JP6507036B2 - Non-contact power feeding device and non-contact power receiving device - Google Patents

Non-contact power feeding device and non-contact power receiving device Download PDF

Info

Publication number
JP6507036B2
JP6507036B2 JP2015113203A JP2015113203A JP6507036B2 JP 6507036 B2 JP6507036 B2 JP 6507036B2 JP 2015113203 A JP2015113203 A JP 2015113203A JP 2015113203 A JP2015113203 A JP 2015113203A JP 6507036 B2 JP6507036 B2 JP 6507036B2
Authority
JP
Japan
Prior art keywords
coil
detection
feeding
electromotive
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015113203A
Other languages
Japanese (ja)
Other versions
JP2016226236A (en
Inventor
片岡 義範
義範 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TECMO CO., LTD.
Original Assignee
NIPPON TECMO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TECMO CO., LTD. filed Critical NIPPON TECMO CO., LTD.
Priority to JP2015113203A priority Critical patent/JP6507036B2/en
Publication of JP2016226236A publication Critical patent/JP2016226236A/en
Application granted granted Critical
Publication of JP6507036B2 publication Critical patent/JP6507036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電磁結合によって無線給電を行う非接触給電システムに於いて使用される非接触給電装置及び非接触受電装置に関し、特に、非接触給電装置及び非接触受電装置間の互いの近接や位置ずれを検知することが可能な非接触給電装置及び非接触受電装置に関する。   The present invention relates to a non-contact power feeding device and a non-contact power receiving device used in a non-contact power feeding system for wirelessly feeding power by electromagnetic coupling, and in particular, proximity and position of the non-contact power feeding device and the non-contact power receiving device. The present invention relates to a noncontact power feeding device and a noncontact power reception device capable of detecting a shift.

非接触給電システムにおける金属異物等の異物検出技術として、例えば、特許文献1,2に記載されたものが公知である。   As a foreign object detection technique, such as a metal foreign object etc. in a non-contact electric supply system, what was indicated to patent documents 1 and 2 is known, for example.

特許文献1に記載の無線電力伝送装置(非特許文献1の図3〜図8,請求項1,段落〔0046〕−〔0080〕参照)では、給電コイル(第1自己共振コイル)の両側に、該給電コイルと同方向に向けて異物検出用第1自己共振コイル及び異物検出用第2自己共振コイルを配設し、異物検出用第1自己共振コイルに対して、異物検出用第2自己共振コイルと共振する共振周波数の高周波エネルギーE1を供給すると共に、異物検出用第2自己共振コイルに誘導される交流電流のエネルギーE2を検出し、両者間のエネルギー伝送効率P1=E2/E1を求め、伝送効率P1が所定の閾値以下となった場合には、異物が存在すると判定することによって異物検出を行うものである。   In the wireless power transmission device described in Patent Document 1 (see FIGS. 3 to 8, non-patent document 1, claims 1, paragraphs [0046]-[0080]), both sides of the feeding coil (first self-resonant coil) are provided. The first self-resonant coil for detecting foreign matter and the second self-resonant coil for detecting foreign matter are disposed in the same direction as the feed coil, and the second self-resonant coil for detecting foreign matter is connected to the second self-resonant coil for foreign matter detection. While supplying the high frequency energy E1 of the resonance frequency which resonates with the resonance coil, energy E2 of the alternating current induced in the second self-resonance coil for detecting foreign matter is detected, and energy transfer efficiency P1 = E2 / E1 between the two is determined. When the transmission efficiency P1 becomes equal to or less than a predetermined threshold value, foreign object detection is performed by determining that the foreign object is present.

特許文献2に記載の非接触電力伝送システム(特許文献2の段落〔0036〕−〔0037〕,図5,図6参照)では、給電コイル(一次コイル)と、該給電コイルを覆うカバーと、該カバー周辺に存在する物体を検出するセンサコイルとを備え、該センサコイルの巻き軸を、給電コイルの巻き軸に対して略直交するように配置した構成としたものである。センサコイルは、給電コイル及び給電コイルのコアを巻き込むようにして、給電コイルにより発生する磁束とセンサコイルにより発生する磁束とが直交するように配置される。この構成では、カバー上に異物が存在する場合、センサコイル周辺のインピーダンスが変化し、センサコイルの共振周波数がずれる。そこで、センサコイルの共振周波数のずれを検出することによって異物検出を行う。また、センサコイルの巻き軸が、給電コイルの巻き軸と略直交する構成としたことで、両コイル間の干渉を抑えて、異物検出の精度を向上させている。   In the non-contact power transmission system (see paragraphs [0036] to [0037] of FIG. 5, FIG. 6, FIG. 6) of Patent Document 2, a feeding coil (primary coil), a cover covering the feeding coil, A sensor coil for detecting an object present around the cover is provided, and a winding axis of the sensor coil is disposed to be substantially orthogonal to a winding axis of the feeding coil. The sensor coil is disposed so that the feeding coil and the core of the feeding coil are wound around and the magnetic flux generated by the feeding coil and the magnetic flux generated by the sensor coil are orthogonal to each other. In this configuration, when foreign matter is present on the cover, the impedance around the sensor coil changes and the resonant frequency of the sensor coil deviates. Therefore, foreign matter detection is performed by detecting the deviation of the resonance frequency of the sensor coil. Further, the configuration in which the winding axis of the sensor coil is substantially orthogonal to the winding axis of the feeding coil suppresses interference between both coils and improves the accuracy of foreign matter detection.

一方、非接触給電システムに於いて、非接触給電装置及び非接触受電装置の互いの接近や位置ずれを検知する技術としては、例えば、特許文献3,4に記載のものが公知である。   On the other hand, in the non-contact power feeding system, for example, Patent Documents 3 and 4 are known as a technique for detecting the approach and positional deviation of the non-contact power feeding device and the non-contact power receiving device.

