号のほとんどは、高周波帯にて精緻に制御する必要がある。 For example, 87Rb, 85Rb, and Cs are mentioned as alkali metal atoms generally used for atomic clocks, etc., and their CPT resonance frequencies are 3.417 GHz, 1.518 GHz, and 4.596 GHz, respectively. Therefore, most of the signals in the quantum optical devices 100, 100', 100" shown in FIGS. 9, 12, and 13 need to be precisely controlled in the high frequency band.

このような高周波信号用の配線と、電源用の配線や低周波の制御信号用の配線が混在していると、高周波ノイズが電源や低周波の制御信号に重畳するため、システムの誤動作や故障、周波数精度の低下を誘引することとなる。したがって、高周波信号の入出力により生ずる高周波ノイズへの対策を適切に行わなければ、安定動作する量子光学装置を実現することは困難である。 If such high-frequency signal wiring, power supply wiring, and low-frequency control signal wiring are mixed, high-frequency noise will be superimposed on the power supply and low-frequency control signal, causing system malfunction or failure. Therefore, the frequency accuracy is lowered. Therefore, it is difficult to realize a quantum optical device that operates stably unless appropriate measures are taken against high-frequency noise generated by input and output of high-frequency signals.

本発明は、高周波信号により生ずる高周波ノイズの影響を抑制できる量子光学装置の提供を目的とする。 An object of the present invention is to provide a quantum optical device capable of suppressing the influence of high frequency noise generated by a high frequency signal.

前記課題を解決するために、本構成に係る量子光学装置は、アルカリ金属元素の吸収波長帯で複数周波数の励起光を出射する発光素子と、前記発光素子からの励起光を透明な窓部より受ける位置に配置され、ウェハープロセスにより作成された微細な内空部にアルカリ金属元素とバッファガスが封入された小型のガス充填容器と、前記ガス充填容器に封入されているガス成分が気体状態を保持するよう、ガス充填容器を加熱する昇温手段と、前記ガス充填容器を通過した光を受信する位置に配置され、受信光の光強度を検出する受光素子と、前記受光素子で検出される光強度を最大化させるCPT共鳴を発生させるように、発光素子から出力させる励起光の周波数差を、アルカリ金属元素における基底順位間の周波数差に一致させるCPT共鳴捕捉機能を実現する1つ以上の半導体素子と、必要十分な耐荷重性を有するフレームに固定され、前記ガス充填容器、発光素子、受光素子、半導体素子を含む保持対象をそれぞれ所要位置に保持する複数の構造保持テザーと、配線を必要とする前記保持対象を保持可能な位置で前記フレームに固定され、少なくとも誘電体基板の片面側に配線を形成した配線テザーと、を備えることを特徴とする。 In order to solve the problems, the quantum optical device according to the present configuration, a light emitting element that emits excitation light of a plurality of frequencies in the absorption wavelength band of the alkali metal element, and the excitation light from the light emitting element through a transparent window portion. A small gas filling container, in which the alkali metal element and the buffer gas are filled in a fine inner space created by the wafer process, which is placed at the receiving position, and the gas component filled in the gas filling container is in a gas state. A temperature raising means for heating the gas filling container so as to hold it, a light receiving element arranged at a position for receiving the light passing through the gas filling container, and detecting the light intensity of the received light, and the light receiving element for detecting the light intensity. One or more CPT resonance trapping functions that match the frequency difference of the excitation light output from the light emitting device with the frequency difference between the base ranks of the alkali metal elements so as to generate the CPT resonance that maximizes the light intensity. A semiconductor element, a plurality of structure holding tethers, which are fixed to a frame having a necessary and sufficient load resistance, hold a holding target including the gas filling container, the light emitting element, the light receiving element, and the semiconductor element at required positions, respectively, and wiring. A wiring tether, which is fixed to the frame at a position capable of holding the required holding object, and has a wiring formed on at least one surface side of the dielectric substrate.

また、前記構成において、前記配線テザーは、少なくとも、直流電源や直流信号の伝送に用いる直流信号配線を形成した直流信号用配線テザーと、高周波ノイズの発生要因となり得る高周波信号の伝送に用いる高周波信号配線を形成した高周波信号用配線テザーと、を含むものでも良い。 Further, in the above configuration, the wiring tether is at least a DC signal wiring tether in which a DC signal wiring used for transmission of a DC power source or a DC signal is formed, and a high-frequency signal used for transmission of a high-frequency signal that may cause high-frequency noise. A high-frequency signal wiring tether formed with wiring may be included.

また、前記構成において、前記配線テザーは、更に、高周波ノイズの発生要因とならない低周波信号の伝送に用いる低周波信号配線を形成した低周波信号用配線テザー、を含むものでも良い。 Further, in the above configuration, the wiring tether may further include a low-frequency signal wiring tether in which a low-frequency signal wiring used for transmitting a low-frequency signal that does not cause high-frequency noise is formed.

また、前記構成において、前記高周波信号配線用テザーの幅を、他の配線テザーの幅よりも狭く設定したものでも良い。 Further, in the above configuration, the width of the tether for high-frequency signal wiring may be set narrower than the width of other wiring tethers.

