JP2020123621A - Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element - Google Patents

Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element Download PDF

Info

Publication number
JP2020123621A
JP2020123621A JP2019013374A JP2019013374A JP2020123621A JP 2020123621 A JP2020123621 A JP 2020123621A JP 2019013374 A JP2019013374 A JP 2019013374A JP 2019013374 A JP2019013374 A JP 2019013374A JP 2020123621 A JP2020123621 A JP 2020123621A
Authority
JP
Japan
Prior art keywords
photoelectrode
photoelectric conversion
conversion element
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019013374A
Other languages
Japanese (ja)
Inventor
宜昭 松島
Noriaki Matsushima
宜昭 松島
清水 基尋
Motohiro Shimizu
基尋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2019013374A priority Critical patent/JP2020123621A/en
Publication of JP2020123621A publication Critical patent/JP2020123621A/en
Pending legal-status Critical Current

Links

Abstract

To provide a manufacturing method of a photoelectrode for a photoelectric conversion element, which allows for manufacturing of a photoelectrode having little deformation and excellent performance.SOLUTION: The manufacturing method of a photoelectrode for a photoelectric conversion element is provided that includes a heating film formation step of irradiating a laminate in which a coating film including metal oxide semiconductor fine particles is laminated on one surface of a conductive substrate, with light from a coating film side using an ultraviolet light emitting diode as a light source, thereby eating the coating film to form a film.SELECTED DRAWING: None

Description

本発明は、光電変換素子用光電極の製造方法及び光電変換素子の製造方法に関するものである。 The present invention relates to a method for manufacturing a photoelectrode for a photoelectric conversion element and a method for manufacturing a photoelectric conversion element.

近年、光エネルギーを電力に変換する光電変換素子として、太陽電池が注目されている。太陽電池は、電子や正孔の移動に寄与する層が基材上に形成された光電極及び対向電極により挟まれてなる。例えば、太陽電池の一つである色素増感型太陽電池では、通常、増感色素を吸着させた半導体層を含む光電極と、電解質層と、触媒層を含む対向電極とがこの順に並んでなる構造を有する。さらに、光電極の半導体層は、導電性基材の片面上に形成されてなりうる。 In recent years, solar cells have been attracting attention as photoelectric conversion elements for converting light energy into electric power. A solar cell has a layer that contributes to the movement of electrons and holes sandwiched between a photoelectrode and a counter electrode formed on a base material. For example, in a dye-sensitized solar cell that is one of solar cells, a photoelectrode including a semiconductor layer having a sensitizing dye adsorbed, an electrolyte layer, and a counter electrode including a catalyst layer are usually arranged in this order. Has the structure. Further, the semiconductor layer of the photoelectrode may be formed on one side of the conductive base material.

電極の製造にあたり、導電性基材上に、半導体層を形成するための組成物を塗布して塗膜を形成し、かかる塗膜を加熱して成膜する操作を行うことがある。ここで、半導体層を形成するための組成物の含有成分と、導電性基材等の他の構成部とでは耐熱温度が異なる場合がある。このため、塗膜を成膜するために充分な温度で加熱した場合に、他の構成部が加熱に起因して変形する場合がある。 When manufacturing an electrode, an operation of applying a composition for forming a semiconductor layer onto a conductive base material to form a coating film, and heating the coating film to form a film may be performed. Here, the contained temperature of the composition for forming the semiconductor layer may be different from that of other constituent parts such as the conductive base material. Therefore, when heated at a temperature sufficient for forming a coating film, other components may be deformed due to heating.

従来、透明なプラスチックフィルム基板等の基体の上に、焼結加熱時に照射する紫外光を選択的に反射する反射層を予め形成したうえで、紫外光を照射することにより半導体微粒子層を焼結加熱する工程を含む光励起式機能デバイスの製造方法が提案されてきた(例えば、特許文献1参照)。より具体的には、特許文献1に記載の方法では、上記所定の反射層を半導体微粒子層と基体との間に配置するため、半導体微粒子層側から、低圧水銀灯を光源として用いてピーク波長253.7nmの紫外光を照射した場合に、紫外光が基体まで到達することを効果的に抑制することができる。 Conventionally, a semiconductor plastic particle layer is sintered by irradiating ultraviolet light after forming a reflective layer that selectively reflects the ultraviolet light irradiated during sintering heating on a substrate such as a transparent plastic film substrate. A method of manufacturing a photoexcited functional device including a heating step has been proposed (see, for example, Patent Document 1). More specifically, in the method described in Patent Document 1, since the predetermined reflection layer is arranged between the semiconductor fine particle layer and the substrate, the peak wavelength 253 is obtained from the semiconductor fine particle layer side using a low pressure mercury lamp as a light source. It is possible to effectively suppress the ultraviolet light from reaching the substrate when the ultraviolet light of 0.7 nm is irradiated.

特開2005−197140号公報JP, 2005-197140, A

特許文献1に記載されたような、所定の反射層を所定の位置に配置することを含む製造方法では、導電性基材の熱変形を抑制するという点で、改善の余地があった。ここで、導電性基材の熱変形を抑制するための方途としては加熱成膜時に供給するエネルギー量を少なくすることが想定されうる。しかし、単に供給エネルギー量を低減する等して、半導体微粒子層を加熱成膜するために充分な量のエネルギーを供給することができなければ、結果的に、光電極の光電変換能を損なう虞がある。 The manufacturing method including arranging a predetermined reflective layer at a predetermined position as described in Patent Document 1 has room for improvement in terms of suppressing thermal deformation of the conductive base material. Here, as a method for suppressing the thermal deformation of the conductive base material, it can be assumed that the amount of energy supplied during the heating film formation is reduced. However, if it is not possible to supply a sufficient amount of energy for heating and forming the semiconductor fine particle layer by simply reducing the amount of supplied energy, as a result, the photoelectric conversion ability of the photoelectrode may be impaired. There is.

そこで、本発明は、変形が少なく優れた性能の光電極を製造可能な光電変換素子用光電極の製造方法を提供することを目的とする。
また、本発明は、優れた性能を有する光電変換素子を効率的に製造し得る光電変換素子の製造方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for producing a photoelectrode for a photoelectric conversion element, which is capable of producing a photoelectrode having little deformation and excellent performance.
Another object of the present invention is to provide a method for manufacturing a photoelectric conversion element that can efficiently manufacture a photoelectric conversion element having excellent performance.

本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、紫外線発光ダイオードを光源として用いて、導電性基材の片面上に配置した金属酸化物半導体微粒子を含む塗膜に対して光照射することで、導電性基材の熱変形を良好に抑制しつつ、塗膜を十分に加熱して成膜させて、優れた性能の光電極を形成することが可能となることを新たに見出し、本発明を完成させた。 The present inventors have earnestly studied to achieve the above object. Then, the present inventors, by using an ultraviolet light emitting diode as a light source, by irradiating the coating containing metal oxide semiconductor fine particles arranged on one surface of the conductive substrate with light, the conductive substrate The present invention has been newly found out that it becomes possible to form a photoelectrode having excellent performance by sufficiently heating a coating film to form a film while suppressing thermal deformation satisfactorily.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の光電変換素子用光電極の製造方法は、導電性基材の片面上に金属酸化物半導体微粒子を含む塗膜が積層されてなる積層体に対して、前記塗膜側から紫外線発光ダイオードを光源として用いて光照射して、前記塗膜を加熱して成膜させる工程を含むことを特徴とする。紫外線発光ダイオードを光源として用いて塗膜を加熱成膜する工程を実施することで、光電極を構成する導電性基材の熱変形を良好に抑制するとともに、優れた性能の光電極を形成することができる。 The present invention has an object to advantageously solve the above problems, and a method for producing a photoelectrode for a photoelectric conversion element of the present invention is a coating containing metal oxide semiconductor fine particles on one surface of a conductive substrate. It is characterized by including a step of irradiating a laminated body formed by laminating films from the coating film side by using an ultraviolet light emitting diode as a light source, and heating the coating film to form a film. By carrying out the step of heating and forming a coating film using an ultraviolet light emitting diode as a light source, thermal deformation of the conductive base material constituting the photoelectrode is well suppressed and a photoelectrode having excellent performance is formed. be able to.

また、本発明に係る光電変換素子用光電極の製造方法において、前記紫外線発光ダイオードにより照射される前記光のピーク波長が、365nm、385nm、395nm、又は405nmであることが好ましい。紫外線発光ダイオードにより照射される光のピーク波長が、365nm、385nm、395nm、又は405nmであれば、光電極を構成する導電性基材の熱変形を一層良好に抑制することができる。 In the method for manufacturing a photoelectrode for a photoelectric conversion element according to the present invention, it is preferable that the peak wavelength of the light emitted by the ultraviolet light emitting diode is 365 nm, 385 nm, 395 nm, or 405 nm. When the peak wavelength of the light emitted by the ultraviolet light emitting diode is 365 nm, 385 nm, 395 nm, or 405 nm, thermal deformation of the conductive base material forming the photoelectrode can be suppressed even better.

また、本発明に係る光電変換素子用光電極の製造方法において、前記紫外線発光ダイオードにより照射される前記光の波長領域が300nm以上500nm以下の範囲内であることが好ましい。紫外線発光ダイオードにより照射される光の波長領域が300nm以上500nm以下の範囲内であれば、光電極を構成する導電性基材の熱変形を一層良好に抑制することができる。 Further, in the method for producing a photoelectrode for a photoelectric conversion element according to the present invention, it is preferable that the wavelength region of the light emitted by the ultraviolet light emitting diode is in the range of 300 nm or more and 500 nm or less. When the wavelength range of the light emitted by the ultraviolet light emitting diode is in the range of 300 nm or more and 500 nm or less, thermal deformation of the conductive base material forming the photoelectrode can be suppressed even better.

また、本発明に係る光電変換素子用光電極の製造方法において、前記導電性基材が、樹脂フィルムと、前記樹脂フィルムの片面上に積層された透明導電膜とを含んでいても良い。
なお、本明細書において「透明」とは、JIS K7361−1:1997に従って測定した測定波長500nmにおける光の透過率が60%以上であることを意味する。
Further, in the method for producing a photoelectrode for a photoelectric conversion element according to the present invention, the conductive base material may include a resin film and a transparent conductive film laminated on one surface of the resin film.
In addition, in this specification, "transparent" means that the transmittance of light at a measurement wavelength of 500 nm measured according to JIS K7361-1: 1997 is 60% or more.