特許文献3(特許文献3の請求項1,図1,図17,段落〔0039〕,〔0044〕−〔0046〕参照)には、給電コイル(1)と、受電コイル(7)と受電コンデンサ(8)とを含む受電共振回路を有するワイヤレス受電装置に非接触で電力供給を行うワイヤレス給電装置であって、給電コイル(1)と、受電共振回路の共振電流を検出する共振電流検出器(6)と、給電コイル(1)に交流電流を供給することによって、給電コイル(1)と受電コイル(7)との磁場共振現象に基づき、給電コイル(1)から受電コイル(7)に電力供給を行わせる制御回路であって、交流電流の周波数と共振電流検出器によって検出した共振電流の周波数とを関連付ける当該制御回路(111)とを備え、給電コイル(1)は、実質的に共振回路を構成せず、共振電流検出器(6)は、検出コイル(6a)と検出コンデンサ(6c)とを含む検出共振回路を有し、検出コイル(6a)と受電コイル(7)との磁場共振現象に基づき、受電共振回路の共振電流を検出し、検出コイル(6a)の巻回領域は、給電コイル(1)の巻回領域より小さく、検出コイル(6a)は、巻回中心軸が給電コイル(1)によって生じる磁場ベクトルに対して80°以上100°以下の角度をなすように配置されたワイヤレス給電装置が記載されている。給電コイル(1)に受電コイル(7)が接近すると、受電コイル(7)に共振電流が誘導される。このとき、共振電流によって検出コイル(6a)と検出コンデンサ(6c)とを含む検出共振回路が共振し、この検出共振回路に誘導される共振電流を検出することによって、ワイヤレス給電装置の側で受電コイル(7)の接近を検出することが可能となる。   Patent Document 3 (see claim 1, FIG. 1, FIG. 17, paragraphs [0039] and [0044]-[0046] of Patent Document 3) includes a feeding coil (1), a receiving coil (7) and a receiving capacitor. (8) A wireless power feeding device for supplying power without contact to a wireless power receiving device having a power receiving resonant circuit, comprising: a resonant coil (1) and a resonant current detector for detecting a resonant current of the power receiving resonant circuit 6) By supplying an alternating current to the feeding coil (1), power is supplied from the feeding coil (1) to the receiving coil (7) based on the magnetic field resonance phenomenon of the feeding coil (1) and the receiving coil (7) A control circuit for performing supply, the control circuit (111) correlating the frequency of the alternating current with the frequency of the resonant current detected by the resonant current detector; and the feeding coil (1) is substantially resonant circuit Not constituted, the resonance current detector (6) has a detection resonance circuit including a detection coil (6a) and a detection capacitor (6c), and the magnetic field resonance phenomenon of the detection coil (6a) and the power receiving coil (7) Based on the above, the resonance current of the power reception resonance circuit is detected, the winding area of the detection coil (6a) is smaller than the winding area of the feeding coil (1), and the detection coil (6a) has a winding central axis that is the feeding coil. A wireless power feeder is described which is arranged at an angle of 80 ° to 100 ° with respect to the magnetic field vector generated by (1). When the power receiving coil (7) approaches the power feeding coil (1), a resonant current is induced in the power receiving coil (7). At this time, the detection resonance circuit including the detection coil (6a) and the detection capacitor (6c) resonates by the resonance current, and the resonance current induced in the detection resonance circuit is detected to receive power at the wireless power feeding device side. It is possible to detect the approach of the coil (7).

特許文献4(特許文献4の図1−3,段落〔0040〕−〔0049〕参照)には、移動体に設置され受電コイル(103)を有する受電装置(20)と、受電コイル(103)に対し非接触で電力を供給する送電コイル(102)を有する送電装置(10)と、送電コイル(102)の近辺に配置され、それぞれのループ軸が互いに直交する複数のループアンテナ素子を有する第1のアンテナ(301)と、受電コイル(102)の近辺に配置され、受電コイル(102)のコイル軸方向とそれぞれのループ軸方向がほぼ一致する複数のループアンテナ素子を有する第2のアンテナ(304)と、第1のアンテナ(301)の複数のループアンテナ素子による受信磁界に基づき、送電コイル(102)及び受電コイル(103)の相対的な位置関係を求める位置演算手段(308)とを備えた無線電力伝送システムが記載されている。   Patent Document 4 (see FIGS. 1-3, paragraphs [0040] to [0049] of Patent Document 4) includes a power receiving device (20) installed on a moving body and having a power receiving coil (103), and a power receiving coil (103) A power transmission device (10) having a power transmission coil (102) for supplying power without contact, and a plurality of loop antenna elements disposed in the vicinity of the power transmission coil (102) and having their respective loop axes orthogonal to one another A second antenna having a plurality of loop antenna elements disposed in the vicinity of the antenna (301) and the power receiving coil (102) and having the coil axis direction of the power receiving coil (102) substantially coincident with the loop axis direction 304) relative to the transmitting coil (102) and the receiving coil (103) based on the received magnetic field by the plurality of loop antenna elements of the first antenna (301). Wireless power transmission system and a position calculating means for obtaining a location relationship (308) is described.

特開2012−75200号公報JP 2012-75200 A 特開2013−215073号公報JP, 2013-215073, A 特許第5522271号明細書Patent No. 55222271 specification 特開2012−5308号公報JP 2012-5308 A

特許文献1,2,3に記載の非接触給電システムでは、異物又は受電コイルの接近の検出を行うことは可能であるが、非接触受電装置が給電を行うための所定の位置に接近したか否かを検出することはできない。   In the non-contact power feeding system described in Patent Documents 1, 2, and 3, although it is possible to detect the approach of a foreign object or a power receiving coil, whether the non-contact power receiving device has approached a predetermined position for feeding power. It can not be detected.

一方、特許文献4に記載の非接触給電システムでは、非接触給電装置の側の第1のアンテナ(301)と、非接触受電装置の側の第2のアンテナ(304)とを用いて、非接触受電装置の位置を特定することができるため、非接触受電装置が給電を行うための所定の位置に接近したか否かを検出することが可能である。しかし、その前提条件として、非接触受電装置の側が第2のアンテナ(304)を備えていることが前提であり、検出機構が非接触給電装置又は非接触受電装置の一方の側で閉じていない。従って、汎用性に欠けるという問題がある。   On the other hand, in the non-contact power feeding system described in Patent Document 4, a non-contact power feeding device uses a first antenna (301) on the non-contact power feeding device side and a second antenna (304) on the non-contact power receiving device side. Since the position of the contact power reception device can be specified, it is possible to detect whether or not the non-contact power reception device has approached a predetermined position for feeding power. However, as the precondition, it is premised that the non-contact power reception device is provided with the second antenna (304), and the detection mechanism is not closed on one side of the non-contact power feeding device or the non-contact power reception device. . Therefore, there is a problem of lack of versatility.

そこで、本発明の目的は、非接触給電装置及び非接触受電装置の互いの接近や互いの位置ずれを、非接触給電装置又は非接触受電装置の一方の側のみにおいて検知可能な非接触給電装置及び非接触受電装置を提供することにある。   Therefore, an object of the present invention is to provide a noncontact power feeding device capable of detecting the proximity of the noncontact power feeding device and the noncontact power receiving device to each other and the positional deviation thereof only on one side of the noncontact power feeding device or the noncontact power receiving device. And providing a non-contact power reception device.

本発明に係る非接触給電装置の第1の構成は、交流電力が給電される給電コイルを具備する非接触給電装置と、前記給電コイルに対し着脱可能に装着され、前記給電コイルと共鳴して前記給電コイルから電力供給を受ける受電コイルを具備する非接触受電装置とを備えた非接触給電システムにおいて使用される非接触給電装置であって、
前記給電コイルの中心軸を含む面である第1の中心横断面の面内に、巻軸が前記第1の中心横断面に対し垂直となる向きに配設された第1の検出コイルを備え、
前記第1の検出コイルは、該第1の検出コイルのコイル環内に前記給電コイルを内包するように配置されたものであり、
前記第1の検出コイルに発生する起電圧又は起電流の強度を検出する第1の起電力検出手段と、
前記給電コイルに供給される電圧又は電流の位相と前記第1の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第1の位相差検出手段と、
前記第1の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する位置ずれ検出手段と、
前記第1の位相差検出手段が検出する位相差により、前記第1の検出コイルの中心軸方向(以下「x軸方向」という。)の位置ずれ向きを検出する第1の位置ずれ方向検出手段と、を備えたことを特徴とする。
According to a first configuration of the non-contact power feeding device of the present invention, a non-contact power feeding device including a feeding coil to which alternating current power is fed, and the power feeding coil are detachably attached to the feeding coil and resonate with the feeding coil. A non-contact power feeding device used in a non-contact power feeding system, comprising: a non-contact power receiving device having a power receiving coil receiving power supply from the power feeding coil;
In a plane of a first central cross section which is a plane including a central axis of the feeding coil, a first detection coil is provided, the winding axis of which is oriented in a direction perpendicular to the first central cross section. ,
The first detection coil is disposed so as to enclose the feeding coil in a coil ring of the first detection coil,
First electromotive force detection means for detecting an intensity of an electromotive voltage or an electromotive current generated in the first detection coil;
First phase difference detection means for detecting a phase difference between a phase of a voltage or current supplied to the feeding coil and a phase of an electromotive voltage or current generated in the first detection coil;
A positional deviation detection unit that determines the presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil by determining the threshold of the strength of the electromotive voltage or electromotive current detected by the first electromotive force detection unit;
First misregistration direction detection means for detecting misregistration direction in the central axis direction (hereinafter referred to as “x-axis direction”) of the first detection coil based on the phase difference detected by the first phase difference detection means And.