また、前記構成において、前記直流信号用配線テザーは、直流信号配線と対向する面に、電気的に接地された接地配線を備えるものでも良い。 Further, in the above configuration, the DC signal wiring tether may be provided with a ground wiring electrically grounded on a surface facing the DC signal wiring.

また、前記構成において、前記直流信号用配線テザーは、直流信号配線の両側に、電気的に接地された接地配線を備えるものでも良い。 Further, in the above configuration, the DC signal wiring tether may include ground wirings electrically grounded on both sides of the DC signal wiring.

本発明に係る量子光学装置によれば、保持対象をそれぞれ所要位置に保持する構造保持テザーとは別に、配線を形成した配線テザーを設けたので、電源供給や信号の入出力を配線テザー単位で独立して行うことが可能となる。したがって、高周波ノイズ源となる高周波信号と、他の直流や低周波信号とを物理的に離し、高周波ノイズの影響を効果的に抑制できる。 According to the quantum optical device according to the present invention, since the wiring tether having the wiring formed is provided separately from the structure holding tether that holds the holding object at each required position, the power supply and the input/output of the signal are performed in the wiring tether unit. It can be done independently. Therefore, it is possible to effectively separate the influence of high-frequency noise by physically separating the high-frequency signal that is the source of high-frequency noise from other direct current and low-frequency signals.

実施形態に係る量子光学装置の概略構成図である。It is a schematic block diagram of the quantum optical device which concerns on embodiment. 第1改変例のガスセルを示し、(A)は外観斜視図、(B)は図2(A)のIIB−IIB線の矢視断面図、(C)は図2(A)のIIC−IIC線の矢視断面図である。The gas cell of the 1st modification is shown, (A) is an external perspective view, (B) is a sectional view taken along the line IIB-IIB of FIG. 2(A), and (C) is IIC-IIC of FIG. 2(A). It is an arrow sectional view of a line. 第2改変例のガスセルを示し、(A)は外観斜視図、(B)は図3(A)のIIIB−IIIB線の矢視断面図、(C)は図3(A)のIIIC−IIIC線の矢視断面図である。The gas cell of the 2nd modification is shown, (A) is an external perspective view, (B) is a sectional view taken along the line IIIB-IIIB of FIG. 3(A), and (C) is IIIC-IIIC of FIG. 3(A). It is an arrow sectional view of a line. 第3改変例のガスセルを示し、(A)は外観斜視図、(B)は図4(A)のIVB−IVB線の矢視断面図、(C)は図4(A)のIVC−IVC線の矢視断面図である。The gas cell of the 3rd modification is shown, (A) is an external perspective view, (B) is a cross-sectional view taken along the line IVB-IVB of FIG. 4(A), and (C) is IVC-IVC of FIG. 4(A). It is the arrow sectional drawing of a line. (A)は第1改変例のガスセルにおけるガス封入空部を増大させた概略断面図である。(B)は第2改変例のガスセルにおけるガス封入空部を増大させた概略断面図である。(C)は第3改変例のガスセルにおけるガス封入空部を増大させた概略断面図である。FIG. 7A is a schematic cross-sectional view showing an enlarged gas-filled space in the gas cell of the first modified example. (B) is a schematic cross-sectional view showing an enlarged gas-filled space in the gas cell of the second modified example. (C) is a schematic cross-sectional view showing an enlarged gas-filled space in the gas cell of the third modified example. (A)は第1構成例の量子光学部の概略横断面図である。(B)は図6(A)におけるVIB−VIB矢視線の拡大端面図である。(A) is a schematic cross-sectional view of the quantum optical part of the first configuration example. FIG. 6B is an enlarged end view of the VIB-VIB arrow in FIG. 6A. (A)は第2構成例の量子光学部の概略横断面図である。(B)は図7(A)におけるVIIB−VIIB矢視線の拡大端面図である。(A) is a schematic cross-sectional view of a quantum optical part of a second configuration example. FIG. 7B is an enlarged end view of the VIIB-VIIB arrow in FIG. 7A. (A)は第3構成例の量子光学部の概略横断面図である。(B)は図8(A)におけるVIIIB−VIIIB矢視線の拡大端面図である。(A) is a schematic cross-sectional view of a quantum optics part of a third configuration example. FIG. 8B is an enlarged end view of the line VIIIB-VIIIB in FIG. 8A. 原子時計に適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic clock. CPT現象の原理説明図である。It is a principle explanatory view of a CPT phenomenon. 従来の量子光学装置の概略構成図である。It is a schematic block diagram of the conventional quantum optical device. 原子コンパスに適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic compass. 原子ジャイロに適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic gyro.

次に、添付図面に基づき、量子光学装置の実施形態について詳述する。 Next, embodiments of the quantum optical device will be described in detail with reference to the accompanying drawings.

