JP5362437B2 - Power transmission system - Google Patents

Power transmission system Download PDF

Info

Publication number
JP5362437B2
JP5362437B2 JP2009115203A JP2009115203A JP5362437B2 JP 5362437 B2 JP5362437 B2 JP 5362437B2 JP 2009115203 A JP2009115203 A JP 2009115203A JP 2009115203 A JP2009115203 A JP 2009115203A JP 5362437 B2 JP5362437 B2 JP 5362437B2
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
unit
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009115203A
Other languages
Japanese (ja)
Other versions
JP2010268531A (en
Inventor
雅城 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Japan Radio Co Ltd
Original Assignee
Nagano Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Japan Radio Co Ltd filed Critical Nagano Japan Radio Co Ltd
Priority to JP2009115203A priority Critical patent/JP5362437B2/en
Publication of JP2010268531A publication Critical patent/JP2010268531A/en
Application granted granted Critical
Publication of JP5362437B2 publication Critical patent/JP5362437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、互いに離間した複数の構成体間において非接触で電力の伝送を行って電力供給対象体に電力を供給する電力伝送システムに関するものである。   The present invention relates to a power transmission system that performs power transmission in a contactless manner between a plurality of components that are separated from each other to supply power to a power supply target.

この種の電力伝送システムとして、下記特許文献1に開示されたデータキャリアシステムで利用されている電力伝送システムが知られている。このデータキャリアシステムは、応答器と、応答器へ電力を供給するために高周波の搬送波を送信すると共に応答器との間でデータを送受信する質問器とを備えている。また、質問器には、質問器を制御するための制御手段と、質問器のアンテナ(質問器側コイル)から送信された電力の強さをモニタするためのモニタ手段と、質問器のアンテナと送信回路とのインピーダンス整合を行うための整合手段と、整合手段に配置された複数のコンデンサを連続的な合成容量として指示させるための変換テーブル手段とが設けられている。この電力伝送システムによれば、アンテナから送信された電力の強度をモニタ手段によってモニタしつつ、これを基にして制御手段が整合手段のコンデンサ合成容量を加減して最も大きな電力が得られる点に整合させることができるため、アンテナの製造上のバラツキ、経年変化および湿度温度の変化などに対しても自動的に最適な整合状態に移行させることが可能となっている。   As this type of power transmission system, a power transmission system used in a data carrier system disclosed in Patent Document 1 below is known. The data carrier system includes a responder and an interrogator that transmits a high-frequency carrier wave and supplies data to and from the responder in order to supply power to the responder. The interrogator includes a control means for controlling the interrogator, a monitor means for monitoring the strength of power transmitted from the interrogator antenna (interrogator-side coil), an interrogator antenna, Matching means for performing impedance matching with the transmission circuit, and conversion table means for instructing a plurality of capacitors arranged in the matching means as continuous combined capacitances are provided. According to this power transmission system, the intensity of the power transmitted from the antenna is monitored by the monitoring means, and based on this, the control means adjusts the capacitor combined capacity of the matching means to obtain the largest power. Since matching can be performed, it is possible to automatically shift to an optimal matching state even with respect to variations in manufacturing of the antenna, changes over time, changes in humidity and temperature, and the like.

特開平10−303790号公報(第2−4頁、第1図)Japanese Patent Laid-Open No. 10-303790 (page 2-4, FIG. 1)

ところが、上記したデータキャリアシステムで利用されている従来の電力伝送システムには、以下の改善すべき課題が存在している。すなわち、この電力伝送システムでは、質問器と応答器との間の距離や、応答器に対する質問器のアンテナの向きによってさまざまに変化する質問器側でのアンテナのインピーダンスに対しては、質問器に設けた整合手段のコンデンサ合成容量を加減することにより、送信回路のインピーダンスと整合させて、効率のよい電力の伝送を可能としている。   However, the conventional power transmission system used in the above-described data carrier system has the following problems to be improved. In other words, in this power transmission system, the interrogator has different impedances depending on the distance between the interrogator and the transponder and the orientation of the interrogator's antenna relative to the transponder. By adjusting the capacitor combined capacity of the matching means provided, it is possible to match the impedance of the transmission circuit and efficiently transmit power.

しかしながら、本願発明者が上記した従来の電力伝送システムについて鋭意研究を行ったところ、応答器側にはインピーダンス整合を任意に実行可能な整合手段が設けられていないため、応答器側ではコイルと整流平滑回路との整合状態を変更できないことに起因して、良好に電力伝送できる質問器と応答器との間の距離の範囲に制限があることを見出した。このため、この電力伝送システムでは、例えば、質問器側のアンテナ(質問器側コイル)を静止体(非回転体)に配設すると共に、応答器側のアンテナ(応答器側コイル)を回転体に配設して、静止体と回転体との間において電力を非接触で伝送するときには、両アンテナの中心軸を同軸(一方のアンテナの中心軸の延長線と他方のアンテナの中心軸の延長線とが一致する状態)として互いを近接させないと満足できる伝送を得ることができない。したがって、この電力伝送システムには、このような限られた使用形態でしか利用することができないという課題が存在する。   However, when the present inventor conducted extensive research on the above-described conventional power transmission system, there is no matching means that can arbitrarily execute impedance matching on the responder side. It has been found that there is a limit to the range of distance between the interrogator and the responder that can satisfactorily transmit power because the matching state with the smoothing circuit cannot be changed. Therefore, in this power transmission system, for example, the interrogator-side antenna (interrogator-side coil) is disposed on a stationary body (non-rotating body), and the responder-side antenna (responder-side coil) is rotated. When transmitting power in a non-contact manner between a stationary body and a rotating body, the central axes of both antennas are coaxial (extension of the central axis of one antenna and the central axis of the other antenna) Satisfactory transmission cannot be obtained unless the lines are close to each other. Therefore, this power transmission system has a problem that it can be used only in such a limited form of use.

本発明は、かかる課題を解決すべくなされたものであり、各種の使用形態において幅広く利用し得る電力伝送システムを提供することを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to provide a power transmission system that can be widely used in various types of usage.

上記目的を達成すべく請求項1記載の電力伝送システムは、互いに離間した複数の構成体と、前記各構成体間において非接触で電力の伝送を行う電力伝送装置と、当該電力伝送装置によって伝送された前記電力が供給される電力供給対象体とを備えた電力伝送システムであって、前記各構成体の少なくとも1つは回転体で構成され、前記電力伝送装置は、前記各構成体の少なくとも1つに取り付けられて信号発生部から出力された交流信号の供給を受けて電磁場を発生させる送電コイルと、前記信号発生部と前記送電コイルとの間に配設されて当該信号発生部と当該送電コイルとを整合させる第1整合部と、前記信号発生部を制御する制御処理および前記第1整合部を制御して前記信号発生部と前記送電コイルとを整合させる第1整合処理を実行する第1処理部と、前記送電コイルが取り付けられている前記構成体を除く他の前記構成体に取り付けられて前記電磁場によって誘導電圧を発生する受電コイルと、前記誘導電圧に基づいて供給電圧を生成する電圧生成部と、前記受電コイルと前記電圧生成部との間に配設されて当該受電コイルと当該電圧生成部とを整合させる第2整合部と、当該第2整合部を制御して前記受電コイルと前記電圧生成部とを整合させる第2整合処理を実行する第2処理部と、前記電力供給対象体に供給される電力値を測定する電力計測部とを備えて構成され、前記送電コイルおよび前記受電コイルは、各々の中心軸が互いに異軸であってかつ前記送電コイルの当該中心軸における所定部位と前記受電コイルの当該中心軸における所定部位との間の距離が前記回転体の回転状態において略一定(ここで、略一定とは、一定またはほぼ一定を含むことを意味する)となるように前記構成体に取り付けられ、前記第1処理部および前記第2処理部は、前記信号発生部から出力される前記交流信号を規定電力値未満の電力値に規定した小電力での送電が行われている状態において前記第1整合処理および第2整合処理をそれぞれ実行し、前記第1処理部は、前記第1整合処理の完了後において、前記電力計測部によって測定される電力値と前記規定電力値未満の電力値とに基づいて算出した伝送効率が所定値以上のときに、前記制御処理を実行して前記交流信号を前記規定電力値に規定した大電力での送電を行うIn order to achieve the above object, a power transmission system according to claim 1, wherein a plurality of components separated from each other, a power transmission device that performs non-contact power transmission between the components, and transmission by the power transmission device. A power supply system including the power supply target body to which the power is supplied, wherein at least one of the components is configured by a rotating body, and the power transmission device includes at least one of the components. A power transmission coil that is attached to one and receives an AC signal output from the signal generation unit to generate an electromagnetic field; and is disposed between the signal generation unit and the power transmission coil, and the signal generation unit a first matching unit for matching the power transmitting coil, a first matching processing for controlling the control process and the first matching unit for controlling said signal generating portion is aligned with said power transmission coil and the signal generating unit A first processing unit, wherein the receiving coil transmitting a coil is attached to the other of the structure except for the structure that is attached to generate an induced voltage by the electromagnetic field, the supply voltage on the basis of the induced voltage lines A voltage generating unit that generates a voltage, a second matching unit that is disposed between the power receiving coil and the voltage generating unit and that matches the power receiving coil and the voltage generating unit, and controls the second matching unit. A second processing unit that executes a second matching process for matching the power receiving coil and the voltage generation unit, and a power measurement unit that measures a power value supplied to the power supply target body . The power transmission coil and the power reception coil have different center axes from each other, and a distance between a predetermined part of the power transmission coil on the central axis and a predetermined part of the power reception coil on the central axis is (Here, the substantially constant, constant or nearly can mean the containing constant) substantially constant in the rotational state of the serial rotator attached to said structure such that said first processing unit and the second processing The unit executes the first matching process and the second matching process, respectively, in a state in which power transmission is performed with a small power in which the AC signal output from the signal generation unit is set to a power value less than a specified power value. The first processing unit has a transmission efficiency calculated based on a power value measured by the power measurement unit and a power value less than the specified power value after the first matching process is greater than or equal to a predetermined value. At this time, the control process is executed to transmit power with high power with the AC signal specified to the specified power value .