この構成によれば、受電コイルが給電コイルの近傍にあり、給電コイルと同軸の場合(以下、この位置を「真上位置」という。)には、第1の検出コイルに生じる起電圧(又は起電流)は最小(略ゼロ)となる。受電コイルの位置が給電コイルに対して真上位置からx軸方向にずれた場合、第1の検出コイルには起電圧(又は起電流)が発生する。このとき、第1の検出コイルに生じる起電圧(又は起電流)の位相は、給電コイルに給電される電圧(又は電流)の位相に対して90度ずれる。また、x軸方向の正側方向にずれるか、負側方向にずれるかによって、起電圧(又は起電流)の位相が90度進むか、90度遅れるかが決まる。従って、第1の起電力検出手段により起電圧(又は起電流)の大きさを検出し、位置ずれ検出手段がこれを閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定することができる。また、第1の位相差検出手段により、給電コイルに供給される電圧(又は電流)の位相に対する起電圧(又は起電流)の位相の位相差を検出し、第1の位置ずれ方向検出手段がその位相差の正負によって位置ずれ向きを検出することで、位置ずれの発生とx軸に沿った位置ずれの向きを検出することができる。   According to this configuration, when the power receiving coil is in the vicinity of the power feeding coil and coaxial with the power feeding coil (hereinafter, this position is referred to as “immediately above position”), the electromotive voltage (or the induced voltage generated in the first detection coil) The electromotive current) is minimized (approximately zero). When the position of the power receiving coil deviates in the x-axis direction from the position directly above the feeding coil, an electromotive voltage (or electromotive current) is generated in the first detection coil. At this time, the phase of the electromotive voltage (or electromotive current) generated in the first detection coil is shifted by 90 degrees with respect to the phase of the voltage (or current) supplied to the feeding coil. Further, whether the phase of the electromotive voltage (or electromotive current) is advanced by 90 degrees or delayed by 90 degrees is determined depending on whether it is shifted in the positive direction or in the negative direction in the x-axis direction. Therefore, the magnitude of the electromotive voltage (or electromotive current) is detected by the first electromotive force detection means, and the positional deviation detection means determines the threshold value, thereby detecting the presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil. It can be determined. Further, the first phase difference detection means detects a phase difference of the phase of the electromotive voltage (or electromotive current) with respect to the phase of the voltage (or current) supplied to the feeding coil, and the first positional deviation direction detection means By detecting the direction of displacement based on whether the phase difference is positive or negative, the occurrence of displacement and the direction of displacement along the x-axis can be detected.

本発明に係る非接触給電装置の第2の構成は、前記第1の構成に於いて、前記給電コイルの中心軸を含み、前記第1の中心横断面に垂直な面である第2の中心横断面の面内に、巻軸が前記第2の中心横断面に対し垂直となる向きに配設された第2の検出コイルを備え、
前記第2の検出コイルは、該第2の検出コイルのコイル環内に前記給電コイルを内包するように配置されたものであり、
前記第2の検出コイルに発生する起電圧又は起電流の強度を検出する第2の起電力検出手段と、
前記給電コイルに供給される電圧又は電流の位相と前記第2の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第2の位相差検出手段と、
前記第2の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する位置ずれ検出手段と、
前記第2の位相差検出手段が検出する位相差により、前記第2の検出コイルの中心軸方向(以下「y軸方向」という。)の位置ずれ向きを検出する第2の位置ずれ方向検出手段と、を備えたことを特徴とする。
A second configuration of the non-contact power feeding device according to the present invention is, in the first configuration, a second center including a central axis of the feeding coil and being a plane perpendicular to the first central cross section. In the plane of the cross section, there is provided a second detection coil whose winding axis is oriented perpendicular to the second central cross section,
The second detection coil is disposed so as to enclose the feeding coil in a coil ring of the second detection coil,
A second electromotive force detection unit that detects the intensity of an electromotive voltage or an electromotive current generated in the second detection coil;
Second phase difference detection means for detecting a phase difference between the phase of the voltage or current supplied to the feeding coil and the phase of the electromotive voltage or current generated in the second detection coil;
A positional deviation detection unit that determines the presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil by performing threshold determination on the strength of the electromotive voltage or electromotive current detected by the second electromotive force detection unit;
Second misalignment direction detecting means for detecting misalignment direction of the central axis direction (hereinafter referred to as “y-axis direction”) of the second detection coil based on the phase difference detected by the second phase difference detection means And.

これにより、2次元平面内におけるx軸方向及びy軸方向の両方の位置ずれの発生及び向きの検出が可能となる。   This makes it possible to detect the occurrence and direction of displacement in both the x-axis direction and the y-axis direction in a two-dimensional plane.

本発明に係る非接触給電装置の第3の構成は、前記第1又は2の構成に於いて、前記給電コイルの側部に、巻軸が、前記給電コイルに前記受電コイルが接近していない状態に於いて前記給電コイルが作る磁束に対し垂直となる向きに配設された第3の検出コイルと、
前記給電コイルに供給される電圧又は電流の位相と前記第3の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第3の位相差検出手段と、
前記第3の位相差検出手段により検出される位相差が所定の値となるように、前記給電コイルに供給される電圧又は電流の周波数を制御する共振周波数制御手段と、を備えたことを特徴とする。
In a third configuration of the non-contact power feeding device according to the present invention, in the first or second configuration, a winding shaft does not approach the side of the power feeding coil, and the power receiving coil does not approach the power feeding coil. A third detection coil disposed in a direction perpendicular to the magnetic flux produced by the feed coil in a state;
Third phase difference detection means for detecting a phase difference between the phase of the voltage or current supplied to the feeding coil and the phase of the electromotive voltage or current generated in the third detection coil;
And resonance frequency control means for controlling the frequency of the voltage or current supplied to the feeding coil such that the phase difference detected by the third phase difference detecting means becomes a predetermined value. I assume.