図1に示す量子光学装置1は、減圧された密閉容器2内に量子光学部3を備える構造である。量子光学部3の保持手段10は、アルカリ金属元素が封入されたガス充填容器であるガスセル20を所定位置に保持する。ガスセル20の周囲には、封入されたガスを気体状に保持(例えば、60〜90℃の高温を保持)するための加熱ヒータ等で構成できる昇温手段30を配置してある。 The quantum optical device 1 shown in FIG. 1 has a structure in which a quantum optical unit 3 is provided in a depressurized closed container 2. The holding means 10 of the quantum optics unit 3 holds a gas cell 20 which is a gas filling container in which an alkali metal element is sealed, at a predetermined position. Around the gas cell 20, there is arranged a temperature raising means 30 which can be constituted by a heater or the like for holding the enclosed gas in a gaseous state (for example, holding a high temperature of 60 to 90° C.).

保持手段10は、必要十分な耐荷重性を有する主フレーム11の適所からフレーム内側へ延出するように固定されたテザー12を複数段(例えば、5段)備える。各テザー12は、昇温手段30を備えたガスセル20、発光素子41、受光素子42、CPT捕捉機能を実現するために用いる半導体素子50等(以下、これらをテザー12の保持対象という)を、それぞれ離隔させつつ積層状に所要位置へ保持する。すなわち、各テザー12を適宜離隔させて配置することで、各テザー12に保持された保持対象は、互いに断熱されるので、特性に応じた温度帯で温度管理することができる。例えば、発光素子41、受光素子42、半導体素子50は、ガスセル20の温度管理とは異なる独自の温度制御系(例えば、40〜60℃程度の低温)で温度管理を実施することも可能である。 The holding means 10 is provided with a plurality of stages (for example, five stages) of tethers 12 fixed so as to extend inward from the proper position of the main frame 11 having necessary and sufficient load resistance. Each tether 12 includes a gas cell 20 having a temperature raising means 30, a light emitting element 41, a light receiving element 42, a semiconductor element 50 used for realizing a CPT capturing function (hereinafter, these are referred to as holding objects of the tether 12), They are held in a desired position in a stacked manner while being separated from each other. That is, since the holding objects held by the tethers 12 are insulated from each other by arranging the tethers 12 appropriately apart from each other, the temperature can be controlled in the temperature zone according to the characteristics. For example, the light emitting element 41, the light receiving element 42, and the semiconductor element 50 can be temperature-controlled by a unique temperature control system (for example, a low temperature of about 40 to 60° C.) different from the temperature management of the gas cell 20. ..

ガスセル20は、第1面板23a側と第2面板23b側をそれぞれテザー12で保持する二段保持構造とすることで、耐荷重性を高めてあるが、一段のみの保持構造(例えば、図1において、下から支える構造、或いは上から吊り下げる構造のみ)でも構わない。このガスセル20の第1面23a側には、テザー12に保持された発光素子41を、ガスセル20の第2面23b側には、テザー12に保持された受光素子42を、それぞれ配置し、発光素子41からの照射光がガスセル20を経て受光素子42の受光部へ至る光路OPが形成される。 The gas cell 20 has a two-step holding structure in which the tether 12 holds the first face plate 23a side and the second face plate 23b side, respectively, to improve load bearing capacity, but only one stage holding structure (see, for example, FIG. 1). In the above, only a structure of supporting from below or a structure of hanging from above) may be used. A light emitting element 41 held by the tether 12 is arranged on the first surface 23a side of the gas cell 20, and a light receiving element 42 held by the tether 12 is arranged on the second surface 23b side of the gas cell 20 to emit light. An optical path OP through which the irradiation light from the element 41 passes through the gas cell 20 and reaches the light receiving portion of the light receiving element 42 is formed.

ガスセル20は、ベース体21の二面(図1においては、上面と下面)を貫通するガス封入空部22を設け、透光性の第1面板23aと第2面板23bにて封止した構造である。例えば、ガスセル20の第1面板23aが発光素子41に対向する配置とすることで、こちらを入射面とし、第2面板23bが受光素子42に対向する配置とすることで、こちらを出射面とする。昇温手段30は、ガスセル20のガス封入空部22内に封入されたガスを気体状に保持するために加熱するものであるが、第1面板23aの入射窓部と第2面板23bの出射窓部が昇温手段30によって塞がれることがないような配慮が必要である。あるいは、レーザ光の波長に対して透明な透明導電膜(ITO膜)で構成したヒータを配置して、光路OPを妨げることがないようにしても良い。 The gas cell 20 has a structure in which a gas-filled space 22 penetrating two surfaces of a base body 21 (an upper surface and a lower surface in FIG. 1) is provided and sealed with a translucent first face plate 23a and a second face plate 23b. Is. For example, by disposing the first face plate 23a of the gas cell 20 so as to face the light emitting element 41, this is an incident face, and by disposing the second face plate 23b so as to face the light receiving device 42, this is an emitting face. To do. The temperature raising means 30 heats the gas filled in the gas filled space 22 of the gas cell 20 in order to keep the gas in a gaseous state. The temperature rising means 30 emits light from the entrance window of the first face plate 23a and the second face plate 23b. Care must be taken that the window is not blocked by the temperature raising means 30. Alternatively, a heater made of a transparent conductive film (ITO film) transparent to the wavelength of the laser light may be arranged so as not to obstruct the optical path OP.