また、請求項2記載の電力伝送システムは、請求項1記載の電力伝送システムにおいて、前記電力伝送装置は、前記送電コイルおよび前記受電コイルの少なくとも一方を複数備えている。 The power transmission system according to claim 2 is the power transmission system according to claim 1, wherein the power transmission device includes a plurality of at least one of the power transmission coil and the power reception coil.

請求項1記載の電力伝送システムでは、送電コイルの中心軸と受電コイルの中心軸とが異軸であってかつ両中心軸における所定部位の間の距離が回転体の回転状態において略一定となるように送電コイルおよび受電コイルが回転体を含む構成体に取り付けられて、第1整合部が信号発生部と送電コイルとを整合させると共に、第2整合部が受電コイルと電圧生成部とを整合させる。この場合、この電力伝送システムでは、両中心軸における所定部位の間の距離が回転体の回転状態において一定であるため、両コイル間の距離の長短に応じて第1整合部および第2整合部による整合を行うことで、両中心軸が異軸でかつ両コイル間の距離が離れている場合においても、回転体を含む複数の構成体間での電力伝送を伝送効率のよい状態で確実に行うことができる。したがって、この電力伝送システムによれば、両コイル(アンテナ)の中心軸を同軸として互いを近接させるような限られた使用形態においてしか利用することができない従来の電力伝送システムとは異なり、各構成体の位置関係や各構成体の間の距離が異なる各種の使用形態において幅広く利用することができる。   In the power transmission system according to claim 1, the central axis of the power transmission coil and the central axis of the power receiving coil are different from each other, and the distance between the predetermined portions in both the central axes is substantially constant in the rotating state of the rotating body. The power transmitting coil and the power receiving coil are attached to the structure including the rotating body, the first matching unit matches the signal generating unit and the power transmitting coil, and the second matching unit matches the power receiving coil and the voltage generating unit. Let In this case, in this power transmission system, since the distance between the predetermined portions in both the central axes is constant in the rotating state of the rotating body, the first matching unit and the second matching unit according to the length of the distance between the coils. As a result, the power transmission between a plurality of components including the rotating body can be ensured with good transmission efficiency even when both central axes are different from each other and the distance between both coils is long. It can be carried out. Therefore, according to this power transmission system, each component is different from a conventional power transmission system that can be used only in a limited use form in which the central axes of both coils (antennas) are coaxial and close to each other. It can be widely used in various usage forms in which the positional relationship between the bodies and the distances between the constituents are different.

また、請求項2記載の電力伝送システムによれば、送電コイルおよび受電コイルの少なくとも一方を複数備えて電力伝送装置を構成したことにより、例えば、1つの構成体に1つの送電コイルを取り付けると共に、複数の回転体に受電コイルをそれぞれ配設することで、複数の電力供給対象体に対して電力を同時に供給することができる。また、例えば、複数の構成体に送電コイルをそれぞれ取り付けると共に、1つの回転体に1つの受電コイルを配設することで、電力供給対象体に対して、2つの送電コイルから電力を供給することができるため、一方の送電コイルに故障が生じたときであっても、他方の送電コイルから電力供給対象体に対して電力を供給することができる。 In addition, according to the power transmission system of claim 2, by configuring the power transmission device with a plurality of at least one of the power transmission coil and the power reception coil, for example, with one power transmission coil attached to one component, By arranging the power receiving coils on the plurality of rotating bodies, it is possible to simultaneously supply power to the plurality of power supply target bodies. In addition, for example, power is supplied from two power transmission coils to a power supply target object by attaching power transmission coils to a plurality of components and arranging one power reception coil in one rotating body. Therefore, even when a failure occurs in one power transmission coil, power can be supplied from the other power transmission coil to the power supply target.

電力伝送システム100の構成を示す構成図である。1 is a configuration diagram showing a configuration of a power transmission system 100. FIG. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第1の説明図である。FIG. 5 is a first explanatory diagram for explaining the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 送電装置2における第1整合部13の回路図である。3 is a circuit diagram of a first matching unit 13 in the power transmission device 2. FIG. 受電装置3における第2整合部22の回路図である。3 is a circuit diagram of a second matching unit 22 in the power receiving device 3. FIG. 電力伝送システム100における電力伝送処理の動作を説明するフローチャートである。4 is a flowchart illustrating an operation of power transmission processing in the power transmission system 100. 送電装置2と受電装置3との間の距離を変えて結合係数kを変えたときの各結合係数kでの本願発明(電力伝送システム100)の伝送効率の測定結果および各比較例1,2の伝送効率のシミュレーション結果を示す図である。Measurement results of the transmission efficiency of the present invention (power transmission system 100) at each coupling coefficient k when the distance between the power transmission device 2 and the power receiving device 3 is changed to change the coupling coefficient k, and Comparative Examples 1 and 2 It is a figure which shows the simulation result of the transmission efficiency of. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第2の説明図である。FIG. 6 is a second explanatory diagram illustrating the arrangement positions of the stationary body 101 and the rotating body 102 and the mounting positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第3の説明図である。FIG. 10 is a third explanatory diagram for explaining the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第4の説明図である。FIG. 10 is a fourth explanatory view for explaining the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第5の説明図である。FIG. 10 is a fifth explanatory diagram for explaining the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第6の説明図である。FIG. 10 is a sixth explanatory diagram illustrating the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第7の説明図である。It is a 7th explanatory view explaining the arrangement position of stationary body 101 and rotating body 102, and the attachment position of power transmission coil 12 and power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第8の説明図である。FIG. 10 is an eighth explanatory view for explaining the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21. 静止体101および回転体102の配置位置、並びに送電コイル12および受電コイル21の取付け位置を説明する第9の説明図である。FIG. 10 is a ninth explanatory diagram illustrating the arrangement positions of the stationary body 101 and the rotating body 102 and the attachment positions of the power transmission coil 12 and the power reception coil 21.

以下、添付図面を参照して、本発明に係る電力伝送システムの最良の形態について説明する。   The best mode of a power transmission system according to the present invention will be described below with reference to the accompanying drawings.

図1に示す電力伝送システム100は、一例として、互いに離間した状態で配置された構成体としての静止体(非回転体)101および回転体102と、静止体101および回転体102の間において非接触で電力の伝送を行う電力伝送装置1と、電力伝送装置1によって伝送された電力が供給される電力供給対象体としてのバッテリ4とを備えて構成されている。   As an example, the power transmission system 100 illustrated in FIG. 1 includes a stationary body (non-rotating body) 101 and a rotating body 102 that are arranged in a state of being separated from each other, and a non-rotating body between the stationary body 101 and the rotating body 102. A power transmission device 1 that transmits power by contact and a battery 4 as a power supply target to which power transmitted by the power transmission device 1 is supplied are configured.

静止体101は、図2に示すように、一例として矩形の板状に形成されて、図外の基体部に固定されている。この場合、静止体101には、後述する電力伝送装置1の送電装置2が配設されている。回転体102は、同図に示すように、一例として円柱状に形成されている。また、回転体102は、その端面102a,102bが静止体101の下面101aおよび上面101bに対して直角をなすようにして、静止体101に対して所定の距離だけ離間した位置において回転可能に配置されて、図外の回転機構によって回転させられる。この場合、回転体102には、後述する電力伝送装置1の受電装置3が配設されている。   As shown in FIG. 2, the stationary body 101 is formed in a rectangular plate shape as an example, and is fixed to a base portion outside the figure. In this case, the stationary body 101 is provided with a power transmission device 2 of the power transmission device 1 described later. As shown in the figure, the rotating body 102 is formed in a cylindrical shape as an example. The rotating body 102 is rotatably arranged at a position separated from the stationary body 101 by a predetermined distance so that the end faces 102a and 102b are perpendicular to the lower surface 101a and the upper surface 101b of the stationary body 101. And rotated by a rotating mechanism (not shown). In this case, the rotating body 102 is provided with a power receiving device 3 of the power transmission device 1 described later.

