JP2020123447A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2020123447A
JP2020123447A JP2019013336A JP2019013336A JP2020123447A JP 2020123447 A JP2020123447 A JP 2020123447A JP 2019013336 A JP2019013336 A JP 2019013336A JP 2019013336 A JP2019013336 A JP 2019013336A JP 2020123447 A JP2020123447 A JP 2020123447A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
separator
width direction
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013336A
Other languages
Japanese (ja)
Other versions
JP7053512B2 (en
Inventor
由涼 荻野
Yusuke Ogino
由涼 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019013336A priority Critical patent/JP7053512B2/en
Priority to CN201921870612.0U priority patent/CN211700412U/en
Publication of JP2020123447A publication Critical patent/JP2020123447A/en
Application granted granted Critical
Publication of JP7053512B2 publication Critical patent/JP7053512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

To provide a lead acid battery of which the lifetime is prolonged by making a separator hard to be destroyed even if an external stress is received from a deformed positive electrode plate.SOLUTION: An collector ear 11 and a protrusion 12 which protrudes lower than the collector ear 11, are formed at an upper edge of a positive electrode plate 10. A separator 30 includes: a base part 31; multiple main ribs 32 which protrude from a surface of the base part 31 opposed to the positive electrode plate 10 and are brought into contact with the positive electrode plate 10; and multiple small ribs 33 which protrude from the surface of the base part 31 opposed to the positive electrode plate 10 and protrude lower than the main ribs 32. The main ribs 32 are formed in a central part 30a of the surface of the base part 31 opposed to the positive electrode plate 10 in a lateral width direction, and the small ribs 33 are formed in an end portion 30b of the surface of the base part 31 opposed to the positive electrode plate 10 in the lateral width direction. Among the main ribs 32, the main rib 32 which is disposed closest to the end portion in the lateral width direction is positioned on a portion of the base part 31 opposed to the protrusion 12.SELECTED DRAWING: Figure 4

Description

本発明は鉛蓄電池に関する。 The present invention relates to lead acid batteries.

鉛蓄電池は、セパレータが破れることにより短絡が生じ短寿命となるという問題を有していた。セパレータが破れる主な原因としては、酸化劣化と外部応力がある。
まず、酸化劣化について説明する。セパレータは、正極板との接触により酸化劣化が生じ破れる場合がある。そのため、セパレータの表面と正極板との直接的な接触を抑制するために、セパレータの表面にリブを設ける技術が広く採用されている。
The lead acid battery has a problem that a short circuit occurs due to the breakage of the separator and the life is shortened. The main causes of separator breakage are oxidative deterioration and external stress.
First, oxidative deterioration will be described. The separator may be broken due to oxidative deterioration due to contact with the positive electrode plate. Therefore, in order to suppress direct contact between the surface of the separator and the positive electrode plate, a technique of providing ribs on the surface of the separator is widely adopted.

次に、外部応力について説明する。セパレータは、変形した正極板から受ける外部応力によって破れる場合がある。正極板は酸化によって伸びるが、正極板の端部がセパレータに向かって反り曲がるように伸びると、正極板の端部がセパレータの表面を強く圧迫することとなる。詳述すると、セパレータの表面にはリブが設けられているので、正極板の端部はセパレータの表面のリブを強く圧迫する。そのような状態で正極板の反りや伸びがさらに進行すると、セパレータの表面がリブごと引っ張られるため、強度が比較的弱いセパレータは引張りによる伸びに追従できず、裂けるように破れることとなる。 Next, the external stress will be described. The separator may be broken by external stress received from the deformed positive electrode plate. The positive electrode plate extends due to oxidation, but when the end portion of the positive electrode plate bends toward the separator, the end portion of the positive electrode plate strongly presses the surface of the separator. More specifically, since the rib is provided on the surface of the separator, the end of the positive electrode plate strongly presses the rib on the surface of the separator. If the warp or elongation of the positive electrode plate further progresses in such a state, the surface of the separator is pulled together with the ribs, so that the separator having a relatively low strength cannot follow the elongation due to the tension and is torn like a tear.

特開平3−149748号公報JP-A-3-149748

本発明は、変形した正極板から外部応力を受けてもセパレータが破れにくく長寿命な鉛蓄電池を提供することを課題とする。 An object of the present invention is to provide a lead storage battery in which the separator is not easily broken even when external stress is applied from the deformed positive electrode plate and which has a long life.

本発明の一態様に係る鉛蓄電池は、正極板と負極板がセパレータを介して複数枚交互に積層された極板群を備える鉛蓄電池であって、正極板の上縁部には、正極板の上方に向かって突出する集電耳と、正極板の上方に向かって突出し且つ突出高さが集電耳よりも低い突出部とが、セパレータの横幅方向に間隔を空けて形成されており、セパレータは、フィルム状のベース部と、ベース部の正極板に対向する表面から突出し正極板に接する複数の主リブと、ベース部の正極板に対向する表面から突出し主リブよりも突出高さが低い複数の小リブと、を有し、主リブは、セパレータの上下方向に沿って連続する線状をなして、ベース部の正極板に対向する表面のうちセパレータの横幅方向中央部に形成されており、小リブは、セパレータの上下方向に沿って連続する線状をなして、ベース部の正極板に対向する表面のうちセパレータの横幅方向端部に形成されており、小リブが形成されている横幅方向端部は、集電耳との距離よりも突出部との距離の方が小さい方の横幅方向端部であり、主リブのうち、最も横幅方向の端部側に配された主リブが、ベース部のうち突出部に対向する部分の上に位置することを要旨とする。 A lead-acid battery according to an aspect of the present invention is a lead-acid battery that includes a positive electrode plate and a negative electrode plate, and a positive electrode plate including a plurality of electrode plates alternately stacked with a separator interposed therebetween. , A current collecting ear protruding upward, and a protruding portion protruding upward of the positive electrode plate and having a protruding height lower than that of the current collecting ear are formed at intervals in the lateral width direction of the separator. Is a film-shaped base portion, a plurality of main ribs protruding from the surface of the base portion facing the positive electrode plate and contacting the positive electrode plate, and protruding from the surface of the base portion facing the positive electrode plate and having a lower protrusion height than the main ribs. A plurality of small ribs, the main rib is formed in a continuous linear shape along the vertical direction of the separator, and is formed in the central portion in the lateral width direction of the separator of the surface of the base portion facing the positive electrode plate. The small rib is formed in a continuous linear shape along the vertical direction of the separator, and is formed at the end of the separator in the lateral width direction of the surface of the base portion facing the positive electrode plate, and the small rib is formed. The widthwise end is the widthwise end whose distance from the protruding portion is smaller than the distance from the current collecting ear, and is the main rib that is arranged closest to the widthwise end of the main rib. The gist is that the rib is located on a portion of the base portion facing the protrusion.

本発明に係る鉛蓄電池は、変形した正極板から外部応力を受けてもセパレータが破れにくく長寿命である。 The lead storage battery according to the present invention has a long service life because the separator is not easily broken even when external stress is applied from the deformed positive electrode plate.

本発明の第一実施形態に係る鉛蓄電池の構造を説明する部分断面図である。It is a fragmentary sectional view explaining the structure of the lead acid battery which concerns on 1st embodiment of this invention. 正極板に用いる基板を説明する図である。It is a figure explaining the board|substrate used for a positive electrode plate. 図2の基板を製造するための連結体シートを説明する図である。It is a figure explaining the connection body sheet for manufacturing the board|substrate of FIG. 図1の鉛蓄電池が有する極板群の要部の構造を示す図である。It is a figure which shows the structure of the principal part of the electrode plate group which the lead acid battery of FIG. 1 has. 実施例2の鉛蓄電池が有する極板群の要部の構造を示す図である。6 is a diagram showing a structure of a main part of an electrode plate group included in the lead storage battery of Example 2. FIG. 実施例3の鉛蓄電池が有する極板群の要部の構造を示す図である。It is a figure which shows the structure of the principal part of the electrode plate group which the lead acid battery of Example 3 has. 実施例4の鉛蓄電池が有する極板群の要部の構造を示す図である。It is a figure which shows the structure of the principal part of the electrode plate group which the lead acid battery of Example 4 has. 実施例5の鉛蓄電池が有する極板群の要部の構造を示す図である。It is a figure which shows the structure of the principal part of the electrode plate group which the lead acid battery of Example 5 has. 従来例の鉛蓄電池が有する極板群の要部の構造を示す図である。It is a figure which shows the structure of the principal part of the electrode plate group which the lead acid battery of a prior art example has. 比較例1の鉛蓄電池が有する極板群の要部の構造を示す図である。5 is a diagram showing a structure of a main part of an electrode plate group included in the lead storage battery of Comparative Example 1. FIG. 比較例2の鉛蓄電池が有する極板群の要部の構造を示す図である。7 is a diagram showing a structure of a main part of an electrode plate group included in a lead storage battery of Comparative Example 2. FIG. 比較例3の鉛蓄電池が有する極板群の要部の構造を示す図である。8 is a diagram showing a structure of a main part of an electrode plate group included in a lead storage battery of Comparative Example 3. FIG. 比較例4の鉛蓄電池が有する極板群の要部の構造を示す図である。11 is a diagram showing a structure of a main part of an electrode plate group included in the lead storage battery of Comparative Example 4. FIG. 比較例5の鉛蓄電池が有する極板群の要部の構造を示す図である。9 is a diagram showing a structure of a main part of an electrode plate group included in a lead storage battery of Comparative Example 5. FIG. 比較例6の鉛蓄電池が有する極板群の要部の構造を示す図である。9 is a diagram showing a structure of a main part of an electrode plate group included in a lead storage battery of Comparative Example 6. FIG. 各鉛蓄電池の寿命試験の結果を示すグラフである。It is a graph which shows the result of the life test of each lead acid battery. 本発明の第二実施形態に係る鉛蓄電池が有するセパレータの構造を説明する図である。It is a figure explaining the structure of the separator which the lead acid battery which concerns on 2nd embodiment of this invention has. 本発明の第三実施形態に係る鉛蓄電池が有するセパレータの構造を説明する図である。It is a figure explaining the structure of the separator which the lead acid battery which concerns on 3rd embodiment of this invention has.

本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described. The embodiment described below is an example of the present invention, and the present invention is not limited to this embodiment. Further, various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can also be included in the present invention.

〔第一実施形態〕
本発明の第一実施形態に係る鉛蓄電池の構造について、図1を参照しながら詳細に説明する。第一実施形態に係る鉛蓄電池は、正極板10と負極板20とがセパレータ30を介して複数枚交互に積層された極板群1を備えている。この極板群1は、その積層方向が水平方向に沿うように(すなわち、正極板10及び負極板20の板面が鉛直方向に沿うように)、図示しない電解液とともに電槽41内に収容され、電槽41内で電解液に浸漬されている。
[First embodiment]
The structure of the lead storage battery according to the first embodiment of the present invention will be described in detail with reference to FIG. The lead storage battery according to the first embodiment includes an electrode plate group 1 in which a plurality of positive electrode plates 10 and negative electrode plates 20 are alternately stacked with a separator 30 in between. The electrode plate group 1 is housed in the battery case 41 together with an electrolytic solution (not shown) so that the stacking direction is along the horizontal direction (that is, the plate surfaces of the positive electrode plate 10 and the negative electrode plate 20 are along the vertical direction). And is immersed in the electrolytic solution in the battery case 41.