上述したガスセル20のベース体21は、既存のガラス管を所要長さに切って、その単一ガラス管の内空をガス封入空部22に利用することもできるが、そのような作成法ではガスセル20の小型化に限界がある。シリコン等の基材をウェハープロセスによる微細加工してベース体21を作成すれば、ガスセル20本体を数ミリ以下の小型に形成できる。ウェハープロセスを使えると言うことは、半導体チップのように、小型のガスセル20を大量に生産できることを意味する。しかも、半導体生産技術を活用できれば、露光装置を利用したパターン転写によって、ガスセル20を更に微細化する道も開ける。加えて、平滑なウェハーでガスセル20のベース体20を作るなら、ウェハーレベルパッケージングと呼ばれる手法を用いて、ウェハーレベルで組立を行い、最期にダイシングを行って個片化するという技術も適用可能である。 For the base body 21 of the gas cell 20 described above, an existing glass tube can be cut into a required length and the inner space of the single glass tube can be used as the gas-filled space 22. There is a limit to miniaturization of the gas cell 20. If the base body 21 is created by finely processing a base material such as silicon by a wafer process, the main body of the gas cell 20 can be formed in a small size of several millimeters or less. Being able to use the wafer process means that small gas cells 20 such as semiconductor chips can be mass-produced. In addition, if semiconductor production technology can be utilized, pattern transfer using an exposure apparatus will open the way to further miniaturize the gas cell 20. In addition, if the base body 20 of the gas cell 20 is made of a smooth wafer, a technique called wafer level packaging can be used to assemble at the wafer level, and dicing at the end to separate the individual pieces. Is.

また、小型のガスセル20は、上述した構造に限定されるものではない。例えば、図2に示す第1改変例のガスセル20Aは、所要形状(たとえは、略四角形)で平板な一対のベース体24,24によって、透光性の光透過体25の内空部開口面を封止して、ガス封入空部22を設けた構造である。光透過体25はガラス等の透光性材料で形成した略四角枠状で、対向する一対の透光壁部25a,25bと、これら透光壁部25a,25bの端部を繋ぐ一対の連結壁部25c,25dを備える。図2に示すガスセル20Aにおいては、透光壁部25aが出射側、透光壁部25bが入射側となるので、透光壁部25a,25bにおける外面と内面は、光路OPに直交する平面としておく必要がある。一方、連結壁部25c,25dにおける外面と内面には、そのような精度が要求されないので、外面と内面が平行になっていなくても構わない(例えば、図2(C)を参照)。なお、光透過体25における四側壁が全て透光壁部として機能する構造とすれば、四側壁の何れでも入射面あるいは出射面として使えるので、ガスセル20Aを配置するときの向きが限定されず、自由度の高いものとなる。 Further, the small gas cell 20 is not limited to the structure described above. For example, the gas cell 20A of the first modified example shown in FIG. 2 has a pair of base bodies 24, 24 each having a required shape (for example, a substantially quadrangle) and a flat plate, and the inner cavity opening surface of the light transmissive body 25. Is sealed and a gas-filled space 22 is provided. The light transmissive body 25 has a substantially rectangular frame shape formed of a translucent material such as glass, and has a pair of opposing translucent wall portions 25a and 25b and a pair of connecting portions that connect the end portions of these translucent wall portions 25a and 25b. It is provided with walls 25c and 25d. In the gas cell 20A shown in FIG. 2, the light transmitting wall portion 25a is on the emitting side and the light transmitting wall portion 25b is on the incident side. Therefore, the outer surface and the inner surface of the light transmitting wall portions 25a and 25b are planes orthogonal to the optical path OP. You need to leave it. On the other hand, such accuracy is not required for the outer surface and the inner surface of the connecting wall portions 25c and 25d, and therefore the outer surface and the inner surface do not have to be parallel (for example, refer to FIG. 2C). If all the four side walls of the light transmitting body 25 function as a light transmitting wall portion, any of the four side walls can be used as an entrance surface or an exit surface, and therefore the orientation when the gas cell 20A is arranged is not limited. It has a high degree of freedom.

図3に示す第2改変例のガスセル20Bは、所要形状(たとえは、略四角形)で平板な一対のベース体24と、透光性の面板26とで、透光性の光透過体25の内空部開口面を封止して、ガス封入空部22を設けた構造である。このように、シリコン等の構造材料からウェハープロセスによって作成するベース体24を片側にだけ用い、このベース体24に対して光透過体25と面板26を組み付けることでも、ガス充填容器としてのガスセル20Bを作製できる。 The gas cell 20B of the second modified example shown in FIG. 3 includes a pair of flat base bodies 24 having a required shape (for example, a substantially quadrangular shape) and a translucent face plate 26. This is a structure in which the gas filled space 22 is provided by sealing the opening surface of the inner space. As described above, the base body 24 made of a structural material such as silicon by a wafer process is used on only one side, and the light transmission body 25 and the face plate 26 are assembled to the base body 24, so that the gas cell 20B as a gas filling container is also provided. Can be produced.

