JP2020113616A - Quantum optical device - Google Patents

Quantum optical device Download PDF

Info

Publication number
JP2020113616A
JP2020113616A JP2019002545A JP2019002545A JP2020113616A JP 2020113616 A JP2020113616 A JP 2020113616A JP 2019002545 A JP2019002545 A JP 2019002545A JP 2019002545 A JP2019002545 A JP 2019002545A JP 2020113616 A JP2020113616 A JP 2020113616A
Authority
JP
Japan
Prior art keywords
temperature
light
light emitting
gas
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019002545A
Other languages
Japanese (ja)
Inventor
基揚 原
Motoaki Hara
基揚 原
雄一郎 矢野
Yuichiro Yano
雄一郎 矢野
雅稔 梶田
Masatoshi Kajita
雅稔 梶田
哲也 井戸
Tetsuya Ido
哲也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2019002545A priority Critical patent/JP2020113616A/en
Publication of JP2020113616A publication Critical patent/JP2020113616A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a quantum optical device capable of temperature control for maintaining a semiconductor element group including a light emitting element and a light receiving element at a temperature lower than that of a gas cell.SOLUTION: A gas cell 20 controlled to a high temperature by temperature raising means 30 is spaced apart from a first tether 12a to which a light emitting element 51 is fixed via a first heat insulator 41 and is spaced apart from a second tether 12b to which a light receiving element 52 is fixed via a second heat insulator 42. In a quantum optical device 1A, due to the temperature gradient generated through the first and second heat insulators 41 and 42, the temperature of the light emitting element 51 and the light receiving element 52 can be prevented from rising, and temperature control with a low temperature control system can be performed.SELECTED DRAWING: Figure 1

Description

本発明は、レーザと原子との相互作用を利用して安定した標準周波数信号を取得する原子時計等に用いることが可能な量子光学装置に関する。 The present invention relates to a quantum optical device that can be used in an atomic clock or the like that obtains a stable standard frequency signal by utilizing the interaction between a laser and an atom.

原子時計のような量子光学装置では、レーザと原子との相互作用を利用して、ガス状のアルカリ金属元素、希ガスまたは不活性ガスより、安定した標準周波数信号を取得する。量子光学装置では、ガスを封入・密閉したガス充填容器(ガスセル)が必要不可欠であり、例えばガラス管を利用したガスセルが一般に用いられている。また、標準周波数信号となる原子の吸収線は磁場や角加速度に感度を持つことが知られており、この性質を運動量の高感度検知に利用することで、原子コンパスや原子ジャイロを構成することも出来る。近年は、量子光学装置に対する小型化への強い要望から、陽極接合やプラズマエッチングなどのウェハープロセスを使用した小型のガスセルの開発も多数、報告されている。 In a quantum optical device such as an atomic clock, a stable standard frequency signal is acquired from a gaseous alkali metal element, a rare gas or an inert gas by utilizing the interaction between a laser and an atom. In a quantum optical device, a gas filling container (gas cell) in which a gas is sealed and sealed is indispensable, and for example, a gas cell using a glass tube is generally used. In addition, it is known that the absorption line of an atom that becomes a standard frequency signal is sensitive to a magnetic field and angular acceleration, and by utilizing this property for highly sensitive detection of momentum, an atomic compass and an atomic gyro can be constructed. You can also In recent years, due to a strong demand for miniaturization of quantum optical devices, many developments of small gas cells using a wafer process such as anodic bonding and plasma etching have been reported.

上述したような量子光学装置の一例として、CPT(Coherent Population Trapping)方式の量子光学装置100の概略構成を図10に示す。電流ドライバ101より供給される定電流は、バイアス・ティ102を介して、マイクロ波発信器103よりの高周波変調信号と共に発光素子4へ供給される。発光素子104に定電流を印加することで、発光素子104は一定振動数ν0にて発光する。この印加される電流にマイクロ波発振器103から振動数νmodなる高周波変調信号を重畳すると、発光素子104からはν0−νmod、ν0mod、ν0+νmodの振動数を有する光が生成され、ガスセル5に入力され、光路OPを経た出力光を受光素子106で受信する。なお、実際にはνmodの高次項も生成されるが、その影響は無視できる程度であるから、以下では、強勢に生成される三つの振動数にのみに着目する。 As an example of the quantum optical device as described above, a schematic configuration of a CPT (Coherent Population Trapping) type quantum optical device 100 is shown in FIG. The constant current supplied from the current driver 101 is supplied to the light emitting element 4 via the bias tee 102 together with the high frequency modulation signal from the microwave oscillator 103. By applying a constant current to the light emitting element 104, the light emitting element 104 emits light at a constant frequency ν 0 . When superimposing a high frequency modulated signal comprising vibration frequency [nu mod the current the applied from the microwave oscillator 103, the light emitting element from 104 ν 0 -ν mod, ν 0mod , light having a frequency of ν 0 + ν mod is generated The light received by the light receiving element 106 is input to the gas cell 5 and passed through the optical path OP. In addition, although the higher order term of ν mod is actually generated, its influence is negligible, so in the following, only three frequencies that are vigorously generated will be focused.

ガスセル5には、ガス状のアルカリ金属元素が緩衝ガスとなる不活性な希ガス類とともに充填されており、光と原子との相互干渉によってCPT現象が生ずる。CPT現象は、図11に示すように、相互に禁制帯にある二つの基底準位(<1|と<2|)と一つの励起準位(<3|)とからなる3準位系で観測される共鳴現象である。この3準位系を呈するガスセル105に<3|と<1|とのエネルギー差に相当する第1励起光ExL1を導入すると、誘導吸収と誘導放出に伴う吸発光現象が観測される。同様に、<3|と<2|とのエネルギー差に相当する第2励起光ExL2をガスセル105に導入すると、誘導吸収と誘導放出に伴う吸発光現象が観測される。ここで、第1励起光ExL1と第2励起光ExL2が同時にガスセル105へ導入されると、各々のエネルギー準位間の誘導吸収と誘導放出とが相殺され、励起光との相互作用が起こらない暗共鳴が観測される。これをCPT現象、またはCPT共鳴と呼ぶのである。 The gas cell 5 is filled with a gaseous alkali metal element together with an inert rare gas serving as a buffer gas, and the CPT phenomenon occurs due to mutual interference between light and atoms. As shown in FIG. 11, the CPT phenomenon is a three-level system consisting of two ground levels (<1| and <2|) and one excitation level (<3|) that are in the forbidden band with each other. This is an observed resonance phenomenon. When the first excitation light ExL1 corresponding to the energy difference between <3| and <1| is introduced into the gas cell 105 exhibiting this three-level system, an absorption/emission phenomenon associated with stimulated absorption and stimulated emission is observed. Similarly, when the second excitation light ExL2 corresponding to the energy difference between <3| and <2| is introduced into the gas cell 105, an absorption/emission phenomenon associated with stimulated absorption and stimulated emission is observed. Here, when the first excitation light ExL1 and the second excitation light ExL2 are simultaneously introduced into the gas cell 105, the induced absorption and the stimulated emission between the respective energy levels are canceled out, and the interaction with the excitation light does not occur. Dark resonance is observed. This is called the CPT phenomenon or CPT resonance.

したがって、図11のようなエネルギー準位を有するガスセル105に入力する複数の振動数のうち、二つが第1励起光ExL1および第2励起光ExL2に合致したとき、CPT現象が発現するのである。このことから、発光素子105の定常状態での出力振動数ν0を適切に選定することで、外部入力となるマイクロ波発振器103の出力振動数νmodを用いてCPT現象の発現を制御できることがわかる。 Therefore, when two of the plurality of frequencies input to the gas cell 105 having the energy level as shown in FIG. 11 match the first excitation light ExL1 and the second excitation light ExL2, the CPT phenomenon occurs. From this, by appropriately selecting the output frequency ν 0 of the light emitting element 105 in the steady state, it is possible to control the expression of the CPT phenomenon by using the output frequency ν mod of the microwave oscillator 103 which is an external input. Recognize.