電力伝送装置1は、図1に示すように、送電装置2および受電装置3を備えて構成されている。送電装置2は、信号発生部11、送電コイル12、第1整合部13、反射電力計測部14、第1処理部15および第1通信部16を備えて構成されている。信号発生部11は、交流信号S1を発生して出力する。また、信号発生部11は、第1処理部15によって制御されて、交流信号S1の出力電力値を変更可能に構成されている。具体的には、信号発生部11は、交流信号S1を規定電力値W1aで出力する状態、および交流信号S1を規定電力値W1a未満の電力値W1bで出力する状態のうちの任意の一方の状態で動作可能となっている。また、信号発生部11は、出力している交流信号S1の出力電力値W1(規定電力値W1aと電力値W1bとを特に区別しないときには「電力値W1」ともいう)を出力電力情報として第1処理部15に出力する機能を備えている。送電コイル12は、図2に示すように、一例としてコイル形状(つるまきバネ形状や平面コイル形状)に形成されている(同図では平面コイル形状の送電コイル12を図示している)。また、送電コイル12は、同図に示すように、一例としてその開口面12bが静止体101の下面101aと平行となるようにして下面101a側に配設されて、受電装置3における後述の受電コイル21と電磁結合する。   As shown in FIG. 1, the power transmission device 1 includes a power transmission device 2 and a power reception device 3. The power transmission device 2 includes a signal generation unit 11, a power transmission coil 12, a first matching unit 13, a reflected power measurement unit 14, a first processing unit 15, and a first communication unit 16. The signal generator 11 generates and outputs an AC signal S1. Moreover, the signal generation part 11 is controlled by the 1st process part 15, and is comprised so that the output electric power value of alternating current signal S1 can be changed. Specifically, the signal generator 11 is in any one of a state in which the AC signal S1 is output at a specified power value W1a and a state in which the AC signal S1 is output at a power value W1b that is less than the specified power value W1a. It is possible to operate with. In addition, the signal generation unit 11 uses the output power value W1 of the output AC signal S1 (also referred to as “power value W1” when the specified power value W1a and the power value W1b are not particularly distinguished) as the first output power information. A function of outputting to the processing unit 15 is provided. As illustrated in FIG. 2, the power transmission coil 12 is formed in a coil shape (a helical spring shape or a planar coil shape) as an example (in the drawing, the planar coil-shaped power transmission coil 12 is illustrated). In addition, as shown in the figure, the power transmission coil 12 is disposed on the lower surface 101a side so that the opening surface 12b thereof is parallel to the lower surface 101a of the stationary body 101, and the power receiving device 3 receives power to be described later. The coil 21 is electromagnetically coupled.

第1整合部13は、信号発生部11と送電コイル12との間に配設されて(具体的には、信号発生部11と送電コイル12とを接続する伝送路に介装されて)、受電コイル21との間の距離に応じて変化する送電コイル12のインピーダンス(入力インピーダンス)に信号発生部11側のインピーダンスを整合させる(信号発生部11と送電コイル12とを整合状態に移行させる)。本例では、一例として、第1整合部13は、図3に示すように、送電コイル12に対して並列に接続された可変コンデンサ13aと、送電コイル12に対して直列(具体的には、送電コイル12および可変コンデンサ13aからなる並列回路に対して直列)に接続された可変コンデンサ13bとを備えて構成されている。また、第1整合部13は、可変コンデンサ13a,13bの各静電容量が第1処理部15から出力される制御信号S2によって別個独立して制御されることにより、送電コイル12(詳しくは、信号発生部11側から見た送電コイル12の入力インピーダンス)と信号発生部11(詳しくは、送電コイル12側から見た信号発生部11側の出力インピーダンス)とを整合可能となっている。反射電力計測部14は、信号発生部11と第1整合部13との間に配設されて(具体的には、信号発生部11と第1整合部13とを接続する伝送路に介装されて)、信号発生部11から送電コイル12に出力された交流信号S1のうちの送電コイル12で反射されて信号発生部11側に戻る交流信号S1の電力値(反射波電力値)W2を計測して反射電力情報として第1処理部15に出力する。   The first matching unit 13 is disposed between the signal generation unit 11 and the power transmission coil 12 (specifically, interposed in a transmission path connecting the signal generation unit 11 and the power transmission coil 12), The impedance on the signal generating unit 11 side is matched with the impedance (input impedance) of the power transmitting coil 12 that changes according to the distance between the power receiving coil 21 (the signal generating unit 11 and the power transmitting coil 12 are shifted to a matching state). . In this example, as an example, the first matching unit 13 includes a variable capacitor 13a connected in parallel to the power transmission coil 12 and a series (specifically, And a variable capacitor 13b connected in series to a parallel circuit including the power transmission coil 12 and the variable capacitor 13a. In addition, the first matching unit 13 is configured such that the electrostatic capacitances of the variable capacitors 13a and 13b are separately and independently controlled by the control signal S2 output from the first processing unit 15, thereby the power transmission coil 12 (in detail, It is possible to match the input impedance of the power transmission coil 12 viewed from the signal generation unit 11 side and the signal generation unit 11 (specifically, the output impedance of the signal generation unit 11 viewed from the power transmission coil 12 side). The reflected power measurement unit 14 is disposed between the signal generation unit 11 and the first matching unit 13 (specifically, the reflection power measurement unit 14 is interposed in a transmission path that connects the signal generation unit 11 and the first matching unit 13). The power value (reflected wave power value) W2 of the AC signal S1 reflected by the power transmission coil 12 out of the AC signal S1 output from the signal generation unit 11 to the power transmission coil 12 and returning to the signal generation unit 11 side. Measured and output to the first processing unit 15 as reflected power information.

第1処理部15は、一例としてCPUおよび内部メモリ(いずれも図示せず)を含んで構成されて、信号発生部11に対する制御処理、第1整合部13を制御して信号発生部11(具体的には反射電力計測部14および信号発生部11)と送電コイル12との間を上記の整合状態に移行させる制御処理、この整合状態における第1整合部13のパラメータ情報(本例では、各可変コンデンサ13a,13bの静電容量値に関する情報)D1を第1通信部16を経由して受電装置3に送信する送信処理、および受電装置3の電力計測部24で計測された後述の電力値W3を第1通信部16を経由して受信する受信処理を実行する。第1通信部16は、一例として無線送受信器で構成されて、受電装置3の後述する第2通信部26と通信可能に構成されている。また、第1通信部16は、受電装置3の無線信号についての受信強度D2を検出して受信強度情報として第1処理部に出力する機能を備えている。   As an example, the first processing unit 15 includes a CPU and an internal memory (both not shown), and controls the signal generating unit 11 and controls the first matching unit 13 to control the signal generating unit 11 (specifically). Specifically, the control processing for shifting between the reflected power measurement unit 14 and the signal generation unit 11) and the power transmission coil 12 to the matching state, parameter information of the first matching unit 13 in this matching state (in this example, each Information related to the capacitance values of the variable capacitors 13a and 13b) Transmission processing for transmitting D1 to the power receiving device 3 via the first communication unit 16, and power values described later measured by the power measuring unit 24 of the power receiving device 3 A reception process for receiving W3 via the first communication unit 16 is executed. The 1st communication part 16 is comprised by the radio | wireless transmitter / receiver as an example, and is comprised so that communication with the 2nd communication part 26 mentioned later of the power receiving apparatus 3 is possible. Further, the first communication unit 16 has a function of detecting the reception intensity D2 for the radio signal of the power receiving device 3 and outputting the reception intensity information to the first processing unit as reception intensity information.

受電装置3は、受電コイル21、第2整合部22、整流部23、電力計測部24、第2処理部25および第2通信部26を備えて構成されている。受電コイル21は、図2に示すように、一例として送電コイル12と同様のコイル形状に形成されて(同図では平面コイル形状の受電コイル21を図示している)、送電コイル12と同じ(または、ほぼ同じ)インダクタンスを有している。また、受電コイル21は、同図に示すように、一例としてその中心軸21aが回転体102の中心軸102cと同軸となるようにして(その開口面21bが回転体102の端面102aと平行となるようにして)回転体102の端面102aに配設されている。この場合、受電コイル21は、送電装置2の送電コイル12と電磁結合して(つまり、送電コイル12によって発生させられた電磁場により)、その両端間に誘導電圧V1を発生させる。   The power receiving device 3 includes a power receiving coil 21, a second matching unit 22, a rectifying unit 23, a power measuring unit 24, a second processing unit 25, and a second communication unit 26. As shown in FIG. 2, the power receiving coil 21 is formed in the same coil shape as that of the power transmitting coil 12 as an example (in the figure, the power receiving coil 21 having a planar coil shape is illustrated), and is the same as the power transmitting coil 12 ( Or substantially the same). Further, as shown in the figure, the power receiving coil 21 has, as an example, a central axis 21a that is coaxial with the central axis 102c of the rotating body 102 (its opening surface 21b is parallel to the end surface 102a of the rotating body 102). It is disposed on the end face 102a of the rotating body 102. In this case, the power reception coil 21 is electromagnetically coupled to the power transmission coil 12 of the power transmission device 2 (that is, by an electromagnetic field generated by the power transmission coil 12), and generates an induced voltage V1 between both ends thereof.

ここで、上記したように、回転体102は、その端面102aが静止体101の下面101aに対して直角をなすようにして、静止体101に対して所定の距離だけ離間した位置に配設されている。このため、図2に示すように、回転体102の端面102aに配設されている送電コイル12の中心軸12aと、静止体101の下面101aに配設されている受電コイル21の中心軸21aとは互いに異軸となっている(具体的には、両中心軸12a,21aが直角をなしている)。また、送電コイル12が配設されている静止体101が基体部に固定され(つまり、送電コイル12が静止しており)、かつ回転体102の中心軸102cと中心軸21aとが同軸のため、回転体102の回転時において送電コイル12の中心軸12aと受電コイル21の中心軸21aとの位置関係が変化しない状態に維持される。このため、この電力伝送システム100では、送電コイル12の中心軸12aにおける所定部位(例えば、同図に示す中心軸12aと送電コイル12の開口面12bとの交点P1)と、受電コイル21の中心軸21aにおける所定部位(例えば、同図に示す中心軸21aと受電コイル21の開口面21bとの交点P2)との間の距離が回転体102の回転時において一定(略一定の一例であるが、回転むら等に起因して僅かに変化する場合にも、「一定」に含まれるものとする)に維持される。   Here, as described above, the rotating body 102 is disposed at a position separated from the stationary body 101 by a predetermined distance so that the end surface 102a thereof is perpendicular to the lower surface 101a of the stationary body 101. ing. For this reason, as shown in FIG. 2, the central axis 12 a of the power transmission coil 12 disposed on the end surface 102 a of the rotating body 102 and the central axis 21 a of the power receiving coil 21 disposed on the lower surface 101 a of the stationary body 101. Are different from each other (specifically, both the central axes 12a and 21a are at right angles). Further, the stationary body 101 on which the power transmission coil 12 is disposed is fixed to the base portion (that is, the power transmission coil 12 is stationary), and the central axis 102c and the central axis 21a of the rotating body 102 are coaxial. During the rotation of the rotating body 102, the positional relationship between the central axis 12a of the power transmission coil 12 and the central axis 21a of the power receiving coil 21 is kept unchanged. For this reason, in this power transmission system 100, the predetermined part (for example, intersection P1 of the center axis 12a and the opening surface 12b of the power transmission coil 12 shown in the figure) in the central axis 12a of the power transmission coil 12, and the center of the power reception coil 21 The distance between a predetermined portion of the shaft 21a (for example, the intersection P2 between the central shaft 21a and the opening surface 21b of the power receiving coil 21 shown in the figure) is constant during rotation of the rotating body 102 (an example of substantially constant). Even if it slightly changes due to uneven rotation, etc., it shall be included in “constant”).