この構成によれば、給電コイルの近傍に受電コイルが存在しない場合には、給電コイルに交番電流を通電させたときに第3の検出コイルに生じる誘起電圧(又は誘起電流)は略ゼロである。一方、給電コイルの近傍に受電コイルが接近した場合には、第3の検出コイルに誘起電圧(又は誘起電流)が発生する。このとき、給電コイルに通電する交番電流の周波数が、給電コイルと受電コイルとの間の共振周波数に一致するときには、給電コイルに通電する交番電圧(又は交番電流)の位相と、第3の検出コイルに誘起される誘起電圧(又は誘起電流)の位相との位相差は90度となる。しかし、給電コイルに通電する交番電圧(又は交番電流)の周波数が、共振周波数から微少量ずれると、そのズレ量に応じて、前記位相差は90度からずれる。従って、第3の位相差検出手段により、誘起電圧(又は誘起電流)の位相を検出し、共振周波数制御手段により、当該位相差が所定の値(絶対値が90度)となるように、給電コイルに供給される電圧又は電流の周波数を制御することで、給電コイルに通電する交番電圧(又は交番電流)の周波数を自動的に共振周波数に一致させ、電力伝送効率を最大化することができる。   According to this configuration, when the power receiving coil does not have the power receiving coil, the induced voltage (or induced current) generated in the third detection coil when the alternating current is supplied to the power feeding coil is substantially zero. . On the other hand, when the power receiving coil approaches the vicinity of the feed coil, an induced voltage (or induced current) is generated in the third detection coil. At this time, when the frequency of the alternating current supplied to the feeding coil coincides with the resonant frequency between the feeding coil and the receiving coil, the phase of the alternating voltage (or alternating current) supplied to the feeding coil and the third detection The phase difference from the phase of the induced voltage (or induced current) induced in the coil is 90 degrees. However, when the frequency of the alternating voltage (or alternating current) supplied to the feed coil is slightly deviated from the resonance frequency, the phase difference deviates from 90 degrees according to the amount of deviation. Therefore, the third phase difference detection means detects the phase of the induced voltage (or induced current), and the resonance frequency control means supplies power so that the phase difference becomes a predetermined value (absolute value is 90 degrees). By controlling the frequency of the voltage or current supplied to the coil, the frequency of the alternating voltage (or alternating current) supplied to the feeding coil can be automatically made to coincide with the resonance frequency to maximize the power transmission efficiency. .

本発明に係る非接触給電装置の第4の構成は、前記第3の構成に於いて、前記第3の検出コイルに発生する起電圧又は起電流の強度を検出する第3の起電力検出手段と、
前記第3の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルの近傍に前記受電コイルが存在するか否かを判定する存否検出手段と、を備えたことを特徴とする。
A fourth configuration of the non-contact power feeding device according to the present invention is, in the third configuration, a third electromotive force detection unit that detects the intensity of an electromotive voltage or electromotive current generated in the third detection coil. When,
Presence / absence detection means for determining whether or not the power receiving coil is present in the vicinity of the power feeding coil by determining the threshold of the strength of the electromotive voltage or the electromotive current detected by the third electromotive force detection means; It is characterized by

この構成によれば、第3の起電力検出手段によって第3の検出コイルに発生する起電圧又は起電流の強度を検出し、存否検出手段によってその強度を閾値判定することで、給電コイルの近傍に受電コイルが存在するか否かを検出することができる。   According to this configuration, the third electromotive force detection means detects the strength of the electromotive voltage or current generated in the third detection coil, and the presence / absence detection means determines the strength as a threshold, thereby providing the vicinity of the feed coil. It can be detected whether or not there is a receiving coil.

本発明に係る非接触受電装置の第1の構成は、交流電力が給電される給電コイルを具備する非接触給電装置と、前記給電コイルに対し着脱可能に装着され、前記給電コイルと共鳴して前記給電コイルから電力供給を受ける受電コイルを具備する非接触受電装置とを備えた非接触給電システムにおいて使用される非接触受電装置であって、
前記受電コイルの中心軸を含む面である第1の中心横断面の面内に、巻軸が前記第1の中心横断面に対し垂直となる向きに配設された第1の検出コイルを備え、
前記第1の検出コイルは、該第1の検出コイルのコイル環内に前記受電コイルを内包するように配置されたものであり、
前記第1の検出コイルに発生する起電圧又は起電流の強度を検出する第1の起電力検出手段と、
前記給電コイルが作る交番磁場により前記受電コイルに誘導される電圧又は電流の位相と前記第1の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第1の位相差検出手段と、
前記第1の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第1の位置ずれ検出手段と、
前記第1の位相差検出手段が検出する位相差により、前記第1の検出コイルの中心軸方向(以下「x軸方向」という。)の位置ずれ向き及び位置ずれ量を検出する第1の位置ずれ方向検出手段と、を備えたことを特徴とする。
In a first configuration of the non-contact power reception device according to the present invention, a non-contact power feeding device including a feeding coil to which alternating current power is fed, and the feeding coil are detachably attached to the feeding coil and resonate with the feeding coil. A non-contact power receiving device used in a non-contact power feeding system comprising: a non-contact power receiving device including a power receiving coil receiving power supply from the power feeding coil, wherein
In a plane of a first central cross section which is a plane including a central axis of the power receiving coil, a first detection coil is provided, the winding axis of which is oriented in a direction perpendicular to the first central cross section. ,
The first detection coil is disposed so as to enclose the power receiving coil in a coil ring of the first detection coil,
First electromotive force detection means for detecting an intensity of an electromotive voltage or an electromotive current generated in the first detection coil;
First phase difference detection for detecting a phase difference between a phase of voltage or current induced in the power receiving coil by an alternating magnetic field generated by the feeding coil and a phase of electromotive voltage or current generated in the first detection coil Means,
A first positional deviation detection unit that determines presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil by determining a threshold of the strength of the electromotive voltage or electromotive current detected by the first electromotive force detection unit;
A first position for detecting the direction of positional deviation and the amount of positional deviation in the central axis direction (hereinafter referred to as “x-axis direction”) of the first detection coil based on the phase difference detected by the first phase difference detection means And a shift direction detection unit.

この構成により、非接触受電装置の側に於いて、給電コイルと受電コイルとの間の位置ずれの発生とx軸に沿った位置ずれの向きを検出することができる。   With this configuration, it is possible to detect the occurrence of positional deviation between the feeding coil and the receiving coil and the direction of positional deviation along the x-axis on the non-contact power receiving device side.