正極板10は、例えば、鉛合金からなる板状格子体の開口部に、二酸化鉛を含有する正極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、二酸化鉛を含有する正極活物質からなる活物質層(図4において符号10aで示すもの)を形成したものである。負極板20は、例えば、鉛合金からなる板状格子体の開口部に、金属鉛を含有する負極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、金属鉛を含有する負極活物質からなる活物質層(図4において符号20aで示すもの)を形成したものである。正極板10、負極板20の基板である板状格子体は、鋳造法、打ち抜き法(パンチング法)、エキスパンド方式で製造することができる。セパレータ30は、例えば、樹脂、ガラス等からなる多孔質の膜状体である。正極板10、負極板20、及びセパレータ30の平面形状は、例えば、矩形状とすることができる。 In the positive electrode plate 10, for example, while filling the positive electrode active material containing lead dioxide into the openings of the plate-shaped grid body made of a lead alloy, both surfaces of the plate grid made of the lead alloy are coated with lead dioxide. An active material layer (denoted by reference numeral 10a in FIG. 4) made of the contained positive electrode active material is formed. The negative electrode plate 20 is, for example, filled with metal lead on both plate surfaces of a plate-shaped grid body made of a lead alloy while filling an opening of the plate-shaped grid body made of a lead alloy with a negative electrode active material containing metal lead. An active material layer (denoted by reference numeral 20a in FIG. 4) made of the contained negative electrode active material is formed. The plate-shaped lattice bodies that are the substrates of the positive electrode plate 10 and the negative electrode plate 20 can be manufactured by a casting method, a punching method (punching method), or an expanding method. The separator 30 is, for example, a porous film body made of resin, glass, or the like. The planar shapes of the positive electrode plate 10, the negative electrode plate 20, and the separator 30 may be rectangular, for example.

正極板10(基板)の上縁部(すなわち、正極板10の縁部のうち上側に位置する縁部)には、正極板10の上方(図1においては上方)に向かって突出する集電耳11が形成されており、負極板20の上縁部には、負極板20の上方(図1においては上方)に向かって突出する集電耳21が形成されている。そして、各正極板10の集電耳11は正極ストラップ13で連結され、各負極板20の集電耳21は負極ストラップ23で連結されている。さらに、正極ストラップ13は正極端子15の一端に接続され、負極ストラップ23は負極端子25の一端に接続されており、正極端子15の他端及び負極端子25の他端が、電槽41の開口部を閉塞する蓋43を貫通して、電槽41と蓋43からなる鉛蓄電池のケース体の外部に露出している。 At the upper edge portion of the positive electrode plate 10 (the substrate) (that is, the upper edge portion of the edge portion of the positive electrode plate 10), a current collector projecting upward of the positive electrode plate 10 (upward in FIG. 1). The ears 11 are formed, and at the upper edge portion of the negative electrode plate 20, there is formed a current collecting ear 21 that protrudes upward (upward in FIG. 1) of the negative electrode plate 20. The current collecting ears 11 of each positive electrode plate 10 are connected by a positive electrode strap 13, and the current collecting ears 21 of each negative electrode plate 20 are connected by a negative electrode strap 23. Further, the positive electrode strap 13 is connected to one end of the positive electrode terminal 15, the negative electrode strap 23 is connected to one end of the negative electrode terminal 25, and the other end of the positive electrode terminal 15 and the other end of the negative electrode terminal 25 are connected to the opening of the battery case 41. It penetrates through the lid 43 that closes the part, and is exposed to the outside of the case body of the lead storage battery including the battery case 41 and the lid 43.

また、正極板10(基板)の上縁部には、図2に示すように、正極板10の上方に向かって突出し且つ突出高さが集電耳11よりも低い突出部12が、正極板10の集電耳11に対して、セパレータ30の横幅方向(図1及び図2の(b)においては紙面に対して前後方向、また、図2の(a)においては左右方向である。以下、単に「横幅方向」と記すこともある)に間隔を空けて形成されている。負極板20の上縁部にも、正極板10と同様に突出部12が形成されていてもよいが、形成されていなくてもよい。 Further, as shown in FIG. 2, at the upper edge portion of the positive electrode plate 10 (substrate), a protruding portion 12 protruding upward of the positive electrode plate 10 and having a protruding height lower than that of the current collecting ear 11 is provided. With respect to the current collecting ears 11 of 10, the width direction of the separator 30 (the front-back direction with respect to the paper surface in FIGS. 1 and 2B, and the left-right direction in FIG. 2A). , May be simply referred to as “width direction”). Similar to the positive electrode plate 10, the protruding portion 12 may be formed on the upper edge portion of the negative electrode plate 20, but may not be formed.

突出部12の例としては、正極板10の基板である板状格子体を製造する際に生じる切り残し部が挙げられる。板状格子体の製造方法と切り残し部について、図2、3を参照しながら詳細に説明する。板状格子体を打ち抜き法で製造する場合には、まず鉛合金の圧延板を打ち抜いて、複数枚の板状格子体が連結した連結体シート100を製造し、次に連結体シート100を切断して板状格子体を得る。 An example of the protruding portion 12 is an uncut portion that is produced when the plate-shaped lattice body that is the substrate of the positive electrode plate 10 is manufactured. The method of manufacturing the plate-like lattice body and the uncut portion will be described in detail with reference to FIGS. In the case of manufacturing a plate-shaped lattice body by a punching method, first, a lead alloy rolling plate is punched to manufacture a connected body sheet 100 in which a plurality of plate-shaped lattice bodies are connected, and then the connected body sheet 100 is cut. To obtain a plate lattice.

連結体シート100の一例を図3に示す。図3は、6枚の板状格子体が連結した連結体シート100の平面図である。図3の連結体シート100は、以下のような構成をなしている。すなわち、2枚の板状格子体の上縁部同士が、集電耳11となる部分である2つの連結部11aによって連結し、さらに、この連結物が3つ並んで各側縁部同士が連結して、図3の連結体シート100をなしている。 An example of the connected body sheet 100 is shown in FIG. FIG. 3 is a plan view of a connected body sheet 100 in which six plate-shaped lattice bodies are connected. The connected body sheet 100 of FIG. 3 has the following configuration. That is, the upper edge portions of the two plate-like lattices are connected by the two connecting portions 11a, which are the portions to be the current collecting ears 11, and further, the three side-by-side connected portions are arranged side by side. By connecting, the connected sheet 100 of FIG. 3 is formed.

カッター等を用いて図3の連結体シート100を切断する際には、連結部11aの端部と板状格子体の側縁部を切り離して6枚の板状格子体とする。このとき、連結部11aを切断する際には、切り離されて得られる板状格子体のそれぞれに集電耳11が形成されるように、2枚の板状格子体を連結している2つの連結部11aについては、異なる側の端部を切断する。 When the connecting sheet 100 shown in FIG. 3 is cut using a cutter or the like, the end portion of the connecting portion 11a and the side edge portion of the plate-like lattice body are separated into six plate-like lattice bodies. At this time, when the connecting portion 11a is cut, the two plate-like lattices are connected so that the collector ears 11 are formed in each of the plate-like lattices obtained by cutting. Regarding the connecting portion 11a, the ends on different sides are cut.

連結部11aを切断する際には、切り残し部が生じないように、連結部11aと板状格子体の上縁部との境界に沿って切断することが理想的であるが、切断時に板状格子体の上縁部に傷が付くことを確実に避けるためには、切り代を設けて連結部11aを切断することが好ましい。その結果、板状格子体の上縁部に切り残し部が残存する。切り残し部の上縁部からの突出高さは、特に限定されるものではないが、例えば1mm以上3mm以下とすることができる。 When cutting the connecting portion 11a, it is ideal to cut along the boundary between the connecting portion 11a and the upper edge of the plate-like lattice so that no uncut portion is left. In order to surely prevent the upper edge portion of the lattice-like body from being scratched, it is preferable to cut the connecting portion 11a with a cutting margin. As a result, the uncut portion remains at the upper edge of the plate-like lattice. The protruding height from the upper edge of the uncut portion is not particularly limited, but can be, for example, 1 mm or more and 3 mm or less.

また、連結部11aの切断の際に使用する切断器具の種類は、特に限定されるものではないが、例えば、ロータリーカッター等のカッターを使用することができる。切り残し部(突出部12)の突出先端の形状は、カッターの刃の形状や切断方法によっても左右される。例えば、ロータリーカッターを用いて切断する場合であれば、連結部11aの一方の表面に刃を接触させて切断を開始し、連結部11aの他方の表面に向かって刃を食い込ませていくが、切り残し部の上縁部からの突出高さは、刃の根元まで食い込む前記一方の表面側と、刃先までしか届かない前記他方の表面側とで異なることとなる。すなわち、切り残し部(突出部12)の突出先端の形状は、図2の(b)に示すように、前記一方の表面側(図2の(b)においては左側)よりも前記他方の表面側(図2の(b)においては右側)の方が、切り残し部の上縁部からの突出高さが高い形状となる。 The type of cutting instrument used for cutting the connecting portion 11a is not particularly limited, but a cutter such as a rotary cutter can be used, for example. The shape of the protruding tip of the uncut portion (projecting portion 12) also depends on the shape of the blade of the cutter and the cutting method. For example, in the case of cutting using a rotary cutter, the blade is brought into contact with one surface of the connecting portion 11a to start cutting, and the blade is bited toward the other surface of the connecting portion 11a. The projecting height from the upper edge of the uncut portion is different between the one surface side that bites into the root of the blade and the other surface side that reaches only the blade tip. That is, as shown in FIG. 2B, the shape of the protruding tip of the uncut portion (protruding portion 12) is such that the surface of the other surface is more than the surface of the other surface (left side in FIG. 2B). The side (the right side in FIG. 2B) has a shape in which the protruding height from the upper edge of the uncut portion is higher.

セパレータ30は、図4に示すように、フィルム状のベース部31と、ベース部31の正極板10に対向する表面から突出し正極板10に接する複数の主リブ32と、ベース部31の正極板10に対向する表面から突出し主リブ32よりも突出高さが低い複数の小リブ33と、を有する。小リブ33は、正極板10が変形していない状態又は正極板10の変形が小さい状態では、正極板10に接触していない。 As shown in FIG. 4, the separator 30 includes a film-shaped base portion 31, a plurality of main ribs 32 protruding from a surface of the base portion 31 facing the positive electrode plate 10 and in contact with the positive electrode plate 10, and a positive electrode plate of the base portion 31. And a plurality of small ribs 33 protruding from the surface facing 10 and having a lower protruding height than the main rib 32. The small rib 33 does not contact the positive electrode plate 10 when the positive electrode plate 10 is not deformed or when the positive electrode plate 10 is slightly deformed.

主リブ32は、セパレータ30の上下方向に沿って連続する線状をなして、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向中央部30aに形成されている。
小リブ33は、セパレータ30の上下方向に沿って連続する線状をなして、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向端部30bに形成されている。この小リブ33が形成されている横幅方向端部30bは、横幅方向中央部30aを挟んで位置する2つの横幅方向端部30b、30bのうち、集電耳11との距離よりも突出部12との距離の方が小さい方の横幅方向端部30bである。
The main rib 32 is formed in a continuous linear shape along the vertical direction of the separator 30, and is formed on the central portion 30 a in the lateral width direction of the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10.
The small ribs 33 are linearly formed along the vertical direction of the separator 30 and are formed on the end portion 30b in the lateral width direction of the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10. The lateral width direction end portion 30b in which the small rib 33 is formed is one of the two lateral width direction end portions 30b and 30b that are positioned with the lateral width direction central portion 30a interposed therebetween, and the protruding portion 12 is longer than the distance from the current collecting ear 11. It is the lateral width direction end portion 30b having a smaller distance from.