CPT現象の発現は、ガスセル105を透過する光量を最大化し、受光素子106の出力を最大化する。また、ガスセル105に封入されているガス成分が気体状態を保持するように、ヒータ等の昇温手段107によって高温に温度管理されると共に、支持手段108によって定位置に支持される。支持手段107の一例を図12に示す。主フレーム1081によって第1テザー1082aと第2テザー1082bを支持し、第1,第2テザー1082a,1082bによってガスセル105、発光素子104、受光素子106を定位置に固定するのである。 The appearance of the CPT phenomenon maximizes the amount of light transmitted through the gas cell 105 and maximizes the output of the light receiving element 106. Further, the temperature of the gas component enclosed in the gas cell 105 is controlled by the temperature raising means 107 such as a heater to a high temperature so that the gas component is kept in a gaseous state, and is supported at a fixed position by the supporting means 108. An example of the supporting means 107 is shown in FIG. The main frame 1081 supports the first tether 1082a and the second tether 1082b, and the first and second tethers 1082a and 1082b fix the gas cell 105, the light emitting element 104, and the light receiving element 106 in place.

支持手段108によって、発光素子104の発光部から受光素子106の受光部に向けて、光路OPを経てガスセル105内をレーザ光が通過する配置を安定的に保持する。そして、受光素子105の出力を、判別器109とループフィルタ110とを用いて常に出力ピークを捕捉するようにマイクロ波発振器103の出力振動数をフィードバック制御する。すなわち、マイクロ波発振器103の出力となる高周波変調信号が所望の出力振動数となるよう、ガスセル105内原子のエネルギー準位によって安定化されるのである。このように、CPT共鳴の捕捉を行う機能手段は、半導体製造プロセスにより微細化した1つ以上の半導体素子で構成できる。なお、全ての機能をパッケージングして1つの半導体素子で構成することも可能である。上述した量子光学部やCPT共鳴捕捉機能は、減圧された密閉容器111内に収納される。 The support means 108 stably holds the arrangement in which the laser light passes through the gas cell 105 through the optical path OP from the light emitting portion of the light emitting element 104 toward the light receiving portion of the light receiving element 106. Then, the output frequency of the microwave oscillator 103 is feedback-controlled so that the output of the light receiving element 105 is always captured by using the discriminator 109 and the loop filter 110. That is, the high frequency modulation signal that is the output of the microwave oscillator 103 is stabilized by the energy level of the atoms in the gas cell 105 so that the desired output frequency is obtained. As described above, the functional means for capturing the CPT resonance can be configured by one or more semiconductor elements miniaturized by the semiconductor manufacturing process. It is also possible to package all functions and configure one semiconductor device. The quantum optical unit and the CPT resonance capturing function described above are housed in a decompressed closed container 111.

量子光学装置100の量子光学部は、磁気シールドなどによってガスセル105が遮蔽されており、また、装置全体に加速度運動が加えられていないことを前提として、標準周波数信号を得られる装置である。しかしながら、磁気や慣性運動が加わった場合は、エネルギー準位も鋭敏に反応し、出力周波数はそれに応じて変動する。そこで、図13に示す量子光学装置100′のように、外部磁気を作用させた出力信号Sを取り出すことで、原子コンパスとして利用することができる。また、図14に示す量子光学装置100″のように、加速度運動が加えられた標準周波数信号と基準クロック源112からの基準クロックとを比較器113で比較し、差分波長の出力信号Sを取り出すことで、原子ジャイロとして利用することができる。 The quantum optical unit of the quantum optical device 100 is a device that can obtain a standard frequency signal on the assumption that the gas cell 105 is shielded by a magnetic shield or the like and that no acceleration motion is applied to the entire device. However, when magnetism or inertial motion is applied, the energy level also reacts sensitively, and the output frequency fluctuates accordingly. Therefore, as in the quantum optical device 100 ′ shown in FIG. 13, by extracting the output signal S on which external magnetism is applied, it can be used as an atomic compass. Further, as in the quantum optical device 100″ shown in FIG. 14, the comparator 113 compares the standard frequency signal to which the acceleration motion has been applied with the reference clock from the reference clock source 112, and extracts the output signal S of the difference wavelength. By doing so, it can be used as an atomic gyro.

量子光学部におけるガスセル105は、封入されたアルカリ金属元素を気体状に保持するため、60〜90℃程度に温度管理される必要がある。これは、分子運動論的に、原子の運動量を上げ、光と相互干渉する原子の数を増大させるためである。そこで、熱伝導部材を原子セル(ガスセル)に対して光源側(発光素子)と光検出部側(受光素子)とに跨って設け、ガスセルと発光部と受光部の温度管理を一体に行う量子光学部が提案されている(例えば、特許文献1を参照)。 The gas cell 105 in the quantum optics unit needs to be temperature-controlled at about 60 to 90° C. in order to hold the encapsulated alkali metal element in a gaseous state. This is to increase the momentum of atoms and increase the number of atoms that mutually interact with light in a molecular kinetic theory. Therefore, a heat conducting member is provided across the light source side (light emitting element) and the light detecting section side (light receiving element) with respect to the atomic cell (gas cell), and the temperature control of the gas cell, the light emitting section, and the light receiving section is performed integrally. An optical unit has been proposed (for example, see Patent Document 1).

特開2017−183869号公報JP, 2017-183869, A

しかしながら、特許文献1に記載の量子光学部では、発光素子や受光素子、CPT共鳴捕捉を行う機能を担う半導体素子もガスセルにマウント実装されているため、ガスセルの温度管理と半導体素子群の温度管理を個別に行うことができない。発光素子、受光素子等の半導体素子は、それぞれ出力に温度特性を持ち、半導体の特性に適した温度に恒温管理されることが望ましい。また、温度の可制御性の観点から室温以上に保持されることが望ましく、素子の寿命やノイズの観点から、これらの半導体素子群に汎用部品を用いる場合、恒温管理の上限は40〜60℃程度とすることが好ましい。このように、ガスセルと半導体素子群とでは恒温管理する温度帯が異なるが、特許文献1に記載の量子光学部ではガスセルの温度帯で一括管理されており、装置の寿命や特性の観点から、量子光学装置の小型化や実用化の障害となっている。特に、ウェハープロセスにより作成された微細な内空部にガスが封入された小型のガスセルと、そのサイズに対応した微小な受発光素子や半導体素子を用いる場合、高温に管理されるガスセルから受発光素子や半導体素子への熱伝導は大きな問題となる。 However, in the quantum optical unit described in Patent Document 1, since the light emitting element, the light receiving element, and the semiconductor element having a function of capturing the CPT resonance are also mounted and mounted on the gas cell, the temperature control of the gas cell and the temperature control of the semiconductor element group are performed. Cannot be done individually. It is desirable that each semiconductor element such as a light emitting element and a light receiving element has a temperature characteristic in its output, and is constantly controlled to a temperature suitable for the characteristics of the semiconductor. Further, from the viewpoint of controllability of temperature, it is desirable to maintain the temperature above room temperature. From the viewpoint of device life and noise, when general-purpose components are used for these semiconductor device groups, the upper limit of constant temperature control is 40 to 60°C. It is preferable to set it to a degree. As described above, the temperature zone for constant temperature control differs between the gas cell and the semiconductor element group, but in the quantum optics unit described in Patent Document 1, the temperature zone is controlled collectively in the temperature zone of the gas cell, and from the viewpoint of the life and characteristics of the device, This is an obstacle to miniaturization and practical application of quantum optical devices. In particular, when using a small gas cell filled with gas in a minute inner space created by the wafer process and a minute light emitting and receiving element or semiconductor element corresponding to that size, the gas cell controlled at high temperature emits and receives light. Heat conduction to devices and semiconductor devices poses a serious problem.

ガスセルと半導体素子群との管理温度のミスマッチは、発光素子および受光素子の劣化を生じやすく、装置寿命の短命化が問題となる。もちろん、発光素子と受光素子をガスセルの保温温度帯で高温動作するように設計することも可能であるが、この場合、コストの増大を免れない。また、原子時計のような量子光学装置では、その他周辺回路用の半導体素子も高密度に実装されなければならない。これらの半導体素子群も、発光素子や受光素子にスタック実装されることが望ましく、この場合、半導体素子群がガスセルの温度帯で高温管理されると、量子光学装置としての短命化や性能低下が更に顕在化する。 The mismatch of the management temperature between the gas cell and the semiconductor element group is apt to cause deterioration of the light emitting element and the light receiving element, which shortens the life of the device. Of course, it is possible to design the light emitting element and the light receiving element so as to operate at high temperature in the heat retaining temperature zone of the gas cell, but in this case, the increase in cost is inevitable. In addition, in a quantum optical device such as an atomic clock, other semiconductor elements for peripheral circuits must be mounted at high density. It is desirable that these semiconductor element groups are also stacked and mounted on the light emitting element and the light receiving element. In this case, if the semiconductor element group is subjected to high temperature control in the temperature zone of the gas cell, the life and performance of the quantum optical device will be shortened. Further manifest.

