JP2020122708A - Temperature detector - Google Patents

Temperature detector Download PDF

Info

Publication number
JP2020122708A
JP2020122708A JP2019014569A JP2019014569A JP2020122708A JP 2020122708 A JP2020122708 A JP 2020122708A JP 2019014569 A JP2019014569 A JP 2019014569A JP 2019014569 A JP2019014569 A JP 2019014569A JP 2020122708 A JP2020122708 A JP 2020122708A
Authority
JP
Japan
Prior art keywords
power
temperature
thermistor
high frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014569A
Other languages
Japanese (ja)
Other versions
JP7201462B2 (en
Inventor
善久 北条
Yoshihisa Hojo
善久 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2019014569A priority Critical patent/JP7201462B2/en
Publication of JP2020122708A publication Critical patent/JP2020122708A/en
Application granted granted Critical
Publication of JP7201462B2 publication Critical patent/JP7201462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

To more accurately detect a temperature of a temperature measurement target in a rotor.SOLUTION: A temperature detector 10 comprises: a thermistor 33 and a power receiving circuit 34 provided on a rotation unit 30; a power feeding circuit 28 and an arithmetic logical unit 26 provided on a stationary unit 20. The thermistor 33 is attached to a temperature measurement target. The power receiving circuit 34 supplies electric power transmitted through high-frequency magnetic field to the thermistor 33. The power feeding circuit uses a high frequency power source 24 to convert a voltage outputted from a direct current power source 21 into high frequency voltage, converts the high frequency voltage into high-frequency magnetic field using a coil 25, and transmits electric power via high-frequency magnetic field to the power receiving circuit 34 in a non-contact manner. The arithmetic logical unit 26 calculates active power to be supplied to the high frequency power source 24, calculates resistance of the thermistor 33 on the basis of the calculated active power, and detects a temperature of the temperature measurement target from the calculated resistance of the thermistor.SELECTED DRAWING: Figure 1

Description

本発明は、温度検出装置に関する。 The present invention relates to a temperature detecting device.

非特許文献1には、回転体における測温対象の温度を検出する技術が開示されている。 Non-Patent Document 1 discloses a technique for detecting the temperature of a temperature measurement target in a rotating body.

図3は、回転体における測温対象の温度を検出する従来の温度検出装置100の構成例を示す図である。図3に示す温度検出装置100は、固定部200と離間して設けられた回転部300のロータ301(回転体)の磁石302(測温対象)の温度を検出するものである。 FIG. 3 is a diagram showing a configuration example of a conventional temperature detection device 100 that detects the temperature of the temperature measurement target in the rotating body. The temperature detection device 100 shown in FIG. 3 detects the temperature of the magnet 302 (object of temperature measurement) of the rotor 301 (rotating body) of the rotating unit 300 provided separately from the fixed unit 200.

図3に示す温度検出装置100は、熱電対303と、A/Dコンバータ304と、CPU(Central Processing Unit)305と、無線送信回路306と、受電回路307と、無線受信回路201と、CPU202と、送電回路203と、電源204と、モニター205とを備える。A/Dコンバータ304、CPU305、無線送信回路306および受電回路307は、回転部300の回転基板308に設けられる。回転基板308は、ロータ301とともに回転する。無線受信回路201、CPU202、送電回路203、電源204およびモニター205は、固定部200に設けられる。 The temperature detection device 100 shown in FIG. 3 includes a thermocouple 303, an A/D converter 304, a CPU (Central Processing Unit) 305, a wireless transmission circuit 306, a power receiving circuit 307, a wireless reception circuit 201, and a CPU 202. The power transmission circuit 203, the power supply 204, and the monitor 205. The A/D converter 304, the CPU 305, the wireless transmission circuit 306, and the power receiving circuit 307 are provided on the rotating substrate 308 of the rotating unit 300. The rotating substrate 308 rotates together with the rotor 301. The wireless reception circuit 201, the CPU 202, the power transmission circuit 203, the power supply 204, and the monitor 205 are provided in the fixed unit 200.

熱電対303は、磁石302に取り付けられ、磁石302の温度を測定する。 The thermocouple 303 is attached to the magnet 302 and measures the temperature of the magnet 302.

A/Dコンバータ304は、熱電対303による測温値(アナログ値)をデジタル値に変換し、CPU305に出力する。 The A/D converter 304 converts the temperature measurement value (analog value) by the thermocouple 303 into a digital value and outputs it to the CPU 305.