また、本発明に係る光電変換素子用光電極の製造方法において、前記金属酸化物半導体微粒子が、チタン酸化物、亜鉛酸化物、スズ酸化物、及びこれらの複合体のうちの何れかからなることが好ましい。金属酸化物半導体微粒子が、チタン酸化物、亜鉛酸化物、スズ酸化物、及びこれらの複合体のうちの何れかからなる粒子であれば、得られる光電極を備える光電変換素子の光電変換効率を高めることができる。 Further, in the method for producing a photoelectrode for a photoelectric conversion element according to the present invention, the metal oxide semiconductor fine particles are made of any one of titanium oxide, zinc oxide, tin oxide, and a complex thereof. Is preferred. If the metal oxide semiconductor fine particles are particles made of any one of titanium oxide, zinc oxide, tin oxide, and composites thereof, the photoelectric conversion efficiency of the photoelectric conversion element provided with the obtained photoelectrode can be improved. Can be increased.

また、本発明に係る光電変換素子用光電極の製造方法が、前記加熱成膜工程よりも前段に、前記導電性基材を支持体上に配置する工程を含むことが好ましい。導電性基材を支持体上に配置してから、加熱成膜工程を実施することで、加熱成膜工程にて導電性基材に熱変形が生じることを一層良好に抑制することができる。 In addition, it is preferable that the method for producing a photoelectrode for a photoelectric conversion element according to the present invention includes a step of disposing the conductive base material on a support before the heating and film forming step. By carrying out the heating film forming step after disposing the conductive base material on the support, it is possible to further suppress thermal deformation of the conductive base material in the heating film forming step.

また、本発明は、上記課題を有利に解決することを目的とするものであり、本発明の光電変換素子の製造方法は、光電極、電解質層、及び対向電極をこの順に積層してなる光電変換素子の製造方法であって、上述した何れかの光電変換素子用光電極の製造方法により前記光電極を製造する工程を含むことを特徴とする。かかる製造方法に従うことで、効率的に、優れた性能を発揮し得る光電変換素子を製造することができる。 Further, the present invention is intended to advantageously solve the above problems, a method for producing a photoelectric conversion element of the present invention, a photoelectric electrode, an electrolyte layer, and a counter electrode is a photoelectric layer formed in this order. A method for manufacturing a conversion element, characterized by including a step of manufacturing the photoelectrode by any one of the methods for manufacturing a photoelectrode for a photoelectric conversion element described above. By following this manufacturing method, it is possible to efficiently manufacture a photoelectric conversion element that can exhibit excellent performance.

本発明によれば、変形が少なく優れた性能の光電極を製造可能な光電変換素子用光電極の製造方法を提供することを目的とする。
また、本発明によれば、優れた性能を有する光電変換素子を効率的に製造し得る光電変換素子の製造方法を提供することができる。
According to the present invention, it is an object of the present invention to provide a method for producing a photoelectrode for a photoelectric conversion element, which is capable of producing a photoelectrode having little deformation and excellent performance.
Moreover, according to this invention, the manufacturing method of the photoelectric conversion element which can manufacture the photoelectric conversion element which has the outstanding performance efficiently can be provided.

以下、本発明の実施形態について詳細に説明する。本発明の光電変換素子用光電極の製造方法は、金属酸化物半導体微粒子を含む塗膜を加熱成膜することを要するあらゆる製造方法において適用することができる。特に、本発明の光電変換素子の電極製造方法は、色素増感型太陽電池の光電極を形成する際に好適に用いることができる。 Hereinafter, embodiments of the present invention will be described in detail. INDUSTRIAL APPLICABILITY The method for producing a photoelectrode for a photoelectric conversion element of the present invention can be applied to any production method that requires heating to form a coating film containing metal oxide semiconductor fine particles. In particular, the method for producing an electrode of a photoelectric conversion element of the present invention can be preferably used when forming a photoelectrode of a dye-sensitized solar cell.

(色素増感型太陽電池の概略構成)
まず、本発明の光電変換素子用光電極の製造方法に従って作製されうる光電極を備える光電変換素子の一例としての色素増感型太陽電池の概略構成及び概略動作について説明する。色素増感型太陽電池としては、特に限定されることなく、多孔質半導体層を含む光電極と、触媒層を含む対向電極とが、電解質層を介して、多孔質半導体層側と触媒層側とが対向するように配置されてなる一般的な構造の色素増感型太陽電池が挙げられる。光電極は、多孔質半導体層と光電極側導電性基材を含んでなる。また、対向電極は、触媒層と対向電極側導電性基材とを含んでなる。さらに、光電極側導電性基材及び対向電極側導電性基材は、配線によって接続され、多孔質半導体層中に吸着された色素が光により励起されて電子を放出すると、かかる電子が光電極側から配線を通じて対向電極側へと到達し、更に電解質層を通じて光電極へと戻る電子の流れが生じる。このようにして、色素増感型太陽電池は、光エネルギーを電気エネルギーに変換する。
(Schematic structure of dye-sensitized solar cell)
First, a schematic configuration and a schematic operation of a dye-sensitized solar cell as an example of a photoelectric conversion element including a photoelectrode that can be manufactured according to the method for manufacturing a photoelectrode for a photoelectric conversion element of the present invention will be described. The dye-sensitized solar cell is not particularly limited, and a photoelectrode including a porous semiconductor layer, and a counter electrode including a catalyst layer, a porous semiconductor layer side and a catalyst layer side via an electrolyte layer. An example is a dye-sensitized solar cell having a general structure in which and are arranged so as to face each other. The photoelectrode comprises a porous semiconductor layer and a photoelectrode-side conductive base material. Further, the counter electrode includes a catalyst layer and a counter electrode-side conductive base material. Furthermore, the photoelectrode-side conductive base material and the counter electrode-side conductive base material are connected by wiring, and when the dye adsorbed in the porous semiconductor layer is excited by light to emit electrons, the electrons are emitted from the photoelectrode. A flow of electrons is generated from the side to reach the counter electrode side through the wiring and further returns to the photoelectrode through the electrolyte layer. In this way, the dye-sensitized solar cell converts light energy into electric energy.

<光電極>
上述したように、光電極は、多孔質半導体層及び光電極側導電性基材が積層されてなる積層体である。そして、光電極側導電性基材は、基材及びかかる基材の片面上に配置された透明導電膜を有することが好ましい。基材は、透明樹脂よりなる樹脂フィルム又はガラス板でありうる。中でも、光電極側導電性基材を構成する基材としては、ガラス板よりも屈曲性に富む樹脂フィルムが好適に用いられうる。樹脂フィルムを構成する透明樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、及びシクロオレフィンポリマー(COP)等の合成樹脂が挙げられる。これらの中でも、化学的安定性等の観点から、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)が好適に用いられうる。
<Photoelectrode>
As described above, the photoelectrode is a laminated body in which the porous semiconductor layer and the photoelectrode-side conductive base material are laminated. The photoelectrode-side conductive base material preferably has a base material and a transparent conductive film disposed on one surface of the base material. The substrate may be a resin film made of a transparent resin or a glass plate. Among them, as the base material forming the photoelectrode-side conductive base material, a resin film which is more flexible than a glass plate can be preferably used. Examples of the transparent resin forming the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), Examples thereof include synthetic resins such as polysulfone (PSF), polyether sulfone (PES), polyetherimide (PEI), transparent polyimide (PI), and cycloolefin polymer (COP). Among these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) can be preferably used from the viewpoint of chemical stability and the like.

上述した基材の片面上に配置されうる透明導電膜は、白金、金、銀、銅、アルミニウム、インジウム、チタン等の金属;酸化スズ、酸化亜鉛等の導電性金属酸化物;インジウム−スズ酸化物(ITO)、インジウム−亜鉛酸化物(IZO)等の複合金属酸化物;繊維状炭素ナノ構造体、フラーレン等の炭素材料;及びこれら2種以上の組み合わせ;等からなるものが挙げられる。そして、導電膜は配線に接続されうる。なお、導電膜は、JIS K 7194:1994に従って測定した表面抵抗値が15Ω/sq.以下であることが好ましい。 The transparent conductive film that can be arranged on one side of the above-mentioned substrate is a metal such as platinum, gold, silver, copper, aluminum, indium, or titanium; a conductive metal oxide such as tin oxide or zinc oxide; indium-tin oxide. (ITO), indium-zinc oxide (IZO) and other complex metal oxides; fibrous carbon nanostructures, fullerene and other carbon materials; and combinations of two or more thereof. Then, the conductive film may be connected to the wiring. The conductive film has a surface resistance value of 15 Ω/sq. measured according to JIS K 7194:1994. The following is preferable.

多孔質半導体層は、ナノサイズの細孔が内部に網目状に形成された所謂メソポーラスな構造を有する、多孔質状の半導体層である。多孔質半導体層を形成する際に用いる金属酸化物半導体微粒子の構成材料としては、例えば、チタン酸化物、スズ酸化物、ジルコニウム酸化物、亜鉛酸化物、バナジウム酸化物、ニオブ酸化物、タンタル酸化物、タングステン酸化物等の各種金属酸化物、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム、ニオブ酸カリウム等の各種複合金属酸化物を挙げることができる。これらの材料は単独で用いられてもよく、複数組み合わせて使用されてもよい。中でも、優れた性能の光電極を得て、光電変換効率の高い光電変換素子を製造する観点から、金属酸化物半導体微粒子が、チタン酸化物、亜鉛酸化物、スズ酸化物、及びこれらの複合体のうちの何れかからなることが好ましい。なお、金属酸化物半導体微粒子の一次粒子径の体積平均粒子径D50は、2nm以上80nm以下であることが好ましい。「体積平均粒子径D50」は、レーザー回折式粒度分布測定器で測定した際の体積累積粒度分布曲線において、累積度50%の粒子径である。さらに、多孔質半導体層の厚みは、特に限定されないが、通常、10μm未満である。 The porous semiconductor layer is a porous semiconductor layer having a so-called mesoporous structure in which nano-sized pores are formed in a mesh shape. Examples of the constituent material of the metal oxide semiconductor fine particles used when forming the porous semiconductor layer include titanium oxide, tin oxide, zirconium oxide, zinc oxide, vanadium oxide, niobium oxide, and tantalum oxide. Examples thereof include various metal oxides such as tungsten oxide, and various composite metal oxides such as strontium titanate, calcium titanate, magnesium titanate, barium titanate, and potassium niobate. These materials may be used alone or in combination of two or more. Among them, from the viewpoint of obtaining a photoelectrode having excellent performance and manufacturing a photoelectric conversion element having high photoelectric conversion efficiency, the metal oxide semiconductor fine particles are titanium oxide, zinc oxide, tin oxide, and composites thereof. It is preferable that it consists of any of the above. The volume average particle diameter D50 of the primary particle diameter of the metal oxide semiconductor fine particles is preferably 2 nm or more and 80 nm or less. "Volume average particle size D50" is a particle size with a cumulative degree of 50% in a volume cumulative particle size distribution curve measured by a laser diffraction particle size distribution analyzer. Furthermore, the thickness of the porous semiconductor layer is not particularly limited, but is usually less than 10 μm.