本発明に係る非接触受電装置の第2の構成は、前記第1の構成に於いて、前記受電コイルの中心軸を含み、前記第1の中心横断面に垂直な面である第2の中心横断面の面内に、巻軸が前記第2の中心横断面に対し垂直となる向きに配設された第2の検出コイルを備え、
前記第2の検出コイルは、該第2の検出コイルのコイル環内に前記受電コイルを内包するように配置されたものであり、
前記第2の検出コイルに発生する起電圧又は起電流の強度を検出する第2の起電力検出手段と、
前記給電コイルが作る交番磁場により前記受電コイルに誘導される電圧又は電流の位相と前記第2の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第2の位相差検出手段と、
前記第2の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第2の位置ずれ検出手段と、
前記第2の位相差検出手段が検出する位相差により、前記第2の検出コイルの中心軸方向(以下「y軸方向」という。)の位置ずれ向き及び位置ずれ量を検出する第2の位置ずれ量検出手段と、を備えたことを特徴とする。
A second configuration of the non-contact power reception device according to the present invention is, in the first configuration, a second center including a central axis of the power receiving coil and being a plane perpendicular to the first central cross section. In the plane of the cross section, there is provided a second detection coil whose winding axis is oriented perpendicular to the second central cross section,
The second detection coil is disposed so as to enclose the power receiving coil in a coil ring of the second detection coil,
A second electromotive force detection unit that detects the intensity of an electromotive voltage or an electromotive current generated in the second detection coil;
A second phase difference detection that detects a phase difference between a phase of a voltage or current induced in the power receiving coil by an alternating magnetic field generated by the feeding coil and a phase of an electromotive voltage or current generated in the second detection coil Means,
Second positional deviation detection means for judging presence / absence of positional deviation of the power receiving coil with respect to the power feeding coil by making a threshold judgment on the strength of the electromotive voltage or electromotive current detected by the second electromotive force detecting means;
A second position for detecting the direction of positional deviation and the amount of positional deviation in the central axis direction (hereinafter referred to as "y-axis direction") of the second detection coil based on the phase difference detected by the second phase difference detection means And a shift amount detection unit.

この構成により、非接触受電装置の側に於いて、給電コイルと受電コイルとの間の位置ずれの発生とx軸及びy軸に沿った位置ずれの向きを検出することができる。   With this configuration, it is possible to detect the occurrence of positional deviation between the feeding coil and the receiving coil and the direction of positional deviation along the x-axis and y-axis on the non-contact power reception device side.

以上のように、本発明に係る非接触給電装置によれば、非接触受電装置の側に特に検出機構を設けていなくても、非接触給電装置の側のみから、給電コイル近傍に非接触受電装置の受電コイルが接近したか否かを検出し、その位置ずれ及び位置ずれ方向を検出することが可能となる。また、第3の位相差検出手段及び共振周波数制御手段を設けることで、給電コイル又は受電コイルの経年劣化等によって共振周波数が変化した場合であっても、それに追随して給電コイルに通電する交番電流の周波数を共振周波数に自動的に合わせ、電力伝送効率を最大化することができる。   As described above, according to the non-contact power feeding device of the present invention, even if the detection mechanism is not provided on the non-contact power receiving device side, the non-contact power reception near the power feeding coil only from the non-contact power feeding device side. It is possible to detect whether or not the power receiving coil of the device has approached, and to detect the positional deviation and the positional deviation direction. Further, by providing the third phase difference detection means and the resonance frequency control means, even when the resonance frequency changes due to aging deterioration of the power feeding coil or the power receiving coil, an alternating number is used to energize the power feeding coil following it. The frequency of the current can be automatically matched to the resonant frequency to maximize power transfer efficiency.

また、本発明に係る非接触受電装置によれば、非接触給電装置の側に特に検出機構を設けていなくても、非接触受電装置の側のみから、給電コイルに対する受電コイルの位置ずれ及び位置ずれ方向を検出することが可能となる。   Further, according to the non-contact power reception device of the present invention, even if the detection mechanism is not particularly provided on the non-contact power feeding device side, the positional deviation and position of the power receiving coil with respect to the feeding coil only from the non-contact power reception device side. It becomes possible to detect the shift direction.

本発明の実施例1に係る非接触給電システムの構成を表すブロック図である。It is a block diagram showing the composition of the non-contact electric supply system concerning Example 1 of the present invention. 図1における給電コイルアッセンブリ6を示す模式図である。It is a schematic diagram which shows the feed coil assembly 6 in FIG. 受電コイル30が給電コイル3の近傍にない状態に於いて給電コイル3に通電したときに給電コイル3の周囲に作られる磁界の例を示す図である。FIG. 7 is a diagram showing an example of a magnetic field generated around the feeding coil 3 when the feeding coil 3 is energized in a state where the receiving coil 30 is not in the vicinity of the feeding coil 3; 非接触給電装置1の給電コイル3に非接触受電装置2の受電コイル30が接近した際の、両コイル近傍に形成される磁界の変化を表した模式図である。It is a schematic diagram showing change of a magnetic field formed near both coils at the time of receiving coil 30 of non-contacting electric power receiving device 2 approaching feed coil 3 of non-contacting electric power feeding device 1. 起電圧の測定実験で使用した給電コイルアッセンブリ6の斜視図である。It is a perspective view of feed coil assembly 6 used by measurement experiment of electromotive force. 起電圧の測定実験における、給電コイルアッセンブリ6と受電コイル30との位置関係を表す図である。It is a figure showing the physical relationship of feed coil assembly 6 and receiving coil 30 in measurement experiment of electromotive force. 図5の測定位置B,Cにおける給電コイル3,受電コイル30,検出コイル4の電圧波形である。It is a voltage waveform of the feed coil 3, the receiving coil 30, and the detection coil 4 in the measurement position B and C of FIG. 図1の非接触給電装置1の移動制御回路17の位置ずれ補正制御動作を表すフローチャートである。It is a flowchart showing position shift correction | amendment control operation of the movement control circuit 17 of the non-contact electric power supply 1 of FIG. 本発明の実施例2に係る非接触給電システムの構成を表すブロック図である。It is a block diagram showing the structure of the non-contact electric power feeding system which concerns on Example 2 of this invention. 図9における給電コイルアッセンブリ6を示す模式図である。It is a schematic diagram which shows the feed coil assembly 6 in FIG. 図10の給電コイル3及び検出コイル4a,4bの具体的な構成例を表す図である。It is a figure showing the specific structural example of the feed coil 3 of FIG. 10, and detection coil 4a, 4b. 本発明の実施例3に係る非接触給電システムの構成を表すブロック図である。It is a block diagram showing the composition of the non-contact electric supply system concerning Example 3 of the present invention. 図12における給電コイルアッセンブリ6を示す模式図である。It is a schematic diagram which shows the feed coil assembly 6 in FIG. 図12の非接触給電装置1の移動制御回路17の位置ずれ補正制御動作及び通電制御回路12の通電モード切替動作を表すフローチャートである。It is a flowchart showing position shift correction control operation of movement control circuit 17 of non-contact electric supply 1 of Drawing 12, and energization mode change operation of energization control circuit 12. 本発明の実施例4に係る非接触給電システムの構成を表すブロック図である。It is a block diagram showing the composition of the non-contact electric supply system concerning Example 4 of the present invention.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る非接触給電システムの構成を表すブロック図である。図2は、図1における給電コイル3及び検出コイル4の配置を示す模式図である。本実施例の非接触給電システムは、非接触給電装置1及び非接触受電装置2を備えている。   FIG. 1 is a block diagram showing a configuration of a non-contact power feeding system according to a first embodiment of the present invention. FIG. 2 is a schematic view showing the arrangement of the feed coil 3 and the detection coil 4 in FIG. The noncontact power feeding system of the present embodiment includes a noncontact power feeding device 1 and a noncontact power receiving device 2.

非接触給電装置1は、給電コイル3及び検出コイル4を具備する給電コイルアッセンブリ6、モータ7、電源回路10、発振回路11、通電制御回路12、起電力検出回路13、位置ずれ検出回路16、移動制御回路17、位相差検出回路18、並びに位置ずれ方向検出回路19を備えている。   The non-contact power feeding device 1 includes a feeding coil assembly 6 including a feeding coil 3 and a detecting coil 4, a motor 7, a power supply circuit 10, an oscillation circuit 11, an energization control circuit 12, an electromotive force detection circuit 13, and a displacement detection circuit 16. A movement control circuit 17, a phase difference detection circuit 18, and a displacement direction detection circuit 19 are provided.