図4に示す第3改変例のガスセル20Cは、透光性の面板26,26により、ベース体27の内空部開口面を封止して、ガス封入空部22を設けた構造である。ベース体27の内空部は、エッチング等の半導体加工プロセスにより形成すると、内空縁部27aが均一にならい場合がある(図4(C)を参照)。しかしながら、ベース体27における内空縁部27aが、一方の面板26の入射窓部から他方の面板26の出射窓部に至る光路OPを妨げなければ、多少歪な形状のガス封入空部22となっても構わない。 The gas cell 20C of the third modified example shown in FIG. 4 has a structure in which the gas-filled cavity 22 is provided by sealing the inner cavity opening surface of the base body 27 with translucent face plates 26, 26. If the inner cavity of the base body 27 is formed by a semiconductor processing process such as etching, the inner cavity edge 27a may not be uniform (see FIG. 4C). However, unless the inner edge portion 27a of the base body 27 interferes with the optical path OP from the entrance window portion of the one face plate 26 to the exit window portion of the other face plate 26, the gas filled void portion 22 having a slightly distorted shape is formed. It doesn't matter.

図5(A)に示すのは、第1改変例のガスセル20Aに対して、ガス封入空部22の容積を増大させるようにしたガスセル20A′である。ガスセル20A′においては、各ベース体24′,24′の内面側に凹部24aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。図5(B)に示すのは、第2改変例のガスセル20Bに対して、ガス封入空部22の容積を増大させるようにしたガスセル20B′である。ガスセル20B′においては、ベース体24′の内面側に凹部24aを設けると共に、面板26′の内面側にも凹部26aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。図5(C)に示すのは、第3改変例のガスセル20Cに対して、ガス封入空部22の容積を増大させるようにしたガスセル20C′である。ガスセル20C′においては、各面板26′,26′の内面側に凹部26aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。 FIG. 5(A) shows a gas cell 20A' in which the volume of the gas-filled void 22 is increased as compared with the gas cell 20A of the first modified example. In the gas cell 20A', the recess 24a is provided on the inner surface side of each of the base bodies 24', 24' to form the gas-filled void 22' with an increased gas-filled volume. FIG. 5(B) shows a gas cell 20B' in which the volume of the gas-filled void 22 is increased as compared with the gas cell 20B of the second modified example. In the gas cell 20B', the recess 24a is provided on the inner surface side of the base body 24', and the recess 26a is also provided on the inner surface side of the face plate 26', thereby forming a gas filled empty portion 22' with an increased gas filled volume. did. FIG. 5C shows a gas cell 20C' in which the volume of the gas-filled void 22 is increased as compared with the gas cell 20C of the third modified example. In the gas cell 20C', a recess 26a is provided on the inner surface side of each face plate 26', 26' to form a gas filled space 22' with an increased gas filled volume.

上述した各種のガスセル20は、昇温手段30による加熱のために、ヒータ電流を供給するための流路となる配線構造が必要である。発光素子41や受光素子42に対しても、電源供給や信号の入出力を行う配線構造が必要である。CPT共鳴捕捉機能を実現するためには、マイクロ波発振器を含む高周波回路等の半導体素子50に高周波信号の入出力が必要である。図6に示す第1構成例の量子光学部3Aにおいては、テザー12を複数種類の異なる構造(構造保持テザー121、直流信号用テザー122、高周波信号用テザー123)として使い分ける。 The various gas cells 20 described above require a wiring structure serving as a flow path for supplying a heater current for heating by the temperature raising means 30. A wiring structure for supplying power and inputting/outputting signals is also required for the light emitting element 41 and the light receiving element 42. In order to realize the CPT resonance capturing function, it is necessary to input/output a high frequency signal to/from a semiconductor element 50 such as a high frequency circuit including a microwave oscillator. In the quantum optical unit 3A of the first configuration example shown in FIG. 6, the tether 12 is selectively used as a plurality of different structures (structure holding tether 121, direct-current signal tether 122, high-frequency signal tether 123).

構造保持テザー121は、ガスセル20、発光素子41、受光素子42、半導体素子50等の保持対象の荷重を主として保持するもので、ポリイミドのような高耐熱性と強度を備えた板状体121aから構成できる。なお、構造保持テザー121の形状は、板状とせず、より強度を高められる角材形状などにしても構わない。また、保持対象であるガスセル20、発光素子41、受光素子42、半導体素子50は、何れも配線を必要としているので、構造保持テザー121と併せて配線テザーも用いる。配線テザーによって、保持対象の荷重の一部を支えると共に、電源や信号の伝送路を保持対象と接続するのである。本実施形態では、配線テザーとして、直流信号用テザー122および高周波信号用テザー123の2種類を用意しており、保持対象が必要とする信号特性に応じて、一方のみ用いる場合もあれば、両方を用いる場合もある。 The structure holding tether 121 mainly holds a load to be held by the gas cell 20, the light emitting element 41, the light receiving element 42, the semiconductor element 50, and the like, and is formed from a plate-like body 121a having high heat resistance and strength such as polyimide. Can be configured. The shape of the structure holding tether 121 may not be a plate shape, but may be a square bar shape or the like that can further increase the strength. Further, since the gas cell 20, the light emitting element 41, the light receiving element 42, and the semiconductor element 50 which are holding targets all require wiring, the wiring holding tether is also used together with the structure holding tether 121. The wiring tether supports a part of the load to be held and connects the power supply and signal transmission paths to the held object. In this embodiment, two types of tethers for direct current signals 122 and tethers for high frequency signals 123 are prepared as wiring tethers, and only one may be used or both may be used depending on the signal characteristics required by the holding target. May be used.