CPU305は、A/Dコンバータ304から出力された測温値を、温度データとして無線送信回路306に無線送信させる。無線送信回路306は、温度データを固定部200に無線送信するための通信IC(Integrated Circuit)である。 The CPU 305 causes the wireless transmission circuit 306 to wirelessly transmit the temperature measurement value output from the A/D converter 304 as temperature data. The wireless transmission circuit 306 is a communication IC (Integrated Circuit) for wirelessly transmitting temperature data to the fixed unit 200.

受電回路307は、固定部200側から無線で(非接触で)伝送された電力を受電し、A/Dコンバータ304、CPU305および無線送信回路306に供給する。 The power receiving circuit 307 receives electric power wirelessly (non-contact) transmitted from the fixed unit 200 side and supplies the electric power to the A/D converter 304, the CPU 305, and the wireless transmission circuit 306.

無線受信回路201は、無線送信回路306から送信されてきた温度データを受信する。 The wireless reception circuit 201 receives the temperature data transmitted from the wireless transmission circuit 306.

CPU202は、無線受信回路201により受信された温度データをモニター205に出力して表示させる。 The CPU 202 outputs the temperature data received by the wireless reception circuit 201 to the monitor 205 for display.

送電回路203は、ワイヤレス電力伝送により、受電回路306に電力を送電する。 The power transmission circuit 203 transmits power to the power reception circuit 306 by wireless power transmission.

電源205は、固定部200の各部に電力を供給する。 The power supply 205 supplies electric power to each part of the fixed part 200.

無線受信回路201、CPU202、送電回路203および電源204は、固定部200と離間した回転部300から温度データを取得するテレメータ206を構成する。 The wireless reception circuit 201, the CPU 202, the power transmission circuit 203, and the power supply 204 form a telemeter 206 that acquires temperature data from the rotating unit 300 that is separated from the fixed unit 200.

「Manner社テレメータテクニカルシート」,No.TM−002−06,13.08.23"Manner Telemeter Technical Sheet", No. TM-002-06, 13.08.23

図3に示す温度検出装置100においては、A/Dコンバータ304、CPU305、および通信ICである無線送信回路306などの部品が回転基板308に搭載される。そのため、これらの部品の寿命あるいは使用温度環境などにより、回転体における測温対象の温度を検出できなくなるおそれがある。 In the temperature detection device 100 shown in FIG. 3, components such as the A/D converter 304, the CPU 305, and the wireless transmission circuit 306 that is a communication IC are mounted on the rotating substrate 308. Therefore, there is a possibility that the temperature of the temperature measurement target in the rotating body may not be detected due to the life of these components or the operating temperature environment.

上記のような問題点に鑑みてなされた本発明の目的は、回転体における測温対象の温度をより確実に検出することができる温度検出装置を提供することにある。 An object of the present invention made in view of the above problems is to provide a temperature detection device that can more reliably detect the temperature of a temperature measurement target in a rotating body.

上記課題を解決するため、本発明に係る温度検出装置は、固定部と離間して設けられた回転部の回転体における測温対象の温度を検出する温度検出装置であって、前記回転部に設けられたサーミスタおよび受電回路と、前記固定部に設けられた送電回路および演算部とを備え、前記サーミスタは、前記測温対象に取り付けられ、前記測温対象の温度に応じて抵抗が変化し、前記受電回路は、高周波磁界を介して伝送された電力を前記サーミスタに供給し、前記送電回路は、直流電源と、高周波電源と、送電コイルとを備え、前記直流電源から出力された電圧を前記高周波電源により高周波電圧に変換し、前記高周波電圧を前記送電コイルにより高周波磁界に変換し、前記高周波磁界を介して電力を前記受電回路に非接触で伝送し、前記演算部は、前記高周波電源に供給される有効電力を算出し、該算出した有効電力に基づき前記サーミスタの抵抗を算出し、該算出したサーミスタの抵抗により前記測温対象の温度を検出する。 In order to solve the above problems, the temperature detecting device according to the present invention is a temperature detecting device for detecting the temperature of a temperature measurement target in a rotating body of a rotating part provided separately from a fixed part, wherein A thermistor and a power receiving circuit that are provided, and a power transmission circuit and a computing unit that are provided in the fixed part are provided, the thermistor is attached to the temperature measurement target, and the resistance changes according to the temperature of the temperature measurement target. The power receiving circuit supplies electric power transmitted via a high frequency magnetic field to the thermistor, and the power transmitting circuit includes a DC power source, a high frequency power source, and a power transmitting coil, and outputs the voltage output from the DC power source. The high-frequency power supply converts the high-frequency voltage into a high-frequency voltage, the power-transmitting coil converts the high-frequency voltage into a high-frequency magnetic field, and the power is transferred to the power receiving circuit through the high-frequency magnetic field in a non-contact manner. The active power supplied to the device is calculated, the resistance of the thermistor is calculated based on the calculated active power, and the temperature of the temperature measurement target is detected by the calculated resistance of the thermistor.