第2整合部22は、受電コイル21と整流部23との間に配設されて(具体的には、受電コイル21と整流部23とを接続する伝送路に介装されて)、送電コイル12との間の距離に応じて変化する受電コイル21のインピーダンス(出力インピーダンス)と整流部23側のインピーダンスとを整合させる(受電コイル21と整流部23とを整合状態に移行させる)。本例では、一例として、第2整合部22は、図4に示すように、受電コイル21に対して並列に接続された可変コンデンサ22aと、受電コイル21に対して直列(すなわち、受電コイル21および可変コンデンサ22aからなる並列回路に対して直列)に接続された可変コンデンサ22bとを備え、第1整合部13と同一の回路に構成されている。また、第2整合部22は、可変コンデンサ22a,22bの各静電容量が第2処理部25から出力される制御信号S3によって別個独立して制御されることにより、受電コイル21(詳しくは、整流部23側から見た受電コイル21の出力インピーダンス)と整流部23(詳しくは、受電コイル21側から見た整流部23の入力インピーダンス)とを整合可能となっている。   The second matching unit 22 is disposed between the power reception coil 21 and the rectification unit 23 (specifically, interposed in a transmission path connecting the power reception coil 21 and the rectification unit 23), and the power transmission coil The impedance (output impedance) of the power receiving coil 21 that changes according to the distance between the power supply coil 12 and the impedance on the rectifying unit 23 side are matched (the power receiving coil 21 and the rectifying unit 23 are shifted to a matching state). In this example, as an example, the second matching unit 22 includes a variable capacitor 22 a connected in parallel to the power receiving coil 21 and a series connection to the power receiving coil 21 (that is, the power receiving coil 21) as illustrated in FIG. 4. And a variable capacitor 22b connected in series to a parallel circuit composed of the variable capacitor 22a, and is configured in the same circuit as the first matching unit 13. In addition, the second matching unit 22 is configured such that the electrostatic capacitances of the variable capacitors 22a and 22b are separately and independently controlled by the control signal S3 output from the second processing unit 25, whereby the power receiving coil 21 (in detail, The output impedance of the power receiving coil 21 viewed from the rectifying unit 23 side and the rectifying unit 23 (specifically, the input impedance of the rectifying unit 23 viewed from the power receiving coil 21 side) can be matched.

整流部23は、電圧生成部の一例であって、受電コイル21に生じる誘導電圧V1を第2整合部22を介して入力すると共に、この誘導電圧V1に基づいて、バッテリ4に供給する電圧(本例では直流電圧)Voを生成する。具体的には、整流部23は、整流回路および平滑回路で構成されて、第2整合部22から出力される誘導電圧(交流電圧)V1を整流・平滑して電圧Voを生成すると共に、生成した電圧Voをバッテリ4に出力する。また、本例では、一例として、受電装置3内の各構成要素は、この電圧Voを整流部23から供給されて作動する。なお、整流部23から供給された電圧Voを充電するバッテリを備え(図示せず)、このバッテリの電圧で受電装置3内の各構成要素を作動させてもよい。また、整流部23に代えて、電圧生成部を、例えば、DC−DCコンバータ、AC−DCコンバータ、またはAC−ACコンバータで構成することもできる。   The rectification unit 23 is an example of a voltage generation unit, and receives the induced voltage V1 generated in the power receiving coil 21 via the second matching unit 22, and supplies a voltage (to the battery 4 based on the induced voltage V1) ( In this example, a DC voltage (Vo) is generated. Specifically, the rectifying unit 23 includes a rectifying circuit and a smoothing circuit, rectifies and smoothes the induced voltage (AC voltage) V1 output from the second matching unit 22, and generates the voltage Vo. The voltage Vo thus output is output to the battery 4. In this example, as an example, each component in the power receiving device 3 operates by being supplied with this voltage Vo from the rectifying unit 23. Note that a battery (not shown) that charges the voltage Vo supplied from the rectifier 23 may be provided, and each component in the power receiving device 3 may be operated by the voltage of the battery. Moreover, it can replace with the rectifier 23 and can comprise a voltage generation part with a DC-DC converter, an AC-DC converter, or an AC-AC converter, for example.

電力計測部24は、整流部23とバッテリ4とを接続する伝送路に介装されて、受電装置3からバッテリ4に供給されている電圧Voの電力値W3を計測して供給電力情報として第2処理部25に出力する。第2処理部25は、一例としてCPUおよび内部メモリ(いずれも図示せず)を含んで構成されて、送電装置2からパラメータ情報D1を受信する受信処理、このパラメータ情報D1に基づいて第2整合部22を制御して受電コイル21とバッテリ4(具体的には整流部23およびバッテリ4)とを上記の整合状態に移行させる制御処理、および電力計測部24で計測された電力値W3を第2通信部26を経由して送電装置2に送信する送信処理を実行する。第2通信部26は、一例として無線送受信器で構成されて、送電装置2の第1通信部16と通信可能に構成されている。また、第2通信部26は、送電装置2に受電装置3の存在を検出させるために、無線信号を定期的に出力する。なお、本例では、バッテリ4は、受電装置3と共に回転体102に配設されている。   The power measuring unit 24 is interposed in a transmission path that connects the rectifying unit 23 and the battery 4, measures the power value W <b> 3 of the voltage Vo supplied from the power receiving device 3 to the battery 4, and supplies the information as supplied power information. 2 is output to the processing unit 25. The second processing unit 25 is configured to include a CPU and an internal memory (both not shown) as an example, and receives the parameter information D1 from the power transmission device 2, and the second matching based on the parameter information D1. The control unit 22 is controlled to shift the power receiving coil 21 and the battery 4 (specifically, the rectifying unit 23 and the battery 4) to the matching state, and the power value W3 measured by the power measuring unit 24 is 2 A transmission process for transmitting to the power transmission device 2 via the communication unit 26 is executed. The 2nd communication part 26 is comprised by the radio | wireless transmitter / receiver as an example, and is comprised so that communication with the 1st communication part 16 of the power transmission apparatus 2 is possible. Further, the second communication unit 26 periodically outputs a radio signal so that the power transmission device 2 detects the presence of the power reception device 3. In this example, the battery 4 is disposed on the rotating body 102 together with the power receiving device 3.

次に、電力伝送システム100の動作について説明する。   Next, the operation of the power transmission system 100 will be described.

この電力伝送システム100は、動作状態において、図5に示す電力伝送処理50を繰り返し実行する。この電力伝送処理50では、送電装置2の第1処理部15が、まず、受電装置3を検出する処理を実行する(ステップ51)。具体的には、送電装置2では、第1通信部16が、受電装置3の第2通信部26から出力される無線信号による受信強度D2を繰り返し検出して出力する。このため、この処理では、第1処理部15は、この受信強度D2が予め規定された基準強度に達したか否かを判別することにより、受電装置3の存在を検出する。   The power transmission system 100 repeatedly executes the power transmission process 50 shown in FIG. 5 in the operating state. In the power transmission process 50, the first processing unit 15 of the power transmission apparatus 2 first executes a process of detecting the power reception apparatus 3 (step 51). Specifically, in the power transmission device 2, the first communication unit 16 repeatedly detects and outputs the reception intensity D <b> 2 by the radio signal output from the second communication unit 26 of the power reception device 3. For this reason, in this process, the first processing unit 15 detects the presence of the power receiving device 3 by determining whether or not the reception intensity D2 has reached a predetermined reference intensity.

上記処理において受電装置3の存在を検出したとき(つまり、受信強度D2が基準強度に達したとき)には、第1処理部15は、小電力での送電を開始する(ステップ52)。具体的には、第1処理部15は、信号発生部11に対する制御を実行して、交流信号S1を電力値W1bで出力させる。これにより、信号発生部11から出力された交流信号S1が、反射電力計測部14および第1整合部13を経由して送電コイル12に供給されて、小電力での送電が開始される。また、反射電力計測部14は、反射波電力値W2を計測して出力する。   When the presence of the power receiving device 3 is detected in the above processing (that is, when the reception strength D2 reaches the reference strength), the first processing unit 15 starts power transmission with small power (step 52). Specifically, the 1st process part 15 performs control with respect to the signal generation part 11, and outputs alternating current signal S1 by the electric power value W1b. As a result, the AC signal S1 output from the signal generation unit 11 is supplied to the power transmission coil 12 via the reflected power measurement unit 14 and the first matching unit 13, and power transmission with low power is started. The reflected power measuring unit 14 measures and outputs the reflected wave power value W2.