多孔質半導体層に吸着させる色素は、光によって励起されて多孔質半導体層に電子を渡し得る化合物(増感色素)である。かかる増感色素は、特に限定されることなく、金属錯体色素等の、色素増感型太陽電池に一般的に使用されうる色素でありうる(例えば、特開2012−146631号公報参照。)。 The dye that is adsorbed on the porous semiconductor layer is a compound (sensitizing dye) that can be excited by light to transfer electrons to the porous semiconductor layer. The sensitizing dye is not particularly limited, and may be a dye that can be generally used in dye-sensitized solar cells such as a metal complex dye (see, for example, JP 2012-146631 A).

さらに、光電極は、任意で、多孔質半導体層と導電性基材との間に、これらの間の密着性を高めるための下塗り層を有していても良い。かかる下塗り層は、金属酸化物又は金属酸化物前駆体により形成されうる層である。かかる下塗り層は、例えば、特開2012−146631号公報に記載された方途に従って形成することができる。 Furthermore, the photoelectrode may optionally have an undercoat layer between the porous semiconductor layer and the conductive substrate to enhance the adhesion between them. Such an undercoat layer is a layer that can be formed of a metal oxide or a metal oxide precursor. Such an undercoat layer can be formed, for example, according to the method described in JP 2012-146631 A.

<支持体>
光電極は、任意で支持体を備えていても良い。支持体としては、特に限定されることなく、例えば、ガラス、プラスチック、金属、及びセラミックの何れかからなる板状の部材を用いることができる。なお、使用し得るガラス、プラスチック及び金属の具体例としては、例えば、国際公開第2018/181388号に記載された各種ガラス、プラスチック、及び金属等が挙げられる。支持体の厚みは、特に限定されることなく、0.5mm以上10mm以下であり得る。なお、導電性基材に含まれる基材と、支持体とは、同じ材料によりなるものであっても良いし、異なる材料よりなるものであっても良い。導電性基材の基材と支持体とが同じ材料よりなる場合には、導電性基材の基材よりも支持体の方が厚いことが好ましい。
<Support>
The photoelectrode may optionally include a support. The support is not particularly limited, and for example, a plate-shaped member made of glass, plastic, metal, or ceramic can be used. Specific examples of the glass, plastic, and metal that can be used include various glasses, plastics, and metals described in International Publication No. 2018/181388. The thickness of the support is not particularly limited and may be 0.5 mm or more and 10 mm or less. The base material contained in the conductive base material and the support may be made of the same material or different materials. When the base material of the conductive base material and the support are made of the same material, the support is preferably thicker than the base material of the conductive base material.

支持体は、導電性基材の多孔質半導体層を支持する面とは逆側に配置されうる。そして、導電性基材と支持体との間には、任意で、樹脂系粘着剤層が介在し得る。樹脂系粘着剤層としては、例えば、国際公開第2018/181388号に記載された樹脂系粘着剤層を好適に選択することができる。そして、支持体を備える光電極は、支持体により付与される強度及び耐熱性に起因して、光電変換素子の製造工程に供された場合に、優れたハンドリング性及び耐熱性を呈し得る。このため、支持体を備える光電極を用いることで、光電変換素子の製造効率を高めることができる。なお、支持体は、光電変換素子の完成後に、必要に応じて、光電極から剥離されうる。よって、色素増感型太陽電池は、その完成状態では支持体を有していても良いし、有していなくても良い。 The support may be arranged on the opposite side of the surface of the conductive base material supporting the porous semiconductor layer. A resin-based pressure-sensitive adhesive layer may optionally be interposed between the conductive base material and the support. As the resin-based pressure-sensitive adhesive layer, for example, the resin-based pressure-sensitive adhesive layer described in International Publication No. 2018/181388 can be suitably selected. The photoelectrode provided with the support can exhibit excellent handling property and heat resistance when subjected to the manufacturing process of the photoelectric conversion element due to the strength and heat resistance imparted by the support. Therefore, the production efficiency of the photoelectric conversion element can be improved by using the photoelectrode provided with the support. The support can be peeled off from the photoelectrode after the completion of the photoelectric conversion element, if necessary. Therefore, the dye-sensitized solar cell may or may not have a support in its completed state.

<電解質層>
電解質層は、光電極と対向電極とを分離するとともに、電荷移動を効率よく行わせるための層(電荷輸送層)である。電解質層は、通常、支持電解質、酸化還元対(酸化還元反応において可逆的に酸化体および還元体の形で相互に変換しうる一対の化学種)、溶媒等を含有する。
<Electrolyte layer>
The electrolyte layer is a layer (charge transport layer) for separating the photoelectrode and the counter electrode and efficiently performing charge transfer. The electrolyte layer usually contains a supporting electrolyte, a redox couple (a pair of chemical species that can be reversibly converted to each other in the form of an oxidant and a reductant in a redox reaction), a solvent and the like.

<対向電極>
上述したように、対向電極は、触媒層と対向電極側導電性基材とを含んでなる。触媒層は、例えば白金層やカーボン層で形成される。特に、カーボン層は、繊維状炭素ナノ構造体を含みうる。ここで、繊維状炭素ナノ構造体は、特に限定されることなく、例えば、カーボンナノチューブ(CNT)、気相成長炭素繊維などでありうる。これらは、1種単独で、或いは2種以上が混合して配合されうる。中でも、繊維状炭素ナノ構造体は、CNTを含む繊維状炭素ナノ構造体であることが好ましい。さらに、繊維状炭素ナノ構造体にナノサイズの微小な白金等を常法に従って担持しても良い。触媒効果を向上させることができるからである。
<Counter electrode>
As described above, the counter electrode includes the catalyst layer and the counter electrode side conductive base material. The catalyst layer is formed of, for example, a platinum layer or a carbon layer. In particular, the carbon layer can include fibrous carbon nanostructures. Here, the fibrous carbon nanostructure is not particularly limited, and may be, for example, carbon nanotube (CNT), vapor grown carbon fiber, or the like. These may be blended alone or in combination of two or more. Among them, the fibrous carbon nanostructure is preferably a fibrous carbon nanostructure containing CNT. Furthermore, nano-sized fine platinum or the like may be supported on the fibrous carbon nanostructure according to a conventional method. This is because the catalytic effect can be improved.

対向電極側導電性基材は、特に限定されることなく、例えば、上述した光電極側導電性基材と同様の構成を有し得る。なお、対向電極基材は、非透光性の材料で形成されてもよい。また、対向電極も、光電極と同様に、任意で支持体を備えていても良い。 The counter electrode side conductive base material is not particularly limited, and may have the same configuration as the above-mentioned photoelectrode side conductive base material, for example. The counter electrode base material may be formed of a non-translucent material. Also, the counter electrode may optionally include a support, like the photoelectrode.

(光電変換素子用光電極の製造方法)
上記のような概略構成を有し得る色素増感型太陽電池の光電極の製造時に用いられうる本発明の光電変換素子用光電極の製造方法(以下、「本発明の光電極製造方法」又は「光電極製造方法」と称することがある)について、以下に詳述する。
本発明の光電極製造方法は、導電性基材の片面上に金属酸化物半導体微粒子を含む塗膜が積層されてなる積層体に対して、塗膜側から紫外線発光ダイオードを光源として用いて光照射して、塗膜を加熱して成膜させる工程を含むことを特徴とする。紫外線発光ダイオードを光源として用いて塗膜を加熱成膜する工程を実施することで、光電極を構成する光電極側導電性基材(以下、本発明の光電極製造方法に関する説明においては、単に「導電性基材」とも称する)の熱変形(例えば、導電性基材の反り等)を良好に抑制することができる。これにより、優れた性能を有する光電変換素子を効率的に製造することができる。その理由は、以下の通りであると推察される。
(Method for producing photoelectrode for photoelectric conversion element)
A method for producing a photoelectrode for a photoelectric conversion element of the present invention that can be used during the production of a photoelectrode for a dye-sensitized solar cell that can have the above-described schematic structure (hereinafter, "photoelectrode production method of the present invention" or The “photoelectrode manufacturing method” may be referred to below).
The photoelectrode manufacturing method of the present invention is a method for producing a light-emitting layer using a UV light-emitting diode as a light source from the side of a coating film for a laminate in which a coating film containing metal oxide semiconductor fine particles is laminated on one surface of a conductive substrate. It is characterized by including a step of irradiating and heating the coating film to form a film. By carrying out the step of heating the coating film using the ultraviolet light emitting diode as a light source, the photoelectrode-side conductive substrate constituting the photoelectrode (hereinafter, in the description of the photoelectrode manufacturing method of the present invention, simply Thermal deformation (also referred to as “conductive substrate”) (for example, warpage of the conductive substrate) can be favorably suppressed. Thereby, a photoelectric conversion element having excellent performance can be efficiently manufactured. The reason is presumed to be as follows.