本発明に係る温度検出装置において、前記送電回路は、前記直流電源から出力された電圧を検出する電圧検出器と、前記直流電源から出力された電流を検出する電流検出器とをさらに備え、前記演算部は、前記電流検出器による検出結果と、前記電圧検出器による検出結果とに基づき前記有効電力を算出する。 In the temperature detection device according to the present invention, the power transmission circuit further includes a voltage detector that detects a voltage output from the DC power supply, and a current detector that detects a current output from the DC power supply, The arithmetic unit calculates the active power based on the detection result of the current detector and the detection result of the voltage detector.

本発明に係る温度検出装置において、前記回転部には、複数の測温対象それぞれに対応して、前記サーミスタと前記受電回路とが設けられ、前記固定部には、前記複数の受電回路それぞれに対応して、前記送電回路が設けられ、前記複数の受電回路はそれぞれ、コイルとコンデンサとからなり、共振周波数が異なる共振回路を備え、前記受電回路と、該受電回路に対応する送電回路との間で、前記受電回路が備える共振回路の共振周波数に一致する周波数の高周波磁界を介して、電力が非接触で伝送される。 In the temperature detecting device according to the present invention, the rotating part is provided with the thermistor and the power receiving circuit corresponding to each of a plurality of temperature measurement targets, and the fixed part is provided with each of the plurality of power receiving circuits. Correspondingly, the power transmission circuit is provided, each of the plurality of power reception circuits is provided with a resonance circuit having a coil and a capacitor and different resonance frequencies, and the power reception circuit and a power transmission circuit corresponding to the power reception circuit. In between, electric power is contactlessly transmitted through a high frequency magnetic field having a frequency matching the resonance frequency of the resonance circuit included in the power receiving circuit.

本発明に係る温度検出装置によれば、回転体における測温対象の温度をより確実に検出することができる。 According to the temperature detection device of the present invention, the temperature of the temperature measurement target in the rotating body can be detected more reliably.

本発明の一実施形態に係る温度検出装置の構成例を示す図である。It is a figure which shows the structural example of the temperature detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る温度検出装置の他の構成例を示す図である。It is a figure which shows the other structural example of the temperature detection apparatus which concerns on one Embodiment of this invention. 従来の温度検出装置の構成例を示す図である。It is a figure which shows the structural example of the conventional temperature detection apparatus.

以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る温度検出装置10の構成例を示す図である。本実施形態に係る温度検出装置10は、固定部20と離間して設けられた回転部30のロータ31(回転体)の磁石32(測温対象)の温度を検出するものである。なお、本実施形態においては、測温対象が磁石32である例を用いて説明するが、本発明はこれに限られるものではない。測温対象は、故障の防止などのために温度を検出する必要がある回転体の任意の部位であってよい。 FIG. 1 is a diagram showing a configuration example of a temperature detection device 10 according to an embodiment of the present invention. The temperature detecting device 10 according to the present embodiment detects the temperature of the magnet 32 (object of temperature measurement) of the rotor 31 (rotating body) of the rotating portion 30 provided separately from the fixed portion 20. In the present embodiment, an example in which the temperature measurement target is the magnet 32 will be described, but the present invention is not limited to this. The temperature measurement target may be any part of the rotating body that needs to detect the temperature in order to prevent a failure.

図1に示す温度検出装置10は、サーミスタ33と、受電回路34と、直流電源21と、電圧検出器22と、電流検出器23と、高周波電源24と、送電コイルとしてのコイル25と、演算部26とを備える。サーミスタ33および受電回路34は、回転部30に設けられる。直流電源21、電圧検出器22、電流検出器23、高周波電源24、コイル25および演算部26は、固定部20に設けられる。 The temperature detection device 10 shown in FIG. 1 includes a thermistor 33, a power receiving circuit 34, a DC power supply 21, a voltage detector 22, a current detector 23, a high frequency power supply 24, a coil 25 as a power transmission coil, and a calculation. And a section 26. The thermistor 33 and the power receiving circuit 34 are provided in the rotating unit 30. The DC power supply 21, the voltage detector 22, the current detector 23, the high frequency power supply 24, the coil 25, and the calculation unit 26 are provided in the fixed unit 20.

サーミスタ33は、ロータ31の磁石32に取り付けられ、磁石32の温度に応じて抵抗値が変化する。 The thermistor 33 is attached to the magnet 32 of the rotor 31, and the resistance value changes according to the temperature of the magnet 32.