そこで、本発明は、発光素子および受光素子を含む半導体素子群をガスセルより低い温度に維持する温度管理を行える量子光学装置の提供を目的とする。 Therefore, an object of the present invention is to provide a quantum optical device capable of performing temperature control for maintaining a semiconductor element group including a light emitting element and a light receiving element at a temperature lower than that of a gas cell.

前記課題を解決するために、アルカリ金属元素の吸収波長帯で複数周波数の励起光を出射する発光素子と、前記発光素子からの励起光を透明な窓部より受ける位置に配置され、ウェハープロセスにより作成された微細な内空部にアルカリ金属元素とバッファガスが封入された小型のガス充填容器と、前記ガス充填容器に封入されているガス成分が気体状態を保持するよう、ガス充填容器を高温に加熱する昇温手段と、前記ガス充填容器を通過した光を受信する位置に配置され、受信光の光強度を検出する受光素子と、前記受光素子で検出される光強度を最大化させるCPT共鳴を発生させるように、発光素子から出力させる励起光の周波数差を、アルカリ金属元素における基底順位間の周波数差に一致させるCPT共鳴捕捉を行う機能を担う1つ以上の半導体素子と、少なくとも、前記発光素子とガス充填容器の間、および前記受光素子とガス充填容器の間に介在させる断熱手段と、を備えることを特徴とする。 In order to solve the above problems, a light-emitting element that emits excitation light of a plurality of frequencies in the absorption wavelength band of an alkali metal element, and the excitation light from the light-emitting element is arranged at a position to receive the excitation light from a transparent window portion, and by a wafer process. The small gas filling container in which the alkali metal element and the buffer gas are filled in the created fine inner space, and the gas filling container is kept at a high temperature so that the gas component filled in the gas filling container maintains a gas state. Temperature raising means for heating to, a light receiving element arranged at a position for receiving the light passing through the gas filling container, and a CPT for maximizing the light intensity detected by the light receiving element. At least one semiconductor element having a function of performing CPT resonance trapping in which the frequency difference of the excitation light output from the light emitting element so as to generate resonance matches the frequency difference between the base ranks in the alkali metal element; And a heat insulating unit interposed between the light emitting element and the gas filling container and between the light receiving element and the gas filling container.

また、前記構成において、前記断熱手段は、熱伝導率の低い断熱材であっても良い。 Moreover, in the said structure, the said heat insulation means may be a heat insulating material with low thermal conductivity.

また、前記構成において、前記断熱手段は、熱伝導路の断面積を小さくすると共に、熱伝導路の距離を長くしても良い。 Moreover, in the said structure, the said heat insulation means may make the cross-sectional area of a heat conduction path small, and may make the distance of a heat conduction path long.

また、前記構成において、前期ガス充填器の昇温手段からの輻射が前記発光素子、受光素子、半導体素子に作用することを抑制する遮熱手段を設けても良い。 Further, in the above configuration, a heat shield means may be provided to suppress the radiation from the temperature raising means of the gas filling device acting on the light emitting element, the light receiving element and the semiconductor element.

また、前記構成において、前記発光素子、受光素子、半導体素子の少なくとも一つは、独自の温度制御系で温度管理を実施しても良い。 Further, in the above configuration, at least one of the light emitting element, the light receiving element, and the semiconductor element may carry out temperature management by a unique temperature control system.

また、前記構成において、前記発光素子、受光素子、半導体素子の少なくとも一つの素子には、該素子の温度を検出する素子温度検出手段を設け、前記素子温度検出手段による検知温度を取得し、当該素子の安定動作可能な温度範囲を基準として定めた上限基準温度を、前記検知温度が超えた場合、前記昇温手段を停止させる温度管理手段を備えていても良い。 Further, in the above structure, at least one of the light emitting element, the light receiving element, and the semiconductor element is provided with an element temperature detecting means for detecting the temperature of the element, and the temperature detected by the element temperature detecting means is acquired, A temperature management unit may be provided to stop the temperature raising unit when the detected temperature exceeds an upper limit reference temperature defined with reference to a temperature range in which the element can stably operate.

本発明に係る量子光学装置によれば、断熱手段を介して生じる温度勾配によって、少なくとも発光素子および受光素子がガス充填容器より低温で温度保持されるので、発光素子および受光素子をガスセルより低い温度に維持する温度管理を行うことができる。これにより、量子光学装置としての長寿命化と性能低下の抑制を期待できる。 According to the quantum optical device of the present invention, at least the light emitting element and the light receiving element are kept at a temperature lower than that of the gas-filled container by the temperature gradient generated through the heat insulating means. The temperature can be controlled to be maintained at. As a result, it is expected that the quantum optical device will have a long life and suppression of performance degradation.

第1実施形態に係る量子光学装置の概略構成図である。It is a schematic block diagram of the quantum optical device which concerns on 1st Embodiment. 第1改変例のガスセルを示し、(A)は外観斜視図、(B)は図2(A)のIIB−IIB線の矢視断面図、(C)は図2(A)のIIC−IIC線の矢視断面図である。The gas cell of the 1st modification is shown, (A) is an external perspective view, (B) is a sectional view taken along the line IIB-IIB of FIG. 2(A), and (C) is IIC-IIC of FIG. 2(A). It is the arrow sectional drawing of a line. 第2改変例のガスセルを示し、(A)は外観斜視図、(B)は図3(A)のIIIB−IIIB線の矢視断面図、(C)は図3(A)のIIIC−IIIC線の矢視断面図である。The gas cell of the 2nd modification is shown, (A) is an external perspective view, (B) is a sectional view taken along the line IIIB-IIIB of FIG. 3(A), and (C) is IIIC-IIIC of FIG. 3(A). It is the arrow sectional drawing of a line. 第3改変例のガスセルを示し、(A)は外観斜視図、(B)は図4(A)のIVB−IVB線の矢視断面図、(C)は図4(A)のIVC−IVC線の矢視断面図である。The gas cell of the 3rd modification is shown, (A) is an external perspective view, (B) is a cross-sectional view taken along the line IVB-IVB in FIG. 4(A), and (C) is IVC-IVC in FIG. 4(A). It is the arrow sectional drawing of a line. (A)は第1改変例のガスセルにおけるガス封入空部を増大させた概略断面図である。(B)は第2改変例のガスセルにおけるガス封入空部を増大させた概略断面図である。(C)は第3改変例のガスセルにおけるガス封入空部を増大させた概略エ段面図である。(A) is a schematic cross-sectional view in which the gas-filled space in the gas cell of the first modified example is increased. (B) is a schematic cross-sectional view in which the gas-filled space in the gas cell of the second modified example is increased. FIG. 13C is a schematic E step view in which the gas-filled space in the gas cell of the third modified example is increased. (A)はフレーム構造の断熱手段を示す外観図である。(B)はスパイラル構造の断熱手段を示す外観図である。(A) is an external view showing a heat insulating means of a frame structure. (B) is an external view showing a heat insulating means having a spiral structure. 第2実施形態に係る量子光学装置の概略構成図である。It is a schematic block diagram of the quantum optical device which concerns on 2nd Embodiment. 第3実施形態に係る量子光学装置の概略構成図である。It is a schematic block diagram of the quantum optical device which concerns on 3rd Embodiment. 第4実施形態に係る量子光学装置の概略構成図である。It is a schematic block diagram of the quantum optical device which concerns on 4th Embodiment. 原子時計に適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic clock. CPT現象の原理説明図である。It is a principle explanatory view of a CPT phenomenon. 従来の量子光学装置の概略構成図である。It is a schematic block diagram of the conventional quantum optical device. 原子コンパスに適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic compass. 原子ジャイロに適用可能な従来の量子光学装置を示す機能ブロック図である。It is a functional block diagram which shows the conventional quantum optical device applicable to an atomic gyro.

次に、添付図面に基づき、様々な実施形態の量子光学装置について詳述する。 Next, quantum optical devices of various embodiments will be described in detail with reference to the accompanying drawings.