直流信号用配線テザー122は、誘電体基板122aの片面側(図6(B)においては上面側)に、直流電源や直流信号の伝送に用いる直流信号配線122bを形成したものである。高周波信号用配線テザー123は、誘電体基板123aの片面側(図6(B)においては上面側)に、高周波ノイズの発生要因となり得る高周波信号の伝送に用いる高周波信号配線123bを形成したものである。なお、誘電体基板の片面側に、高周波ノイズの発生要因とならない低周波信号の伝送に用いる低周波信号配線を形成することで低周波信号用配線テザーを別途設けても良いが、直流信号用配線テザー122を低周波信号用配線テザーとして共用できる。これら配線テザーは、構造保持テザー121の何れかが保持する保持対象を保持可能な位置で主フレーム11に固定され、保持対象の荷重を保持する機能と併せて、電源や信号の入出力線路としての機能を備える。 The DC signal wiring tether 122 is formed by forming a DC signal wiring 122b used for transmitting a DC power source or a DC signal on one surface side (the upper surface side in FIG. 6B) of the dielectric substrate 122a. The high-frequency signal wiring tether 123 has a high-frequency signal wiring 123b used for transmitting a high-frequency signal that may cause high-frequency noise formed on one surface side (upper surface side in FIG. 6B) of the dielectric substrate 123a. is there. A low-frequency signal wiring tether may be provided separately by forming a low-frequency signal wiring used for transmitting low-frequency signals that does not cause high-frequency noise on one side of the dielectric substrate, but for DC signals The wiring tether 122 can be shared as a wiring tether for low frequency signals. These wiring tethers are fixed to the main frame 11 at a position where any of the structure holding tethers 121 can hold a holding target, and have a function of holding the load of the holding target, and also serve as an input/output line for a power supply or a signal. With the function of.

このように、直流信号用配線テザー122と高周波信号用配線テザー123とを空間的に分離することで、高周波信号用配線テザー123の高周波信号配線123bを流れる高周波信号により生じた高周波ノイズが、直流信号用配線テザー122の直流信号配線122bと電磁的に結合することを抑制できる。なお、本構成例では、直流信号用配線テザー122と高周波信号用配線テザー123を、主フレーム11の同一面から延出させるように設けて、各テザー122,123への配線形性箇所が集約されるようにした。しかし、各テザー12への配線形成箇所を集約する必要が無ければ、直流信号用配線テザー122と高周波信号用配線テザー123を、主フレーム11の異なる面から延出させるなどして、両テザーの離隔距離を大きくとり、ノイズ抑制効果をより高めるようにしても良い。 As described above, by spatially separating the DC signal wiring tether 122 and the high frequency signal wiring tether 123, the high frequency noise generated by the high frequency signal flowing through the high frequency signal wiring 123b of the high frequency signal wiring tether 123 is It is possible to suppress electromagnetic coupling with the DC signal wiring 122b of the signal wiring tether 122. In this configuration example, the DC signal wiring tether 122 and the high frequency signal wiring tether 123 are provided so as to extend from the same surface of the main frame 11, and the wiring shape points to the tethers 122 and 123 are aggregated. I was made to do it. However, if it is not necessary to aggregate the wiring formation locations for each tether 12, the DC signal wiring tether 122 and the high frequency signal wiring tether 123 may be extended from different surfaces of the main frame 11 so that both tethers are The separation distance may be increased to further enhance the noise suppressing effect.

加えて、高周波信号配線用テザー123の幅を直流信号用配線テザー122の幅よりも狭く設定し、併せて、高周波信号配線123bの幅直流信号配線122bの幅よりも狭く設定しておく。高周波信号配線123bに対して、相対的に高周波信号配線123bを細く設計することも、電磁的結合の抑制には有効である。 In addition, the width of the high-frequency signal wiring tether 123 is set to be narrower than the width of the DC signal wiring tether 122, and also set to be narrower than the width of the high-frequency signal wiring 123b and the DC signal wiring 122b. Designing the high-frequency signal wiring 123b relatively thinly with respect to the high-frequency signal wiring 123b is also effective in suppressing electromagnetic coupling.

また、高周波ノイズが電源線へ重畳するのを抑制する有効な方法として、容量を用いて電源線を電気的なグラウンドにシャントしておく方法がある。そこで、図7に示す第2構成例の量子光学部3Bにおける直流信号用配線テザー122′は、誘電体基板122aを挟んで直流信号配線122bと対向する面に、電気的に接地された接地配線122cを備えるものとした。このような比較的単純な構造で、直流信号配線122bへの高周波ノイズ混入を効果的に抑制できる。 Further, as an effective method of suppressing high-frequency noise from being superimposed on the power supply line, there is a method of shunting the power supply line to an electrical ground by using a capacitor. Therefore, the DC signal wiring tether 122' in the quantum optical unit 3B of the second configuration example shown in FIG. 7 is electrically grounded on the surface facing the DC signal wiring 122b with the dielectric substrate 122a interposed therebetween. 122c. With such a relatively simple structure, it is possible to effectively suppress the mixing of high-frequency noise into the DC signal wiring 122b.