受電回路34は、固定部20側から無線で(非接触で)伝送された電力を受電し、サーミスタ33に供給する。受電回路34は、コイルまたはコイルとコンデンサとで構成され、高周波磁界を介して伝送された電力をサーミスタ33に供給する。具体的には、受電回路34は、後述するコイル25からの高周波磁界の磁気エネルギーを電気エネルギーに変換し、サーミスタ33に交流電圧を印加する。 The power receiving circuit 34 receives electric power wirelessly (non-contact) transmitted from the fixed portion 20 side and supplies the electric power to the thermistor 33. The power receiving circuit 34 includes a coil or a coil and a capacitor, and supplies the thermistor 33 with the electric power transmitted via the high frequency magnetic field. Specifically, the power receiving circuit 34 converts the magnetic energy of the high-frequency magnetic field from the coil 25, which will be described later, into electric energy, and applies an AC voltage to the thermistor 33.

直流電源21は、直流電力を高周波電源24に供給する。 The DC power supply 21 supplies DC power to the high frequency power supply 24.

電圧検出器22は、直流電源21から出力された電圧を検出し、検出結果を演算部26に出力する。 The voltage detector 22 detects the voltage output from the DC power supply 21, and outputs the detection result to the arithmetic unit 26.

電流検出器23は、直流電源21から出力された電流を検出し、検出結果を演算部26に出力する。 The current detector 23 detects the current output from the DC power supply 21, and outputs the detection result to the arithmetic unit 26.

高周波電源24は、直流電源21から出力された直流電圧を高周波電圧に変換し、コイル25に出力する。 The high frequency power supply 24 converts the direct current voltage output from the direct current power supply 21 into a high frequency voltage and outputs the high frequency voltage to the coil 25.

コイル25は、固定部20の固定基板27に設けられ、受電回路34と離間して対向する。コイル25は、高周波電源24から出力された高周波電圧を高周波磁界に変換して出力する。コイル25から出力された高周波磁界は、受電回路34において電気エネルギーに変換されることで、コイル25から受電回路34に電力が伝送される。すなわち、コイル25は、高周波電源24からの高周波電圧を高周波磁界に変換し、その高周波磁界を介して電力を受電回路34に非接触で伝送する。コイル25から受電回路34には、例えば、数W程度の電力が伝送される。 The coil 25 is provided on the fixed substrate 27 of the fixed portion 20 and faces the power receiving circuit 34 with a space therebetween. The coil 25 converts the high frequency voltage output from the high frequency power supply 24 into a high frequency magnetic field and outputs the high frequency magnetic field. The high-frequency magnetic field output from the coil 25 is converted into electric energy in the power receiving circuit 34, so that power is transmitted from the coil 25 to the power receiving circuit 34. That is, the coil 25 converts the high frequency voltage from the high frequency power source 24 into a high frequency magnetic field, and transmits the power to the power receiving circuit 34 via the high frequency magnetic field in a non-contact manner. For example, electric power of about several W is transmitted from the coil 25 to the power receiving circuit 34.

直流電源21、電圧検出器22、電流検出器23、高周波電源24およびコイル25は、回転部30(受電回路34)に電力を非接触で伝送するための送電回路28を構成する。すなわち、送電回路28は、直流電源11から出力された電圧を高周波電源24により高周波電圧に変換し、その高周波電圧をコイル25により高周波磁界に変換し、その高周波磁界を介して電力を受電回路34に非接触で伝送する。 The DC power supply 21, the voltage detector 22, the current detector 23, the high frequency power supply 24, and the coil 25 constitute a power transmission circuit 28 for transmitting electric power to the rotating unit 30 (power receiving circuit 34) in a contactless manner. That is, the power transmission circuit 28 converts the voltage output from the DC power supply 11 into a high frequency voltage by the high frequency power supply 24, converts the high frequency voltage into a high frequency magnetic field by the coil 25, and receives electric power via the high frequency magnetic field. To contactlessly transmit.