図1に示す第1実施形態に係る量子光学装置1Aは、減圧された密閉容器2内に量子光学部3Aを備える構造である。量子光学部3Aの支持手段10Aは、アルカリ金属元素が封入されたガス充填容器であるガスセル20を所定位置に保持する。ガスセル20の周囲には、封入されたガスを気体状に保持(例えば、60〜90℃の高温を保持)するための加熱ヒータ等で構成できる昇温手段30を配置してある。ガスセル20は、支持手段10Aに直接支持されるのではなく、断熱手段40Aを介して支持される。断熱手段40Aの一方には発光素子51を配置し、他方には受光素子52を配置し、発光素子51からの照射光がガスセル20を経て受光素子52の受光部へ至る光路OPが形成される。 The quantum optical device 1A according to the first embodiment shown in FIG. 1 has a structure in which the quantum optical unit 3A is provided in the decompressed closed container 2. The supporting means 10A of the quantum optics part 3A holds the gas cell 20 which is a gas filling container in which an alkali metal element is sealed in a predetermined position. Around the gas cell 20, there is arranged a temperature raising means 30 which can be constituted by a heater or the like for holding the enclosed gas in a gaseous state (for example, holding a high temperature of 60 to 90° C.). The gas cell 20 is not directly supported by the supporting means 10A, but is supported by the heat insulating means 40A. A light emitting element 51 is arranged on one side of the heat insulating means 40A, and a light receiving element 52 is arranged on the other side, and an optical path OP is formed in which irradiation light from the light emitting element 51 reaches the light receiving portion of the light receiving element 52 through the gas cell 20. ..

半導体素子構造の発光素子51と受光素子52は、ガスセル20とは異なる独自の温度制御系で温度管理を行うものとする。そのために、温度管理手段60を設けて、発光素子51と受光素子52の温度管理制御を実施する。発光素子51には、ガスセル20に設けた昇温手段30よりも低い温度(例えば、40〜60℃)に加熱するための素子用加熱手段61を設け、受光素子52も同様に、ガスセル20に設けた昇温手段30よりも低い温度に加熱するための素子用加熱手段62を設ける。温度管理に必要な発光素子51の温度は、第1素子温度検出手段63によって検出し、受光素子52の温度は、第2素子温度検出手段64によって検出し、これらの検出情報が温度管理手段60に入力される。 It is assumed that the light emitting element 51 and the light receiving element 52 having the semiconductor element structure perform temperature management by a unique temperature control system different from the gas cell 20. Therefore, the temperature management means 60 is provided and the temperature management control of the light emitting element 51 and the light receiving element 52 is implemented. The light emitting element 51 is provided with an element heating means 61 for heating to a temperature lower than the temperature raising means 30 provided in the gas cell 20 (for example, 40 to 60° C.), and the light receiving element 52 is similarly provided in the gas cell 20. Element heating means 62 for heating to a temperature lower than the temperature raising means 30 provided is provided. The temperature of the light emitting element 51 necessary for temperature management is detected by the first element temperature detecting means 63, and the temperature of the light receiving element 52 is detected by the second element temperature detecting means 64, and the detected information is the temperature managing means 60. Entered in.

温度管理手段60は、発光素子51と受光素子52の近傍、或いは同じ基板上に設けた半導体素子等で構成できる。また、図1では図示を省略したが、発光素子51と受光素子52の近傍、或いは同一基板上には、CPT現象を用いた標準周波数信号等を取得するために必要な機能を実現するための半導体素子も設けてある。以下では、発光素子51と受光素子52と、他の半導体素子を一括して半導体素子群とよぶ場合がある。 The temperature management means 60 can be configured by a semiconductor element or the like provided in the vicinity of the light emitting element 51 and the light receiving element 52, or on the same substrate. Although not shown in FIG. 1, in order to realize a function necessary for acquiring a standard frequency signal or the like using the CPT phenomenon, in the vicinity of the light emitting element 51 and the light receiving element 52 or on the same substrate. A semiconductor element is also provided. Hereinafter, the light emitting element 51, the light receiving element 52, and other semiconductor elements may be collectively referred to as a semiconductor element group.

ガスセル20の昇温手段30は、温度管理手段60とは別途設けた制御機能により温度管理しても良いし、温度管理手段60によって昇温手段30の制御を行うようにしても良い。ガスセル20は、ベース体21の二面(図1においては、上面と下面)を貫通するガス封入空部22を設け、透光性の第1面板23aと第2面板23bにて封止した構造である。例えば、ガスセル20の第1面板23aが発光素子51に対向する配置とすることで、こちらを入射面とし、第2面板23bが受光素子52に対向する配置とすることで、こちらを出射面とする。昇温手段30は、ガスセル20のガス封入空部22内に封入されたガスを気体状に保持するために加熱するものであるが、第1面板23aの入射窓部と第2面板23bの出射窓部が昇温手段30によって塞がれることがないような配慮が必要である。あるいは、レーザ光の波長に対して透明な透明導電膜(ITO膜)で構成したヒータを配置して、光路OPを妨げることがないようにしても良い。 The temperature raising means 30 of the gas cell 20 may perform temperature control by a control function provided separately from the temperature control means 60, or the temperature control means 60 may control the temperature raising means 30. The gas cell 20 has a structure in which a gas-filled empty portion 22 that penetrates two surfaces (an upper surface and a lower surface in FIG. 1) of a base body 21 and is sealed by a light-transmissive first face plate 23a and a second face plate 23b. Is. For example, by disposing the first face plate 23a of the gas cell 20 so as to face the light emitting element 51, this is the incident face, and by disposing the second face plate 23b so as to face the light receiving device 52, this is the emitting face. To do. The temperature raising means 30 heats the gas filled in the gas filling space 22 of the gas cell 20 in order to keep the gas in a gaseous state. The temperature raising means 30 emits light from the entrance window of the first face plate 23a and the second face plate 23b. Care must be taken that the window is not blocked by the temperature raising means 30. Alternatively, a heater made of a transparent conductive film (ITO film) transparent to the wavelength of the laser light may be arranged so as not to obstruct the optical path OP.

上述したガスセル20のベース体21は、既存のガラス管を所要長さに切って、その単一ガラス管の内空をガス封入空部22に利用することもできるが、そのような作成法ではガスセル20の小型化に限界がある。シリコン等の基材をウェハープロセスによる微細加工してベース体21を作成すれば、ガスセル20本体を数ミリ以下の小型に形成できる。ウェハープロセスを使えると言うことは、半導体チップのように、小型のガスセル20を大量に生産できることを意味する。しかも、半導体生産技術を活用できれば、露光装置を利用したパターン転写によって、ガスセル20を更に微細化する道も開ける。加えて、平滑なウェハーでガスセル20のベース体20を作るなら、ウェハーレベルパッケージングと呼ばれる手法を用いて、ウェハーレベルで組立を行い、最期にダイシングを行って個片化するという技術も適用可能である。 For the base body 21 of the gas cell 20 described above, an existing glass tube can be cut into a required length and the inner space of the single glass tube can be used as the gas-filled space 22. There is a limit to miniaturization of the gas cell 20. If the base body 21 is created by finely processing a base material such as silicon by a wafer process, the main body of the gas cell 20 can be formed in a small size of several millimeters or less. Being able to use the wafer process means that small gas cells 20 such as semiconductor chips can be mass-produced. In addition, if semiconductor production technology can be utilized, pattern transfer using an exposure apparatus will open the way for further miniaturization of the gas cell 20. In addition, if the base body 20 of the gas cell 20 is made of a smooth wafer, a technique called wafer level packaging can be used to assemble at the wafer level and dicing at the end to separate the individual pieces. Is.

また、小型のガスセル20は、上述した構造に限定されるものではない。例えば、図2に示す第1改変例のガスセル20Aは、所要形状(たとえは、略四角形)で平板な一対のベース体24,24によって、透光性の光透過体25の内空部開口面を封止して、ガス封入空部22を設けた構造である。光透過体25はガラス等の透光性材料で形成した略四角枠状で、対向する一対の透光壁部25a,25bと、これら透光壁部25a,25bの端部を繋ぐ一対の連結壁部25c,25dを備える。図2に示すガスセル20Aにおいては、透光壁部25aが出射側、透光壁部25bが入射側となるので、透光壁部25a,25bにおける外面と内面は、光路OPに直交する平面としておく必要がある。一方、連結壁部25c,25dにおける外面と内面には、そのような精度が要求されないので、外面と内面が平行になっていなくても構わない(例えば、図2(C)を参照)。なお、光透過体25における四側壁が全て透光壁部として機能する構造とすれば、四側壁の何れでも入射面あるいは出射面として使えるので、ガスセル20Aを配置するときの向きが限定されず、自由度の高いものとなる。 Further, the small gas cell 20 is not limited to the structure described above. For example, the gas cell 20A of the first modified example shown in FIG. 2 has a pair of base bodies 24, 24 each having a required shape (for example, a substantially quadrangular shape) and a flat plate, and the inner cavity opening surface of the light transmissive body 25. Is sealed and a gas-filled void 22 is provided. The light transmissive body 25 has a substantially rectangular frame shape formed of a translucent material such as glass and has a pair of translucent wall portions 25a and 25b facing each other and a pair of connecting portions for connecting end portions of the translucent wall portions 25a and 25b. It is provided with walls 25c and 25d. In the gas cell 20A shown in FIG. 2, the light transmitting wall portion 25a is on the emitting side and the light transmitting wall portion 25b is on the incident side. Therefore, the outer surface and the inner surface of the light transmitting wall portions 25a and 25b are planes orthogonal to the optical path OP. I need to put it. On the other hand, such accuracy is not required for the outer surface and the inner surface of the connecting wall portions 25c and 25d, so that the outer surface and the inner surface do not have to be parallel (for example, refer to FIG. 2C). If all four side walls of the light transmitting body 25 function as a light transmitting wall portion, any of the four side walls can be used as an entrance surface or an exit surface, and therefore the orientation when arranging the gas cell 20A is not limited. It has a high degree of freedom.