一方、受電装置3では、送電コイル12と電磁結合する受電コイル21に誘導電圧V1が発生し、整流部23が、第2整合部22を介して出力されるこの誘導電圧V1を整流して電圧Voを生成する。これにより、バッテリ4に対する電圧Voの供給が開始されると共に、受電装置3内の電力計測部24、第2処理部25および第2通信部26がこの電圧Voの供給を受けて作動を開始する。具体的には、電力計測部24は、整流部23からバッテリ4に供給される電圧Voについての電力値W3の計測および第2処理部25への出力を開始する。また、第2通信部26は、送電装置2の第1通信部16との通信を開始する。なお、後述する受電装置3を複数備える構成においては、各受電装置3においてこの処理と同様の処理が行われ、後述する送電装置2を複数備える構成においては、各送電装置2において上記した処理と同様の処理が行われる。この場合、1の第2通信部26と複数の第1通信部16との間の通信や、複数の第2通信部26と1の第1通信部16との間の通信については、無線通信の周波数を変えて通信することもできるし、タイムシェアリング方式で通信することもできる。   On the other hand, in the power receiving device 3, an induced voltage V <b> 1 is generated in the power receiving coil 21 that is electromagnetically coupled to the power transmitting coil 12, and the rectifying unit 23 rectifies the induced voltage V <b> 1 output via the second matching unit 22 to generate a voltage Generate Vo. As a result, supply of the voltage Vo to the battery 4 is started, and the power measuring unit 24, the second processing unit 25, and the second communication unit 26 in the power receiving device 3 receive the supply of the voltage Vo and start operation. . Specifically, the power measuring unit 24 starts measuring the power value W3 for the voltage Vo supplied from the rectifying unit 23 to the battery 4 and outputting it to the second processing unit 25. In addition, the second communication unit 26 starts communication with the first communication unit 16 of the power transmission device 2. In the configuration including a plurality of power receiving devices 3 to be described later, the same processing as this processing is performed in each power receiving device 3, and in the configuration including a plurality of power transmitting devices 2 to be described later, the above-described processing is performed in each power transmitting device 2. Similar processing is performed. In this case, the communication between one second communication unit 26 and the plurality of first communication units 16 and the communication between the plurality of second communication units 26 and the first communication unit 16 are wireless communication. It is also possible to communicate at different frequencies, and it is also possible to communicate by the time sharing method.

次いで、第1処理部15は、反射電力計測部14から出力される反射波電力値W2を取得し(ステップ53)、反射波電力値W2が予め規定されたしきい値以下であるか否かを判別する(ステップ54)。この比較の結果、反射波電力値W2がしきい値以下でないときには、第1処理部15は、整合処理(第1整合処理)を実行する(ステップ55)。また、第1処理部15による送電装置2での整合処理と同時に、第2処理部25も受電装置3において整合処理(第2整合処理)を実行する。 Next, the first processing unit 15 acquires the reflected wave power value W2 output from the reflected power measuring unit 14 (step 53), and whether or not the reflected wave power value W2 is equal to or less than a predetermined threshold value. Is discriminated (step 54). As a result of this comparison, when the reflected wave power value W2 is not less than or equal to the threshold value, the first processing unit 15 executes a matching process (first matching process) (step 55). Simultaneously with the matching process in the power transmission device 2 by the first processing unit 15, the second processing unit 25 also executes the matching process (second matching process) in the power receiving device 3.

具体的には、この整合処理では、送電装置2において、第1処理部15が、第1整合部13に対して制御信号S2を出力して、反射波電力値W2が減少するように第1整合部13の可変コンデンサ13a,13bの各静電容量を変更する処理を実行する。次いで、第1処理部15は、パラメータ情報D1(可変コンデンサ13a,13bの各静電容量)を第1通信部16を経由して受電装置3に送信する送信処理を実行する。一方、受電装置3では、第2通信部26が、このパラメータ情報D1を受信して、第2処理部25に出力する。また、第2処理部25は、このパラメータ情報D1で示される可変コンデンサ13a,13bの各静電容量に基づいて、第2整合部22内の対応する可変コンデンサ22a,22bの各静電容量を制御する処理を実行する。本例では、一例として、第2処理部25は、可変コンデンサ22aの静電容量を可変コンデンサ13aの静電容量に一致させ、かつ可変コンデンサ22bの静電容量を可変コンデンサ13bの静電容量に一致させるように可変コンデンサ22a,22bの各静電容量を制御する。   Specifically, in this matching process, in the power transmission device 2, the first processing unit 15 outputs the control signal S2 to the first matching unit 13 so that the reflected wave power value W2 decreases. A process of changing the capacitances of the variable capacitors 13a and 13b of the matching unit 13 is executed. Next, the first processing unit 15 performs a transmission process of transmitting the parameter information D1 (respective capacitances of the variable capacitors 13a and 13b) to the power receiving device 3 via the first communication unit 16. On the other hand, in the power receiving device 3, the second communication unit 26 receives the parameter information D <b> 1 and outputs it to the second processing unit 25. Further, the second processing unit 25 calculates the capacitances of the corresponding variable capacitors 22a and 22b in the second matching unit 22 based on the capacitances of the variable capacitors 13a and 13b indicated by the parameter information D1. Execute the process to be controlled. In this example, as an example, the second processing unit 25 matches the capacitance of the variable capacitor 22a with the capacitance of the variable capacitor 13a, and changes the capacitance of the variable capacitor 22b to the capacitance of the variable capacitor 13b. The capacitances of the variable capacitors 22a and 22b are controlled so as to match.

第1処理部15は、上記の各ステップ53,54,55を反射波電力値W2がしきい値以下となるまで繰り返し実行する。また、受電装置3では、第2処理部25が、送電装置2からの新たなパラメータ情報D1を取得する都度、可変コンデンサ22a,22bの各静電容量を上記したように繰り返し制御する。   The first processing unit 15 repeatedly executes the above steps 53, 54, and 55 until the reflected wave power value W2 is equal to or lower than the threshold value. In the power receiving device 3, each time the second processing unit 25 acquires new parameter information D <b> 1 from the power transmitting device 2, the electrostatic capacity of the variable capacitors 22 a and 22 b is repeatedly controlled as described above.

この結果、ステップ54において、反射波電力値W2がしきい値以下となったときには、第1処理部15は、第1整合部13による送電コイル12と反射電力計測部14との整合が完了したと判別して、送電・受電電力測定処理を実行する(ステップ56)。この場合、第1整合部13による送電コイル12と反射電力計測部14との整合が完了したときには、受電コイル21が送電コイル12と同一に構成されると共に、第2整合部22が第1整合部13と同一に構成され、かつ第2整合部22の各可変コンデンサ22a,22bが第1整合部13の対応する各可変コンデンサ13a,13bと同一の静電容量に制御されるため、受電装置3においても、受電コイル21と整流部23との整合が完了した状態となる。なお、本例では、一例として、反射波電力値W2がしきい値以下となったときに、第1処理部15が第1整合部13による送電コイル12と信号発生部11との整合が完了したと判別する構成を採用して、整合状態への移行時間の短縮を図っているが、反射波電力値W2が最小となったときに、第1処理部15が第1整合部13による送電コイル12と信号発生部11との整合が完了したと判別する構成を採用することもできる。   As a result, when the reflected wave power value W2 is equal to or smaller than the threshold value in step 54, the first processing unit 15 has completed the matching between the power transmission coil 12 and the reflected power measuring unit 14 by the first matching unit 13. And transmission / reception power measurement processing is executed (step 56). In this case, when the matching between the power transmission coil 12 and the reflected power measuring unit 14 by the first matching unit 13 is completed, the power receiving coil 21 is configured the same as the power transmission coil 12 and the second matching unit 22 is the first matching. Since the variable capacitors 22a and 22b of the second matching unit 22 are controlled to have the same capacitance as the corresponding variable capacitors 13a and 13b of the first matching unit 13, the power receiving device 3, the matching between the power receiving coil 21 and the rectifying unit 23 is completed. In this example, as an example, when the reflected wave power value W2 is equal to or less than the threshold value, the first processing unit 15 completes the matching between the power transmission coil 12 and the signal generation unit 11 by the first matching unit 13. Although the configuration for discriminating that it has been performed is employed to shorten the transition time to the matching state, when the reflected wave power value W2 is minimized, the first processing unit 15 performs power transmission by the first matching unit 13. A configuration in which it is determined that the matching between the coil 12 and the signal generation unit 11 is completed may be employed.

この送電・受電電力測定処理では、第1処理部15は、まず、信号発生部11から交流信号S1の電力値W1bを取得して、内部メモリに記憶する。次いで、第1処理部15は、受電装置3の第2処理部25に対して電力計測部24で計測された電力値W3を第2通信部26を介して送信させる。続いて、第1処理部15は、第1通信部16を介して電力値W3を取得して、内部メモリに記憶する。これにより、送電・受電電力測定処理が完了する。なお、受電装置3の第2処理部25が、電力計測部24からの電力値W3の取得と、第2通信部26からの電力値W3の送信とを繰り返し実行する構成を採用してもよい。この構成では、第1処理部15は、受電装置3から送信されてくる電力値W3を第1通信部16を介して受信すればよいため、第1処理部15が第2処理部25に対して電力値W3を送信させる処理は不要となる。   In the power transmission / reception power measurement processing, the first processing unit 15 first acquires the power value W1b of the AC signal S1 from the signal generation unit 11 and stores it in the internal memory. Next, the first processing unit 15 causes the second processing unit 25 of the power receiving device 3 to transmit the power value W <b> 3 measured by the power measuring unit 24 via the second communication unit 26. Subsequently, the first processing unit 15 acquires the power value W3 via the first communication unit 16 and stores it in the internal memory. Thereby, the power transmission / reception power measurement process is completed. Note that the second processing unit 25 of the power receiving device 3 may adopt a configuration in which the acquisition of the power value W3 from the power measurement unit 24 and the transmission of the power value W3 from the second communication unit 26 are repeatedly executed. . In this configuration, the first processing unit 15 only needs to receive the power value W3 transmitted from the power receiving device 3 via the first communication unit 16, so the first processing unit 15 receives the second processing unit 25 from the first processing unit 15. Thus, the process of transmitting the power value W3 is not necessary.