演算部26は、電圧検出器22による検出結果と、電流検出器23による検出結果とに基づき高周波電源24に供給される有効電力を算出する。そして、演算部26は、算出した有効電力に基づきサーミスタ33の抵抗を算出し、算出したサーミスタ33の抵抗により磁石32の温度を検出する。具体的には、演算部26は、磁石32の温度が基準温度である場合の有効電力からの、算出した有効電力の変化量に基づき、磁石32の温度が基準温度である場合のサーミスタ33の抵抗からの、サーミスタ33の抵抗の変化量を算出することで、サーミスタ33の抵抗を算出する。そして、演算部26は、算出したサーミスタ33の抵抗に対応する温度を磁石32の温度として検出する。 The calculation unit 26 calculates active power supplied to the high frequency power supply 24 based on the detection result of the voltage detector 22 and the detection result of the current detector 23. Then, the calculation unit 26 calculates the resistance of the thermistor 33 based on the calculated active power, and detects the temperature of the magnet 32 by the calculated resistance of the thermistor 33. Specifically, the calculation unit 26 of the thermistor 33 when the temperature of the magnet 32 is the reference temperature based on the calculated change amount of the active power from the active power when the temperature of the magnet 32 is the reference temperature. The resistance of the thermistor 33 is calculated by calculating the change amount of the resistance of the thermistor 33 from the resistance. Then, the calculation unit 26 detects the temperature corresponding to the calculated resistance of the thermistor 33 as the temperature of the magnet 32.

このように本実施形態においては、回転体の測温対象にサーミスタ33を取り付け、固定部20からワイヤレス電力伝送により電力をサーミスタ33に供給する。そして、高周波電源24に供給される有効電力からサーミスタ33の抵抗を算出し、算出したサーミスタ33の抵抗から測温対象の温度を検出する。そのため、回転部30にA/Dコンバータ、CPUおよび通信ICなどの部品を設ける必要がないので、これらの部品の寿命あるいは使用温度環境などに関わりなく、回転体における測温対象の温度をより確実に検出することができる。 As described above, in the present embodiment, the thermistor 33 is attached to the temperature measurement target of the rotating body, and power is supplied to the thermistor 33 by wireless power transmission from the fixed portion 20. Then, the resistance of the thermistor 33 is calculated from the active power supplied to the high frequency power supply 24, and the temperature of the temperature measurement target is detected from the calculated resistance of the thermistor 33. Therefore, since it is not necessary to provide components such as the A/D converter, the CPU and the communication IC in the rotating unit 30, the temperature of the temperature measurement target in the rotating body can be more reliably irrespective of the life of these components or the operating temperature environment. Can be detected.

なお、図1においては、電圧検出器22および電流検出器23が、直流電源21と高周波電源24との間に設けられている、すなわち、直流電源21からの直流電圧および直流電流が検出される例を用いて説明したが、これに限られるものではない。電圧検出器22は、高周波電源24からコイル25に出力される交流電圧vを検出してもよい。また、電流検出器23は、高周波電源24からコイル25に出力される交流電流iを検出してもよい。この場合、演算部26は、電圧検出器22により検出された交流電圧vと、電流検出器23により検出された交流電流iと、力率θとの積(v×i×cosθ)により有効電力を算出する。 In FIG. 1, the voltage detector 22 and the current detector 23 are provided between the DC power supply 21 and the high frequency power supply 24, that is, the DC voltage and the DC current from the DC power supply 21 are detected. Although the explanation is given by using the example, the present invention is not limited to this. The voltage detector 22 may detect the AC voltage v output from the high frequency power supply 24 to the coil 25. Further, the current detector 23 may detect the alternating current i output from the high frequency power supply 24 to the coil 25. In this case, the arithmetic unit 26 calculates the active power by the product (v×i×cos θ) of the AC voltage v detected by the voltage detector 22, the AC current i detected by the current detector 23, and the power factor θ. To calculate.

また、図1においては、測温対象が1つである例を用いて説明したが、本発明はこれに限られるものではなく、測温対象が複数であってもよい。測温対象が複数である場合の温度検出装置10の構成例を図2に示す。なお、図2においては、測温対象である磁石32が3つ(磁石32a,32b,32c)である場合を示している。 Further, in FIG. 1, the example in which the number of temperature measurement objects is one has been described, but the present invention is not limited to this, and there may be a plurality of temperature measurement objects. FIG. 2 shows a configuration example of the temperature detection device 10 when there are a plurality of temperature measurement targets. Note that FIG. 2 shows a case where the number of magnets 32 that are the objects of temperature measurement is three (magnets 32a, 32b, 32c).

図2に示すように、回転部30においては、磁石32a,32b,32cそれぞれに対応して、サーミスタ33および受電回路34が設けられる。すなわち、磁石32aに対応して、サーミスタ33aおよび受電回路34aが設けられる。また、磁石32bに対応して、サーミスタ33bおよび受電回路34bが設けられる。また、磁石32cに対応して、サーミスタ33cおよび受電回路34cが設けられる。 As shown in FIG. 2, in the rotating unit 30, a thermistor 33 and a power receiving circuit 34 are provided corresponding to the magnets 32a, 32b, 32c, respectively. That is, the thermistor 33a and the power receiving circuit 34a are provided corresponding to the magnet 32a. A thermistor 33b and a power receiving circuit 34b are provided corresponding to the magnet 32b. A thermistor 33c and a power receiving circuit 34c are provided corresponding to the magnet 32c.