突出部12との距離よりも集電耳11との距離の方が小さい方の横幅方向端部30bには、主リブ32が形成されているが、主リブ32の代わりに小リブ33が形成されていてもよい。すなわち、セパレータ30は、主リブ32が形成されている横幅方向中央部30aが、小リブ33が形成されている横幅方向両端部30b、30bに挟まれた形態を有していてもよい。 A main rib 32 is formed at the lateral width direction end 30b whose distance from the current collecting ear 11 is smaller than the distance from the protrusion 12, but a small rib 33 is formed instead of the main rib 32. It may have been done. That is, the separator 30 may have a form in which the lateral width direction central portion 30a where the main rib 32 is formed is sandwiched between the lateral width direction end portions 30b and 30b where the small rib 33 is formed.

なお、セパレータ30のベース部31には横幅方向端部30bが2つ存在するが、これ以降においては、集電耳11との距離よりも突出部12との距離の方が小さい方の横幅方向端部30b(図4においては右側の端部30b)を「突出部寄り端部」と記すこともあり、突出部12との距離よりも集電耳11との距離の方が小さい方の横幅方向端部30b(図4においては左側の端部30b)を「集電耳寄り端部」と記すこともある。また、同様に、横幅方向において、集電耳11との距離よりも突出部12との距離の方が小さい側(図4においては右側)を「突出部寄り端部側」、突出部12との距離よりも集電耳11との距離の方が小さい側(図4においては左側)を「集電耳寄り端部側」と記すこともある。 In addition, the base portion 31 of the separator 30 has two lateral width direction end portions 30b, but in the following, the lateral width direction in which the distance to the protruding portion 12 is smaller than the distance to the current collecting ear 11 is the lateral width direction. The end portion 30b (the end portion 30b on the right side in FIG. 4) may also be referred to as a “protruding portion-side end portion”, and the lateral width of the smaller distance from the current collecting ear 11 than the distance from the protruding portion 12 is. The direction end portion 30b (the end portion 30b on the left side in FIG. 4) may be referred to as a “current collecting ear end portion”. Similarly, in the lateral width direction, the side (the right side in FIG. 4) having a smaller distance to the protruding portion 12 than the distance to the current collecting ear 11 is referred to as the “protruding portion-side end portion side” and the protruding portion 12. The side closer to the current collecting ear 11 than the distance (left side in FIG. 4) may be referred to as the “end side closer to the current collecting ear”.

上記のような第一実施形態に係る鉛蓄電池においては、主リブ32のうち、最も横幅方向の端部側に配された主リブ32が、ベース部31のうち突出部12に対向する部分の上に位置する(図4を参照)。換言すると、主リブ32が形成されている横幅方向中央部30aと、小リブ33が形成されている横幅方向端部30bとの境界線Bが、ベース部31のうち突出部12に対向する部分の上に位置する。なお、上記の「横幅方向の端部側」とは、集電耳11との距離よりも突出部12との距離の方が小さい方の横幅方向端部側であり、すなわち突出部寄り端部側である。 In the lead storage battery according to the first embodiment as described above, among the main ribs 32, the main rib 32 disposed closest to the end portion in the lateral width direction is the portion of the base portion 31 that faces the protruding portion 12. Located on top (see FIG. 4). In other words, the boundary line B between the lateral width direction central portion 30a where the main rib 32 is formed and the lateral width direction end portion 30b where the small rib 33 is formed is the portion of the base portion 31 that faces the protruding portion 12. Located on top of. In addition, the above-mentioned “end portion in the width direction” is the end portion side in the width direction in which the distance to the protruding portion 12 is smaller than the distance to the current collecting ear 11, that is, the end portion closer to the protruding portion. On the side.

このような構成であれば、第一実施形態に係る鉛蓄電池は、変形した正極板10から外部応力を受けてもセパレータ30が破れにくく長寿命である。よって、第一実施形態に係る鉛蓄電池は、例えば、車両に搭載され且つ車両の内燃機関を起動する電源として好適である。また、第一実施形態に係る鉛蓄電池は、高温環境下での使用に好適である。さらに、第一実施形態に係る鉛蓄電池は、車両の内燃機関を起動する電源としての用途のみならず、電動自動車、電動フォークリフト、電動バス、電動バイク、電動スクータ、小型電動モペッド、ゴルフ用カート、電気機関車等の動力電源としても使用可能である。さらに、本実施形態に係る鉛蓄電池は、照明用電源、予備電源としても使用可能である。あるいは、太陽光発電、風力発電等により発電された電気エネルギーの蓄電装置としても使用可能である。 With such a configuration, the lead storage battery according to the first embodiment has a long service life in which the separator 30 is less likely to be broken even when an external stress is applied from the deformed positive electrode plate 10. Therefore, the lead storage battery according to the first embodiment is suitable, for example, as a power source mounted on a vehicle and activating an internal combustion engine of the vehicle. Further, the lead storage battery according to the first embodiment is suitable for use in a high temperature environment. Furthermore, the lead storage battery according to the first embodiment is not only used as a power source for starting an internal combustion engine of a vehicle, but also an electric vehicle, an electric forklift truck, an electric bus, an electric motorcycle, an electric scooter, a small electric moped, a golf cart, It can also be used as a power source for electric locomotives. Furthermore, the lead storage battery according to the present embodiment can be used as a lighting power source and a standby power source. Alternatively, it can be used as a power storage device for electric energy generated by solar power generation, wind power generation, or the like.

第一実施形態に係る鉛蓄電池の上記作用効果について、以下に詳述する。正極板10が酸化すると、正極板10の端部がセパレータ30に向かって反り曲がるように伸びて、正極板10の端部がセパレータ30の表面を強く圧迫する場合がある。このとき、セパレータ30の表面のうち正極板10の端部が対向する部分に、突出高さが高い主リブ32が形成されていると、正極板10の端部はセパレータ30の表面の主リブ32を強く圧迫する。そのような状態で正極板10の反りや伸びがさらに進行すると、セパレータ30の表面が主リブ32ごと引っ張られるため、強度が比較的弱いセパレータ30は引張りによる伸びに追従できず、裂けるように破れることとなる。 The above-mentioned effects of the lead storage battery according to the first embodiment will be described in detail below. When the positive electrode plate 10 is oxidized, the end portion of the positive electrode plate 10 may extend toward the separator 30 so as to bend, and the end portion of the positive electrode plate 10 may strongly press the surface of the separator 30. At this time, if a main rib 32 having a high protruding height is formed on a portion of the surface of the separator 30 where the end portion of the positive electrode plate 10 faces, the end portion of the positive electrode plate 10 will have the main rib on the surface of the separator 30. Squeeze 32 strongly. When the warp or extension of the positive electrode plate 10 further progresses in such a state, the surface of the separator 30 is pulled together with the main ribs 32, so that the separator 30 having a relatively weak strength cannot follow the extension due to the tension and is torn like a tear. It will be.

しかしながら、第一実施形態に係る鉛蓄電池においては、セパレータ30の表面のうち正極板10の端部が対向する部分に、突出高さが低い小リブ33が形成されているので、変形した正極板10の端部が小リブ33に接触したとしても、正極板10の端部によるセパレータ30の圧迫が抑制される。そのため、第一実施形態に係る鉛蓄電池は、セパレータ30が破れにくく長寿命となる。 However, in the lead-acid battery according to the first embodiment, the small rib 33 having a low protruding height is formed at the portion of the surface of the separator 30 where the end of the positive electrode plate 10 faces, and thus the deformed positive electrode plate is formed. Even if the end of 10 contacts the small rib 33, the pressing of the separator 30 by the end of the positive electrode plate 10 is suppressed. Therefore, in the lead storage battery according to the first embodiment, the separator 30 is less likely to be broken and has a long life.

正極板10の端部の反り曲がりや伸びは、切り残し部を起点として大きくなり、切り残し部よりも横幅方向の端部側に位置する部分の反り曲がりや伸びが大きい。切り残し部が存在しない場合は、存在する場合と比較して、正極板10の端部の反り曲がりや伸びは小さくなる。また、集電耳11が存在しても、正極板10の端部の反り曲がりや伸びは大きくならない。 The warp or extension of the end portion of the positive electrode plate 10 becomes larger starting from the uncut portion, and the warp or extension of the portion located on the end side in the lateral width direction than the uncut portion is greater. When the uncut portion does not exist, the warp and the elongation of the end portion of the positive electrode plate 10 become smaller than when the uncut portion does exist. Further, even if the current collecting ears 11 are present, the warp and extension of the end portion of the positive electrode plate 10 do not increase.

これは、本発明者らの検討によれば、上記の切り残し部(突出部12)の突出先端の形状に起因することが判明した。すなわち、切り残し部(突出部12)の突出先端の形状が、図2の(b)に示すように、一方の表面側よりも他方の表面側の方が、切り残し部の上縁部からの突出高さが高い形状であると、両表面側で腐食量や応力分布(例えば、伸びによる応力の分布)に差が生じる。そのため、突出高さが高い他方の表面側に向かって正極板10の端部が反り曲がり、切り残し部よりも横幅方向の端部側の部分の反り曲がりや伸びが大きくなると考えられる。 According to the study by the present inventors, it has been found that this is due to the shape of the protruding tip of the uncut portion (projecting portion 12). That is, as shown in FIG. 2B, the shape of the protruding tip of the uncut portion (projecting portion 12) is closer to the other surface side than to the one surface side from the upper edge portion of the uncut portion. If the protrusion height is high, a difference occurs in the amount of corrosion and stress distribution (for example, stress distribution due to elongation) on both surface sides. Therefore, it is considered that the end portion of the positive electrode plate 10 bends toward the other surface side where the protrusion height is high, and the warp bend and the extension of the end side portion in the lateral width direction become larger than the uncut portion.

よって、主リブ32が形成されている横幅方向中央部30aと、小リブ33が形成されている横幅方向端部30bとの境界線Bの横幅方向位置を、切り残し部を基準として設定すれば、適切な位置に小リブ33を形成することができるので、セパレータ30が破れにくく長寿命な鉛蓄電池を、容易に且つ確実に設計することができる。
小リブ33の突出高さは、主リブ32よりも突出高さが低ければ特に限定されるものではないが、主リブ32の突出高さの25%以上75%以下の突出高さであることが好ましく、45%以上65%以下の突出高さであることがより好ましい。
Therefore, if the lateral width direction position of the boundary line B between the lateral width direction central portion 30a where the main rib 32 is formed and the lateral width direction end portion 30b where the small rib 33 is formed is set with reference to the uncut portion. Since the small ribs 33 can be formed at appropriate positions, it is possible to easily and surely design the lead storage battery in which the separator 30 is not easily broken and has a long life.
The projecting height of the small rib 33 is not particularly limited as long as the projecting height is lower than that of the main rib 32, but the projecting height is 25% or more and 75% or less of the projecting height of the main rib 32. Is preferable, and it is more preferable that the protrusion height is 45% or more and 65% or less.