図3に示す第2改変例のガスセル20Bは、所要形状(たとえは、略四角形)で平板な一対のベース体24と、透光性の面板26とで、透光性の光透過体25の内空部開口面を封止して、ガス封入空部22を設けた構造である。このように、シリコン等の構造材料からウェハープロセスによって作成するベース体24を片側にだけ用い、このベース体24に対して光透過体25と面板26を組み付けることでも、ガス充填容器としてのガスセル20Bを作製できる。 The gas cell 20B of the second modified example shown in FIG. 3 includes a pair of flat base bodies 24 having a required shape (for example, a substantially quadrangular shape) and a transparent face plate 26. This is a structure in which the gas filled space 22 is provided by sealing the opening surface of the inner space. As described above, by using the base body 24 made of a structural material such as silicon by a wafer process on only one side and assembling the light transmission body 25 and the face plate 26 to the base body 24, the gas cell 20B as a gas filling container is also provided. Can be produced.

図4に示す第3改変例のガスセル20Cは、透光性の面板26,26により、ベース体27の内空部開口面を封止して、ガス封入空部22を設けた構造である。ベース体27の内空部は、エッチング等の半導体加工プロセスにより形成すると、内空縁部27aが均一にならい場合がある(図4(C)を参照)。しかしながら、ベース体27における内空縁部27aが、一方の面板26の入射窓部から他方の面板26の出射窓部に至る光路OPを妨げなければ、多少歪な形状のガス封入空部22となっても構わない。 The gas cell 20C of the third modified example shown in FIG. 4 has a structure in which the gas-filled cavity 22 is provided by sealing the inner cavity opening surface of the base body 27 with translucent face plates 26, 26. When the inner cavity of the base body 27 is formed by a semiconductor processing process such as etching, the inner cavity edge 27a may not be uniform (see FIG. 4C). However, as long as the inner edge portion 27a of the base body 27 does not interfere with the optical path OP from the entrance window portion of the one face plate 26 to the exit window portion of the other face plate 26, the gas filled void portion 22 having a slightly distorted shape is formed. It doesn't matter.

図5(A)に示すのは、第1改変例のガスセル20Aに対して、ガス封入空部22の容積を増大させるようにしたガスセル20A′である。ガスセル20A′においては、各ベース体24′,24′の内面側に凹部24aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。図5(B)に示すのは、第2改変例のガスセル20Bに対して、ガス封入空部22の容積を増大させるようにしたガスセル20B′である。ガスセル20B′においては、ベース体24′の内面側に凹部24aを設けると共に、面板26′の内面側にも凹部26aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。図5(C)に示すのは、第3改変例のガスセル20Cに対して、ガス封入空部22の容積を増大させるようにしたガスセル20C′である。ガスセル20C′においては、各面板26′,26′の内面側に凹部26aを設けることで、ガス封入容積を増大させたガス封入空部22′を形成した。 FIG. 5(A) shows a gas cell 20A' in which the volume of the gas filled space 22 is increased as compared with the gas cell 20A of the first modified example. In the gas cell 20A', the recessed portion 24a is provided on the inner surface side of each of the base bodies 24', 24' to form the gas filled empty portion 22' with an increased gas filled volume. FIG. 5B shows a gas cell 20B' in which the volume of the gas-filled void 22 is increased as compared with the gas cell 20B of the second modified example. In the gas cell 20B', the recess 24a is provided on the inner surface side of the base body 24', and the recess 26a is also provided on the inner surface side of the face plate 26', thereby forming a gas filled empty portion 22' with an increased gas filled volume. did. FIG. 5C shows a gas cell 20C' in which the volume of the gas-filled space 22 is increased as compared with the gas cell 20C of the third modified example. In the gas cell 20C', a recess 26a is provided on the inner surface side of each face plate 26', 26' to form a gas filled space 22' with an increased gas filled volume.

次に、量子光学部3Aの具体的な構造を説明する。支持手段10Aは、密閉容器2の適所(例えば、底部)に固定された主フレーム11によって第1テザー12aと第2テザー12bを保持する構造である。主フレーム11は、例えば、四側壁のように配置すると、それぞれの主フレーム11から延出する第1,第2テザー12a,12bの突出端が内向きに近接する状態となり、第1,第2テザー12a,12bの各突出端側にて断熱手段40Aを安定に支持できる。例えば、第1テザー12aとガスセル20との間には第1断熱体41を、第2テザー12bとガスセル20との間には第2断熱体42を夫々設ける。 Next, a specific structure of the quantum optical unit 3A will be described. The supporting means 10A has a structure in which the first tether 12a and the second tether 12b are held by the main frame 11 fixed to an appropriate position (for example, the bottom) of the closed container 2. When the main frame 11 is arranged like four side walls, for example, the protruding ends of the first and second tethers 12a and 12b extending from the respective main frames 11 are inwardly close to each other, and the first and second The heat insulating means 40A can be stably supported on the protruding end sides of the tethers 12a and 12b. For example, the first heat insulator 41 is provided between the first tether 12a and the gas cell 20, and the second heat insulator 42 is provided between the second tether 12b and the gas cell 20.

第1、第2断熱体41,42は、熱伝導率が低い発泡材等の断熱材料を、例えば円筒状に形成したものである。第1断熱体41の一方側が固定される第1テザー12aの反断熱体側(図1においては、上面側)には発光素子51を設け、第2断熱体42の一方側が固定される第2テザー12bの反断熱体側(図1においては、下面側)に受光素子52を設ける。かく構成すれば、昇温手段30からの熱、および高温で温度管理されたガスセル20からの熱は、第1,第2断熱体41,42を介して生じる温度勾配によって第1,第2テザー12a,12bに伝達され難く、発光素子51および受光素子52の昇温化を防げる。したがって、半導体素子群に該当する発光素子51と受光素子12は、ガスセル20の温度管理とは異なる独自の温度制御系で温度管理を実施できる。 The first and second heat insulators 41 and 42 are made of a heat insulating material such as a foam material having a low thermal conductivity and formed into, for example, a cylindrical shape. The second tether in which the light emitting element 51 is provided on the side opposite to the heat insulator (the upper surface side in FIG. 1) of the first tether 12a to which the one side of the first heat insulator 41 is fixed and the one side of the second heat insulator 42 is fixed The light receiving element 52 is provided on the side opposite to the heat insulating body 12b (the lower surface side in FIG. 1). According to this structure, the heat from the temperature raising means 30 and the heat from the gas cell 20 whose temperature is controlled at a high temperature are generated by the temperature gradient generated through the first and second heat insulators 41 and 42, and the first and second tethers. It is difficult to transmit to 12a and 12b, and it is possible to prevent the temperature rise of the light emitting element 51 and the light receiving element 52. Therefore, the light emitting element 51 and the light receiving element 12 corresponding to the semiconductor element group can perform temperature management by an original temperature control system different from the temperature management of the gas cell 20.