紫外線発光ダイオードは、所定の波長領域において、半値全幅(Full Width at Half Maximum, FWHM)が狭くシャープな光を照射可能な光源である。本発明者らの検討により、金属酸化物半導体微粒子の吸収率が高い光の波長領域は、紫外線発光ダイオードの照射波長領域と重複することが明らかとなった。概して、加熱成膜工程にて塗膜に対して照射された光のうち、金属酸化物半導体微粒子の加熱に寄与した光成分はそこで吸収されて、塗膜の温度を上昇させて加熱成膜を促進する。このようにして塗膜の温度が上昇することに応じて、対応する導電性基材の部分の温度も上昇する。さらに、加熱成膜に寄与しなかった光成分は、導電性基材に到達して導電性基材の温度を上昇させうる。このような種々の要因により、加熱成膜工程にて導電性基材の温度が高まることで、導電性基材の熱変形が発生し得る。そして、導電性基材に熱変形が生じると、得られた光電極を備える光電変換素子にて、基材抵抗が増加する虞がある。ここで、上記のように、紫外線発光ダイオードは選択性の高い光を照射可能な光源である。よって、加熱成膜に寄与するために必要な波長範囲の光を高選択的に照射可能であり、結果的に、導電性基材に熱変形が発生することを効果的に抑制することができるとともに、塗膜を十分に加熱成膜させて優れた性能の光電極を形成することができると推察される。従って、本発明の光電極製造方法によれば、耐熱性が比較的低い基材を用いた場合であっても、優れた性能の光電極を提供することが可能になる。よって、例えば、ポリエチレンナフタレート(PEN)よりも若干耐熱性に劣るポリエチレンテレフタレート(PET)を含む材料を、光電極側導電性基材として採用した場合であっても、優れた性能の光電極を提供することが可能になる。これにより、優れた性能を有する光電変換素子を効率的に製造することが可能になる。 The ultraviolet light emitting diode is a light source that can emit sharp light with a narrow full width at half maximum (FWHM) in a predetermined wavelength region. The studies made by the present inventors have revealed that the wavelength region of light having high absorptance of the metal oxide semiconductor fine particles overlaps with the irradiation wavelength region of the ultraviolet light emitting diode. In general, of the light radiated to the coating film in the heating film formation step, the light component that contributed to the heating of the metal oxide semiconductor fine particles is absorbed there, and the temperature of the coating film is increased to perform the heating film formation. Facilitate. In this way, as the temperature of the coating film rises, the temperature of the corresponding conductive substrate portion also rises. Furthermore, the light component that has not contributed to the heating film formation can reach the conductive base material and raise the temperature of the conductive base material. Due to such various factors, the temperature of the conductive base material is increased in the heating film forming step, so that the conductive base material may be thermally deformed. When the conductive base material is thermally deformed, the base material resistance may increase in the photoelectric conversion element including the obtained photoelectrode. Here, as described above, the ultraviolet light emitting diode is a light source that can emit light with high selectivity. Therefore, it is possible to highly selectively irradiate the light in the wavelength range necessary for contributing to the heating film formation, and as a result, it is possible to effectively suppress the thermal deformation of the conductive base material. At the same time, it is presumed that the coating film can be sufficiently heated to form a photoelectrode having excellent performance. Therefore, according to the photoelectrode manufacturing method of the present invention, it is possible to provide a photoelectrode having excellent performance even when a substrate having relatively low heat resistance is used. Therefore, for example, even when a material containing polyethylene terephthalate (PET), which is slightly inferior in heat resistance to polyethylene naphthalate (PEN), is used as the photoelectrode-side conductive base material, a photoelectrode having excellent performance is obtained. It will be possible to provide. This makes it possible to efficiently manufacture a photoelectric conversion element having excellent performance.

さらに、導電性基材が表面に透明導電膜を有する場合において、本発明の光電極製造方法における導電性基材の熱変形抑制効果が一層顕著になり得る。本発明者らの検討により、透明導電膜が基材と塗膜との間に介在する場合に、透明導電膜に対して、直接、又は、塗膜を介して入射した光が、透明導電膜の温度を上昇させ、これにより、基材の温度が上昇することが明らかとなった。本発明者らの更なる検討の結果、一般的にITO等により構成される透明導電膜が、直進性が高く且つエネルギーも高い短波長側の光成分、及び、長波長側(例えば、赤外領域)の光成分を吸収し易い傾向があることが明らかとなった。このような観点からも、本発明の光電極製造方法にて、表面に透明導電膜を有する導電性基材を用いる場合、光源として、紫外線発光ダイオードを用いることで、導電性基材の熱変形を一層良好に抑制することができる。 Furthermore, when the conductive base material has a transparent conductive film on the surface, the effect of suppressing thermal deformation of the conductive base material in the photoelectrode manufacturing method of the present invention can be more remarkable. According to the study by the present inventors, when the transparent conductive film is interposed between the base material and the coating film, the light incident on the transparent conductive film directly or through the coating film is transparent. It was revealed that the temperature of the substrate was increased, which caused an increase in the temperature of the substrate. As a result of further study by the present inventors, a transparent conductive film that is generally made of ITO or the like shows that a short-wavelength side light component having high straightness and high energy and a long-wavelength side (for example, infrared rays). It has become clear that there is a tendency that the light component of the area) is easily absorbed. From this point of view, in the photoelectrode manufacturing method of the present invention, when a conductive base material having a transparent conductive film on the surface is used, by using an ultraviolet light emitting diode as a light source, thermal deformation of the conductive base material is achieved. Can be suppressed even better.

また、本発明の光電極製造方法は、上記加熱成膜工程を必須の工程とし、更に、上記加熱成膜工程よりも前段に、導電性基材を支持体上に配置する工程(以下、「対支持体配置工程」とも称する)を含んでも良い。また、導電性基材上に金属酸化物半導体微粒子及び溶媒を含む分散液を塗布し塗膜を形成する塗膜形成工程を含んでも良い。以下、各工程について説明する。なお、対支持体配置工程及び塗膜形成工程とは、両方の工程が加熱成膜工程よりも前段である限りにおいて特に限定されることなく、何れの工程を先に実施しても良い。 Further, in the photoelectrode manufacturing method of the present invention, the heating film forming step is an essential step, and further, a step of disposing a conductive substrate on a support before the heating film forming step (hereinafter, referred to as " (Also referred to as "pair of support arranging step"). Further, a coating film forming step of coating a dispersion liquid containing metal oxide semiconductor fine particles and a solvent on a conductive substrate to form a coating film may be included. Hereinafter, each step will be described. The step of disposing the support and the step of forming the coating film are not particularly limited as long as both steps are prior to the heating film forming step, and any step may be performed first.

<対支持体配置工程>
任意の対支持体配置工程では、導電性基材を支持体上に配置することができる。導電性基材としては、<光電極>の項目で上述した光電極側導電性基材と同じものを好適に用いることができる。導電性基材を支持体上に配置するにあたり、例えば、樹脂系粘着剤層を導電性基材と支持体との間に介在させて、かかる樹脂系粘着剤層を介して、導電性基材と支持体とを積層することができる。樹脂系粘着剤層としては、例えば、国際公開第2018/181388号に記載された樹脂系粘着剤層を好適に用いることができる。なお、支持体は、必要に応じて、光電変換素子を製造した後に、光電極から剥離しても良い。このため、樹脂系粘着剤は、加熱及び冷却等による温度変化や、紫外線等の照射により粘着力が低下するという性状を呈し得ることが好ましい。
<Step of disposing the support>
In the optional step of disposing the support, the conductive base material can be disposed on the support. As the conductive base material, the same conductive base material as the photoelectrode-side conductive base material described in the section <Photoelectrode> can be preferably used. In disposing the conductive base material on the support, for example, a resin-based pressure-sensitive adhesive layer is interposed between the conductive base material and the support, and the conductive base material is interposed via the resin-based pressure-sensitive adhesive layer. And a support can be laminated. As the resin-based pressure-sensitive adhesive layer, for example, the resin-based pressure-sensitive adhesive layer described in International Publication No. 2018/181388 can be preferably used. The support may be peeled off from the photoelectrode after the photoelectric conversion element is manufactured, if necessary. For this reason, it is preferable that the resin-based pressure-sensitive adhesive can exhibit the property that the pressure-sensitive adhesive force is reduced by temperature change due to heating and cooling, or irradiation with ultraviolet rays.

<塗膜形成工程>
塗膜形成工程では、金属酸化物半導体微粒子のペーストを導電性基材上に塗布して塗膜を形成する。金属酸化物半導体微粒子としては、<光電極>の項目で上述したものを好適に用いることができる。塗布方法としては、塗膜を形成可能な限りにおいて特に限定されることなく、一般的な塗布方法を採用することができる。中でも、分散剤等の添加剤及び結着剤等の絶縁材料を非含有であるペーストを用いた、バインダーフリーコーティング法を適用することが好ましい。所定の塗布方法に従ってペーストを塗布することによって得られた膜は、常温又は加熱条件下で乾燥されて、塗膜となる。
<Coating film forming step>
In the coating film forming step, a paste of metal oxide semiconductor fine particles is applied onto a conductive base material to form a coating film. As the metal oxide semiconductor fine particles, those described above in the section <Photoelectrode> can be preferably used. The coating method is not particularly limited as long as a coating film can be formed, and a general coating method can be adopted. Above all, it is preferable to apply a binder-free coating method using a paste containing no additive such as a dispersant and an insulating material such as a binder. The film obtained by applying the paste according to a predetermined application method is dried at room temperature or under heating conditions to form a coating film.

<加熱成膜工程>
加熱成膜工程では、導電性基材上に配置された金属酸化物半導体微粒子を含む塗膜に対して、紫外線発光ダイオードを光源として用いて光照射して、塗膜を加熱して成膜させる。紫外線発光ダイオードを光源として光照射するにあたり、片面に塗膜を有する導電性基材に対して、塗膜側の表面から光を照射する。加熱成膜工程では、その他のエネルギー源から供給されるエネルギーによらず、紫外線発光ダイオードからの照射光の作用により塗膜を加熱して成膜させる。これにより、導電性基材に変形が生じることを効果的に抑制しつつ、塗膜を十分に加熱することができる。
<Heating film forming step>
In the heating film forming step, a coating film containing metal oxide semiconductor fine particles arranged on a conductive substrate is irradiated with light using an ultraviolet light emitting diode as a light source, and the coating film is heated to form a film. .. When irradiating light with an ultraviolet light emitting diode as a light source, light is radiated from the surface on the coating film side to a conductive substrate having a coating film on one surface. In the heating film formation step, the coating film is heated to form a film by the action of the irradiation light from the ultraviolet light emitting diode regardless of the energy supplied from other energy sources. Thereby, the coating film can be sufficiently heated while effectively suppressing the deformation of the conductive base material.