また、小リブ33の突出先端の形状は特に限定されるものではなく、セパレータ30の上下方向に直交する平面で小リブ33を切断した場合の突出先端の断面形状は、例えば、三角形、矩形、台形、五角形等の多角形でもよいが、突出先端が角部を有していないことが好ましい。すなわち、小リブ33の突出先端は、丸みを有する滑らかな形状であることが好ましく、セパレータ30の上下方向に直交する平面で小リブ33を切断した場合の突出先端の断面形状は、例えば半円形、半楕円形が好ましい。 Further, the shape of the protruding tip of the small rib 33 is not particularly limited, and the cross-sectional shape of the protruding tip when the small rib 33 is cut along a plane orthogonal to the vertical direction of the separator 30 is, for example, a triangle, a rectangle, It may be a polygon such as a trapezoid or a pentagon, but it is preferable that the projecting tip has no corner. That is, it is preferable that the protruding end of the small rib 33 has a rounded and smooth shape, and the sectional shape of the protruding end when the small rib 33 is cut along a plane orthogonal to the vertical direction of the separator 30 is, for example, a semicircle. The semi-elliptical shape is preferable.

なお、セパレータ30の形状は特に限定されるものではなく、正極板10又は負極板20を収容可能な袋状であってもよいし、フィルム状物をU字状に折り曲げて正極板10又は負極板20を挟むことが可能な状態としたものでもよいし、複数により正極板10又は負極板20を挟むことが可能なフィルム状であってもよい。袋状のセパレータ30の内側に収容する極板は、正極板10、負極板20のいずれでもよいが、負極板20を収容する形態の方が、セパレータ30の破れを抑制する効果がより高い。 The shape of the separator 30 is not particularly limited, and may be a bag shape capable of accommodating the positive electrode plate 10 or the negative electrode plate 20, or a positive electrode plate 10 or the negative electrode may be formed by bending a film-like material into a U shape. The plate 20 may be in a sandwichable state, or may be in the form of a film in which the positive electrode plate 10 or the negative electrode plate 20 can be sandwiched by a plurality of plates. The electrode plate accommodated inside the bag-shaped separator 30 may be either the positive electrode plate 10 or the negative electrode plate 20, but the form in which the negative electrode plate 20 is accommodated is more effective in suppressing breakage of the separator 30.

また、電解液の組成は特に限定されるものではなく、鉛蓄電池に使用される一般的な電解液を問題なく適用することができる。そして、鉛蓄電池の充電受入性を優れたものとするためには、電解液にはアルミニウムイオンが含有されていることが好ましく、電解液中のアルミニウムイオンの含有量は0.01モル/L以上とすることが好ましい。ただし、電解液中のアルミニウムイオンの含有量が高いと、ガスが極板群1から外部に排出されにくくなるため、電解液中のアルミニウムイオンの含有量は0.3モル/L以下とすることが好ましい。
また、電解液はナトリウムイオンを含有していてもよい。電解液中のナトリウムイオンの含有量は、0.002モル/L以上0.05モル/L以下とすることができる。
Further, the composition of the electrolytic solution is not particularly limited, and a general electrolytic solution used for a lead storage battery can be applied without any problem. In order to make the lead storage battery excellent in charge acceptance, the electrolytic solution preferably contains aluminum ions, and the content of aluminum ions in the electrolytic solution is 0.01 mol/L or more. It is preferable that However, if the content of aluminum ions in the electrolytic solution is high, it becomes difficult for gas to be discharged to the outside from the electrode plate group 1. Therefore, the content of aluminum ions in the electrolytic solution should be 0.3 mol/L or less. Is preferred.
Further, the electrolytic solution may contain sodium ions. The content of sodium ions in the electrolytic solution can be 0.002 mol/L or more and 0.05 mol/L or less.

〔第一実施形態の実施例〕
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(実施例1)
実施例1の鉛蓄電池は、図1及び図4に示す鉛蓄電池と同一の構成を有する。実施例1の鉛蓄電池の製造方法を、以下に説明する。
Example of First Embodiment
Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples.
(Example 1)
The lead acid battery of Example 1 has the same configuration as the lead acid battery shown in FIGS. 1 and 4. The method for manufacturing the lead acid battery of Example 1 will be described below.

まず、鉛粉、水、希硫酸、及び短繊維を混合して、正極用ペーストを製造した。次に、カルシウム系鉛合金の圧延板を打ち抜いて、図3に示すような6枚の板状格子体が連結した連結体シート100を製造した。そして、連結体シート100の板状格子体の開口部に正極用ペーストを充填した後に、連結体シートをロータリーカッターにて切断し、6枚の正極充填板を得た。 First, lead powder, water, dilute sulfuric acid, and short fibers were mixed to produce a positive electrode paste. Next, a rolled plate of calcium lead alloy was punched out to manufacture a connected body sheet 100 in which six plate-shaped lattice bodies were connected as shown in FIG. Then, after filling the positive electrode paste into the openings of the plate-like lattice of the connected body sheet 100, the connected body sheet was cut with a rotary cutter to obtain six positive electrode filled plates.

板状格子体の寸法は、縦110mm、横幅100mm、厚さ1.0mmの矩形板状である。板状格子体の上縁部には、幅10mmの集電耳11が形成されている。板状格子体の上縁部において集電耳11が形成されている横幅方向位置は、板状格子体の両側縁部(縦枠)のうち集電耳11に近い方の側縁部と集電耳11の中心との間の横幅方向距離が33mmとなる位置である。集電耳11の上縁部からの突出高さは、設計中央値を17mmとし、切断時の許容差を±1mmとした。 The size of the plate-like lattice is a rectangular plate having a length of 110 mm, a width of 100 mm, and a thickness of 1.0 mm. A current collecting ear 11 having a width of 10 mm is formed on the upper edge portion of the plate-like lattice. The lateral widthwise position where the current collecting ears 11 are formed at the upper edge of the plate-shaped lattice is the same as the side edge closer to the current collecting ears 11 of both side edges (vertical frames) of the plate-shaped lattice. This is the position where the distance in the widthwise direction from the center of the hearing aid 11 is 33 mm. The projecting height from the upper edge of the current collecting ear 11 was set to a design median value of 17 mm and a tolerance during cutting of ±1 mm.

また、板状格子体の上縁部には、幅10mmの切り残し部12が形成されている。板状格子体の上縁部において切り残し部12が形成されている横幅方向位置は、板状格子体の両側縁部(縦枠)のうち集電耳11から遠い方の側縁部と切り残し部12の中心との間の横幅方向距離が33mmとなる位置である。切り残し部12の上縁部からの突出高さは、連結体シート100の切断時に板状格子体の上縁部に傷を付けないようにするために、1mm以上3mm以下とした。
こうして得られた正極充填板を慣用の方法で熟成、乾燥し、正極熟成板を得た。
負極板用の板状格子体は、連続鋳造法により作製した。そして、板状格子体の開口部に負極用ペーストを充填した後に慣用の方法で熟成、乾燥し、負極熟成板を得た。
Further, an uncut portion 12 having a width of 10 mm is formed on the upper edge portion of the plate-like lattice. The lateral width direction position where the uncut portion 12 is formed in the upper edge portion of the plate-shaped grid is cut from the side edge of the plate-shaped grid that is farther from the current collecting ear 11 among both side edges (vertical frame). This is the position where the lateral widthwise distance from the center of the remaining portion 12 is 33 mm. The protrusion height from the upper edge of the uncut portion 12 is set to 1 mm or more and 3 mm or less so as not to scratch the upper edge of the plate-like lattice when the connector sheet 100 is cut.
The positive electrode-filled plate thus obtained was aged and dried by a conventional method to obtain a positive electrode aged plate.
The plate lattice for the negative electrode plate was produced by a continuous casting method. Then, after filling the negative electrode paste in the openings of the plate-like lattice, it was aged and dried by a conventional method to obtain a negative electrode aged plate.

セパレータ30は、多孔性合成樹脂製であり、厚さ0.2mmのフィルム状のベース部31と、ベース部31の表面から突出し突出高さが0.5mmである複数の主リブ32と、ベース部31の表面から突出し突出高さが0.2mmである複数の小リブ33と、を有する。また、セパレータ30は、幅110mm、長さ231mmのフィルム状物を、主リブ32及び小リブ33が形成されている側の表面が外側に向くように折り畳み、両側縁部をギヤシールすることにより袋状に成形したものである。 The separator 30 is made of porous synthetic resin and has a film-shaped base portion 31 having a thickness of 0.2 mm, a plurality of main ribs 32 protruding from the surface of the base portion 31 and having a protrusion height of 0.5 mm, and a base. A plurality of small ribs 33 protruding from the surface of the portion 31 and having a protruding height of 0.2 mm. Further, the separator 30 is formed by folding a film-like material having a width of 110 mm and a length of 231 mm so that the surface on the side where the main ribs 32 and the small ribs 33 are formed faces outward, and sealing the both side edges with a bag. It is molded into a shape.

小リブ33の突出先端の形状は、角部を有しておらず丸みを有する形状である。また、複数の小リブ33が、ベース部31の正極板10に対向する表面のうちセパレータ30の突出部寄り端部30b(集電耳11との距離よりも切り残し部12との距離の方が小さい方の横幅方向端部30b)の全体に、0.5mm間隔で並んで形成されている。すなわち、複数の小リブ33が、セパレータ30の側縁部と後述する境界線Bとの間の部分に、0.5mm間隔で並んで形成されている。さらに、複数の主リブ32が、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向中央部30a(すなわち、小リブ33が形成されていない部分)の全体に、5mm間隔で並んで形成されている。 The protruding tip of the small rib 33 has a rounded shape without corners. In addition, the plurality of small ribs 33 are formed on the surface of the base portion 31 facing the positive electrode plate 10 at the end portion 30b closer to the protruding portion of the separator 30 (the distance from the uncut portion 12 than the distance from the collector ear 11). Are formed side by side at intervals of 0.5 mm on the entire lateral width direction end 30b) having a smaller width. That is, the plurality of small ribs 33 are formed side by side at 0.5 mm intervals in a portion between the side edge portion of the separator 30 and a boundary line B described later. Further, the plurality of main ribs 32 are arranged at intervals of 5 mm over the central portion 30a in the lateral width direction of the separator 30 (that is, the portion where the small ribs 33 are not formed) on the surface of the base portion 31 facing the positive electrode plate 10. They are formed side by side.

主リブ32のうち最も横幅方向の端部側(集電耳11との距離よりも切り残し部12との距離の方が小さい方の横幅方向端部側であり、すなわち突出部寄り端部側)に配された主リブ32が、ベース部31のうち切り残し部12に対向する部分の上に位置する。すなわち、主リブ32が形成されている横幅方向中央部30aと、小リブ33が形成されている横幅方向端部30b(突出部寄り端部30b)との境界線Bは、ベース部31のうち切り残し部12に対向する部分の上に位置する。なおかつ、主リブ32のうち最も突出部寄り端部側に配された主リブ32は、ベース部31のうち切り残し部12に対向する部分の横幅方向中央近傍に位置する。 Of the main ribs 32, the end portion in the lateral width direction (the end portion side closer to the protruding portion, that is, the end portion side in the lateral width direction having a smaller distance to the uncut portion 12 than to the collector ear 11). The main rib 32 arranged in () is located on a portion of the base portion 31 facing the uncut portion 12. That is, the boundary line B between the center portion 30 a in the widthwise direction in which the main rib 32 is formed and the end portion 30 b in the widthwise direction in which the small rib 33 is formed (end portion 30 b near the protrusion) is the base line 31 of the base portion 31. It is located on the portion facing the uncut portion 12. In addition, the main rib 32 disposed on the end side closest to the protruding portion of the main rib 32 is located near the center in the lateral width direction of the portion of the base portion 31 facing the uncut portion 12.