給電コイルアッセンブリ6は、図2のように給電コイル3と検出コイル4が一体的に組み込まれている。給電コイル3は、交流電流が給電され、非接触受電装置2への非接触電力送電を行うためのコイルである。通常、給電コイル3には、図2に示したような有芯コイルが使用される。尚、図2では、図を見やすくするための便宜上、給電コイル3は円筒形コイル、給電コイルのコア3aは円柱形コアとしているが、本発明に於いては、給電コイル3及び給電コイルのコア3aの形状はこれに限定されず、例えば、四角筒型コイル等を使用してもよい。尚、後述するように、非接触受電装置2の位置ずれ量の検出を容易にするため、給電コイル3及び給電コイルのコア3aの形状は、その中心軸を通る一平面に対して左右対称の形状とするのが好ましい。   As shown in FIG. 2, the feeding coil assembly 6 integrally incorporates the feeding coil 3 and the detection coil 4. The feeding coil 3 is a coil which is fed with an alternating current and performs noncontact power transmission to the noncontact power receiving apparatus 2. Usually, a cored coil as shown in FIG. 2 is used for the feeding coil 3. In FIG. 2, the feed coil 3 is a cylindrical coil and the core 3 a of the feed coil is a cylindrical core for the sake of convenience of illustration, but in the present invention, the feed coil 3 and the core of the feed coil The shape of 3a is not limited to this, For example, a square cylindrical coil etc. may be used. As described later, in order to facilitate detection of the positional deviation of the non-contact power reception device 2, the shapes of the feeding coil 3 and the core 3a of the feeding coil are symmetrical with respect to one plane passing through the central axis thereof. It is preferable to make it a shape.

ここで、図2に示したように、給電コイル3の中心軸をL0、中心軸L0を含む一平面を第1の中心横断面S1、給電コイル3の中心点Oを通り且つ第1の中心横断面S1に垂直な座標軸をx軸、給電コイル3の中心点Oを通り且つ第1の中心横断面S1の面内の座標軸をy軸とする。   Here, as shown in FIG. 2, the central axis of the feeding coil 3 is L0, and a plane including the central axis L0 is a first central cross section S1 passing through the central point O of the feeding coil 3 and the first center A coordinate axis perpendicular to the cross section S1 is taken as an x axis, and a coordinate axis passing through the center point O of the feeding coil 3 and in the plane of the first central cross section S1 is taken as ay axis.

検出コイル4は、コイル環内に給電コイル3を内包するように配置され、非接触受電装置2の接近及び位置ずれ方向並びに位置ずれ量を検出するコイルである。検出コイル4は、非接触受電装置2の受電コイル30(後述)がない状態に於いて、誘導電流が最小となる位置に配置されている。具体的には、例えば、給電コイル3が図2のような円筒形コイルの場合、検出コイル4は、第1の中心横断面S1内に配置され、その巻軸が第1の中心横断面S1に対して垂直となる向き(x軸方向)となるように配置される。   The detection coil 4 is disposed so as to enclose the feeding coil 3 in a coil ring, and is a coil that detects the approach and displacement directions of the non-contact power reception device 2 and the displacement amount. The detection coil 4 is disposed at a position where the induced current is minimum when there is no power reception coil 30 (described later) of the non-contact power reception device 2. Specifically, for example, when the feeding coil 3 is a cylindrical coil as shown in FIG. 2, the detecting coil 4 is disposed within the first central cross section S1, and the winding axis thereof is the first central cross section S1. It is arranged so as to be in the direction (x-axis direction) perpendicular to.

図3は、受電コイル30が給電コイル3の近傍にない状態に於いて給電コイル3に通電したときに給電コイル3の周囲に作られる磁界の例を示す図である。図3は、説明のための図であり、図3においては、給電コイル3は有芯円筒形コイルとし、給電コイル3の周囲にある物体(ケーシング等)は無視している。給電コイル3が作る磁束(磁力線)は点線により示している。図3のケースでは、給電コイルが作る磁束はxy平面に対して面対称で、且つ中心軸L0に対して回転対称であるため、検出コイル4の巻軸をx軸と同軸とし、検出コイル4を第1の中心横断面S1内に配置することによって、検出コイル4に誘導される電流は最小(図3のような理想的な場合には0)となる。実際のケースでは、給電コイル3の形状や、その周囲に配置される物体(ケーシング等)の影響により、図3のような理想的な磁界分布とはならないため、検出コイル4の配向を決定する際には、給電コイル3の交流通電した状態で検出コイル4の傾きを変化させながら誘導電流を測定し、誘導電流が最小となる角度に決定すればよい。   FIG. 3 is a diagram showing an example of a magnetic field generated around the feeding coil 3 when the feeding coil 3 is energized in a state where the receiving coil 30 is not in the vicinity of the feeding coil 3. FIG. 3 is a diagram for explanation. In FIG. 3, the feeding coil 3 is a cored cylindrical coil, and an object (such as a casing) around the feeding coil 3 is ignored. The magnetic flux (magnetic line of force) generated by the feeding coil 3 is indicated by a dotted line. In the case of FIG. 3, the magnetic flux produced by the feed coil is plane-symmetrical to the xy plane and rotationally symmetric to the central axis L 0, so that the winding axis of the detection coil 4 is coaxial with the x-axis. Is placed in the first central cross section S1, the current induced in the detection coil 4 is minimized (0 in the ideal case as in FIG. 3). In the actual case, the orientation of the detection coil 4 is determined because the ideal magnetic field distribution as shown in FIG. 3 is not obtained due to the influence of the shape of the feed coil 3 and the object (casing etc.) disposed around it. In this case, the induction current may be measured while changing the inclination of the detection coil 4 in a state in which the feeding coil 3 is AC-energized, and the angle at which the induction current is minimized may be determined.

尚、本実施例では、非接触給電装置1は、給電コイルアッセンブリ6をx軸方向(左右方向)に平行移動させるスライダ機構(図示せず)を備えており、モータ7は、このスライダ機構を駆動することによって給電コイルアッセンブリ6をx軸方向に移動させる。尚、モータ7には、通常のステッピングモータが使用されている。   In the present embodiment, the non-contact power feeding device 1 includes a slider mechanism (not shown) for translating the feeding coil assembly 6 in the x-axis direction (left and right direction), and the motor 7 performs this slider mechanism. By driving, the feeding coil assembly 6 is moved in the x-axis direction. As the motor 7, a normal stepping motor is used.

電源回路10は、給電コイル3に通電する電力、モータ7を駆動する電力及びその他の回路を駆動する電力を供給するための直流安定化電源である。発振回路11は、給電コイル3に通電する際の周波数fの交流電圧を生成する回路である。通電制御回路12は、電源回路10から供給される直流電流を、発振回路11が生成する交流電圧により変調することにより、給電コイル3に供給する通電電流を生成する回路である。   The power supply circuit 10 is a DC stabilized power supply for supplying power for energizing the feeding coil 3, power for driving the motor 7, and power for driving other circuits. The oscillation circuit 11 is a circuit that generates an AC voltage of frequency f when the feeding coil 3 is energized. The conduction control circuit 12 is a circuit that generates a conduction current to be supplied to the power feeding coil 3 by modulating a direct current supplied from the power supply circuit 10 with an alternating voltage generated by the oscillation circuit 11.