しかしながら、第2構成例の量子光学部3Bにおける直流信号用配線テザー122′では、誘電体基板122aの両面にプリント配線を施す必要があるため、コストの増大に繋がる。そこで、図8に示す第3構成例の量子光学部3Cにおける直流信号用配線122″は、直流信号配線122bの両側に、適宜な空隙を介して、電気的に接地された第1接地配線122d1と第2接地配線122d2を備えるものとした。このような配線構造であれば、誘電体基板122aの片面にプリント配線を施すだけで作製できるので、コストを抑えつつ、直流信号配線122bへの高周波ノイズ混入を効果的に抑制できる。 However, in the DC signal wiring tether 122' in the quantum optical unit 3B of the second configuration example, it is necessary to provide printed wiring on both surfaces of the dielectric substrate 122a, which leads to an increase in cost. Therefore, the direct-current signal wiring 122″ in the quantum optical unit 3C of the third configuration example shown in FIG. 8 is electrically grounded to the first ground wiring 122d1 on both sides of the direct-current signal wiring 122b through appropriate gaps. With such a wiring structure, since it can be produced by simply providing a printed wiring on one surface of the dielectric substrate 122a, it is possible to reduce the cost and reduce the high frequency to the DC signal wiring 122b. It is possible to effectively suppress noise mixing.

以上、本発明に係る量子光学装置を実施形態に基づき説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全ての量子光学装置を権利範囲として包摂するものである。 The quantum optical device according to the present invention has been described above based on the embodiment. However, the present invention is not limited to this embodiment, and can be realized without changing the configuration described in the claims. Includes the quantum optical device as a scope of right.

1 量子光学装置
2 密閉容器
10 保持手段
11 主フレーム
12 テザー
121 構造保持テザー
122 直流信号用配線テザー
123 高周波信号配線用テザー
20 ガスセル
33 昇温手段
41 発光素子
42 受光素子
60 温度管理手段
DESCRIPTION OF SYMBOLS 1 quantum optical device 2 airtight container 10 holding means 11 main frame 12 tether 121 structure holding tether 122 DC signal wiring tether 123 high frequency signal wiring tether 20 gas cell 33 temperature raising means 41 light emitting element 42 light receiving element 60 temperature control means

Claims (6)

アルカリ金属元素の吸収波長帯で複数周波数の励起光を出射する発光素子と、
前記発光素子からの励起光を透明な窓部より受ける位置に配置され、ウェハープロセスにより作成された微細な内空部にアルカリ金属元素とバッファガスが封入された小型のガス充填容器と、
前記ガス充填容器に封入されているガス成分が気体状態を保持するよう、ガス充填容器を加熱する昇温手段と、
前記ガス充填容器を通過した光を受信する位置に配置され、受信光の光強度を検出する受光素子と、
前記受光素子で検出される光強度を最大化させるCPT共鳴を発生させるように、発光素子から出力させる励起光の周波数差を、アルカリ金属元素における基底順位間の周波数差に一致させるCPT共鳴捕捉機能を実現する1つ以上の半導体素子と、
必要十分な耐荷重性を有するフレームに固定され、前記ガス充填容器、発光素子、受光素子、半導体素子を含む保持対象をそれぞれ所要位置に保持する複数の構造保持テザーと、
配線を必要とする前記保持対象を保持可能な位置で前記フレームに固定され、少なくとも誘電体基板の片面側に配線を形成した配線テザーと、
を備えることを特徴とする量子光学装置。
A light emitting element that emits excitation light of a plurality of frequencies in the absorption wavelength band of the alkali metal element,
A small gas-filled container in which the excitation light from the light-emitting element is arranged at a position to be received from a transparent window portion, an alkali metal element and a buffer gas are sealed in a fine inner space created by a wafer process,
A temperature raising means for heating the gas filling container so that the gas component sealed in the gas filling container maintains a gas state,
A light receiving element that is arranged at a position for receiving light that has passed through the gas filled container, and that detects the light intensity of the received light,
CPT resonance trapping function for matching the frequency difference of the excitation light output from the light emitting element with the frequency difference between the base ranks of the alkali metal elements so as to generate the CPT resonance that maximizes the light intensity detected by the light receiving element. One or more semiconductor elements that realize
A plurality of structure holding tethers, each of which is fixed to a frame having necessary and sufficient load resistance, holds the gas filling container, the light emitting element, the light receiving element, and the holding object including the semiconductor element at a required position, respectively.
A wiring tether that is fixed to the frame at a position capable of holding the holding object that requires wiring, and has a wiring formed on at least one side of the dielectric substrate,
A quantum optical device comprising:
前記配線テザーは、少なくとも、
直流電源や直流信号の伝送に用いる直流信号配線を形成した直流信号用配線テザーと、
高周波ノイズの発生要因となり得る高周波信号の伝送に用いる高周波信号配線を形成した高周波信号用配線テザーと、
を含むことを特徴とする請求項1に記載の量子光学装置。
The wiring tether is at least
A DC signal wiring tether formed with a DC signal wiring used for transmission of a DC power source or a DC signal,
A high-frequency signal wiring tether formed with high-frequency signal wiring used for transmission of high-frequency signals that may cause high-frequency noise,
The quantum optical device according to claim 1, further comprising:
前記配線テザーは、更に、
高周波ノイズの発生要因とならない低周波信号の伝送に用いる低周波信号配線を形成した低周波信号用配線テザー、
を含むことを特徴とする請求項2に記載の量子光学装置。
The wiring tether is further
A low-frequency signal wiring tether formed with low-frequency signal wiring used for low-frequency signal transmission that does not cause high-frequency noise.
The quantum optical device according to claim 2, further comprising:
前記高周波信号配線用テザーの幅を、他の配線テザーの幅よりも狭く設定したことを特徴とする請求項2又は請求項3に記載の量子光学装置。 The quantum optical device according to claim 2 or 3, wherein a width of the tether for high-frequency signal wiring is set to be narrower than a width of another wiring tether. 前記直流信号用配線テザーは、直流信号配線と対向する面に、電気的に接地された接地配線を備えることを特徴とする請求項2〜請求項4の何れか1項に記載の量子光学装置。 The quantum optical device according to any one of claims 2 to 4, wherein the DC signal wiring tether includes a ground wiring electrically grounded on a surface facing the DC signal wiring. .. 前記直流信号用配線テザーは、直流信号配線の両側に、電気的に接地された接地配線を備えることを特徴とする請求項2〜請求項4の何れか1項に記載の量子光学装置。 The quantum optical device according to any one of claims 2 to 4, wherein the DC signal wiring tether includes ground wirings electrically grounded on both sides of the DC signal wiring.
JP2019015342A 2019-01-31 2019-01-31 quantum optics Active JP7232510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015342A JP7232510B2 (en) 2019-01-31 2019-01-31 quantum optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015342A JP7232510B2 (en) 2019-01-31 2019-01-31 quantum optics