このようなセパレータ30を介して上記正極熟成板と上記負極熟成板とを複数枚交互に積層して、極板群1を製造した。本例においては、正極熟成板を6枚、負極熟成板を7枚用いた。その際、袋状のセパレータ30の内側に1枚の負極熟成板を収容するとともに、2枚の正極熟成板でセパレータ30を挟んで、セパレータ30の主リブ32及び小リブ33が正極熟成板に対向するようにした。
そして、極板群1を電槽41内に収容し、群圧が5〜10kPa程度になるようにスペーサで調整して、電圧2Vの鉛蓄電池を組み立てた。次いで、電槽41内に電解液を注液し、慣用の方法で化成を行うことにより実施例1の鉛蓄電池を得た。なお、化成により、正極熟成板及び負極熟成板が正極板10及び負極板20となる。
A plurality of the above-mentioned positive electrode aged plate and the above-mentioned negative electrode aged plate were alternately laminated via the separator 30 to manufacture the electrode plate group 1. In this example, 6 positive electrode aged plates and 7 negative electrode aged plates were used. At that time, one negative electrode aging plate is housed inside the bag-shaped separator 30, and the separator 30 is sandwiched between two positive electrode aging plates, so that the main ribs 32 and the small ribs 33 of the separator 30 become the positive electrode aging plate. I made them face each other.
Then, the electrode plate group 1 was housed in the battery case 41 and adjusted with a spacer so that the group pressure was about 5 to 10 kPa, and a lead storage battery having a voltage of 2 V was assembled. Then, the lead acid battery of Example 1 was obtained by injecting the electrolytic solution into the battery case 41 and performing chemical conversion by a conventional method. Note that the positive electrode aged plate and the negative electrode aged plate become the positive electrode plate 10 and the negative electrode plate 20 by the aging.

(実施例2)
実施例2の鉛蓄電池が有する極板群1の要部を、図5に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち切り残し部12に対向する部分の最も突出部寄り端部側に位置する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Example 2)
FIG. 5 shows a main part of the electrode plate group 1 included in the lead storage battery of Example 2. Except that the main rib 32 arranged closest to the protruding end of the main rib 32 is located closest to the protruding end of the base portion 31 facing the uncut portion 12. Since it is exactly the same as in Example 1, other explanations are omitted.

(実施例3)
実施例3の鉛蓄電池が有する極板群1の要部を、図6に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち切り残し部12に対向する部分の最も集電耳寄り端部側に位置する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Example 3)
FIG. 6 shows a main part of the electrode plate group 1 included in the lead storage battery of Example 3. Except that the main rib 32 arranged closest to the protruding end of the main rib 32 is located closest to the current collecting ear end of the portion of the base 31 facing the uncut portion 12. Since it is exactly the same as in Example 1, other explanations are omitted.

(実施例4)
実施例4の鉛蓄電池が有する極板群1の要部を、図7に示す。セパレータ30の上下方向に直交する平面で小リブ33を切断した場合の突出先端の断面形状が、半円形ではなく矩形であり、角部を有する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Example 4)
FIG. 7 shows a main part of the electrode plate group 1 included in the lead acid battery of Example 4. The cross-sectional shape of the protruding tip when the small rib 33 is cut along a plane orthogonal to the vertical direction of the separator 30 is the same as that of the first embodiment except that the protruding tip has a rectangular shape instead of a semicircular shape and has a corner portion. , And other explanations are omitted.

(実施例5)
実施例5の鉛蓄電池が有する極板群1の要部を、図8に示す。セパレータ30の上下方向に直交する平面で小リブ33を切断した場合の突出先端の断面形状が、半円形ではなく三角形であり、角部を有する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Example 5)
FIG. 8 shows a main part of the electrode plate group 1 included in the lead storage battery of Example 5. The cross-sectional shape of the protruding tip when the small rib 33 is cut in a plane orthogonal to the vertical direction of the separator 30 is exactly the same as in Example 1 except that it has a triangular shape instead of a semicircular shape and has a corner. , And other explanations are omitted.

(従来例)
従来例の鉛蓄電池が有する極板群1の要部を、図9に示す。ベース部31の正極板10に対向する表面には主リブ32のみが形成され、小リブは形成されていない点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Conventional example)
FIG. 9 shows a main part of the electrode plate group 1 included in the conventional lead-acid battery. Except for the fact that only the main ribs 32 are formed on the surface of the base portion 31 facing the positive electrode plate 10 and the small ribs are not formed, this is exactly the same as in Example 1, and therefore other explanations are omitted.

(比較例1)
比較例1の鉛蓄電池が有する極板群1の要部を、図10に示す。ベース部31の正極板10に対向する表面には小リブ33のみが形成され、主リブ32は形成されていない点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Comparative Example 1)
FIG. 10 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 1. Except for the fact that only the small rib 33 is formed on the surface of the base portion 31 facing the positive electrode plate 10 and the main rib 32 is not formed, it is exactly the same as in the first embodiment, so other explanations are omitted. ..

(比較例2)
比較例2の鉛蓄電池が有する極板群1の要部を、図11に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち集電耳11に対向する部分に位置する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Comparative example 2)
FIG. 11 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 2. The main rib 32 is the same as that of the first embodiment except that the main rib 32, which is arranged closest to the end of the main rib 32 facing the protruding portion, is located in a portion of the base portion 31 that faces the current collecting ear 11. , And other explanations are omitted.

(比較例3)
比較例3の鉛蓄電池が有する極板群1の要部を、図12に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち集電耳11に対向する部分と切り残し部12に対向する部分との間の横幅方向位置に位置する点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Comparative example 3)
FIG. 12 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 3. The main rib 32, which is arranged on the end portion side closest to the protruding portion of the main rib 32, is located in the lateral width direction between the portion of the base portion 31 facing the current collecting ear 11 and the portion of the base rib 31 facing the uncut portion 12. The third embodiment is exactly the same as the first embodiment except that it is located at, so the other description will be omitted.

(比較例4)
比較例4の鉛蓄電池が有する極板群1の要部を、図13に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち正極板10に対向する部分の最も突出部寄り端部側に位置する点以外は、実施例1と全く同様であるので、その他の説明については省略する。図13に示すように、ベース部31のうち正極板10に対向する部分には小リブ33は形成されておらず、ベース部31のうち正極板10に対向する部分よりも突出部寄り端部側のみに小リブ33が形成されている
(Comparative example 4)
FIG. 13 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 4. The embodiment except that the main rib 32 arranged on the most proximate end side of the main rib 32 is located on the most prominent end side of the portion of the base 31 facing the positive electrode plate 10. Since it is exactly the same as 1, the other description will be omitted. As shown in FIG. 13, the small rib 33 is not formed in the portion of the base portion 31 facing the positive electrode plate 10, and the end portion of the base portion 31 closer to the protrusion than the portion facing the positive electrode plate 10 is. The small rib 33 is formed only on the side

(比較例5)
比較例5の鉛蓄電池が有する極板群1の要部を、図14に示す。セパレータ30の突出部寄り端部30bに小リブが形成されておらず、ベース部31には主リブ32しか形成されていない点以外は、実施例1と全く同様であるので、その他の説明については省略する。
(Comparative example 5)
FIG. 14 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 5. Since the small ribs are not formed on the end portion 30b of the separator 30 close to the protruding portion, and only the main rib 32 is formed on the base portion 31, it is exactly the same as the first embodiment. Is omitted.

(比較例6)
比較例6の鉛蓄電池が有する極板群1の要部を、図15に示す。主リブ32のうち最も突出部寄り端部側に配された主リブ32が、ベース部31のうち集電耳11に対向する部分と切り残し部12に対向する部分との間の横幅方向位置に位置する点以外は、実施例1と全く同様である。また、比較例3と比べると、主リブ32のうち最も突出部寄り端部側に配された主リブ32が位置する横幅方向位置が、切り残し部12に近い。これ以外には異なる点は無いので、その他の説明については省略する。
(Comparative example 6)
FIG. 15 shows a main part of the electrode plate group 1 included in the lead storage battery of Comparative Example 6. The main rib 32, which is arranged on the end portion side closest to the protruding portion of the main rib 32, is located in the lateral width direction between the portion of the base portion 31 facing the current collecting ear 11 and the portion of the base rib 31 facing the uncut portion 12. It is exactly the same as the first embodiment except that it is located at. Further, as compared with Comparative Example 3, the position in the lateral width direction where the main rib 32 disposed on the end portion side closest to the protruding portion of the main rib 32 is located is closer to the uncut portion 12. Since there is no difference other than this, the other description will be omitted.

これらの鉛蓄電池について、JIS D5301に規定された軽負荷寿命試験に類似する方法により、寿命試験を行った。寿命試験の詳細な方法を以下に説明する。
75℃の雰囲気下において、鉛蓄電池を25Aで2分間放電し、引き続き14.8V(最大電流25A)で10分間充電する。このような工程を1サイクルとし、このサイクルを480回繰り返す。そして、1サイクル終了する毎に鉛蓄電池を25℃の雰囲気中に56時間放置し、放置後に280Aで5秒間連続放電を行い、放電5秒目の電圧を測定する。上記サイクルを480回繰り返す間に、放電5秒目の放電電圧が7.2Vに低下したら、寿命に到達したと判断し、それまでのサイクル数を寿命サイクル数とする。
A life test was performed on these lead storage batteries by a method similar to the light load life test defined in JIS D5301. The detailed method of the life test will be described below.
In a 75° C. atmosphere, the lead storage battery is discharged at 25 A for 2 minutes and then charged at 14.8 V (maximum current 25 A) for 10 minutes. Such a process is defined as one cycle, and this cycle is repeated 480 times. Then, each time one cycle is completed, the lead storage battery is left in an atmosphere of 25° C. for 56 hours, after which it is continuously discharged at 280 A for 5 seconds, and the voltage at the 5th second discharge is measured. When the discharge voltage at the 5th second discharge drops to 7.2 V while repeating the above cycle 480 times, it is determined that the life has been reached, and the number of cycles up to that point is defined as the number of life cycles.

なお、寿命試験中に電解液中の水分が減少するので、鉛蓄電池に適宜精製水を補給する。また、寿命試験は、1種の鉛蓄電池あたり2個の鉛蓄電池について実施し、1個の鉛蓄電池については寿命到達まで試験を継続した後に解体調査を行い、もう1個の鉛蓄電池については従来例の鉛蓄電池の寿命サイクル数まで試験を継続した後に解体調査を行った。従来例の鉛蓄電池よりも短寿命であった場合は、そのまま解体調査を行った。 Since the water content in the electrolytic solution decreases during the life test, the lead acid battery should be supplemented with purified water as appropriate. In addition, the life test is carried out for two lead storage batteries per type of lead storage battery, one lead storage battery is tested until it reaches the end of its life, and then a disassembly survey is conducted. A disassembly survey was conducted after continuing the test up to the life cycle number of the lead acid battery of the example. If the lead-acid battery had a shorter life than the conventional lead-acid battery, the disassembly survey was performed as it was.