紫外線発光ダイオードにより照射される光のピーク波長は、365nm、385nm、395nm、又は405nmであることが好ましい。尚、紫外線発光ダイオードにより照射される光のピークは、分光スペクトルを計測することで明らかとなる、最高輝度を呈する波長を意味する。中でも、紫外線発光ダイオードにより照射される光のピーク波長が、365nm、385nm、又は395nm、であることが好ましい。ピーク波長が上記何れかの波長である光を照射する紫外線発光ダイオードによれば、樹脂フィルムの変形を一層良好に抑制することができる。さらに、紫外線発光ダイオードのピーク波長を適切に選択することで、加熱成膜工程において、塗膜を効率的に加熱して成膜を促進することができると考えられる。 The peak wavelength of the light emitted by the ultraviolet light emitting diode is preferably 365 nm, 385 nm, 395 nm, or 405 nm. The peak of the light emitted by the ultraviolet light emitting diode means the wavelength exhibiting the highest brightness, which becomes clear by measuring the spectrum. Above all, it is preferable that the peak wavelength of the light emitted by the ultraviolet light emitting diode is 365 nm, 385 nm, or 395 nm. According to the ultraviolet light emitting diode that irradiates light having a peak wavelength of any one of the above wavelengths, the deformation of the resin film can be suppressed even better. Further, it is considered that by appropriately selecting the peak wavelength of the ultraviolet light emitting diode, the coating film can be efficiently heated and the film formation can be promoted in the heating film formation step.

より詳細には、好適なピーク波長は、導電性基材を構成する基材の材質によって異なり得る。例えば、基材である樹脂フィルムがポリエチレンテレフタレート(PET)よりなるフィルムである場合には、照射される光のピーク波長が、365nm、385nm、又は395nmであることが好ましい。また、例えば、基材である樹脂フィルムがポリエチレンナフタレート(PEN)よりなるフィルムである場合には、照射される光のピーク波長が、395nmであることが好ましい。 More specifically, the suitable peak wavelength may differ depending on the material of the base material forming the conductive base material. For example, when the resin film as the base material is a film made of polyethylene terephthalate (PET), it is preferable that the peak wavelength of the irradiated light is 365 nm, 385 nm, or 395 nm. Further, for example, when the resin film as the base material is a film made of polyethylene naphthalate (PEN), it is preferable that the peak wavelength of the irradiated light is 395 nm.

さらに、導電性基材がITO等よりなる透明導電膜を含む場合において、紫外線発光ダイオードにより、上記した好適なピーク波長を満たす光を照射すれば、金属酸化物半導体微粒子の吸収率に比べて、透明導電膜の吸収率が相対的に低い波長域付近で、分布のシャープな光を照射することとなる。その結果、非常に効率的に塗膜の加熱成膜を進行させることができるとともに、非常に効果的に導電性基材の熱変形を抑制することができる。 Furthermore, in the case where the conductive base material includes a transparent conductive film made of ITO or the like, if the ultraviolet light emitting diode is irradiated with light satisfying the above-mentioned preferable peak wavelength, the absorption rate of the metal oxide semiconductor fine particles is higher than In the vicinity of the wavelength range in which the absorptivity of the transparent conductive film is relatively low, light with a sharp distribution will be irradiated. As a result, the heating film formation of the coating film can be progressed very efficiently, and the thermal deformation of the conductive base material can be suppressed very effectively.

なお、多孔質半導体層を形成するために用いる金属酸化物半導体微粒子の体積平均粒子径D50が小さい程、紫外線領域付近の光成分(即ち、短波長側の光成分)を吸収し易いため、本発明の光電極製造方法における基材変形抑制効果は、用いる金属酸化物半導体微粒子の体積平均粒子径D50が小さい(例えば80nm以下、特に50nm以下、更に特に30nm以下)場合に、一層顕著に現れ得る。 The smaller the volume average particle diameter D50 of the metal oxide semiconductor fine particles used to form the porous semiconductor layer, the easier it is to absorb the light component near the ultraviolet region (that is, the light component on the short wavelength side). The substrate deformation suppressing effect in the photoelectrode manufacturing method of the present invention can be more remarkably exhibited when the volume average particle diameter D50 of the metal oxide semiconductor fine particles used is small (for example, 80 nm or less, particularly 50 nm or less, and more particularly 30 nm or less). ..

さらに、紫外線発光ダイオードにより照射される光の波長領域が300nm以上の範囲にあることが好ましく、350nm以上の範囲にあることがより好ましく、500nm以下の範囲にあることが好ましく、450nm以下の範囲にあることがより好ましい。波長領域が上記範囲内にある光は、樹脂フィルムの変形を一層良好に抑制することができる。さらに、紫外線発光ダイオードにより照射される光の波長領域を上記範囲内とすれば、塗膜を一層効率的に加熱することができると考えられる。 Further, the wavelength range of the light emitted by the ultraviolet light emitting diode is preferably in the range of 300 nm or more, more preferably in the range of 350 nm or more, preferably in the range of 500 nm or less, and in the range of 450 nm or less. More preferably. Light having a wavelength range within the above range can more effectively suppress the deformation of the resin film. Further, it is considered that the coating film can be heated more efficiently by setting the wavelength range of the light emitted by the ultraviolet light emitting diode within the above range.

ここで、加熱成膜工程における積算光量(総露光量)は、10J/cm以上3000J/cm以下であり得る。かかる積算光量を達成するために好適に使用可能な光源のピーク強度は、例えば、10W/cm2以上30W/cm2であり得る。 Here, the integrated light quantity in the heating film formation process (total exposure) may be 10J / cm 2 or more 3000 J / cm 2 or less. The peak intensity of a light source that can be suitably used to achieve such an integrated light amount can be, for example, 10 W/cm 2 or more and 30 W/cm 2 .

更にまた、加熱成膜工程において、塗膜及び導電性基材の積層体を、ステージ上に配置することが好ましい。例えば、吸着ステージ等のステージにより導電性基材を吸着することにより、吸着ステージ上に積層体を配置することできる。積層体をステージ上に配置することで、積層体の熱をステージに伝導させることで、積層体の温度上昇を抑制することができる。 Furthermore, in the heating film forming step, it is preferable to arrange the laminated body of the coating film and the conductive base material on the stage. For example, the laminated body can be arranged on the adsorption stage by adsorbing the conductive base material by a stage such as an adsorption stage. By disposing the laminated body on the stage, the heat of the laminated body is conducted to the stage, whereby the temperature rise of the laminated body can be suppressed.

そして、かかる加熱成膜工程を経て得られた多孔質状の半導体層は、既知の方法に従って、色素を吸着させることで、上述したような色素増感型太陽電池の光電極となりうる。そして、得られた光電極は、以下に説明するような光電変換素子の製造方法に供され、光電変換素子としての色素増感型太陽電池の一つの構成部となり得る。 Then, the porous semiconductor layer obtained through the heating film forming step can be used as a photoelectrode of the dye-sensitized solar cell as described above by adsorbing a dye according to a known method. Then, the obtained photoelectrode is subjected to a method for manufacturing a photoelectric conversion element as described below, and can be a constituent part of a dye-sensitized solar cell as a photoelectric conversion element.

なお、本発明の光電極製造方法は、上記工程に加えて、(色素増感型太陽電池の概略構成)<光電極>の項目で説明した下塗り層を導電性基材上に形成する工程を含んでも良い。かかる工程は、<塗膜形成工程>よりも前に実施される限りにおいて特に限定されることなく、任意のタイミングで実施することができる。 In addition to the above steps, the method for producing a photoelectrode of the present invention includes a step of forming the undercoat layer on the conductive base material described in the section (schematic configuration of dye-sensitized solar cell) <photoelectrode>. May be included. The step is not particularly limited as long as it is performed before the <coating film forming step>, and can be performed at any timing.

(光電変換素子の製造方法)
本発明の光電変換素子の製造方法は、光電極、電解質層、及び対向電極をこの順に積層してなる光電変換素子の製造方法であって、上述した本発明の光電極製造方法により光電極を製造する工程を含むことを特徴とする。本発明の光電変換素子の製造方法によれば、基板の変形の無い又は少ない光電極であって、光電変換素子に優れた光電変換性能を発揮させ得る光電極を備える、光電変換素子を製造することが可能である。このような本発明の光電変換素子の製造方法によれば、効率的に光電変換性能に優れる光電変換素子を製造することができる。また、かかる製造方法に従って製造された光電変換素子は、光電変換能に優れる。なお、電解質層及び対向電極は、定法に従って製造することができ、これらの各構成部を定法に従って組み合わせて、光電変換素子を製造することができる。更に、光電極が支持体を有する場合には、上記各構成部を組み合わせた後に、必要に応じて、光電極から支持体を剥離する剥離工程を実施しても良い。
(Method for manufacturing photoelectric conversion element)
The method for manufacturing a photoelectric conversion element of the present invention is a method for manufacturing a photoelectric conversion element in which a photoelectrode, an electrolyte layer, and a counter electrode are laminated in this order, and the photoelectrode is formed by the above-described photoelectrode manufacturing method of the present invention. It is characterized by including a manufacturing step. According to the method for producing a photoelectric conversion element of the present invention, a photoelectric electrode having no or little deformation of the substrate, which includes a photoelectrode capable of exhibiting excellent photoelectric conversion performance of the photoelectric conversion element, is produced. It is possible. According to such a method for manufacturing a photoelectric conversion element of the present invention, it is possible to efficiently manufacture a photoelectric conversion element having excellent photoelectric conversion performance. Moreover, the photoelectric conversion element manufactured according to such a manufacturing method is excellent in photoelectric conversion capability. The electrolyte layer and the counter electrode can be manufactured according to a conventional method, and these constituent parts can be combined according to a conventional method to manufacture a photoelectric conversion element. Furthermore, in the case where the photoelectrode has a support, a peeling step of peeling the support from the photoelectrode may be carried out, if necessary, after combining the above-mentioned constituent parts.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下において、「%」は、特に断らない限り質量基準である。実施例、比較例において、導電性基材の変形、光電変換素子の性能、及び基材抵抗は、それぞれ以下のようにして評価した。 Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples. In the following, “%” is based on mass unless otherwise specified. In the examples and comparative examples, the deformation of the conductive base material, the performance of the photoelectric conversion element, and the base material resistance were evaluated as follows.