Publications (2)

Publication Number Publication Date
JP2020123883A true JP2020123883A (en) 2020-08-13
JP7232510B2 JP7232510B2 (en) 2023-03-03

Family

ID=71993121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015342A Active JP7232510B2 (en) 2019-01-31 2019-01-31 quantum optics

Country Status (1)

Country Link
JP (1) JP7232510B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051883A1 (en) * 2004-07-13 2006-03-09 Mescher Mark J Apparatus and system for suspending a chip-scale device and related methods
JP2014088308A (en) * 2012-10-29 2014-05-15 Honeywell Internatl Inc Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
JP2017183869A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic apparatus and mobile
JP2019176468A (en) * 2018-03-26 2019-10-10 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Apparatus and method for vapor cell atomic frequency reference having improved frequency stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051883A1 (en) * 2004-07-13 2006-03-09 Mescher Mark J Apparatus and system for suspending a chip-scale device and related methods
JP2008520958A (en) * 2004-07-13 2008-06-19 ザ・チャールズ・スターク・ドレイパ・ラボラトリー・インコーポレイテッド Apparatus and system for suspending a chip scale device and associated method
JP2014088308A (en) * 2012-10-29 2014-05-15 Honeywell Internatl Inc Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
JP2017183869A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic apparatus and mobile
JP2019176468A (en) * 2018-03-26 2019-10-10 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Apparatus and method for vapor cell atomic frequency reference having improved frequency stability

Also Published As

Publication number Publication date
JP7232510B2 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
US9319056B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US7323941B1 (en) Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequency
US9203026B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
CN105515580B (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
JP6484922B2 (en) Atomic cell, quantum interference device, atomic oscillator and electronic equipment
US8009520B2 (en) Method and system for operating an atomic clock using a self-modulated laser with electrical modulation
JP6476751B2 (en) Atomic cell manufacturing method, atomic cell, quantum interference device, atomic oscillator, and electronic device
US9705517B2 (en) Quantum interference device, atomic oscillator, electronic device, and moving object
JP2015231053A (en) Atom cell, quantum interference device, atomic oscillator, electronic apparatus and mobile
JP2017073623A (en) Atomic oscillator
CN109565283A (en) Atomic oscillator and electronic equipment
CN105720976A (en) Atomic resonance transition device, atomic oscillator, timepiece, electronic apparatus and moving object
JP2008522411A (en) Method and system for operating a self-modulated laser with hyperfine vibrations of alkali metal atoms
CN105306055A (en) Atomic resonance transition device, atomic oscillator, electronic apparatus, and moving object
JP2017183869A (en) Quantum interference device, atomic oscillator, electronic apparatus and mobile
JP6520039B2 (en) Quantum interference device, atomic oscillator and electronic device
JP2017175035A (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving body
JP2020123883A (en) Quantum optical device
KR102289703B1 (en) Chip-scale atomic clock
EP3564759A1 (en) Physical module of chip-scale atomic clock
JP6337464B2 (en) Quantum interference devices, atomic oscillators, and electronic equipment
JP7319623B2 (en) quantum optics
JP6852377B2 (en) Atomic oscillators and electronics
JP2020113616A (en) Quantum optical device
JP6264876B2 (en) Quantum interference devices, atomic oscillators, and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7232510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150