続いて、第1処理部15は、内部メモリに記憶されている各電力値W1b,W3に基づいて、伝送効率A(=W3/W1b)を算出して、予め決められた所定値以上であるか否かを判別する(ステップ57)。この判別の結果、伝送効率Aが所定値未満のときには、第1処理部15は、送電コイル12と受電コイル21との電磁的な結合状態が電力伝送には適さない状態にあると判別して、信号発生部11に対する制御を実行して、電力値W1bでの交流信号S1の出力を停止させて(ステップ58)、電力伝送処理を終了させる。これにより、非効率な電力伝送が回避される。   Subsequently, the first processing unit 15 calculates the transmission efficiency A (= W3 / W1b) based on the power values W1b and W3 stored in the internal memory, and is equal to or greater than a predetermined value. Whether or not (step 57). As a result of this determination, when the transmission efficiency A is less than the predetermined value, the first processing unit 15 determines that the electromagnetic coupling state between the power transmission coil 12 and the power reception coil 21 is not suitable for power transmission. Then, the control for the signal generator 11 is executed to stop the output of the AC signal S1 at the power value W1b (step 58), and the power transmission process is terminated. This avoids inefficient power transmission.

一方、伝送効率Aが所定値以上と判別したときには、第1処理部15は、送電コイル12と受電コイル21との電磁的な結合状態が電力伝送に適した状態にあると判別して、大電力での送電を開始させる(ステップ59)。これにより、効率の良い電力伝送が可能な状態において、大電力での送電が開始される。具体的には、第1処理部15は、信号発生部11に対する制御を実行して、交流信号S1を規定電力値W1aで出力させる。これにより、送電装置2から受電装置3に対して、規定の電力が供給されて、受電装置3に接続されたバッテリ4が電圧Voで充電される。また、第1処理部15は、この大電力での送電の実行中に、予め規定された停止条件が満たされたか否かを判別して(ステップ60)、この停止条件が満たされたと判別したときには、信号発生部11に対する制御を実行して、交流信号S1の出力を停止させる(ステップ61)。これにより、電力伝送システム100での電力伝送処理が完了する。この場合、停止条件としては、例えば、第1処理部15への電力伝送処理の強制停止信号の入力や、バッテリ4の充電が完了した旨の信号の入力などが挙げられる。   On the other hand, when it is determined that the transmission efficiency A is equal to or greater than the predetermined value, the first processing unit 15 determines that the electromagnetic coupling state between the power transmission coil 12 and the power reception coil 21 is in a state suitable for power transmission. Electric power transmission is started (step 59). As a result, power transmission with high power is started in a state where efficient power transmission is possible. Specifically, the 1st process part 15 performs control with respect to the signal generation part 11, and outputs alternating current signal S1 by the prescription | regulation electric power value W1a. As a result, prescribed power is supplied from the power transmitting device 2 to the power receiving device 3, and the battery 4 connected to the power receiving device 3 is charged with the voltage Vo. Further, the first processing unit 15 determines whether or not a predetermined stop condition is satisfied during the execution of power transmission with the large power (step 60), and determines that the stop condition is satisfied. Sometimes, the control for the signal generator 11 is executed to stop the output of the AC signal S1 (step 61). Thereby, the power transmission process in the power transmission system 100 is completed. In this case, examples of the stop condition include an input of a forced stop signal of the power transmission process to the first processing unit 15 and an input of a signal indicating that the battery 4 has been charged.

このように、この電力伝送システム100では、送電コイル12の中心軸12aと受電コイル21の中心軸21aとが異軸であってかつ両中心軸12a,21aにおける所定部位の間の距離が回転体102の回転状態において一定となるように送電コイル12および受電コイル21が静止体101および回転体102にそれぞれ取り付けられ、第1整合部13が信号発生部11と送電コイル12とを整合させると共に、第2整合部22が受電コイル21と整流部23とを整合させる。この場合、この電力伝送システム100では、両中心軸12a,21aにおける所定部位の間の距離が回転体102の回転状態において一定であるため、両コイル12,21間の距離の長短に応じて第1整合部13および第2整合部22による整合を行うことで、両中心軸12a,21aが異軸でかつ両コイル12,21間の距離が離れている場合においても、静止体101と回転体102との間での電力伝送を伝送効率Aのよい状態で確実に行うことができる。したがって、この電力伝送システム100によれば、両コイル(アンテナ)の中心軸を同軸として互いを近接させるような限られた使用形態においてしか利用することができない従来の電力伝送システムとは異なり、静止体101と回転体102との位置関係や両者の間の距離が異なる各種の使用形態において幅広く利用することができる。   As described above, in the power transmission system 100, the central axis 12a of the power transmission coil 12 and the central axis 21a of the power receiving coil 21 are different axes, and the distance between the predetermined portions of the central axes 12a and 21a is a rotating body. The power transmitting coil 12 and the power receiving coil 21 are attached to the stationary body 101 and the rotating body 102, respectively, so as to be constant in the rotating state of 102, the first matching unit 13 aligns the signal generating unit 11 and the power transmitting coil 12, and The second matching unit 22 matches the power receiving coil 21 and the rectifying unit 23. In this case, in the power transmission system 100, since the distance between the predetermined parts of the central shafts 12a and 21a is constant in the rotating state of the rotating body 102, the first distance is changed according to the length of the distance between the coils 12 and 21. By performing the alignment by the first alignment unit 13 and the second alignment unit 22, the stationary body 101 and the rotating body can be used even when the central axes 12a and 21a are different from each other and the distance between the coils 12 and 21 is long. Power transmission to and from 102 can be reliably performed with good transmission efficiency A. Therefore, according to this power transmission system 100, unlike a conventional power transmission system that can be used only in a limited usage mode in which the central axes of both coils (antennas) are coaxial and close to each other, The present invention can be widely used in various usage forms in which the positional relationship between the body 101 and the rotating body 102 and the distance between them are different.

図6に、送電コイル12および受電コイル21が上記した位置関係(各コイル12,21の中心軸12a,21aが互いに異軸であって、かつ各中心軸12a,21aにおける所定部位同士の距離が回転体102の回転時において略一定となる位置関係:図2参照)にある状態で、送電装置2と受電装置3との間の距離を変えて、送電コイル12と受電コイル21との結合係数kを変化させたときの、結合係数k毎の(距離毎の)伝送効率Aを測定した測定結果とシミュレーションで算出した算出結果とについて、本願発明(電力伝送システム100)と、2つの比較例1,2とを対比して示す。ここで、比較例1は、一例として、受電装置3側が結合係数k=0.2において整合状態となる構成とし、送電装置2および受電装置3間の距離を変えつつ、送電装置2の第1整合部13のみを制御して、送電装置2側のみを整合状態に移行させる電力伝送システムである。また、比較例2は、一例として、受電装置3側が結合係数k=0.02において整合状態となる構成とし、送電装置2および受電装置3間の距離を変えつつ、送電装置2の第1整合部13のみを制御して、送電装置2側のみを整合状態に移行させる電力伝送システムである。   FIG. 6 shows the positional relationship between the power transmission coil 12 and the power reception coil 21 (the central axes 12a and 21a of the coils 12 and 21 are different from each other, and the distance between the predetermined parts of the central axes 12a and 21a is The coupling coefficient between the power transmission coil 12 and the power reception coil 21 is changed while the distance between the power transmission device 2 and the power reception device 3 is changed in a state where the rotation body 102 is in a substantially constant positional relationship during rotation (see FIG. 2). Regarding the measurement result of measuring the transmission efficiency A for each coupling coefficient k (for each distance) and the calculation result calculated by simulation when k is changed, the present invention (power transmission system 100) and two comparative examples 1 and 2 are shown in comparison. Here, as an example, the first comparative example 1 is configured such that the power receiving device 3 side is in a matching state at the coupling coefficient k = 0.2, and the distance between the power transmitting device 2 and the power receiving device 3 is changed. This is a power transmission system that controls only the matching unit 13 and shifts only the power transmission device 2 side to the matching state. In Comparative Example 2, as an example, the power receiving device 3 side is configured to be in a matching state at the coupling coefficient k = 0.02, and the first matching of the power transmitting device 2 is performed while changing the distance between the power transmitting device 2 and the power receiving device 3. This is a power transmission system that controls only the unit 13 and shifts only the power transmission device 2 side to the matching state.