受電回路34a,34b,34cはそれぞれ、コイルとコンデンサとからなり、共振周波数が異なる共振回路を備える。以下では、受電回路34aが備える共振回路の共振周波数をfaとする。また、受電回路34bが備える共振回路の共振周波数をfbとする。また、受電回路34cが備える共振回路の共振周波数をfcとする。 Each of the power receiving circuits 34a, 34b, and 34c includes a resonance circuit including a coil and a capacitor and having different resonance frequencies. Hereinafter, the resonance frequency of the resonance circuit included in the power receiving circuit 34a is set to fa. Further, the resonance frequency of the resonance circuit included in the power receiving circuit 34b is set to fb. Further, the resonance frequency of the resonance circuit included in the power receiving circuit 34c is fc.

固定部20においては、複数の受電回路34それぞれに対応して、送電回路28および演算部26が設けられる。すなわち、受電回路34aに対応して、送電回路28aおよび演算部26aが設けられる。また、受電回路34bに対応して、送電回路28bおよび演算部26bが設けられる。また、受電回路34cに対応して、送電回路28cおよび演算部26cが設けられる。 In the fixed unit 20, a power transmission circuit 28 and a calculation unit 26 are provided corresponding to each of the plurality of power receiving circuits 34. That is, the power transmission circuit 28a and the calculation unit 26a are provided corresponding to the power reception circuit 34a. Further, a power transmission circuit 28b and a calculation unit 26b are provided corresponding to the power receiving circuit 34b. Further, a power transmission circuit 28c and a calculation unit 26c are provided corresponding to the power receiving circuit 34c.

受電回路34と、その受電回路34に対応する送電回路28との間では、磁界共鳴型ワイヤレス電力伝送により電力が伝送される。具体的には、受電回路34と、対応する送電回路28との間では、受電回路34が備える共振回路の共振周波数に一致する周波数の高周波磁界を介して、電力が非接触で伝送される。すなわち、受電回路34aと送電回路28aとの間では、共振周波数faに一致する周波数の高周波磁界を介して、電力が伝送される。また、受電回路34bと送電回路28bとの間では、共振周波数fbに一致する周波数の高周波磁界を介して、電力が伝送される。また、受電回路34cと送電回路28cとの間では、共振周波数fcに一致する周波数の高周波磁界を介して、電力が伝送される。 Electric power is transmitted between the power receiving circuit 34 and the power transmitting circuit 28 corresponding to the power receiving circuit 34 by magnetic field resonance type wireless power transmission. Specifically, between the power receiving circuit 34 and the corresponding power transmitting circuit 28, power is transferred in a contactless manner via a high frequency magnetic field having a frequency matching the resonance frequency of the resonance circuit included in the power receiving circuit 34. That is, electric power is transmitted between the power receiving circuit 34a and the power transmitting circuit 28a via a high-frequency magnetic field having a frequency matching the resonance frequency fa. In addition, electric power is transmitted between the power receiving circuit 34b and the power transmitting circuit 28b via a high-frequency magnetic field having a frequency matching the resonance frequency fb. In addition, electric power is transmitted between the power receiving circuit 34c and the power transmitting circuit 28c via a high-frequency magnetic field having a frequency matching the resonance frequency fc.

演算部26は、対応する送電回路28が備える電圧検出器22および電流検出器23の検出結果から有効電力を算出し、対応する測温対象の温度を検出する。すなわち、演算部26aは、磁石32aの温度を検出する。また、演算部26bは、磁石32bの温度を検出する。また、演算部26cは、磁石32cの温度を検出する。 The calculation unit 26 calculates active power from the detection results of the voltage detector 22 and the current detector 23 included in the corresponding power transmission circuit 28, and detects the temperature of the corresponding temperature measurement target. That is, the calculation unit 26a detects the temperature of the magnet 32a. Further, the calculation unit 26b detects the temperature of the magnet 32b. The calculation unit 26c also detects the temperature of the magnet 32c.

このように、複数の測温対象それぞれに対応して、受電回路34と送電回路28とを設け、対応する受電回路34と送電回路28との間でそれぞれ異なる周波数の高周波磁界を介して電力を伝送することで、複数の測温対象それぞれの温度を検出することができる。 In this way, the power receiving circuit 34 and the power transmitting circuit 28 are provided corresponding to each of the plurality of temperature measurement targets, and the power is supplied between the corresponding power receiving circuit 34 and the power transmitting circuit 28 via the high-frequency magnetic fields of different frequencies. By transmitting, it is possible to detect the temperature of each of the plurality of temperature measurement targets.