<導電性基材の変形>
実施例、比較例における、<<塗膜形成工程>>から<<加熱成膜工程>>までの操作と同様の操作を行って得た、片面に多孔質半導体層を有してなる導電性基材(6cm×8cm)を放冷したものを測定試料とした。測定試料を、反りが上側にくるように平板上に載置し、中央における平板と測定試料との間の距離を測定した。測定した距離を用いて、以下の基準に従って、導電性基材の変形(反り量)の程度を評価した。
A:5mm未満
B:5mm以上10mm未満
C:10mm以上
<Deformation of conductive base material>
Conductivity having a porous semiconductor layer on one surface, obtained by performing the same operation as the operation from <<<Coating film forming step>> to <<<Heating film forming step>> in Examples and Comparative Examples. A substrate (6 cm×8 cm) that was allowed to cool was used as a measurement sample. The measurement sample was placed on the flat plate so that the warp was on the upper side, and the distance between the flat plate and the measurement sample in the center was measured. Using the measured distance, the degree of deformation (warpage amount) of the conductive base material was evaluated according to the following criteria.
A: less than 5 mm B: 5 mm or more and less than 10 mm C: 10 mm or more

<光電変換素子の性能>
光源として、150Wキセノンランプ光源にAM1.5Gフィルタを装着した擬似太陽光照射装置(PEC−L11型、ペクセル・テクノロジーズ社製)を用いた。光量は、1sun(AM1.5G、100mW/cm2(JIS C8912のクラスA))に調整した。作製した色素増感型太陽電池をソースメータ(2400型ソースメータ、Keithley社製)に接続し、以下の電流電圧特性の測定を行なった。
1sunの光照射下、バイアス電圧を0Vから0.8Vまで0.01V単位で変化させながら出力電流を測定した。出力電流の測定は、各電圧ステップにおいて、電圧を変化させた後、0.05秒後から0.15秒後までの値を積算することで行った。バイアス電圧を、逆方向に0.8Vから0Vまで変化させる測定も行い、順方向と逆方向の測定の平均値を光電流とした。
上記の電流電圧特性の測定結果より、短絡電流密度Jsc(mA/cm2)を算出した。そして、算出した短絡電流密度を、比較例1で得られた光電変換素子の値を基準(100%)として、以下の閾値に従って光電変換素子の性能を評価した。
A:110%≦Jsc(比較例1に比べて10%以上増加)
B:90%<Jsc<110%(比較例1と同等)
C:Jsc≦90%(比較例1よりも10%以上低い)
D:性能測定不能
<Performance of photoelectric conversion element>
As a light source, a pseudo-sunlight irradiation device (PEC-L11 type, manufactured by Pexel Technologies, Inc.) in which an AM1.5G filter was mounted on a 150 W xenon lamp light source was used. The light amount was adjusted to 1 sun (AM1.5G, 100 mW/cm 2 (JIS C8912 class A)). The produced dye-sensitized solar cell was connected to a source meter (2400 type source meter, manufactured by Keithley), and the following current-voltage characteristics were measured.
The output current was measured under light irradiation of 1 sun while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V. The output current was measured at each voltage step by changing the voltage and then integrating the values from 0.05 seconds to 0.15 seconds. The bias voltage was also changed from 0.8 V to 0 V in the reverse direction, and the average value of the forward and reverse measurements was used as the photocurrent.
The short-circuit current density Jsc (mA/cm 2 ) was calculated from the above measurement result of the current-voltage characteristics. Then, with the calculated short-circuit current density as the reference (100%) of the value of the photoelectric conversion element obtained in Comparative Example 1, the performance of the photoelectric conversion element was evaluated according to the following threshold values.
A: 110%≦Jsc (increased by 10% or more compared to Comparative Example 1)
B: 90%<Jsc<110% (equivalent to Comparative Example 1)
C: Jsc≦90% (10% or more lower than Comparative Example 1)
D: Performance cannot be measured

<基材抵抗>
<<塗膜形成工程>>を実施することなく、光電極側導電性基材に対して、各実施例、比較例と同様の<<加熱成膜工程>>を行って得た、加熱成膜工程に曝した導電性基材を測定試料とした。測定装置としては、低抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)−GP MCP−T610」)を使用し、JIS R1637:1998に準拠した方法で以下のように測定した。すなわち、四探針法を用いて、温度23±2℃、湿度50±5%RHの環境で、導電性基材の片面に形成された透明導電膜の表面抵抗率Rs(基材抵抗)を測定した。比較例1で得られた基材抵抗の値を基準(100%)として、以下の閾値に従って、他の例にて測定した基材抵抗の値Rsを評価した。なお、Rs≦90%となる例は無かった。
A:90%<Rs<110%(基材抵抗の増加無、比較例1と同等)
B:110%≦Rs(基材抵抗の増加有、比較例1に比べて10%以上増加)
<Base material resistance>
A heat treatment was performed by performing the same <<heating film formation step>> as in each of the examples and comparative examples on the photoelectrode-side conductive substrate without performing the <<coating film formation step>>. The conductive substrate exposed to the film process was used as a measurement sample. As a measuring device, a low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "Loresta (registered trademark)-GP MCP-T610") is used, and the measurement is performed as follows according to JIS R1637:1998. did. That is, using the four-point probe method, the surface resistivity Rs (base material resistance) of the transparent conductive film formed on one surface of the conductive base material is measured in an environment of a temperature of 23±2° C. and a humidity of 50±5% RH. It was measured. Using the value of the base material resistance obtained in Comparative Example 1 as a reference (100%), the value Rs of the base material resistance measured in other examples was evaluated according to the following threshold values. Note that there was no case where Rs≦90%.
A: 90%<Rs<110% (no increase in substrate resistance, equivalent to Comparative Example 1)
B: 110%≦Rs (increased base material resistance, increased by 10% or more compared to Comparative Example 1)

(実施例1)
<準備>
−色素溶液の調製
ルテニウム錯体色素(N719, ソラロニクス社製)0.0713gを200mLのメスフラスコに入れた。これをエタノール50mL、tert−ブタノール50mL及びアセトニトリル100mLからなる混合溶媒に溶かし、全量を200mLとすることで、0.3mMの色素溶液を調製した。
(Example 1)
<Preparation>
-Preparation of dye solution 0.0713 g of a ruthenium complex dye (N719, manufactured by Solaronics) was placed in a 200 mL volumetric flask. This was dissolved in a mixed solvent consisting of 50 mL of ethanol, 50 mL of tert-butanol and 100 mL of acetonitrile, and the total amount was adjusted to 200 mL to prepare a 0.3 mM dye solution.

<光電極の作製>
<<塗膜形成工程>>
光電極側導電性基材として、透明導電膜であるインジウム−スズ酸化物(ITO)被膜を片面に有するポリエチレンナフタレートフィルム(ITO−PENフィルム、フィルム厚み:125μm、ITO厚み:300nm、シート抵抗:Ω/sq.)を6cm×8cmに切り出したものを用いた。かかる光電極側導電性基材を平滑なガラス台の上に真空ポンプを使って固定し、透明導電膜(ITO被膜)上に、ベーカー式アプリケータを用いて、ポリマー成分を含まないバインダーフリー酸化チタンペースト(PECC−C01−06、ペクセル・テクノロジーズ社製)を塗布厚みが25μmとなるように塗布した。ペーストに含まれる金属酸化物半導体微粒子は体積平均粒子径D50が20nmであるTiO微粒子であった。ペーストを常温で乾燥させて塗膜を得た。なお、光電極側導電性基材は、波長500nmにおける光の透過率が10%以上であった。
<<加熱成膜工程>>
上記塗膜形成工程で得た、金属酸化物半導体微粒子としてのTiO微粒子を含む塗膜に対して、ピーク波長405nm、照射波長範囲390nm以上420nm以下である紫外線発光ダイオード(UV−LED)を光源として用いて加熱成膜工程を実施した。また、かかる光源を備える照射装置は、上記光源が固定されており、かかる光源の下に照射対象物(ワーク)を搬送するための搬送装置が配置されてなる構成を有する装置であった。かかる照射装置を用いて、搬送装置により所定の搬送速度で所定の搬送距離(ストローク長)だけ移動させつつ光照射する、という光照射処理を複数回繰り返した。光照射の条件は、表1に示す通りであった。かかる条件に従う加熱成膜工程により、塗膜を加熱して、多孔質半導体層を得た。
片面に多孔質半導体層を有してなる導電性基材を放冷した後、1.5cm×2.0cmのサイズに切り出し、切片を得た。さらに、この切片を、短辺(1.5cmの辺)の一方から2mm内側より、直径6mmの円となるように成形して円形切片を得た。表面粗さ測定装置(SURFCOM 130A、東京精密社製)にて測定した酸化チタンを含有する多孔質半導体層の厚みは、5μmであった。
<<色素吸着工程>>
上記加熱成膜工程で得られた円形切片を、上記のように調製した0.3mMのN719色素液に浸漬した。このとき、充分な色素吸着を行うため、色素溶液は、電極一枚当たり、2mL以上を目安とした。色素溶液を40℃に保ちながら、色素を吸着させた。3時間後、シャーレから色素吸着済み円形切片を取り出し、アセトニトリル溶液にて洗浄して乾燥させ光電極を得た。
<Production of photoelectrode>
<<Coating film formation step>>
A polyethylene naphthalate film (ITO-PEN film, film thickness: 125 μm, ITO thickness: 300 nm, sheet resistance: having a transparent conductive film of an indium-tin oxide (ITO) film on one side as a photoelectrode-side conductive substrate. Ω/sq.) cut into 6 cm×8 cm was used. The photoelectrode-side conductive substrate is fixed on a smooth glass table by using a vacuum pump, and a transparent conductive film (ITO film) is coated with a Baker type applicator using a binder-free oxidant containing no polymer component. Titanium paste (PECC-C01-06, manufactured by Pexel Technologies, Inc.) was applied so that the application thickness would be 25 μm. The metal oxide semiconductor fine particles contained in the paste were TiO 2 fine particles having a volume average particle diameter D50 of 20 nm. The paste was dried at room temperature to obtain a coating film. The photoelectrode-side conductive substrate had a light transmittance of 10% or more at a wavelength of 500 nm.
<< Heat-deposition process >>
An ultraviolet light emitting diode (UV-LED) having a peak wavelength of 405 nm and an irradiation wavelength range of 390 nm or more and 420 nm or less is used as a light source for the coating film containing the TiO 2 fine particles as the metal oxide semiconductor fine particles obtained in the coating film forming step. As a result, a heating film forming process was performed. Further, an irradiation device provided with such a light source has a configuration in which the light source is fixed and a carrying device for carrying an irradiation object (workpiece) is arranged under the light source. Using the irradiation device, the light irradiation process of irradiating the light while moving the transfer device at the predetermined transfer speed by the predetermined transfer distance (stroke length) was repeated a plurality of times. The conditions of light irradiation were as shown in Table 1. The coating film was heated by the heating film-forming step according to such conditions to obtain a porous semiconductor layer.
The conductive substrate having a porous semiconductor layer on one surface was left to cool, and then cut into a size of 1.5 cm×2.0 cm to obtain a piece. Further, this piece was molded into a circle having a diameter of 6 mm from the inner side of 2 mm from one of the short sides (side of 1.5 cm) to obtain a circular piece. The thickness of the porous semiconductor layer containing titanium oxide measured by a surface roughness measuring device (SURFCOM 130A, manufactured by Tokyo Seimitsu Co., Ltd.) was 5 μm.
<<Dye adsorption process>>
The circular slice obtained in the heating film forming step was immersed in the 0.3 mM N719 dye solution prepared as described above. At this time, in order to perform sufficient dye adsorption, the dye solution was set to 2 mL or more per electrode as a standard. The dye was adsorbed while keeping the dye solution at 40°C. After 3 hours, the dye-adsorbed circular slice was taken out from the petri dish, washed with an acetonitrile solution, and dried to obtain a photoelectrode.