図6に示すシミュレーション結果によれば、比較例1,2共に、送電装置2および受電装置3の双方が整合状態となる結合係数k(距離)のときには、本願発明と同じ伝送効率Aを確保することが可能であるが、それ以外の結合係数k(距離)では、いずれの場合においても、本願発明の伝送効率には及ばないことが理解される。一方、本願発明についての測定結果によれば、送電コイル12および受電コイル21が上記した位置関係にある状態においては、送電装置2に対して受電装置3を様々な距離に配置したとしても、送電装置2にだけ整合部を配置して送電装置2内でのみ整合状態に移行させる構成とは異なり、広い範囲の距離において高い伝送効率を確保できることが明らかである。   According to the simulation results shown in FIG. 6, in both Comparative Examples 1 and 2, when the coupling coefficient k (distance) is such that both the power transmitting device 2 and the power receiving device 3 are in a matched state, the same transmission efficiency A as that of the present invention is ensured. However, it is understood that any other coupling coefficient k (distance) does not reach the transmission efficiency of the present invention in any case. On the other hand, according to the measurement results for the present invention, in the state where the power transmission coil 12 and the power reception coil 21 are in the above-described positional relationship, even if the power reception device 3 is arranged at various distances with respect to the power transmission device 2, power transmission is performed. It is apparent that high transmission efficiency can be ensured over a wide range of distance, unlike a configuration in which the matching unit is disposed only in the device 2 and the matching state is shifted only in the power transmission device 2.

なお、送電コイル12(送電装置2)および受電コイル21(受電装置3)を取り付ける構成体の(静止体101および回転体102)の数や配置位置、並びに送電コイル12および受電コイル21の大きさや形状は上記の例に限定されない。例えば、上記した電力伝送システム100では、静止体101に送電コイル12を取り付けると共に、回転体102に受電コイル21を取り付けたが、これとは逆に、静止体101に受電コイル21を取り付けると共に回転体102に送電コイル12を取り付けた構成を採用することもできる。   It should be noted that the number and arrangement positions of (the stationary body 101 and the rotating body 102) of the component to which the power transmission coil 12 (power transmission device 2) and the power reception coil 21 (power reception device 3) are attached, the sizes of the power transmission coil 12 and the power reception coil 21, The shape is not limited to the above example. For example, in the above-described power transmission system 100, the power transmission coil 12 is attached to the stationary body 101 and the power receiving coil 21 is attached to the rotating body 102. Conversely, the power receiving coil 21 is attached to the stationary body 101 and rotated. A configuration in which the power transmission coil 12 is attached to the body 102 can also be adopted.

また、図7に示すように、1つの静止体101と、2つ(複数の一例)の回転体102とを備え、静止体101に送電コイル12を取り付けると共に、各回転体102に受電コイル21をそれぞれ取り付けて、各回転体102にそれぞれ配設した図外の電力供給対象体に対して電力を供給する構成を採用することもできる。この構成によれば、1つの静止体101に取り付けた受電コイル21から各回転体102に配設した複数(この例では、2つ)の電力供給対象体に対して電力を同時に供給することができる。なお、以下の説明において、上記した構成要素と同一の機能を有するものについては、同一の符号を付して重複した説明を省略する。   Further, as shown in FIG. 7, one stationary body 101 and two (a plurality of examples) rotating bodies 102 are provided, and a power transmission coil 12 is attached to the stationary body 101, and a power receiving coil 21 is attached to each rotating body 102. It is also possible to adopt a configuration in which power is supplied to a power supply target object (not shown) arranged on each rotating body 102. According to this configuration, power can be simultaneously supplied from a power receiving coil 21 attached to one stationary body 101 to a plurality (two in this example) of power supply objects disposed in each rotating body 102. it can. In addition, in the following description, about what has the same function as an above-described component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

また、図8に示すように、2つ(複数の一例)の静止体101と、1つの回転体102とを備え、各静止体101に送電コイル12をそれぞれ取り付けると共に、回転体102に受電コイル21を取り付けて、回転体102に配設した図外の電力供給対象体に対して電力を供給する構成を採用することもできる。この構成によれば、回転体102に配設した電力供給対象体に対して、2つの静止体101にそれぞれ取り付けた2つの送電コイル12から電力を供給することができる。したがって、一方の送電コイル12に故障が生じたときであっても、他方の送電コイル12から回転体102に配設した電力供給対象体に対して電力を供給することができる。   Further, as shown in FIG. 8, two (a plurality of examples) stationary bodies 101 and one rotating body 102 are provided, and a power transmission coil 12 is attached to each stationary body 101, and a receiving coil is mounted on the rotating body 102. It is also possible to adopt a configuration in which power is supplied to a power supply target object (not shown) disposed on the rotating body 102 by attaching 21. According to this configuration, electric power can be supplied from the two power transmission coils 12 attached to the two stationary bodies 101 to the power supply target object disposed on the rotating body 102. Therefore, even when a failure occurs in one of the power transmission coils 12, power can be supplied from the other power transmission coil 12 to the power supply target disposed in the rotating body 102.

また、図9に示すように、送電コイル12の中心軸12aと、受電コイル21の中心軸21aとが所定距離だけ離間して互いに平行となるように送電コイル12および受電コイル21を静止体101および回転体102に配設した構成を採用することもできる。この構成においても、中心軸12aにおける所定部位(例えば、中心軸12aと送電コイル12の開口面12bとの交点P1)と、中心軸21aにおける所定部位(例えば、中心軸21aと受電コイル21の開口面21bとの交点P2)との間の距離が回転体102の回転時において一定に維持されるため、上記した効果と同様の効果を実現することができる。   Further, as shown in FIG. 9, the power transmission coil 12 and the power reception coil 21 are fixed to the stationary body 101 so that the central axis 12 a of the power transmission coil 12 and the central axis 21 a of the power reception coil 21 are separated from each other by a predetermined distance and are parallel to each other. Further, a configuration provided in the rotating body 102 can also be adopted. Also in this configuration, a predetermined portion (for example, the intersection P1 between the central shaft 12a and the opening surface 12b of the power transmission coil 12) on the central shaft 12a and a predetermined portion (for example, the opening of the central shaft 21a and the power receiving coil 21) on the central shaft 21a. Since the distance to the intersection P2) with the surface 21b is kept constant during the rotation of the rotating body 102, the same effect as described above can be realized.

この場合、図10に示すように、受電コイル21の中心軸21aと回転体102の中心軸102cとが所定距離だけ離間して互いに平行となる(つまり両中心軸21a,102cが異軸となる)ように受電コイル21を回転体102の端面102aに配設する構成や、図11に示すように、受電コイル21の中心軸21aと回転体102の中心軸102cとが直交する(つまり両中心軸21a,102cが異軸となる)ように受電コイル21を回転体102の外周面に配設する構成を採用することもできる。この構成においても、中心軸12aにおける所定部位(例えば、中心軸12aと送電コイル12の開口面12bとの交点P1)と、中心軸21aにおける所定部位(例えば、中心軸21aと受電コイル21の開口面21bとの交点P2)との間の距離が回転体102の回転時において一定に維持されるため、上記した効果と同様の効果を実現することができる。   In this case, as shown in FIG. 10, the central axis 21a of the power receiving coil 21 and the central axis 102c of the rotating body 102 are separated from each other by a predetermined distance and are parallel to each other (that is, both the central axes 21a and 102c are different axes). 11), the center axis 21a of the power receiving coil 21 and the center axis 102c of the rotating body 102 are orthogonal to each other (that is, both centers), as shown in FIG. It is also possible to employ a configuration in which the power receiving coil 21 is disposed on the outer peripheral surface of the rotating body 102 so that the shafts 21a and 102c are different axes. Also in this configuration, a predetermined portion (for example, the intersection P1 between the central shaft 12a and the opening surface 12b of the power transmission coil 12) on the central shaft 12a and a predetermined portion (for example, the opening of the central shaft 21a and the power receiving coil 21) on the central shaft 21a. Since the distance to the intersection P2) with the surface 21b is kept constant during the rotation of the rotating body 102, the same effect as described above can be realized.

また、図12〜図14に示すように、複数の回転体102を備えて、送電コイル12および受電コイル21の双方を回転体102に取り付けた構成を採用することもできる。これらの構成においても、中心軸12aにおける所定部位(例えば、中心軸12aと送電コイル12の開口面12bとの交点P1)と、中心軸21aにおける所定部位(例えば、中心軸21aと受電コイル21の開口面21bとの交点P2)との間の距離が回転体102の回転時において一定に維持されるため、上記した効果と同様の効果を実現することができる。   Also, as shown in FIGS. 12 to 14, a configuration in which a plurality of rotating bodies 102 are provided and both the power transmission coil 12 and the power receiving coil 21 are attached to the rotating body 102 may be employed. Also in these configurations, a predetermined portion (for example, the intersection P1 between the central shaft 12a and the opening surface 12b of the power transmission coil 12) in the central shaft 12a and a predetermined portion (for example, the central shaft 21a and the power receiving coil 21) of the central shaft 21a. Since the distance to the intersection P2) with the opening surface 21b is kept constant during the rotation of the rotating body 102, the same effect as described above can be realized.

また、電力供給対象体としてのバッテリ4を備えた例について上記したが、電力供給対象体には、電力伝送装置1によって供給(伝送)される電力によって駆動する電子機器(例えば、センサや制御回路)および電気機器(例えば、モータや光源)なども含まれる。この場合、これらの電力供給対象体の配設位置は特に限定されないが、電力供給対象体を受電装置3と共に回転体102に配設することで、その電力供給対象体を回転体102上において駆動させることができる。   Moreover, although the example provided with the battery 4 as the power supply target has been described above, the power supply target is an electronic device (for example, a sensor or a control circuit) that is driven by the power supplied (transmitted) by the power transmission device 1. ) And electrical devices (for example, motors and light sources). In this case, the arrangement position of these power supply objects is not particularly limited, but the power supply object is driven on the rotating body 102 by arranging the power supplying object on the rotating body 102 together with the power receiving device 3. Can be made.