起電力検出回路13は、検出コイル4に発生する起電圧(又は起電流)の強度を検出する回路である。検出コイル4に発生する起電圧(又は起電流)は交流であるため、起電力検出回路13は、これを整流する整流回路を備え、検出コイル4の起電圧(又は起電流)の強度を、整流後の検出電圧値(又はそれを増幅した電圧値)V4として出力する。位置ずれ検出回路16は、起電力検出回路13が検出する検出電圧値V4から、給電コイル3に対する受電コイル30の位置ずれ量Δxを検出する回路である。   The electromotive force detection circuit 13 is a circuit that detects the intensity of an electromotive voltage (or electromotive current) generated in the detection coil 4. Since the electromotive force (or electromotive current) generated in the detection coil 4 is an alternating current, the electromotive force detection circuit 13 includes a rectification circuit that rectifies this, and the strength of the electromotive voltage (or electromotive current) of the detection coil 4 is It outputs as a detection voltage value (or voltage value which amplified it) V4 after rectification. The positional deviation detection circuit 16 is a circuit that detects the positional deviation amount Δx of the power receiving coil 30 with respect to the feeding coil 3 from the detection voltage value V4 detected by the electromotive force detection circuit 13.

位相差検出回路18は、通電制御回路12から給電コイル3に出力される電圧(又は電流)の位相φ3と、検出コイル4に発生する起電圧(又は起電流)の位相φ4との位相差Δφ43を検出する回路である。位置ずれ方向検出回路19は、位相差検出回路18が検出する位相差の正負によって、給電コイル3に対する受電コイル30の位置ずれ方向を判定する回路である。   The phase difference detection circuit 18 has a phase difference Δφ 43 between the phase φ 3 of the voltage (or current) output from the conduction control circuit 12 to the feeding coil 3 and the phase φ 4 of the electromotive voltage (or electromotive current) generated in the detection coil 4. Is a circuit that detects The misalignment direction detection circuit 19 is a circuit that determines the misalignment direction of the power receiving coil 30 with respect to the feeding coil 3 based on whether the phase difference detected by the phase difference detection circuit 18 is positive or negative.

移動制御回路17は、位置ずれ検出回路16が検出する位置ずれ量及び位置ずれ方向検出回路19が検出する位置ずれ方向に基づき、位置ずれ量が最小となるように、モータ7の駆動制御を行う回路である。移動制御回路17は、マイコン等を用いて構成することができる。   The movement control circuit 17 performs drive control of the motor 7 so as to minimize the amount of displacement based on the amount of displacement detected by the displacement detection circuit 16 and the direction of displacement detected by the displacement direction detection circuit 19. It is a circuit. The movement control circuit 17 can be configured using a microcomputer or the like.

一方、非接触受電装置2は、受電コイル30、整流回路31、及び2次電池32を備えている。受電コイル30は、非接触給電装置2が非接触給電装置1に接近したときに、給電コイル2と磁気共鳴して、給電コイルから電力供給を受けるためのコイルである。整流回路31は、受電コイル30で発生する誘起電流を整流する回路である。2次電池32は、整流回路31が出力する直流電流により蓄電される電池である。   On the other hand, the non-contact power reception device 2 includes the power reception coil 30, the rectification circuit 31, and the secondary battery 32. The power receiving coil 30 is a coil for performing magnetic resonance with the power feeding coil 2 and receiving power supply from the power feeding coil when the non-contact power feeding apparatus 2 approaches the non-contact power feeding apparatus 1. The rectifying circuit 31 is a circuit that rectifies an induced current generated in the power receiving coil 30. The secondary battery 32 is a battery which is stored by the direct current output from the rectifier circuit 31.

以上のように構成された本実施例に係る非接触給電システムにおいて、以下その動作を説明する。   The operation of the noncontact power feeding system according to the present embodiment configured as described above will be described below.

(1)受電コイルの位置ずれ量・方向と検出コイルの誘起電圧(電流)との関係
図4は、非接触給電装置1の給電コイル3に非接触受電装置2の受電コイル30が接近した際の、両コイル近傍に形成される磁界の変化を表した模式図である。尚、図4において、磁束は点線により示されている。図4では、(d),(c),(b),(a)の順に受電コイル30が給電コイル3に順次接近しており、図4(a)は、受電コイル30と給電コイル3が完全に共鳴した状態を表している。尚、図4は、直流磁場近似したものであり、実際には給電コイル3及び受電コイル30は交流通電されるため交番磁場となり、図4とは多少異なる磁力線分布となる。
(1) Relationship between positional displacement amount and direction of power receiving coil and induced voltage (current) of detection coil In FIG. 4, when the power receiving coil 30 of the non-contact power receiving device 2 approaches the power feeding coil 3 of the non-contact power feeding device 1 It is a schematic diagram showing change of a magnetic field formed near both coils. In FIG. 4, the magnetic flux is indicated by a dotted line. In FIG. 4, the receiving coil 30 sequentially approaches the feeding coil 3 in the order of (d), (c), (b), and (a), and in FIG. 4 (a), the receiving coil 30 and the feeding coil 3 It represents a state of complete resonance. Note that FIG. 4 approximates a direct current magnetic field, and in fact, since the power feeding coil 3 and the power receiving coil 30 are subjected to alternating current conduction, they become alternating magnetic fields, and magnetic flux lines have a somewhat different distribution from that of FIG.

給電コイル3の近傍に受電コイル30がないときには、図3に示すように、検出コイル4を鎖交する鎖交磁束の磁束数はほぼゼロである。従って、検出コイル4には誘導電流は生じない。給電コイル3に受電コイル30が接近すると、給電コイル3の周囲の磁場が受電コイル30によって乱される。図4に示すとおり、受電コイル30が給電コイル3に接近すると、受電コイル30に誘導される誘導電流や受電コイル30のコアの影響により、給電コイル3の周囲の磁界が乱される。受電コイル30が給電コイル3と同軸でない位置関係のときには、受電コイル30による磁界の擾乱によって、検出コイル4を鎖交する鎖交磁束の磁束数が増加する(図4(d)(c)(b))。これにより、検出コイル4には誘導電流が発生する。受電コイル30が給電コイル3と同軸となる位置関係となった場合(図4(a))、給電コイル3の周囲の磁界は中心軸L0に対して対称となる。従って、検出コイル4を鎖交する鎖交磁束の磁束数はほぼゼロとなり、検出コイル4に生じる誘導電流もほぼゼロとなる。従って、検出コイル4に生じる誘導電流の大きさを検出することによって、給電コイル3に対する受電コイル30の位置ずれ量を検出することができる。   When the power receiving coil 30 is not present in the vicinity of the feeding coil 3, as shown in FIG. 3, the number of flux linkages linking the detecting coil 4 is substantially zero. Therefore, no induced current is generated in the detection coil 4. When the power receiving coil 30 approaches the power feeding coil 3, the magnetic field around the power feeding coil 3 is disturbed by the power receiving coil 30. As shown in FIG. 4, when the power receiving coil 30 approaches the power feeding coil 3, the magnetic field around the power feeding coil 3 is disturbed by the influence of the induced current induced in the power receiving coil 30 and the core of the power receiving coil 30. When the receiving coil 30 is not coaxial with the feeding coil 3, the number of flux of the linkage flux linking the detecting coil 4 increases due to the disturbance of the magnetic field by the receiving coil 30 (FIGS. b). Thereby, an induced current is generated in the detection coil 4. When the power receiving coil 30 has a positional relationship in which the power receiving coil 30 and the power feeding coil 3 are coaxial (FIG. 4A), the magnetic field around the power feeding coil 3 is symmetrical with respect to the central axis L0. Accordingly, the number of the flux linkages linking the detection coil 4 is substantially zero, and the induced current generated in the detection coil 4 is also substantially zero. Therefore, by detecting the magnitude of the induced current generated in the detection coil 4, it is possible to detect the amount of positional deviation of the power receiving coil 30 with respect to the feeding coil 3.