寿命試験の結果を図16のグラフに示す。図16のグラフ中の寿命サイクル数の数値は、従来例の寿命サイクル数を100とした場合の相対値で示してある。
図16のグラフから、実施例1〜3の鉛蓄電池は、従来例及び比較例1〜6の鉛蓄電池に比べて長寿命であることが分かる。
The result of the life test is shown in the graph of FIG. The numerical value of the life cycle number in the graph of FIG. 16 is shown as a relative value when the life cycle number of the conventional example is 100.
From the graph of FIG. 16, it can be seen that the lead storage batteries of Examples 1 to 3 have a longer life than the lead storage batteries of the conventional example and Comparative Examples 1 to 6.

また、実施例1〜3の鉛蓄電池について、従来例の寿命サイクル数と同サイクル数にて解体調査を行ったところ、実施例1〜3及び従来例のいずれも正極板に伸びが生じており、特に、切り残し部から正極板の突出部寄り端部までの部分(以下「正極板の端部」と記す)が大きく反り曲がっていた。従来例の鉛蓄電池では、伸びて反り曲がった正極板の端部がセパレータの主リブを圧迫し引っ張ったことにより、セパレータが破れ、短絡が生じていた。 Moreover, when the lead-acid batteries of Examples 1 to 3 were disassembled and examined at the same number of cycles as the life cycle of the conventional example, all of Examples 1 to 3 and the conventional example showed elongation of the positive electrode plate. In particular, the portion from the uncut portion to the end portion of the positive electrode plate near the protruding portion (hereinafter referred to as “the end portion of the positive electrode plate”) was largely curved. In the conventional lead-acid battery, the edge of the positive electrode plate that is stretched and warped presses the main rib of the separator to pull it, causing the separator to rupture and a short circuit.

これに対して、実施例1〜3の鉛蓄電池では、主リブと小リブの突出高さの差分だけ、セパレータを圧迫するまでの正極板の反り曲がり量に余裕があるため、同サイクル数における比較ではセパレータの破れは起きておらず、短絡はみられなかった。また、反り曲がった正極板の端部は小リブに接触していたが、セパレータが強く引っ張られたような形跡は無かった。 On the other hand, in the lead-acid batteries of Examples 1 to 3, there is a margin in the amount of bending of the positive electrode plate until the separator is pressed by the difference in the protruding heights of the main rib and the small rib. In the comparison, no breakage of the separator occurred and no short circuit was observed. Further, the end of the bent positive electrode plate was in contact with the small rib, but there was no evidence that the separator was strongly pulled.

比較例1〜3の鉛蓄電池は、従来例の鉛蓄電池よりも短寿命となった。寿命到達時点で解体調査を行うと、比較例1の鉛蓄電池については、セパレータの酸化劣化による破れ、短絡が確認できた。これは、主リブを備えず小リブのみを備えているため、正極板とセパレータのベース部との間の距離が近く、正極板周辺の酸化雰囲気によって酸化劣化しやすかったためと考えられる。 The lead storage batteries of Comparative Examples 1 to 3 have shorter life than the lead storage batteries of the conventional example. When the disassembly survey was performed at the end of the life, the lead storage battery of Comparative Example 1 was confirmed to be broken and short-circuited due to the oxidation deterioration of the separator. It is considered that this is because the main ribs are not provided and only the small ribs are provided, so that the distance between the positive electrode plate and the base portion of the separator is short, and the oxidative atmosphere around the positive electrode plate is likely to cause oxidative deterioration.

比較例2、3の鉛蓄電池については、小リブが形成されている部分のセパレータが酸化劣化し、短寿命の原因となっていた。これは、比較例2、3の鉛蓄電池は主リブを備えているものの、主リブが形成されている範囲は狭く、小リブが形成されている部分のセパレータのベース部と正極板との間の距離が適正な距離に維持されにくいため、酸化劣化の抑制効果が小さいと考えられる。 Regarding the lead storage batteries of Comparative Examples 2 and 3, the separator in the portion where the small ribs were formed was oxidatively deteriorated, which caused a short life. This is because although the lead storage batteries of Comparative Examples 2 and 3 have the main ribs, the range in which the main ribs are formed is narrow, and the area between the base portion of the separator and the positive electrode plate in the portion where the small ribs are formed is small. It is considered that the effect of suppressing the oxidative deterioration is small because it is difficult to maintain the proper distance.

比較例6の鉛蓄電池は、従来例の鉛蓄電池と比較してやや長寿命となった。比較例6の鉛蓄電池について、従来例の寿命サイクル数と同サイクル数にて解体調査を行ったところ、従来例の鉛蓄電池と同程度の反り曲がりが正極板に生じていたが、セパレータのベース部のうち正極板の端部に対向する部分に小リブが形成されているため、セパレータが正極板の端部に圧迫されず破れには至っていなかった。ただし、主リブが形成されている範囲は狭く、小リブが形成されている部分のセパレータのベース部と正極板との間の距離が適正な距離に維持されにくいため、比較例2、3の鉛蓄電池ほどではないものの、セパレータの表面の酸化劣化が進行していた。 The lead acid battery of Comparative Example 6 had a slightly longer life than the lead acid battery of the conventional example. When the lead storage battery of Comparative Example 6 was disassembled and examined at the same number of cycles as the life cycle of the conventional example, the positive electrode plate was warped to the same extent as the lead storage battery of the conventional example. Since a small rib was formed in the portion of the portion facing the end of the positive electrode plate, the separator was not pressed against the end of the positive electrode plate and did not break. However, the range in which the main ribs are formed is narrow, and the distance between the base portion of the separator and the positive electrode plate in the portion in which the small ribs are formed is difficult to maintain at an appropriate distance. Although not as good as that of a lead storage battery, oxidative deterioration of the surface of the separator proceeded.

比較例4の鉛蓄電池は、従来例の鉛蓄電池と比較してやや長寿命となった。比較例4の鉛蓄電池について、従来例の寿命サイクル数と同サイクル数にて解体調査を行ったところ、従来例の鉛蓄電池と同様に、反り曲がった正極板がセパレータの主リブを圧迫していることが確認された。ただし、従来例の鉛蓄電池とは異なり、反り曲がり量が最も大きい正極板の端部に当接するのは小リブであるため、セパレータに作用する圧迫が比較的弱くなり、セパレータが破れるまでの時間をやや遅延できたものと考えられる。 The lead acid battery of Comparative Example 4 had a slightly longer life than the lead acid battery of the conventional example. When the lead storage battery of Comparative Example 4 was disassembled and examined at the same number of cycles as the life cycle of the conventional example, the bent positive electrode plate pressed the main rib of the separator, as in the lead storage battery of the conventional example. Was confirmed. However, unlike the lead-acid battery of the conventional example, it is the small rib that comes into contact with the end of the positive electrode plate with the largest amount of warpage, so the pressure acting on the separator becomes relatively weak, and the time until the separator breaks It is probable that the delay was delayed.

実施例4及び実施例5の鉛蓄電池は、実施例1〜3の鉛蓄電池と比べると若干短寿命ではあるものの、従来例の鉛蓄電池と比べると長寿命であった。実施例4及び実施例5の鉛蓄電池について、従来例の寿命サイクル数と同サイクル数にて解体調査を行ったところ、実施例1〜3の鉛蓄電池と同様に、主リブと小リブの突出高さの差分だけ、セパレータを圧迫するまでの正極板の反り曲がり量に余裕があるため、正極板の端部が小リブを圧迫しておらず、セパレータの破れは生じていなかった。 The lead storage batteries of Examples 4 and 5 had a slightly shorter life than the lead storage batteries of Examples 1 to 3, but had a longer life than the lead storage batteries of the conventional example. When the lead storage batteries of Examples 4 and 5 were dismantled and examined at the same number of cycles as the life cycle of the conventional example, similar to the lead storage batteries of Examples 1 to 3, the main ribs and the small ribs protruded. Due to the difference in height, there is a margin in the amount of bending of the positive electrode plate until the separator is pressed. Therefore, the edge of the positive electrode plate did not press the small rib, and the separator did not break.

ただし、反り曲がった正極板の端部の縁が小リブに引っかかり、セパレータを引っ張り始めていた。一方で、実施例1〜3の鉛蓄電池では、反り曲がった正極板の端部の縁は、小リブに接触していたが引っかかってはいなかった。これは、実施例1〜3の鉛蓄電池では、小リブの突出先端の形状が角部を有しない形状であるため、正極板の端部の縁が小リブに引っかかり難かったものと考えられ、これが実施例1〜3と実施例4、5との寿命差の要因になったと考えられる。 However, the edge of the bent positive electrode plate was caught by the small rib, and the separator was started to be pulled. On the other hand, in the lead-acid batteries of Examples 1 to 3, the edge of the bent positive electrode plate was in contact with the small rib but was not caught. It is considered that, in the lead storage batteries of Examples 1 to 3, since the shape of the protruding tip of the small rib did not have a corner, the edge of the end of the positive electrode plate was hard to be caught by the small rib. It is considered that this was the cause of the difference in life between Examples 1 to 3 and Examples 4 and 5.

比較例5の鉛蓄電池は、従来例の鉛蓄電池と比較してやや短寿命となった。比較例5の鉛蓄電池について、その寿命サイクル数にて解体調査を行ったところ、セパレータのベース部の酸化劣化が進行し、破れが生じていた。これは、セパレータのベース部のうち正極板の端部に対向する部分に小リブが形成されていないため、セパレータのベース部と正極板の端部との接触が生じやすくなったためと考えられる。例えば、電解液の対流やガスの流動によってセパレータが揺らぐと、セパレータのベース部と正極板の端部とが接触する機会が増えるため、従来例の鉛蓄電池よりもセパレータの酸化劣化が進みやすい。 The lead acid battery of Comparative Example 5 had a slightly shorter life than the lead acid battery of the conventional example. When the lead storage battery of Comparative Example 5 was disassembled for the number of life cycles, it was found that the base portion of the separator was oxidatively deteriorated and broken. It is considered that this is because a small rib is not formed in a portion of the base portion of the separator that faces the end portion of the positive electrode plate, and thus the base portion of the separator and the end portion of the positive electrode plate are likely to come into contact with each other. For example, when the separator fluctuates due to the convection of the electrolytic solution or the flow of gas, the chances of the base portion of the separator and the end portion of the positive electrode plate contacting each other increase, and thus the separator is more likely to be oxidized and deteriorated than the lead storage battery of the conventional example.

〔第二実施形態〕
本発明の第二実施形態に係る鉛蓄電池の構造について、図17を参照しながら詳細に説明する。図17の(a)は、第二実施形態に係る鉛蓄電池が有するセパレータの平面図であり、(b)は(a)のX矢視図であり、(c)は(a)のY矢視図である。第二実施形態に係る鉛蓄電池の構造は、第一実施形態に係る鉛蓄電池とほぼ同一であるので、同一の部分の説明は省略し、異なる部分のみ説明する。
[Second embodiment]
The structure of the lead storage battery according to the second embodiment of the present invention will be described in detail with reference to FIG. 17A is a plan view of a separator included in the lead storage battery according to the second embodiment, FIG. 17B is a view of the X arrow of FIG. 17A, and FIG. 17C is a Y arrow of FIG. It is a perspective view. Since the structure of the lead storage battery according to the second embodiment is almost the same as that of the lead storage battery according to the first embodiment, description of the same parts will be omitted and only different parts will be described.