上述の実施形態は代表的な例として説明したが、本発明の趣旨および範囲内で、多くの変更および置換が可能であることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形および変更が可能である。 Although the above embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited by the above-described embodiments, and various modifications and changes can be made without departing from the scope of the claims.

10 温度検出装置
20 固定部
21 直流電源
22 電圧検出器
23 電流検出器
24 高周波電源
25 コイル(送電コイル)
26,26a,26b,26c 演算部
27 固定基板
28,28a,28b,28c 送電回路
30 回転部
31 ロータ(回転体)
32,32a,32b,32c 磁石(測温対象)
33,33a,33b,33c サーミスタ
34,34a,34b,34c 受電回路
35 回転基板
10 Temperature Detection Device 20 Fixed Part 21 DC Power Supply 22 Voltage Detector 23 Current Detector 24 High Frequency Power Supply 25 Coil (Power Transmission Coil)
26, 26a, 26b, 26c Calculation part 27 Fixed substrate 28, 28a, 28b, 28c Power transmission circuit 30 Rotating part 31 Rotor (rotating body)
32, 32a, 32b, 32c Magnet (object of temperature measurement)
33, 33a, 33b, 33c Thermistor 34, 34a, 34b, 34c Power receiving circuit 35 Rotating substrate

Claims (3)

固定部と離間して設けられた回転部の回転体における測温対象の温度を検出する温度検出装置であって、
前記回転部に設けられたサーミスタおよび受電回路と、
前記固定部に設けられた送電回路および演算部とを備え、
前記サーミスタは、前記測温対象に取り付けられ、前記測温対象の温度に応じて抵抗が変化し、
前記受電回路は、高周波磁界を介して伝送された電力を前記サーミスタに供給し、
前記送電回路は、直流電源と、高周波電源と、送電コイルとを備え、前記直流電源から出力された電圧を前記高周波電源により高周波電圧に変換し、前記高周波電圧を前記送電コイルにより高周波磁界に変換し、前記高周波磁界を介して電力を前記受電回路に非接触で伝送し、
前記演算部は、前記高周波電源に供給される有効電力を算出し、該算出した有効電力に基づき前記サーミスタの抵抗を算出し、該算出したサーミスタの抵抗により前記測温対象の温度を検出する、温度検出装置。
A temperature detection device for detecting a temperature of a temperature measurement target in a rotating body of a rotating portion provided separately from a fixed portion,
A thermistor and a power receiving circuit provided in the rotating unit;
A power transmission circuit and a calculation unit provided in the fixed unit,
The thermistor is attached to the temperature measurement target, the resistance changes according to the temperature of the temperature measurement target,
The power receiving circuit supplies the power transmitted via a high-frequency magnetic field to the thermistor,
The power transmission circuit includes a DC power supply, a high frequency power supply, and a power transmission coil, converts the voltage output from the DC power supply into a high frequency voltage by the high frequency power supply, and converts the high frequency voltage into a high frequency magnetic field by the power transmission coil. The power is transmitted to the power receiving circuit through the high frequency magnetic field in a non-contact manner,
The calculation unit calculates active power supplied to the high frequency power source, calculates the resistance of the thermistor based on the calculated active power, and detects the temperature of the temperature measurement target by the calculated resistance of the thermistor, Temperature detection device.
請求項1に記載の温度検出装置において、
前記送電回路は、
前記直流電源から出力された電圧を検出する電圧検出器と、
前記直流電源から出力された電流を検出する電流検出器とをさらに備え、
前記演算部は、前記電流検出器による検出結果と、前記電圧検出器による検出結果とに基づき前記有効電力を算出する、温度検出装置。
The temperature detecting device according to claim 1,
The power transmission circuit,
A voltage detector that detects the voltage output from the DC power supply,
Further comprising a current detector for detecting the current output from the DC power supply,
The temperature detecting device, wherein the arithmetic unit calculates the active power based on the detection result of the current detector and the detection result of the voltage detector.
請求項1または2に記載の温度検出装置において、
前記回転部には、複数の測温対象それぞれに対応して、前記サーミスタと前記受電回路とが設けられ、
前記固定部には、前記複数の受電回路それぞれに対応して、前記送電回路が設けられ、
前記複数の受電回路はそれぞれ、コイルとコンデンサとからなり、共振周波数が異なる共振回路を備え、
前記受電回路と、該受電回路に対応する送電回路との間で、前記受電回路が備える共振回路の共振周波数に一致する周波数の高周波磁界を介して、電力が非接触で伝送される、温度検出装置。
The temperature detecting device according to claim 1 or 2,
The rotating unit is provided with the thermistor and the power receiving circuit corresponding to each of a plurality of temperature measurement objects,
The fixed portion is provided with the power transmission circuit corresponding to each of the plurality of power reception circuits,
Each of the plurality of power receiving circuits includes a resonance circuit having a different resonance frequency, which includes a coil and a capacitor,
Between the power receiving circuit and a power transmitting circuit corresponding to the power receiving circuit, power is transferred in a contactless manner through a high-frequency magnetic field having a frequency matching a resonance frequency of a resonance circuit included in the power receiving circuit. apparatus.
JP2019014569A 2019-01-30 2019-01-30 temperature detector Active JP7201462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014569A JP7201462B2 (en) 2019-01-30 2019-01-30 temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014569A JP7201462B2 (en) 2019-01-30 2019-01-30 temperature detector