なお、発光素子51と受光素子52の両方を温度管理する制御に限らず、発光素子51か受光素子52の何れか一方のみを温度管理手段60によって温度管理しても良いし、その他の半導体素子に対する温度管理を行うようにしても良い。また、温度管理手段60は、発光素子51と受光素子52の温度管理を行うために、ガスセル20の昇温手段30の動作に介入する制御を行うようにしても良い。例えば、第1,第2素子温度検出手段61,62による検知温度が、当該素子の安定動作可能な温度範囲を基準として定めた上限基準温度を超えた場合、温度管理手段60が昇温手段30を停止させる。かくすれば、発光素子51、受光素子52、あるはその他の半導体素子が危険温度に上昇して、異常動作をしたり破損したりすることを未然に防げる。 The temperature control is not limited to the control for controlling both the light emitting element 51 and the light receiving element 52, and only one of the light emitting element 51 and the light receiving element 52 may be temperature controlled by the temperature control means 60, or other semiconductor elements. The temperature management may be performed for Further, the temperature management unit 60 may perform control that intervenes in the operation of the temperature raising unit 30 of the gas cell 20 in order to manage the temperatures of the light emitting element 51 and the light receiving element 52. For example, when the temperature detected by the first and second element temperature detecting means 61, 62 exceeds the upper limit reference temperature defined with reference to the temperature range in which the element can be stably operated, the temperature managing means 60 causes the temperature raising means 30. To stop. In this way, it is possible to prevent the light emitting element 51, the light receiving element 52, or other semiconductor elements from rising to a dangerous temperature and causing abnormal operation or damage.

上述した断熱手段40Aは、熱伝導率の低い断熱材よりなる第1,第2断熱体41,42で構成したが、これに限定されるものではない。図6(A)に示す断熱手段40A′は、薄い円環状の第1リング43aと第2リング43bを薄板状のスペーサ44によって適宜距離離隔させて配置した構造である。この断熱手段40A′を用いれば、ガスセル20と半導体素子群との間に介在させる熱伝導路の断面積が小さく、その伝導距離も長くなるので、断熱材ほど熱伝導率が低くない素材であっても、適宜な温度勾配により、半導体素子群の昇温化を抑制できる。図6(B)に示す断熱手段40A″は、熱伝導路となる比較的小径の線状体45をコイル形状(スパイラル構造)にしたものである。この断熱手段40A″を用いた場合でも、ガスセル20と半導体素子群との間に介在させる熱伝導路の断面積が小さく、その伝導距離も長くなるので、断熱材ほど熱伝導率が低くない素材であっても、適宜な温度勾配により、半導体素子群の昇温化を抑制できる。 The above-described heat insulating unit 40A is composed of the first and second heat insulators 41 and 42 made of a heat insulating material having a low thermal conductivity, but is not limited to this. The heat insulating unit 40A′ shown in FIG. 6A has a structure in which a thin annular first ring 43a and a second ring 43b are arranged with a thin plate spacer 44 at an appropriate distance. If this heat insulating means 40A' is used, the cross-sectional area of the heat conduction path interposed between the gas cell 20 and the semiconductor element group is small, and the conduction distance is long, so it is not a material having a thermal conductivity as low as that of the heat insulating material. However, the temperature rise of the semiconductor element group can be suppressed by an appropriate temperature gradient. The heat insulating means 40A″ shown in FIG. 6(B) is a coil body (spiral structure) of the linear body 45 having a relatively small diameter which serves as a heat conduction path. Even when this heat insulating means 40A″ is used, Since the cross-sectional area of the heat conduction path interposed between the gas cell 20 and the semiconductor element group is small and the conduction distance is long, even if the material is not as low in heat conductivity as the heat insulating material, it is possible to use The temperature rise of the semiconductor element group can be suppressed.

上述した第1実施形態の量子光学装置1Aにおける量子光学部3Aでは、ガスセル20を定位置に保つ断熱手段40A,40A′,40A″が、半導体素子群を支持するテザーと接触する構造としたが、断熱手段の構造はこれに限定されるものではない。図7に示す第2実施形態に係る量子光学装置1Bの量子光学部3Bでは、断熱手段40Bが支持手段10Bの主フレーム11に直接保持される構造とした。図7において、図1の量子光学装置1Aと同一構成には、同一符号を付して説明を省略する。また、前述した温度管理手段60によるガスセル20と半導体素子群の温度管理機能を量子光学装置1Bに設けても良い。 In the quantum optical unit 3A in the quantum optical device 1A of the first embodiment described above, the heat insulating means 40A, 40A′, 40A″ for holding the gas cell 20 in a fixed position is in contact with the tether supporting the semiconductor element group. The structure of the heat insulating means is not limited to this.In the quantum optical unit 3B of the quantum optical device 1B according to the second embodiment shown in Fig. 7, the heat insulating means 40B is directly held by the main frame 11 of the supporting means 10B. 7, the same components as those of the quantum optical device 1A of FIG.1 are designated by the same reference numerals and the description thereof will be omitted, and the gas cell 20 and the semiconductor element group by the temperature control means 60 described above will be omitted. A temperature management function may be provided in the quantum optical device 1B.

断熱手段40Bは、主フレーム11の適所(図7においては上側)に第1断熱用テザー43aを設け、第1断熱用テザー43aから適宜離隔させた主フレーム11の適所(図7においては下側)に第2断熱用テザー43bを設けた構造である。そして、ガスセル20の第1面板23a側を第1断熱用テザー43aに固定し、ガスセル20の第2面板23b側を第2断熱用テザー43bに固定する。かく構成すれば、昇温手段30およびガスセル20からの熱は、第1,第2断熱用テザー43a,43bより主フレーム11を介して第1,第2テザー12a,12bへ伝導しなければ、発光素子51および受光素子52の昇温化させることはない。すなわち、第1,第2断熱用テザー43a,43bで構成した断熱手段40Bを設けた場合も、温度勾配によって第1,第2テザー12a,12bに伝達され難く、発光素子51および受光素子52の昇温化を防げる。したがって、半導体素子群に該当する発光素子51と受光素子12は、ガスセル20の温度管理とは異なる独自の温度制御系で温度管理を実施できる。 The heat insulating means 40B is provided with a first heat insulating tether 43a at an appropriate position (upper side in FIG. 7) of the main frame 11 and is appropriately separated from the first heat insulating tether 43a (lower side in FIG. 7). ) Is provided with a second heat insulating tether 43b. Then, the first face plate 23a side of the gas cell 20 is fixed to the first heat insulating tether 43a, and the second face plate 23b side of the gas cell 20 is fixed to the second heat insulating tether 43b. According to this structure, heat from the temperature raising means 30 and the gas cell 20 must be conducted to the first and second tethers 12a and 12b from the first and second heat insulating tethers 43a and 43b through the main frame 11. The temperature of the light emitting element 51 and the light receiving element 52 is not raised. That is, even when the heat insulating means 40B composed of the first and second heat insulating tethers 43a and 43b is provided, it is difficult for the heat insulating means 40B to be transmitted to the first and second tethers 12a and 12b due to the temperature gradient, and thus the light emitting element 51 and the light receiving element 52 of Prevents temperature rise. Therefore, the light emitting element 51 and the light receiving element 12 corresponding to the semiconductor element group can perform temperature management by an original temperature control system different from the temperature management of the gas cell 20.

上述した第1,第2実施形態の量子光学装置1A,1Bでは、高温で温度管理されているガスセル20からの輻射に対する遮断機能を備えていない。すなわち、ガスセル20の第1面板23aに対向するように配置された発光素子51は、第1面板23aからの輻射によって直接加熱されることとなる。同様に、ガスセル20の第2面板23bに対向するように配置された受光素子52は、第2面板23bからの輻射によって直接加熱されることとなる。そこで、図8に示す第3実施形態に係る量子光学装置1Cの量子光学部3Cでは、遮熱手段として機能する第1光路変更テーパ面71と第2光路変更テーパ面72を設ける構造とした。図8において、図1の量子光学装置1Aと同一構成には、同一符号を付して説明を省略する。また、前述した温度管理手段60によるガスセル20と半導体素子群の温度管理機能を量子光学装置1Cに設けても良い。 The quantum optical devices 1A and 1B according to the first and second embodiments described above do not have a function of blocking radiation from the gas cell 20 whose temperature is controlled at a high temperature. That is, the light emitting element 51 arranged so as to face the first face plate 23a of the gas cell 20 is directly heated by the radiation from the first face plate 23a. Similarly, the light receiving element 52 arranged so as to face the second face plate 23b of the gas cell 20 is directly heated by the radiation from the second face plate 23b. Therefore, in the quantum optical unit 3C of the quantum optical device 1C according to the third embodiment shown in FIG. 8, the structure is provided with the first optical path changing tapered surface 71 and the second optical path changing tapered surface 72 that function as a heat shield. In FIG. 8, the same components as those of the quantum optical device 1A of FIG. Further, the temperature control function of the gas cell 20 and the semiconductor element group by the temperature control means 60 described above may be provided in the quantum optical device 1C.