図17の(a)に示すように、複数の小リブ33が、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向両端部30b、30bの全体に、並んで形成されている。また、図17の(a)に示すように、複数の主リブ32が、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向中央部30aの全体に、並んで形成されている。そして、図17の(a)に示すように、隣接する小リブ33同士の間の横幅方向の距離(以下、「小リブのピッチ」と記すこともある)よりも、隣接する主リブ32同士の間の横幅方向の距離(以下、「主リブのピッチ」と記すこともある)の方が大きく形成されている。 As shown in (a) of FIG. 17, a plurality of small ribs 33 are formed side by side over the entire widthwise end portions 30b, 30b of the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10. There is. In addition, as shown in FIG. 17A, a plurality of main ribs 32 are formed side by side on the entire central portion 30a in the lateral width direction of the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10. There is. Then, as shown in FIG. 17A, the main ribs 32 adjacent to each other are smaller than the distance in the lateral width direction between the adjacent small ribs 33 (hereinafter, sometimes referred to as “pitch of the small ribs”). The distance in the lateral width direction (hereinafter, also referred to as “main rib pitch”) is formed to be larger.

主リブのピッチが大きい方が、電解液の上下移動が生じやすい。また、小リブのピッチが小さいほどセパレータ30が曲がりにくいので、正極板10とセパレータ30のベース部31との接触が生じにくくなる。ただし、電解液の上下移動は生じにくくなる。セパレータ30が曲がりにくくするためには、小リブのピッチは小さいほど好ましく、正極板10や負極板20の厚さよりも小さい方が好ましい。 The larger the main rib pitch is, the easier the electrolyte is to move vertically. Further, as the pitch of the small ribs is smaller, the separator 30 is less likely to bend, and thus the positive electrode plate 10 and the base portion 31 of the separator 30 are less likely to come into contact with each other. However, vertical movement of the electrolytic solution is less likely to occur. In order to make the separator 30 hard to bend, the smaller the pitch of the small ribs, the more preferable, and the smaller the thickness of the positive electrode plate 10 and the negative electrode plate 20 is.

また、小リブのピッチ及び主リブのピッチが上記のような構成であれば、正極板10の四隅がセパレータ30に向かって湾曲して正極板10がお椀状に変形する場合であっても、正極板10の四隅が小リブ33を圧迫してセパレータ30のベース部31を引き裂くことを防止することができる。 Further, when the pitch of the small ribs and the pitch of the main ribs are as described above, even when the four corners of the positive electrode plate 10 are curved toward the separator 30 and the positive electrode plate 10 is deformed into a bowl shape, It is possible to prevent the four corners of the positive electrode plate 10 from pressing the small ribs 33 and tearing the base portion 31 of the separator 30.

なお、第二実施形態に係る鉛蓄電池においては、隣接する小リブ33同士の間の横幅方向の距離は全て同一であるが、横幅方向端部30bに形成された小リブ33のうち、横幅方向の中央側に配された小リブ33と、横幅方向の外縁側に配された小リブ33とで、隣接する小リブ33同士の間の横幅方向の距離が異なるようにしてもよい。横幅方向の中央側の小リブ33の前記距離よりも横幅方向の外縁側の小リブ33の前記距離の方を小さくすると、正極板10の四隅が小リブ33を圧迫しても、セパレータ30のベース部31がより引き裂かれにくくなる。 In addition, in the lead storage battery according to the second embodiment, all the small ribs 33 adjacent to each other have the same distance in the horizontal width direction, but among the small ribs 33 formed at the end portions 30b in the horizontal width direction, the horizontal width direction. The small ribs 33 arranged on the center side of the and the small ribs 33 arranged on the outer edge side in the lateral width direction may have different lateral distances between the adjacent small ribs 33. When the distance of the small rib 33 on the outer edge side in the lateral width direction is made smaller than the distance of the small rib 33 on the center side in the lateral width direction, even if the four corners of the positive electrode plate 10 press the small rib 33, The base portion 31 is less likely to be torn.

また、主リブ32の突出高さは、セパレータ30の上下方向全体にわたって一定であってもよいが、一定でなくてもよい。例えば、図17の(b)に示すように、主リブ32は、セパレータ30の上下方向の中央部は高くセパレータ30の上下方向の両端部は低い形状であってもよい。図17の(b)のように、X矢視図における主リブ32の突出先端の形状を、お椀状に変形した正極板10に沿う形状とすれば、変形した正極板10により主リブ32が圧迫されることを抑制することができる。 Further, the protrusion height of the main rib 32 may be constant over the entire vertical direction of the separator 30, but may not be constant. For example, as shown in FIG. 17B, the main rib 32 may have a shape in which the central portion of the separator 30 in the vertical direction is high and both end portions of the separator 30 in the vertical direction are low. As shown in (b) of FIG. 17, if the shape of the protruding tip of the main rib 32 in the X arrow view is a shape along the positive electrode plate 10 that is deformed into a bowl shape, the deformed positive electrode plate 10 causes the main rib 32 to move. It can suppress being pressed.

さらに、主リブ32の突出高さは、全ての主リブ32において同一であってもよいが、同一でなくてもよい。例えば、図17の(c)に示すように、複数の主リブ32のうちセパレータ30の横幅方向の中央側に配された主リブ32は突出高さが高く、セパレータ30の横幅方向の端部側に配された主リブ32は突出高さが低くてもよい。図17の(c)のように、各主リブ32の突出高さを、お椀状に変形した正極板10に沿うように設定すれば、変形した正極板10により主リブ32が圧迫されることを抑制することができる。なお、Y矢視図において、複数の主リブ32の突出先端を結んだ線の形状は、図17の(c)のように台形状であってもよいが、楕円、二次曲線、双曲線等の曲線状であってもよい。 Further, the protrusion heights of the main ribs 32 may be the same for all the main ribs 32, but may not be the same. For example, as shown in (c) of FIG. 17, among the plurality of main ribs 32, the main rib 32 disposed on the center side in the lateral width direction of the separator 30 has a high protruding height and the end portion in the lateral width direction of the separator 30. The main rib 32 disposed on the side may have a low protruding height. As shown in (c) of FIG. 17, if the protruding height of each main rib 32 is set along the positive electrode plate 10 deformed like a bowl, the deformed positive electrode plate 10 presses the main rib 32. Can be suppressed. Note that, in the Y arrow view, the shape of the line connecting the protruding tips of the plurality of main ribs 32 may be trapezoidal as shown in (c) of FIG. 17, but may be an ellipse, a quadratic curve, a hyperbola, or the like. It may be curved.

さらに、小リブ33は、図17の(a)、(c)に示すように、セパレータ30の横幅方向両端部30b、30bに形成されていてもよいが、セパレータ30の横幅方向両端部30b、30bのうち一方のみに形成されていてもよい。一方のみに形成される場合、小リブ33が形成される横幅方向端部30bは、集電耳11との距離よりも切り残し部12との距離の方が小さい方の横幅方向端部30b(すなわち突出部寄り端部)である。 Further, the small ribs 33 may be formed on both end portions 30b, 30b in the lateral width direction of the separator 30, as shown in FIGS. It may be formed on only one of 30b. When formed on only one side, the lateral width direction end portion 30b where the small rib 33 is formed has a smaller distance from the uncut portion 12 than the distance from the collector ear 11 to the lateral width direction end portion 30b( That is, the end portion near the protrusion).

〔第三実施形態〕
本発明の第三実施形態に係る鉛蓄電池の構造について、図18を参照しながら詳細に説明する。図18は、第三実施形態に係る鉛蓄電池が有するセパレータの平面図である。第三実施形態に係る鉛蓄電池の構造は、第一実施形態に係る鉛蓄電池とほぼ同一であるので、同一の部分の説明は省略し、異なる部分のみ説明する。
[Third embodiment]
The structure of the lead storage battery according to the third embodiment of the present invention will be described in detail with reference to FIG. FIG. 18 is a plan view of a separator included in the lead storage battery according to the third embodiment. Since the structure of the lead storage battery according to the third embodiment is almost the same as that of the lead storage battery according to the first embodiment, description of the same parts will be omitted and only different parts will be described.

第一、第二実施形態に係る鉛蓄電池においては、小リブ33は、セパレータ30の上下方向に沿って連続する直線状をなしていたが、第三実施形態に係る鉛蓄電池においては、楕円、二次曲線、双曲線等の曲線状をなしている。詳述すると、図18に示すように、小リブ33のうち、集電耳11と対角をなす位置のベース部31の隅部に形成されている部分は、セパレータ30の上下方向に対して交差し且つ前記隅部に向かう方向に沿って連続する線状をなしている。 In the lead storage battery according to the first and second embodiments, the small rib 33 has a linear shape that is continuous along the vertical direction of the separator 30, but in the lead storage battery according to the third embodiment, an ellipse, It has a curved shape such as a quadratic curve or a hyperbola. More specifically, as shown in FIG. 18, of the small ribs 33, the portions formed at the corners of the base portion 31 at positions diagonal to the current collecting ears 11 are arranged in the vertical direction of the separator 30. It has a linear shape that intersects and is continuous along the direction toward the corner.

このような構成であれば、正極板10の四隅がセパレータ30に向かって湾曲して正極板10がお椀状に変形し小リブ33に当接した後に、湾曲した正極板10の四隅が元に戻る方向に変形したとしても(すなわち、平板状に近づく方向に変形したとしても)、正極板10の隅部が変形する方向と小リブ33が連続する方向とがほぼ同一であるため、正極板10の隅部が小リブ33に引っかかりにくい。そのため、正極板10の隅部が小リブ33を圧迫してセパレータ30のベース部31を引き裂くことを防止することができる。 With such a configuration, after the four corners of the positive electrode plate 10 are curved toward the separator 30 and the positive electrode plate 10 is deformed into a bowl shape and contacts the small rib 33, the four corners of the curved positive electrode plate 10 are Even if the positive electrode plate is deformed in the returning direction (that is, even if it is deformed in a direction approaching a flat plate), the direction in which the corner of the positive electrode plate 10 is deformed and the direction in which the small ribs 33 are continuous are substantially the same. The corners of 10 are unlikely to be caught by the small rib 33. Therefore, it is possible to prevent the corner portion of the positive electrode plate 10 from pressing the small rib 33 and tearing the base portion 31 of the separator 30.

正極板10の四隅のうち集電耳11と対角をなす位置の隅部は最も変形しやすいため、小リブ33のうち、少なくとも集電耳11と対角をなす位置のベース部31の隅部に形成されている部分は、上記のような曲線状であることが好ましいが、図18に示すように、他の3つの隅部も同様に曲線状であってもよい。 Since the corners of the four corners of the positive electrode plate 10 that are diagonal to the current collecting ears 11 are most easily deformed, the corners of the base portion 31 of the small ribs 33 that are at least diagonal to the current collecting ears 11 are the most deformable. The portion formed in the portion is preferably curved as described above, but as shown in FIG. 18, the other three corners may also be curved.