1 電力伝送装置
4 バッテリ
11 信号発生部
12 送電コイル
12a 中心軸
13 第1整合部
21 受電コイル
21a 中心軸
22 第2整合部
23 整流部
100 電力伝送システム
101 静止体
102 回転体
P1,P2 交点
S1 交流信号
V1 誘導電圧
W3 電力値
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 4 Battery 11 Signal generation part 12 Power transmission coil 12a Center axis 13 1st matching part 21 Power receiving coil 21a Center axis 22 2nd matching part 23 Rectification part 100 Power transmission system 101 Stationary body 102 Rotating body P1, P2 Intersection S1 AC signal V1 Induction voltage W3 Power value

Claims (2)

互いに離間した複数の構成体と、前記各構成体間において非接触で電力の伝送を行う電力伝送装置と、当該電力伝送装置によって伝送された前記電力が供給される電力供給対象体とを備えた電力伝送システムであって、
前記各構成体の少なくとも1つは回転体で構成され、
前記電力伝送装置は、前記各構成体の少なくとも1つに取り付けられて信号発生部から出力された交流信号の供給を受けて電磁場を発生させる送電コイルと、前記信号発生部と前記送電コイルとの間に配設されて当該信号発生部と当該送電コイルとを整合させる第1整合部と、前記信号発生部を制御する制御処理および前記第1整合部を制御して前記信号発生部と前記送電コイルとを整合させる第1整合処理を実行する第1処理部と、前記送電コイルが取り付けられている前記構成体を除く他の前記構成体に取り付けられて前記電磁場によって誘導電圧を発生する受電コイルと、前記誘導電圧に基づいて供給電圧を生成する電圧生成部と、前記受電コイルと前記電圧生成部との間に配設されて当該受電コイルと当該電圧生成部とを整合させる第2整合部と、当該第2整合部を制御して前記受電コイルと前記電圧生成部とを整合させる第2整合処理を実行する第2処理部と、前記電力供給対象体に供給される電力値を測定する電力計測部とを備えて構成され、
前記送電コイルおよび前記受電コイルは、各々の中心軸が互いに異軸であってかつ前記送電コイルの当該中心軸における所定部位と前記受電コイルの当該中心軸における所定部位との間の距離が前記回転体の回転状態において略一定となるように前記構成体に取り付けられ
前記第1処理部および前記第2処理部は、前記信号発生部から出力される前記交流信号を規定電力値未満の電力値に規定した小電力での送電が行われている状態において前記第1整合処理および第2整合処理をそれぞれ実行し、
前記第1処理部は、前記第1整合処理の完了後において、前記電力計測部によって測定される電力値と前記規定電力値未満の電力値とに基づいて算出した伝送効率が所定値以上のときに、前記制御処理を実行して前記交流信号を前記規定電力値に規定した大電力での送電を行う電力伝送システム。
A plurality of components separated from each other, a power transmission device that performs non-contact power transmission between the components, and a power supply target to which the power transmitted by the power transmission device is supplied A power transmission system,
At least one of the constituent members is composed of a rotating body,
The power transmission device includes a power transmission coil that is attached to at least one of the components and receives an AC signal output from a signal generation unit to generate an electromagnetic field, and the signal generation unit and the power transmission coil. A first matching unit arranged between the signal generating unit and the power transmission coil, a control process for controlling the signal generating unit, and a control unit for controlling the first matching unit to control the signal generating unit and the power transmission. A first processing unit that executes a first matching process for matching the coil , and a power receiving coil that generates an induced voltage by the electromagnetic field and is attached to the other structural body except the structural body to which the power transmitting coil is mounted And a voltage generation unit that generates a supply voltage based on the induced voltage, and is arranged between the power reception coil and the voltage generation unit to match the power reception coil and the voltage generation unit A second matching unit, the second processing unit and the power value supplied to the power supply target body and the power receiving coil by controlling the second matching unit to execute the second matching processing for matching the said voltage generator A power measuring unit for measuring
In the power transmission coil and the power receiving coil, the central axes are different from each other, and the distance between the predetermined portion of the power transmitting coil on the central axis and the predetermined portion of the power receiving coil on the central axis is the rotation. Attached to the component so as to be substantially constant in the rotational state of the body ,
The first processing unit and the second processing unit are configured such that the first signal is transmitted in a state where the AC signal output from the signal generation unit is transmitted with low power that is defined to have a power value less than a specified power value. Execute the matching process and the second matching process,
When the transmission efficiency calculated based on the power value measured by the power measurement unit and the power value less than the specified power value is greater than or equal to a predetermined value after completion of the first matching process, the first processing unit In addition, a power transmission system that performs the control process and performs power transmission with high power in which the AC signal is defined as the specified power value .
前記電力伝送装置は、前記送電コイルおよび前記受電コイルの少なくとも一方を複数備えている請求項1記載の電力伝送システム。 The power transmission system according to claim 1, wherein the power transmission device includes a plurality of at least one of the power transmission coil and the power reception coil.
JP2009115203A 2009-05-12 2009-05-12 Power transmission system Active JP5362437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115203A JP5362437B2 (en) 2009-05-12 2009-05-12 Power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115203A JP5362437B2 (en) 2009-05-12 2009-05-12 Power transmission system

Publications (2)

Publication Number Publication Date
JP2010268531A JP2010268531A (en) 2010-11-25
JP5362437B2 true JP5362437B2 (en) 2013-12-11

Family

ID=43365026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115203A Active JP5362437B2 (en) 2009-05-12 2009-05-12 Power transmission system

Country Status (1)

Country Link
JP (1) JP5362437B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086051A1 (en) 2010-12-24 2012-06-28 トヨタ自動車株式会社 Contactless power supply system, vehicle, power supply facility, and contactless power supply system control method
AU2015218896B2 (en) * 2014-02-23 2018-03-29 Apple Inc. Adjusting filter in a coupled coil system
AU2015218706B2 (en) 2014-02-23 2018-01-04 Apple Inc. Impedance matching for inductive power transfer systems
US10032557B1 (en) 2014-05-29 2018-07-24 Apple Inc. Tuning of primary and secondary resonant frequency for improved efficiency of inductive power transfer
US9537353B1 (en) 2014-06-03 2017-01-03 Apple Inc. Methods for detecting mated coils
US9685814B1 (en) 2014-06-13 2017-06-20 Apple Inc. Detection of coil coupling in an inductive charging system
US9813041B1 (en) 2014-07-31 2017-11-07 Apple Inc. Automatic boost control for resonant coupled coils
US10014733B2 (en) 2014-08-28 2018-07-03 Apple Inc. Temperature management in a wireless energy transfer system
US10193372B2 (en) 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
US10666084B2 (en) 2015-07-10 2020-05-26 Apple Inc. Detection and notification of an unpowered releasable charging device
GB2540624A (en) * 2015-07-24 2017-01-25 Univ Oxford Innovation Ltd System and methods for transferring electrical signal or power to a rotatable component
US10644531B1 (en) 2016-09-22 2020-05-05 Apple Inc. Adaptable power rectifier for wireless charger system
US10389274B2 (en) 2017-04-07 2019-08-20 Apple Inc. Boosted output inverter for electronic devices
US10523063B2 (en) 2017-04-07 2019-12-31 Apple Inc. Common mode noise compensation in wireless power systems
CZ308445B6 (en) * 2017-09-29 2020-08-26 Západočeská Univerzita V Plzni Device for contactless transmission of electrical energy to a rotating part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620845A (en) * 1992-06-30 1994-01-28 Shimadzu Corp Feeding mechanism to rotator
JP2000058355A (en) * 1998-08-17 2000-02-25 Ooita Ken Power supply transformer to rotor
JP3488166B2 (en) * 2000-02-24 2004-01-19 日本電信電話株式会社 Contactless IC card system, its reader / writer and contactless IC card
JP5351499B2 (en) * 2008-11-28 2013-11-27 長野日本無線株式会社 Contactless power transmission system
US8338991B2 (en) * 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission

Also Published As

Publication number Publication date
JP2010268531A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5362437B2 (en) Power transmission system
JP5351499B2 (en) Contactless power transmission system
JP5478984B2 (en) Power transmission device and contactless power transmission system
US10493856B2 (en) System, apparatus and method for optimizing wireless charging alignment
US9812893B2 (en) Wireless power receiver
US9564760B2 (en) Contactless power feeding system
EP3158622B1 (en) Wireless power transfer method, apparatus and system
KR101253670B1 (en) Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
CN102055250B (en) Resonance type non-contact charging apparatus
CN103094993B (en) Wireless power transmitter and power transmission method thereof
US9431889B2 (en) Active rectifier with delay locked loop to compensate for reverse current leakage and wireless power receiving apparatus including active rectifier with delay locked loop to compensate for reverse current leakage
US20180138756A1 (en) Wireless power transmission system and method for driving same
JP5569182B2 (en) Non-contact power transmission system, non-contact power transmission device, and impedance adjustment method
US20170353054A1 (en) Wireless power transmission device, wireless power reception device, and wireless charging system
WO2011093292A1 (en) Non-contact power transmission system and non-contact power transmission apparatus
CN103959598A (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
US20140091641A1 (en) Non-contact power reception device and vehicle including the same, non-contact power transmission device, and non-contact power transfer system
CN109904884B (en) Wireless charging method, device, terminal, storage medium and electronic device
US20150333537A1 (en) Power source, wireless power transfer system and wireless power transfer method
JP2011155733A (en) Noncontact power transmission system and noncontact power transmission device
US10923955B2 (en) Wireless power system with resonant circuit tuning
CN103038979B (en) ICPT system, parts and method for designing
US11146111B2 (en) Power receiver, power transmission system, and power receiving meihod
WO2014175205A1 (en) Power supply system
KR20150055755A (en) Hybrid wireless power transmission device which enables to transmit resonance power signal and induced power signal simultaneously and hybrid wireless power transmission system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250