<電解液の調製>
ヨウ素(0.04M)、ヨウ化リチウム(0.4M)、ヨウ化テトラブチルアンモニウム(0.4M)、及びn−メチルベンゾイミダゾール(0.3M)を含むアセトニトリル溶液を調製し、これを電解液とした。
<Preparation of electrolyte>
An acetonitrile solution containing iodine (0.04M), lithium iodide (0.4M), tetrabutylammonium iodide (0.4M), and n-methylbenzimidazole (0.3M) was prepared and used as an electrolytic solution. And

<対向電極の作製>
30mLのガラス容器に、水5g、エタノール1g、及び硫酸処理SGCNT(国際公開第2006/011655号に記載のスーパーグロース法に従って得たCNT)0.0025gを加えた。このガラス容器の内容物に対して、バス型超音波洗浄機(BRANSON社製、5510J−MT(42kHz、180W))を用いて、2時間分散処理を行い、SGCNTの水分散液を得た。次に、対向電極側導電性基材としての、インジウム−スズ酸化物(ITO)をスパッタ処理したポリエチレンナフタレートフィルム(ITO−PENフィルム、フィルム厚み:200μm、ITO厚み:200nm、シート抵抗:15Ω/sq.)のITO面に、低圧水銀灯を用いて、照射距離3cmで5分間UV/オゾン処理を行った。その後、UV/オゾン処理したITO面上に、前記水分散液を、バーコーター(テスター産業社製、SA−203、No.10)を用いて、塗布厚み22.9μmとなるように塗布した。得られた塗膜を、温度23℃、相対湿度60%で2時間乾燥させて、対向電極を得た。
<Fabrication of counter electrode>
To a 30 mL glass container, 5 g of water, 1 g of ethanol, and 0.0025 g of sulfuric acid-treated SGCNT (CNT obtained according to the super-growth method described in WO 2006/011655) were added. The contents of this glass container were subjected to a dispersion treatment for 2 hours using a bath type ultrasonic cleaner (manufactured by BRANSON, 5510J-MT (42 kHz, 180 W)) to obtain an SGCNT aqueous dispersion. Next, a polyethylene naphthalate film (ITO-PEN film, film thickness: 200 μm, ITO thickness: 200 nm, sheet resistance: 15 Ω/, which was sputter-treated with indium-tin oxide (ITO), as a counter electrode-side conductive substrate. sq.) was subjected to UV/ozone treatment for 5 minutes at an irradiation distance of 3 cm using a low pressure mercury lamp. Then, the aqueous dispersion was applied onto the UV/ozone-treated ITO surface using a bar coater (SA-203, No. 10 manufactured by Tester Sangyo Co., Ltd.) so that the application thickness was 22.9 μm. The obtained coating film was dried at a temperature of 23° C. and a relative humidity of 60% for 2 hours to obtain a counter electrode.

<色素増感型太陽電池の作製>
25μm厚の熱融着フィルム(SOLARONIX社製)を1.2cm×1.9cmに切り出し、フィルムの内側直径9mmを円形状にくりぬき、電解液を保持させるためのスペースを設けた。上記のようにして作製した対向電極上に電解液を滴下し、上から光電極を重ね合わせた。みの虫クリップで両側を挟むことで色素増感型太陽電池を作製した。このとき、光電変換部の有効面積を規定するため、直径5.5mmの円形状のくり抜き部分を有する黒色遮光マスクを使用した。作製した光電変換素子の光電極の上に遮光マスクを置くことにより、有効面積を0.2376cmとした。得られた色素増感型太陽電池について、上記に従って性能を評価した。結果を表1に示す。
<Preparation of dye-sensitized solar cell>
A 25 μm thick heat-sealing film (manufactured by SOLARONIX) was cut out into 1.2 cm×1.9 cm, and the inner diameter 9 mm of the film was hollowed out into a circular shape to provide a space for holding the electrolytic solution. The electrolytic solution was dropped on the counter electrode prepared as described above, and the photoelectrodes were superposed from above. A dye-sensitized solar cell was produced by sandwiching both sides with a worm clip. At this time, in order to define the effective area of the photoelectric conversion part, a black light-shielding mask having a circular hollow portion with a diameter of 5.5 mm was used. By placing a light-shielding mask on the photoelectrode of the produced photoelectric conversion element, the effective area was set to 0.2376 cm 2 . The performance of the obtained dye-sensitized solar cell was evaluated as described above. The results are shown in Table 1.

(実施例2)
光電極側導電性基材として、透明導電膜であるインジウム−スズ酸化物(ITO)被膜を片面に有するポリエチレンテレフタレートフィルム(ITO−PETフィルム、フィルム厚み:125μm、ITO厚み:300nm、シート抵抗:12Ω/sq.)を用いた以外は、実施例1と同様にして、各種操作、測定、及び評価を行った。結果を表1に示す。
(Example 2)
A polyethylene terephthalate film (ITO-PET film, film thickness: 125 μm, ITO thickness: 300 nm, sheet resistance: 12 Ω) having an indium-tin oxide (ITO) film as a transparent conductive film on one surface as a photoelectrode-side conductive substrate. /Sq.), various operations, measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
<<加熱成膜工程>>において用いる紫外線発光ダイオードを、ピーク波長395nm、照射波長範囲380nm以上410nm以下のものに変更した以外は、実施例2と同様にして、各種操作、測定、及び評価を行った。結果を表1に示す。
(Example 3)
Various operations, measurements, and evaluations were performed in the same manner as in Example 2 except that the ultraviolet light emitting diode used in the <<heat film forming step>> was changed to one having a peak wavelength of 395 nm and an irradiation wavelength range of 380 nm to 410 nm. went. The results are shown in Table 1.

(実施例4)
<<塗膜形成工程>>を経た塗膜−導電性基材の積層体を、支持体としての耐熱ガラス(ショット社製、テンパックス(登録商標)ガラス、厚さ:2mm)に対して下記のような樹脂系粘着剤層を介して接着させる「対支持体配置工程」を実施した以外は、実施例3と同様にして、各種操作、測定、及び評価を行った。結果を表1に示す。
樹脂系粘着剤層は、寺岡製作所社製、シリコーンゴム両面粘着テープ9030W(厚さ:114μm)を用いて形成した。より具体的には、支持体上に両面粘着テープを適用し、その上に光電極側導電性基材の片面(ITO塗膜とは反対側の面)を配置して、支持体と光電極側導電性基材とを接着させた。
(Example 4)
The laminated body of the coating film-conductive substrate that has gone through the <<coating film forming step>> is against the heat-resistant glass (Tempax (registered trademark) glass manufactured by Schott, thickness: 2 mm) as a support as follows. Various operations, measurements, and evaluations were performed in the same manner as in Example 3 except that the "pair of support-arrangement step" of adhering via the resin-based pressure-sensitive adhesive layer as described above was performed. The results are shown in Table 1.
The resin adhesive layer was formed using Teraoka Seisakusho's silicone rubber double-sided adhesive tape 9030W (thickness: 114 μm). More specifically, a double-sided pressure-sensitive adhesive tape is applied on a support, and one side of the photoelectrode-side conductive base material (the side opposite to the ITO coating) is arranged on the support to provide the support and the photoelectrode. The side conductive substrate was adhered.

(実施例5)
<<加熱成膜工程>>において用いる紫外線発光ダイオードを、ピーク波長385nm、照射波長範囲370nm以上400nm以下のものに変更した以外は、実施例2と同様にして、各種操作、測定、及び評価を行った。結果を表1に示す。
(Example 5)
Various operations, measurements, and evaluations were performed in the same manner as in Example 2 except that the ultraviolet light emitting diode used in the <<heat film forming step>> was changed to one having a peak wavelength of 385 nm and an irradiation wavelength range of 370 nm to 400 nm. went. The results are shown in Table 1.

(実施例6)
<<加熱成膜工程>>において用いる紫外線発光ダイオードを、ピーク波長365nm、照射波長範囲350nm以上380nm以下のものに変更した以外は、実施例2と同様にして、各種操作、測定、及び評価を行った。結果を表1に示す。
(Example 6)
Various operations, measurements, and evaluations were performed in the same manner as in Example 2 except that the ultraviolet light emitting diode used in the <<heat film forming step>> was changed to one having a peak wavelength of 365 nm and an irradiation wavelength range of 350 nm to 380 nm. went. The results are shown in Table 1.