また、小リブ33は、図18に示すように曲線状をなしていてもよいが、集電耳11と対角をなす位置のベース部31の隅部に形成されている部分が、セパレータ30の上下方向に対して交差し且つ前記隅部に向かう方向に沿って連続する線状をなしていれば、直線状をなしていてもよい。
さらに、小リブ33が曲線状をなしている場合は、小リブ33の湾曲の中心は、集電耳11とそれに対角をなす位置のベース部31の隅部とを結ぶ直線上に位置することが好ましい。
The small rib 33 may have a curved shape as shown in FIG. 18, but the portion formed at the corner of the base portion 31 at a position diagonal to the current collecting ear 11 has a separator 30. It may have a linear shape as long as it has a linear shape that intersects with the vertical direction and is continuous along the direction toward the corner.
Further, when the small ribs 33 are curved, the center of curvature of the small ribs 33 is located on a straight line connecting the current collecting ears 11 and the corners of the base portion 31 at positions diagonal to the current collecting ears 11. It is preferable.

さらに、正極板10の湾曲の中心(すなわち、お椀状に変形した正極板10の凸面の頂点)は、セパレータ30の中心よりも下側に位置することが好ましい。このような構成であれば、ガスの気泡の出口となるセパレータ30の上下方向中央よりも上方側部分の湾曲度合いは小さいと言えるので、極板群1内にガスが滞留しにくい。 Furthermore, it is preferable that the center of curvature of the positive electrode plate 10 (that is, the apex of the convex surface of the positive electrode plate 10 that has been transformed into a bowl shape) be located below the center of the separator 30. With such a configuration, it can be said that the degree of curvature of the upper side portion of the separator 30 that is the outlet of gas bubbles of the gas in the up-down direction is small, so that the gas is unlikely to stay in the electrode plate group 1.

すなわち、ガスの気泡が極板群1から外部に排出される際の出口となる部分である、正極板10の上下方向中央よりも上方側部分の湾曲度合いが小さければ、ガスは極板群1内に滞留しにくく排出されやすいので、鉛蓄電池の内部抵抗の上昇が抑制される。化成後の正極板10のうち、上下方向中央よりも上方側部分の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が抑制されるという効果が奏される。 That is, if the degree of curvature of the portion above the center of the positive electrode plate 10 in the up-down direction, which is the outlet when gas bubbles are discharged to the outside from the electrode plate group 1, is small, the gas is in the electrode plate group 1. Since it does not easily stay inside and is easily discharged, an increase in internal resistance of the lead storage battery is suppressed. If the flatness of the upper part of the positive electrode plate 10 after the formation in the vertical direction is 4.0 mm or less, the effect of suppressing an increase in the internal resistance of the lead storage battery is achieved.

なお、第一、第二、第三実施形態に係る鉛蓄電池においては、ベース部31の正極板10に対向する表面のうちセパレータ30の横幅方向端部に小リブ33を形成したが、ベース部31の正極板10に対向する表面のうちセパレータ30の上下方向端部にも、セパレータ30の上下方向に沿って連続する線状をなす小リブ33を形成してもよい。正極板10に横幅方向の反りだけでなく上下方向の反りも生じる場合(すなわち、正極板10がお椀状に湾曲する場合)には、ベース部31の正極板10に対向する表面のうちセパレータ30の上下方向端部にも小リブ33を形成した方が、正極板10が小リブ33を圧迫してセパレータ30のベース部31を引き裂くことをより防止することができる。 In the lead-acid batteries according to the first, second, and third embodiments, the small rib 33 is formed at the lateral width direction end of the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10. Small vertical ribs 33 that are continuous along the vertical direction of the separator 30 may be formed on the vertical end portions of the separator 30 on the surface of the separator 31 that faces the positive electrode plate 10. When not only the warp in the width direction but also the warp in the vertical direction occurs in the positive electrode plate 10 (that is, when the positive electrode plate 10 is curved in a bowl shape), the separator 30 on the surface of the base portion 31 facing the positive electrode plate 10 is separated. If the small ribs 33 are also formed on the upper and lower ends, it is possible to prevent the positive electrode plate 10 from pressing the small ribs 33 and tearing the base portion 31 of the separator 30.

1 極板群
10 正極板
11 集電耳
12 突出部
20 負極板
30 セパレータ
30a 横幅方向中央部
30b 横幅方向端部(突出部寄り端部、集電耳寄り端部)
31 ベース部
32 主リブ
33 小リブ
DESCRIPTION OF SYMBOLS 1 Electrode plate group 10 Positive electrode plate 11 Current collecting ear 12 Projection part 20 Negative electrode plate 30 Separator 30a Horizontal width direction central part 30b Horizontal width direction end part (end part near projection part, current collecting ear end part)
31 Base part 32 Main rib 33 Small rib

Claims (4)

正極板と負極板がセパレータを介して複数枚交互に積層された極板群を備える鉛蓄電池であって、
前記正極板の上縁部には、前記正極板の上方に向かって突出する集電耳と、前記正極板の上方に向かって突出し且つ突出高さが前記集電耳よりも低い突出部とが、前記セパレータの横幅方向に間隔を空けて形成されており、
前記セパレータは、フィルム状のベース部と、前記ベース部の前記正極板に対向する表面から突出し前記正極板に接する複数の主リブと、前記ベース部の前記正極板に対向する表面から突出し前記主リブよりも突出高さが低い複数の小リブと、を有し、
前記主リブは、前記セパレータの上下方向に沿って連続する線状をなして、前記ベース部の前記正極板に対向する表面のうち前記セパレータの横幅方向中央部に形成されており、
前記小リブは、前記セパレータの上下方向に沿って連続する線状をなして、前記ベース部の前記正極板に対向する表面のうち前記セパレータの横幅方向端部に形成されており、前記小リブが形成されている前記横幅方向端部は、前記集電耳との距離よりも前記突出部との距離の方が小さい方の横幅方向端部であり、
前記主リブのうち、最も前記横幅方向の端部側に配された前記主リブが、前記ベース部のうち前記突出部に対向する部分の上に位置する鉛蓄電池。
A lead storage battery comprising a positive electrode plate and a negative electrode plate, wherein a plurality of electrode plates are alternately laminated via a separator,
On the upper edge portion of the positive electrode plate, a current collecting ear protruding upward of the positive electrode plate, and a protruding portion protruding upward of the positive electrode plate and having a protruding height lower than that of the current collecting ear, Formed at intervals in the width direction of the separator,
The separator is a film-shaped base portion, a plurality of main ribs protruding from a surface of the base portion facing the positive electrode plate and in contact with the positive electrode plate, and a plurality of main ribs protruding from a surface of the base portion facing the positive electrode plate. A plurality of small ribs having a lower protruding height than the ribs,
The main rib is formed in a continuous linear shape along the vertical direction of the separator, and is formed in the central portion in the lateral width direction of the separator on the surface of the base portion facing the positive electrode plate,
The small rib is formed in a lateral width direction end portion of the separator on the surface of the base portion facing the positive electrode plate in a continuous linear shape along the vertical direction of the separator. The widthwise end portion in which is formed is a widthwise end portion whose distance from the protruding portion is smaller than the distance from the current collecting ear,
A lead storage battery in which the main rib disposed on the end portion side in the lateral width direction of the main ribs is located above a portion of the base portion facing the protrusion.
前記小リブの突出先端が角部を有していない請求項1に記載の鉛蓄電池。 The lead storage battery according to claim 1, wherein the protruding tip of the small rib does not have a corner. 前記横幅方向端部に形成された前記小リブのうち、前記横幅方向の中央側に配された前記小リブと、前記横幅方向の外縁側に配された前記小リブとでは、隣接する前記小リブ同士の間の前記横幅方向の距離が異なり、前記横幅方向の中央側の前記小リブの前記距離よりも前記横幅方向の外縁側の前記小リブの前記距離の方が小さい請求項1又は請求項2に記載の鉛蓄電池。 Of the small ribs formed at the lateral width direction ends, the small ribs arranged on the center side in the lateral width direction and the small ribs arranged on the outer edge side in the lateral width direction are adjacent to each other. The distance between the ribs in the lateral width direction is different, and the distance of the small rib on the outer edge side in the lateral width direction is smaller than the distance of the small rib on the center side in the lateral width direction. Item 2. The lead acid battery according to item 2. 前記小リブのうち、前記集電耳と対角をなす位置の前記ベース部の隅部に形成されている部分は、前記セパレータの上下方向に対して交差し且つ前記隅部に向かう方向に沿って連続する線状をなしている請求項1〜3のいずれか一項に記載の鉛蓄電池。 Of the small ribs, a portion formed at a corner of the base portion at a position diagonal to the current collecting ear is along a direction that intersects with the vertical direction of the separator and goes to the corner. The lead storage battery according to claim 1, wherein the lead storage battery has a continuous linear shape.
JP2019013336A 2019-01-29 2019-01-29 Lead-acid battery Active JP7053512B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019013336A JP7053512B2 (en) 2019-01-29 2019-01-29 Lead-acid battery
CN201921870612.0U CN211700412U (en) 2019-01-29 2019-11-01 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013336A JP7053512B2 (en) 2019-01-29 2019-01-29 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2020123447A true JP2020123447A (en) 2020-08-13
JP7053512B2 JP7053512B2 (en) 2022-04-12

Family

ID=71992865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013336A Active JP7053512B2 (en) 2019-01-29 2019-01-29 Lead-acid battery

Country Status (2)

Country Link
JP (1) JP7053512B2 (en)
CN (1) CN211700412U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142066A (en) * 2001-11-06 2003-05-16 Japan Storage Battery Co Ltd Storage battery
JP2010140772A (en) * 2008-12-12 2010-06-24 Panasonic Corp Lead storage battery
WO2019225620A1 (en) * 2018-05-25 2019-11-28 日立化成株式会社 Lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142066A (en) * 2001-11-06 2003-05-16 Japan Storage Battery Co Ltd Storage battery
JP2010140772A (en) * 2008-12-12 2010-06-24 Panasonic Corp Lead storage battery
WO2019225620A1 (en) * 2018-05-25 2019-11-28 日立化成株式会社 Lead storage battery

Also Published As

Publication number Publication date
CN211700412U (en) 2020-10-16
JP7053512B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
KR100637443B1 (en) Secondary battery and terminal assembly using the same
CN103733411B (en) Jelly core with the productivity ratio for improving and the battery unit including the jelly core
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
JP2017063001A (en) Lead storage battery
JP2006228637A (en) Separator for lead-acid battery and lead-acid battery
US20190393512A1 (en) Battery grid
JP5230845B2 (en) Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery
JPWO2012153464A1 (en) Negative electrode for lead acid battery and lead acid battery
EP2092586A1 (en) Bipolar battery
JP7053512B2 (en) Lead-acid battery
KR200440476Y1 (en) Punched grid for lead-acid battery
JP2012182080A (en) Lead acid battery
JP7152441B2 (en) liquid lead acid battery
JP7105218B2 (en) lead acid battery
JP6921037B2 (en) Lead-acid battery
KR20120091184A (en) Electrochemical cell and method for producing such a cell
CN216720222U (en) Battery unit, battery module, battery pack and vehicle
JP7219366B1 (en) liquid lead acid battery
JP2015185478A (en) Sealed lead-acid battery
JP7169724B2 (en) liquid lead acid battery
JP6572711B2 (en) Lead acid battery
JP3637603B2 (en) Lead acid battery
JP2012079609A (en) Lead storage battery
CN113471448B (en) Grid for inhibiting lead-acid storage battery electrode plate from growing up
JP2003092098A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150