Publications (2)

Publication Number Publication Date
JP2020122708A true JP2020122708A (en) 2020-08-13
JP7201462B2 JP7201462B2 (en) 2023-01-10

Family

ID=71992554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014569A Active JP7201462B2 (en) 2019-01-30 2019-01-30 temperature detector

Country Status (1)

Country Link
JP (1) JP7201462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394920A (en) * 2021-06-24 2021-09-14 上海卓荃电子科技有限公司 Motor rotor temperature measurement system and intelligent temperature control type motor
CN116418176A (en) * 2023-04-13 2023-07-11 哈尔滨理工大学 Absolute type angular displacement sensor device based on film material and angle resolving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651004A (en) * 1992-07-30 1994-02-25 Hioki Ee Corp Measuring device for constant of circuit element
JP2002039088A (en) * 2000-07-26 2002-02-06 Seiko Instruments Inc Device for body of revolution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651004A (en) * 1992-07-30 1994-02-25 Hioki Ee Corp Measuring device for constant of circuit element
JP2002039088A (en) * 2000-07-26 2002-02-06 Seiko Instruments Inc Device for body of revolution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394920A (en) * 2021-06-24 2021-09-14 上海卓荃电子科技有限公司 Motor rotor temperature measurement system and intelligent temperature control type motor
CN116418176A (en) * 2023-04-13 2023-07-11 哈尔滨理工大学 Absolute type angular displacement sensor device based on film material and angle resolving method
CN116418176B (en) * 2023-04-13 2023-11-21 哈尔滨理工大学 Absolute type angular displacement sensor device based on film material and angle resolving method

Also Published As

Publication number Publication date
JP7201462B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
US6703734B2 (en) Bearing with noncontact signal transfer mechanism
JP6358325B2 (en) Wireless power supply system and wireless power supply method
JP7201462B2 (en) temperature detector
JP5362437B2 (en) Power transmission system
JP2015165761A (en) Wireless power reception device and control circuit therefor, electronic apparatus using the same, abnormality detection method
US10404090B2 (en) Wireless power transmitting apparatus and method
JP2012244732A (en) Electromagnetic coupling state detection circuit, transmission equipment, non-contact power transmission system, and method for detecting electromagnetic coupling state
US9502172B2 (en) Wireless power transmitter, method of controlling the same, and temperature compensation method for load value of the wireless power transmitter
CN110063023A (en) Method for monitoring the operation of rotating electric machine
JP6534738B2 (en) Position detector, position measuring device, and operation method therefor
CN109769402B (en) Wireless power transmission apparatus
JP6392771B2 (en) Wireless power receiving apparatus, control circuit thereof, electronic device using the same, and method for calculating received power
JP2014098718A (en) Torque sensor
JP2012154916A (en) Sensor assembly and methods of measuring proximity of machine component to sensor
US10302138B2 (en) Sensor arrangement and rolling bearing having such a sensor arrangement
US10281443B2 (en) Gas detection device
JP2006204042A (en) Sensor module
JP2015141031A (en) Rotation angle detection device and method of detecting fault of rotation angle detection device
US11469625B2 (en) Electronic device for wirelessly transmitting power and method of operating the same
JP6507036B2 (en) Non-contact power feeding device and non-contact power receiving device
JP2013218439A (en) Telemeter measurement system of rotary machine
US20220320915A1 (en) Contactless power supply device, power reception device, and power transmission device
JP7449083B2 (en) Power transmission device, transmission method, and program
US20230065772A1 (en) Wireless power transmission device for detecting external object and method thereof
JP2019208313A (en) Wireless power transmission device, control circuit thereof, and wireless charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7201462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150