(比較例1)
紫外線発光ダイオードを光源として用いて光照射することを含む加熱成膜工程に代えて、塗膜形成工程で得た塗膜を160℃のオーブンで30分間加熱して、多孔質半導体層を得た。かかる点以外は、実施例1と同様にして、光電極及び色素増感型太陽電池を作成し、各種測定及び評価を実施した。結果を表1に示す。
(Comparative Example 1)
The coating film obtained in the coating film forming step was heated in an oven at 160° C. for 30 minutes instead of the heating film forming step including irradiation with light using an ultraviolet light emitting diode as a light source to obtain a porous semiconductor layer. .. Except for this point, a photoelectrode and a dye-sensitized solar cell were prepared and various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
オーブンによる加熱温度を145℃に変更した以外は、比較例1と同様にして、光電極及び色素増感型太陽電池を作成し、各種測定及び評価を実施した。結果を表1に示す。
(Comparative example 2)
A photoelectrode and a dye-sensitized solar cell were prepared and various measurements and evaluations were performed in the same manner as in Comparative Example 1 except that the heating temperature in the oven was changed to 145°C. The results are shown in Table 1.

(比較例3)
紫外線発光ダイオードを光源として用いて光照射することを含む加熱成膜工程に代えて、塗膜形成工程で得た塗膜を160℃のオーブンで30分間加熱して、多孔質半導体層を得た。かかる点以外は、実施例2と同様にして、光電極及び色素増感型太陽電池を作成し、各種測定及び評価を実施した。結果を表1に示す。
(Comparative example 3)
The coating film obtained in the coating film forming step was heated in an oven at 160° C. for 30 minutes instead of the heating film forming step including irradiation with light using an ultraviolet light emitting diode as a light source to obtain a porous semiconductor layer. .. Except for this point, a photoelectrode and a dye-sensitized solar cell were prepared and various measurements and evaluations were performed in the same manner as in Example 2. The results are shown in Table 1.

(比較例4)
オーブンによる加熱温度を145℃に変更した以外は、比較例3と同様にして、光電極及び色素増感型太陽電池を作成し、各種測定及び評価を実施した。結果を表1に示す。
(Comparative example 4)
A photoelectrode and a dye-sensitized solar cell were prepared and various measurements and evaluations were performed in the same manner as in Comparative Example 3 except that the heating temperature in the oven was changed to 145°C. The results are shown in Table 1.

表1中、「ITO」はインジウム−スズ酸化物を、「PET」はポリエチレンテレフタレートを、「PEN」はポリエチレンナフタレートを、「UV−LED」は紫外線発光ダイオードを、それぞれ示す。 In Table 1, "ITO" represents indium-tin oxide, "PET" represents polyethylene terephthalate, "PEN" represents polyethylene naphthalate, and "UV-LED" represents an ultraviolet light emitting diode.

Figure 2020123621
Figure 2020123621

表1より、所定の積層体に対して、紫外線発光ダイオードを光源として用いて光照射して、塗膜を加熱して成膜させる加熱成膜工程を含む、実施例1〜6に従う光電極製造方法に従って得られた光電極は、導電性基材の変形が無く、且つ、得られた光電変換素子の性能が、従来法に従って得られた光電極を備える比較例1と同等又はそれよりも優れていたことが分かる。
一方、上記所定の加熱成膜工程に代えて、オーブンを用いた加熱工程を実施した比較例1〜4では、導電性基材の変形が生じたことが分かる。
さらに、比較例1〜2を参照すると、従来のようなオーブンを用いた加熱成膜工程を実施した場合には、加熱温度が高まると基材の反りが大きくなる一方で、光電変換素子の性能自体は高まる傾向があったことが分かる。このように、従来の方法に従って製造した光電変換素子では、加熱温度を高くすることにより得られる光電変換性能の向上効果と、基材の反りを抑制することとは、トレードオフの関係にあった。しかし、本願発明では、金属酸化物半導体微粒子を十分に加熱しつつ、基材の反りも良好に抑制することができるため、かかるトレードオフの関係を打破し得たことが分かる。
From Table 1, manufacture of photoelectrodes according to Examples 1 to 6 including a heating film forming step of heating a coating film by irradiating a predetermined laminated body with light using an ultraviolet light emitting diode as a light source. The photoelectrode obtained according to the method has no deformation of the conductive base material, and the performance of the obtained photoelectric conversion element is equal to or better than Comparative Example 1 including the photoelectrode obtained according to the conventional method. I understand that it was.
On the other hand, in Comparative Examples 1 to 4 in which a heating process using an oven was performed instead of the predetermined heating film forming process, it was found that the conductive base material was deformed.
Further, referring to Comparative Examples 1 and 2, when the conventional heating film forming process using an oven is performed, the warpage of the substrate increases as the heating temperature increases, while the performance of the photoelectric conversion element increases. It can be seen that there was a tendency for itself to increase. As described above, in the photoelectric conversion element manufactured according to the conventional method, there is a trade-off relationship between the effect of improving the photoelectric conversion performance obtained by raising the heating temperature and the suppression of the warpage of the base material. .. However, in the present invention, since it is possible to sufficiently suppress the warpage of the base material while sufficiently heating the metal oxide semiconductor fine particles, it can be seen that such a trade-off relationship can be overcome.

本発明によれば、変形が少なく優れた性能の光電極を製造可能な、光電変換素子用光電極の製造方法を提供することができる。
また、本発明によれば、優れた性能を有する光電変換素子を効率的に製造し得る光電変換素子の製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the photoelectrode for photoelectric conversion elements which can manufacture the photoelectrode with few deformations and excellent performance can be provided.
Moreover, according to this invention, the manufacturing method of the photoelectric conversion element which can manufacture the photoelectric conversion element which has the outstanding performance efficiently can be provided.

Claims (7)

導電性基材の片面上に金属酸化物半導体微粒子を含む塗膜が積層されてなる積層体に対して、前記塗膜側から紫外線発光ダイオードを光源として用いて光照射して、前記塗膜を加熱して成膜させる加熱成膜工程を含む、光電変換素子用光電極の製造方法。 To a laminate in which a coating film containing metal oxide semiconductor fine particles is laminated on one surface of a conductive substrate, light irradiation is performed from the coating film side using an ultraviolet light emitting diode as a light source, and the coating film is formed. A method for producing a photoelectrode for a photoelectric conversion element, comprising a heating film forming step of heating to form a film. 前記紫外線発光ダイオードにより照射される前記光のピーク波長が、365nm、385nm、395nm、又は405nmである、請求項1記載の光電変換素子用光電極の製造方法。 The method for producing a photoelectrode for a photoelectric conversion element according to claim 1, wherein the peak wavelength of the light emitted by the ultraviolet light emitting diode is 365 nm, 385 nm, 395 nm, or 405 nm. 前記紫外線発光ダイオードにより照射される前記光の波長領域が300nm以上500nm以下の範囲内である、請求項1又は2に記載の光電変換素子用光電極の製造方法。 The method for producing a photoelectrode for a photoelectric conversion element according to claim 1, wherein the wavelength region of the light emitted by the ultraviolet light emitting diode is in the range of 300 nm or more and 500 nm or less. 前記導電性基材が、樹脂フィルムと、前記樹脂フィルムの片面上に積層された透明導電膜とを含む、請求項1〜3の何れかに記載の光電変換素子用光電極の製造方法。 The method for producing a photoelectrode for a photoelectric conversion element according to claim 1, wherein the conductive base material includes a resin film and a transparent conductive film laminated on one surface of the resin film. 前記金属酸化物半導体微粒子が、チタン酸化物、亜鉛酸化物、スズ酸化物、及びこれらの複合体のうちの何れかからなる、請求項1〜4の何れかに記載の光電変換素子用光電極の製造方法。 The photoelectrode for a photoelectric conversion element according to claim 1, wherein the metal oxide semiconductor fine particles are made of any one of titanium oxide, zinc oxide, tin oxide, and a complex thereof. Manufacturing method. 前記加熱成膜工程よりも前段に、前記導電性基材を支持体上に配置する工程を含む、請求項1〜5の何れかに記載の光電変換素子用光電極の製造方法。 The method for producing a photoelectrode for a photoelectric conversion element according to any one of claims 1 to 5, comprising a step of disposing the conductive base material on a support before the heating film formation step. 光電極、電解質層、及び対向電極をこの順に積層してなる光電変換素子の製造方法であって、請求項1〜6の何れかに記載の光電変換素子用光電極の製造方法により前記光電極を製造する工程を含む、光電変換素子の製造方法。
It is a manufacturing method of the photoelectric conversion element which laminated|stacks the photoelectrode, the electrolyte layer, and the counter electrode in this order, Comprising: The said photoelectrode by the manufacturing method of the photoelectric electrode for photoelectric conversion elements in any one of Claims 1-6. The manufacturing method of a photoelectric conversion element including the process of manufacturing.
JP2019013374A 2019-01-29 2019-01-29 Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element Pending JP2020123621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013374A JP2020123621A (en) 2019-01-29 2019-01-29 Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013374A JP2020123621A (en) 2019-01-29 2019-01-29 Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2020123621A true JP2020123621A (en) 2020-08-13

Family

ID=71992937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013374A Pending JP2020123621A (en) 2019-01-29 2019-01-29 Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2020123621A (en)

Similar Documents

Publication Publication Date Title
KR100728194B1 (en) Dye-sensitized solar cell and method for producing same
Lee et al. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes
JP4361510B2 (en) Dye-sensitive solar cell module
Kim et al. Enhanced photovoltaic properties of a cobalt bipyridyl redox electrolyte in dye-sensitized solar cells employing vertically aligned TiO2 nanotube electrodes
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP2008288209A (en) Manufacturing method for photoelectrode of dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
JP2008251519A (en) Photo-electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2012248537A (en) Photo-electrode structure and manufacturing method for the same
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
KR101509306B1 (en) Dye-sensitized solar cell and fabrication method thereof
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
KR20120040322A (en) Dye-sensitized solar cell with light scattering layer, and manufacturing method thereof
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP2020123621A (en) Manufacturing method of photoelectrode for photoelectric conversion element and manufacturing method of photoelectric conversion element
TWI536591B (en) Dye-sensitized solar cell and fabrication method thereof
JP5343242B2 (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell
KR101219488B1 (en) Dye-Sensitized Solar Cell and Method for the same
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
KR101135495B1 (en) Solar cell and manufacturing method of the same
JP4794190B2 (en) Dye-sensitized photoelectric conversion device and manufacturing method thereof
JP7264047B2 (en) LAMINATED AND METHOD FOR MANUFACTURING ORGANIC SOLAR CELL
JP2014096251A (en) Dye-sensitized solar cell