量子光学部3Cの支持手段10Cは、半導体素子群(発光素子51、受光素子52、他の半導体素子53)を設けるベース部131から第2テザー12bの配設位置まで適宜離隔させる離隔部132を生じる。離隔部132から第1テザー12aの配設位置までガスセル配置空部を狭めるように迫り出す斜壁部133を形成する。斜壁部133の相対向する2面は、第1光路変更テーパ面71と第2光路変更テーパ面72となり、第1,第2テザー12a,12bに固定されたガスセル20の第1面板23aと第2面板23bに臨む。すなわち、ガスセル20の第1面板23aと第2面板23bは、何れも、主フレーム13における斜壁部133の内面に臨むこととなり、発光素子51および受光素子52はガスセル20の第1面板23aと第2面板23bから遮熱を受けることはない。 The supporting means 10C of the quantum optics unit 3C includes a separating portion 132 that appropriately separates the semiconductor element group (the light emitting element 51, the light receiving element 52, and the other semiconductor element 53) from the base portion 131 where the second tether 12b is disposed. Occurs. A slanted wall portion 133 is formed so as to narrow the gas cell disposition space from the separation portion 132 to the disposition position of the first tether 12a. Two surfaces of the slanted wall portion 133 that face each other become a first optical path changing taper surface 71 and a second optical path changing taper surface 72, and the first face plate 23a of the gas cell 20 fixed to the first and second tethers 12a and 12b. It faces the second face plate 23b. That is, the first face plate 23a and the second face plate 23b of the gas cell 20 both face the inner surface of the slant wall portion 133 of the main frame 13, and the light emitting element 51 and the light receiving element 52 are the same as the first face plate 23a of the gas cell 20. It does not receive heat from the second face plate 23b.

また、ベース部131に設けられた発光素子51から出射された光が進む第1光路OP1に対して、第1光路変更テーパ面71は約45゜の入射角に配置され、第1光路変更テーパ面71で反射した光は、第1光路OP1と直交する第2光路OP2を通る。第2光路OP2はガスセル20の第1面板23aにほぼ垂直に入射し、第2面板23bにほぼ垂直に出射する光路である。第2光路変更テーパ面72は第2光路OP2に対して約45°の入射角に配置され、第2光路変更テーパ面42で反射した光は、第2光路OP2と直交してベース部131に向かう第3光路OP3を通り、受光素子52の受光部へ入射する。 Further, the first optical path changing taper surface 71 is arranged at an incident angle of about 45° with respect to the first optical path OP1 through which the light emitted from the light emitting element 51 provided in the base portion 131 travels, and the first optical path changing taper is formed. The light reflected by the surface 71 passes through the second optical path OP2 orthogonal to the first optical path OP1. The second optical path OP2 is an optical path that enters the first face plate 23a of the gas cell 20 substantially vertically and emits the second face plate 23b almost vertically. The second optical path changing tapered surface 72 is arranged at an incident angle of about 45° with respect to the second optical path OP2, and the light reflected by the second optical path changing tapered surface 42 is orthogonal to the second optical path OP2 and is transmitted to the base portion 131. The light enters the light-receiving portion of the light-receiving element 52 through the third optical path OP3 that is directed.

すなわち、第1,第2高度変更テーパ面71,72は、ガスセル5からの輻射によって発光素子51や受光素子52が昇温することを抑止する遮熱手段として機能すると共に、発光素子51→ガスセル20→受光素子52の光路を妨げることもない。 That is, the first and second altitude changing taper surfaces 71 and 72 function as a heat shield that prevents the light emitting element 51 and the light receiving element 52 from rising in temperature due to the radiation from the gas cell 5, and the light emitting element 51→gas cell. 20→The light path of the light receiving element 52 is not obstructed.

なお、高温に保持されているガスセル20は、第1面板23aの入射面および第2面板23bの出射面からのみ輻射熱が放出されるわけではなく、側面からも輻射が生じている。しかし、ベース部131に設けられた半導体素子群が、ガスセル5の側面等から受ける輻射熱は比較的小さく、独自の温度制御系による温度管理が妨げられるほどではないが、より高い遮熱機能を持たせるようにしても良い。そこで、図9に示す第4実施形態に係る量子光学装置1Dの量子光学部3Dでは、第2の遮熱手段として機能する遮熱体73を設ける構造とした。図9において、図8の量子光学装置1Cと同一構成には、同一符号を付して説明を省略する。また、前述した温度管理手段60によるガスセル20と半導体素子群の温度管理機能を量子光学装置1Cに設けても良い。 In the gas cell 20 maintained at a high temperature, radiant heat is not emitted only from the incident surface of the first face plate 23a and the output face of the second face plate 23b, and radiation is also generated from the side faces. However, the semiconductor element group provided in the base portion 131 has a relatively high radiant heat received from the side surface of the gas cell 5 and the like, which does not hinder the temperature management by the original temperature control system, but has a higher heat shield function. You may allow it. Therefore, in the quantum optical unit 3D of the quantum optical device 1D according to the fourth embodiment shown in FIG. 9, the heat shield 73 functioning as the second heat shield is provided. 9, the same components as those of the quantum optical device 1C of FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted. Further, the temperature control function of the gas cell 20 and the semiconductor element group by the temperature control means 60 described above may be provided in the quantum optical device 1C.

量子光学部3Dの遮熱体73は、ガスセル20が固定される第2テザー12bと、ベース部131に配置される半導体素子群との間を空間的に仕切るように配置する板状体である。遮熱体73には、少なくとも、第1光路OP1を阻害しないための第1通孔73aと第3光路OP3を阻害しないための第2通孔73bを設けておく。遮熱体73としては、白色のセラミック材のように電磁波を反射することで自らが加熱されない素材を用いることができる。或いは、アルミニウム箔のように電磁波吸収率の高い素材を断熱性板材の第2テザー12b配置側に貼設することで遮熱体73としても良い。この場合、ガスセル20からの輻射でアルミニウム箔自身が加熱されるため、その熱を周辺に逃がす手段を設けておくことが望ましい。 The heat shield 73 of the quantum optical unit 3D is a plate-like member arranged so as to spatially partition between the second tether 12b to which the gas cell 20 is fixed and the semiconductor element group arranged in the base 131. .. The heat shield 73 is provided with at least a first through hole 73a for not blocking the first optical path OP1 and a second through hole 73b for not blocking the third optical path OP3. As the heat shield 73, a material that does not heat itself by reflecting electromagnetic waves, such as a white ceramic material, can be used. Alternatively, the heat shield 73 may be formed by sticking a material having a high electromagnetic wave absorption rate, such as an aluminum foil, on the side of the heat insulating plate on which the second tether 12b is disposed. In this case, since the aluminum foil itself is heated by the radiation from the gas cell 20, it is desirable to provide a means for releasing the heat to the surroundings.

以上、本発明に係る量子光学装置を実施形態に基づき説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全ての量子光学装置を権利範囲として包摂するものである。 Although the quantum optical device according to the present invention has been described above based on the embodiments, the present invention is not limited to these embodiments and can be realized without changing the configuration described in the claims. It covers all quantum optical devices as a scope of rights.

1A 量子光学装置(第1実施形態)
2 密閉容器
10A 支持手段
20 ガスセル
30 ヒータ
40A 断熱手段
51 発光素子
52 受光素子
1A Quantum optical device (first embodiment)
2 Airtight container 10A Supporting means 20 Gas cell 30 Heater 40A Heat insulating means 51 Light emitting element 52 Light receiving element

Claims (6)

アルカリ金属元素の吸収波長帯で複数周波数の励起光を出射する発光素子と、
前記発光素子からの励起光を透明な窓部より受ける位置に配置され、ウェハープロセスにより作成された微細な内空部にアルカリ金属元素とバッファガスが封入された小型のガス充填容器と、
前記ガス充填容器に封入されているガス成分が気体状態を保持するよう、ガス充填容器を高温に加熱する昇温手段と、
前記ガス充填容器を通過した光を受信する位置に配置され、受信光の光強度を検出する受光素子と、
前記受光素子で検出される光強度を最大化させるCPT共鳴を発生させるように、発光素子から出力させる励起光の周波数差を、アルカリ金属元素における基底順位間の周波数差に一致させるCPT共鳴捕捉を行う機能を担う1つ以上の半導体素子と、
少なくとも、前記発光素子とガス充填容器の間、および前記受光素子とガス充填容器の間に介在させる断熱手段と、
を備えることを特徴とする量子光学装置。
A light emitting element that emits excitation light of a plurality of frequencies in the absorption wavelength band of the alkali metal element,
A small gas-filled container in which an alkali metal element and a buffer gas are enclosed in a fine inner space created by a wafer process, which is arranged at a position to receive excitation light from the light emitting element from a transparent window portion,
A temperature raising means for heating the gas filling container to a high temperature so that the gas component sealed in the gas filling container maintains a gas state,
A light-receiving element that is arranged at a position for receiving light that has passed through the gas filling container and that detects the light intensity of the received light,
CPT resonance trapping for matching the frequency difference of the excitation light output from the light emitting element with the frequency difference between the base ranks in the alkali metal element so as to generate the CPT resonance that maximizes the light intensity detected by the light receiving element. One or more semiconductor elements responsible for performing the function,
At least a heat insulating means interposed between the light emitting element and the gas filling container, and between the light receiving element and the gas filling container,
A quantum optical device comprising:
前記断熱手段は、熱伝導率の低い断熱材であることを特徴とする請求項1に記載の量子光学装置。 The quantum optical device according to claim 1, wherein the heat insulating unit is a heat insulating material having a low thermal conductivity. 前記断熱手段は、熱伝導路の断面積を小さくすると共に、熱伝導路の距離を長くしたことを特徴とする請求項1に記載の量子光学装置。 The quantum optical device according to claim 1, wherein the heat insulating unit reduces the cross-sectional area of the heat conduction path and lengthens the distance of the heat conduction path. 前期ガス充填器の昇温手段からの輻射が前記発光素子、受光素子、半導体素子に作用することを抑制する遮熱手段を設けたことを特徴とする請求項1〜請求項3の何れか1項に記載の量子光学装置。 The heat shield means for suppressing the radiation from the temperature raising means of the gas filling device acting on the light emitting element, the light receiving element and the semiconductor element is provided. The quantum optical device according to the item. 前記発光素子、受光素子、半導体素子の少なくとも一つは、独自の温度制御系で温度管理を実施することを特徴とする請求項1〜請求項4の何れか1項に記載の量子光学装置。 The quantum optical device according to claim 1, wherein at least one of the light emitting element, the light receiving element, and the semiconductor element implements temperature management by a unique temperature control system. 前記発光素子、受光素子、半導体素子の少なくとも一つの素子には、該素子の温度を検出する素子温度検出手段を設け、
前記素子温度検出手段による検知温度を取得し、当該素子の安定動作可能な温度範囲を基準として定めた上限基準温度を、前記検知温度が超えた場合、前記昇温手段を停止させる温度管理手段を備えることと特徴とする請求項1〜請求項5の何れか1項に記載の量子光学装置。
At least one of the light emitting element, the light receiving element, and the semiconductor element is provided with an element temperature detecting means for detecting the temperature of the element,
When the detected temperature exceeds the upper limit reference temperature determined by obtaining the temperature detected by the element temperature detection means and the temperature range in which the element can be stably operated as a reference, a temperature management means for stopping the temperature raising means is provided. The quantum optical device according to claim 1, further comprising: a quantum optical device.
JP2019002545A 2019-01-10 2019-01-10 Quantum optical device Pending JP2020113616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019002545A JP2020113616A (en) 2019-01-10 2019-01-10 Quantum optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019002545A JP2020113616A (en) 2019-01-10 2019-01-10 Quantum optical device

Publications (1)

Publication Number Publication Date
JP2020113616A true JP2020113616A (en) 2020-07-27

Family

ID=71665910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019002545A Pending JP2020113616A (en) 2019-01-10 2019-01-10 Quantum optical device

Country Status (1)

Country Link
JP (1) JP2020113616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014156A1 (en) * 2020-07-17 2022-01-20 日本電気硝子株式会社 Hermetic container, and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215762U (en) * 1988-07-18 1990-01-31
JP2008520958A (en) * 2004-07-13 2008-06-19 ザ・チャールズ・スターク・ドレイパ・ラボラトリー・インコーポレイテッド Apparatus and system for suspending a chip scale device and associated method
JP2009176852A (en) * 2008-01-23 2009-08-06 Epson Toyocom Corp Optical system and atomic oscillator
JP2014183484A (en) * 2013-03-19 2014-09-29 Seiko Epson Corp Electronic device, quantum interference device, atomic oscillator, electronic apparatus, mobile body, and method of manufacturing electronic device
JP2015537373A (en) * 2012-10-12 2015-12-24 サントル ナショナル デ ラ ルシェルシュ シィアンティフィク (セ.エヌ.エール.エス.)Centre National De La Recherche Scientifique (C.N.R.S.) Alkali metal vapor cell, especially for atomic clocks, and manufacturing method
JP2016012855A (en) * 2014-06-30 2016-01-21 株式会社リコー Alkali metal cell and atomic oscillator
JP2017183869A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic apparatus and mobile
JP2018098321A (en) * 2016-12-12 2018-06-21 株式会社村田製作所 Atomic oscillator and electronic equipment
US20180364096A1 (en) * 2017-06-14 2018-12-20 Texas Instruments Incorporated Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215762U (en) * 1988-07-18 1990-01-31
JP2008520958A (en) * 2004-07-13 2008-06-19 ザ・チャールズ・スターク・ドレイパ・ラボラトリー・インコーポレイテッド Apparatus and system for suspending a chip scale device and associated method
JP2009176852A (en) * 2008-01-23 2009-08-06 Epson Toyocom Corp Optical system and atomic oscillator
JP2015537373A (en) * 2012-10-12 2015-12-24 サントル ナショナル デ ラ ルシェルシュ シィアンティフィク (セ.エヌ.エール.エス.)Centre National De La Recherche Scientifique (C.N.R.S.) Alkali metal vapor cell, especially for atomic clocks, and manufacturing method
JP2014183484A (en) * 2013-03-19 2014-09-29 Seiko Epson Corp Electronic device, quantum interference device, atomic oscillator, electronic apparatus, mobile body, and method of manufacturing electronic device
JP2016012855A (en) * 2014-06-30 2016-01-21 株式会社リコー Alkali metal cell and atomic oscillator
JP2017183869A (en) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 Quantum interference device, atomic oscillator, electronic apparatus and mobile
JP2018098321A (en) * 2016-12-12 2018-06-21 株式会社村田製作所 Atomic oscillator and electronic equipment
US20180364096A1 (en) * 2017-06-14 2018-12-20 Texas Instruments Incorporated Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014156A1 (en) * 2020-07-17 2022-01-20 日本電気硝子株式会社 Hermetic container, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US10416246B2 (en) Physics package for compact atomic device
US9319056B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
EP2866102B1 (en) Systems and methods for a wafer scale atomic clock
JP2015231053A (en) Atom cell, quantum interference device, atomic oscillator, electronic apparatus and mobile
US9507322B2 (en) Atomic cell manufacturing method, atomic cell, quantum interference device, atomic oscillator, electronic device, and moving object
JP6484922B2 (en) Atomic cell, quantum interference device, atomic oscillator and electronic equipment
JP6741072B2 (en) Atomic oscillator and electronic equipment
US10325707B2 (en) Integrated field coil for compact atomic devices
US11029375B2 (en) Cell module for optically pumped magnetic sensor
JP2020113616A (en) Quantum optical device
JP2015228461A (en) Atomic resonance transition device, atomic oscillator, electronic apparatus, and movable body
EP3564759B1 (en) Physics module of chip-scale atomic clock
JP7319623B2 (en) quantum optics
CN107241095B (en) Quantum interference device, atomic oscillator, and electronic apparatus
CN105720976A (en) Atomic resonance transition device, atomic oscillator, timepiece, electronic apparatus and moving object
JP7232510B2 (en) quantum optics
JP2016081997A (en) Quantum interference device, atomic oscillator, electronic equipment, and mobile body
JP6060568B2 (en) Gas cell unit, atomic oscillator and electronic equipment
JP6442969B2 (en) Quantum interference devices, atomic oscillators, and electronic equipment
Nishino et al. A Reflection type vapor cell based on local anodic bonding of 45° mirrors for micro atomic clocks
JP2010003944A (en) Atomic oscillator
JP2016015363A (en) Quantum interference device and atomic oscillator
US20230283284A1 (en) Atomic frequency obtaining device and atomic clock
US9864340B2 (en) Caesium atomic micro-clock microcell buffer gas mixture
JP6488599B2 (en) Quantum interferometer, atomic cell manufacturing method, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221