実際に、給電コイル3に交流電流を入力して、受電コイル30の位置と検出コイル4の起電圧の関係についての測定実験を行った。図5は、実験で使用した給電コイルアッセンブリ6の斜視図である。実験では、給電コイル3はコイルワイヤ3bが円筒周囲に捲回された円筒形コイルを使用した。給電コイル3のコイルコア3aは、コイルワイヤ3bを貫通する円柱状の中央軸部分の下端に、矩形板状の底板部分が連設され、さらに底板部分の左右両端に、コイルワイヤ3bの両側を囲繞する囲壁部が突設された形状に形成されている。図6は、起電圧の測定実験における、給電コイルアッセンブリ6と受電コイル30との位置関係を表す図(平面図)である。図6(a)は受電コイル30が給電コイル3の真上(中心軸L0と同軸)に位置する状態、図6(b)は受電コイル30が給電コイル3の右側にずれて位置する状態、図6(c)は受電コイル30が給電コイル3の左側にずれて位置する状態である。   Actually, an alternating current was input to the feeding coil 3, and a measurement experiment was performed on the relationship between the position of the receiving coil 30 and the electromotive voltage of the detecting coil 4. FIG. 5 is a perspective view of the feed coil assembly 6 used in the experiment. In the experiment, a feeding coil 3 used was a cylindrical coil in which a coil wire 3b was wound around the cylinder. The coil core 3a of the feeding coil 3 has a rectangular plate-shaped bottom plate portion connected to the lower end of a cylindrical central shaft portion penetrating the coil wire 3b, and further surrounds both sides of the coil wire 3b at both left and right ends of the bottom plate portion. The surrounding wall portion is formed in a projecting shape. FIG. 6 is a diagram (plan view) showing the positional relationship between the feeding coil assembly 6 and the receiving coil 30 in the measurement experiment of the electromotive voltage. 6A shows a state in which the receiving coil 30 is positioned right above the coaxial line of the feeding coil 3 (coaxial with the central axis L0), FIG. 6B shows a state in which the receiving coil 30 is offset to the right of the feeding coil 3; FIG. 6C shows a state in which the power receiving coil 30 is shifted to the left side of the feeding coil 3.

図7は、図5の測定位置B,Cにおける給電コイル3,受電コイル30,検出コイル4の電圧波形である。図7(a)は相対位置A(図6(a))に受電コイル30を置いた場合の電圧波形、図7(b)は相対位置B(図6(b))に受電コイル30を置いた場合の電圧波形、図7(c)は相対位置C(図6(c))に受電コイル30を置いた場合の電圧波形を表す。また、図7(a)〜(c)において、チャネル1(最下部)の波形が給電コイル3に入力された電圧波形、チャネル2(下から2番目)の波形が受電コイル30に誘起された電圧波形、チャネル4(最上部)の波形が検出コイル4に誘起された電圧波形である。   FIG. 7 shows voltage waveforms of the feeding coil 3, the receiving coil 30, and the detection coil 4 at the measurement positions B and C in FIG. 7A shows the voltage waveform when the power receiving coil 30 is placed at the relative position A (FIG. 6A), and FIG. 7B places the power receiving coil 30 at the relative position B (FIG. 6B). FIG. 7C shows a voltage waveform when the power receiving coil 30 is placed at the relative position C (FIG. 6C). Further, in FIGS. 7A to 7C, the waveform of the channel 1 (lowermost portion) is a voltage waveform input to the feeding coil 3, and the waveform of the channel 2 (second from the bottom) is induced in the power receiving coil 30. The voltage waveform, the waveform of the channel 4 (uppermost part) is a voltage waveform induced in the detection coil 4.

図7に示すように、受電コイル30が給電コイル3と同軸位置にある場合、検出コイル4には誘導電圧は発生しない(図7(a))。すなわち、誘導電圧波形の強度は最小となる。受電コイル30がx軸方向に左にずれると、検出コイル4には、給電コイル3に入力された電圧波形に対して、位相が90度進んだ誘導電圧が発生する。逆に、受電コイル30がx軸方向に右にずれると、検出コイル4には、給電コイル3に入力された電圧波形に対して、位相が90度遅れた誘導電圧が発生する。従って、給電コイル3に入力される電圧波形に対する検出コイル4に誘導される誘導電圧の位相の正負を検出することによって、給電コイル3に対する受電コイル30の位置ずれ方向を検出することが可能であることが分かる。   As shown in FIG. 7, when the power receiving coil 30 is coaxial with the feeding coil 3, no induced voltage is generated in the detecting coil 4 (FIG. 7 (a)). That is, the strength of the induced voltage waveform is minimized. When the power receiving coil 30 is shifted to the left in the x-axis direction, an induced voltage whose phase is advanced by 90 degrees with respect to the voltage waveform input to the feeding coil 3 is generated in the detection coil 4. Conversely, when the power receiving coil 30 is displaced to the right in the x-axis direction, an induced voltage whose phase is delayed by 90 degrees with respect to the voltage waveform input to the feeding coil 3 is generated in the detection coil 4. Therefore, it is possible to detect the positional deviation direction of the receiving coil 30 with respect to the feeding coil 3 by detecting the positive or negative of the phase of the induction voltage induced in the detecting coil 4 with respect to the voltage waveform input to the feeding coil 3 I understand that.

尚、受電コイル30のずれ方向に対して、検出コイル4の誘導電圧波形の位相が進むか遅れるかは、給電コイル3と受電コイル30の巻き方向に依存する。   Whether the phase of the induced voltage waveform of the detection coil 4 is advanced or delayed with respect to the displacement direction of the power reception coil 30 depends on the winding direction of the power supply coil 3 and the power reception coil 30.

(2)非接触給電装置1の動作
次に、図1の非接触給電装置1について、具体的な位置ずれ補正制御における動作を説明する。図8は、非接触給電装置1の移動制御回路17の位置ずれ補正制御動作を表すフローチャートである。尚、ここでは、給電コイル3に対し受電コイル30がx軸方向に左にずれると、検出コイル4には位相が90度進んだ誘導電圧が発生するものとする。
(2) Operation of Non-Contact Power Feeding Device 1 Next, the operation of the non-contact power feeding device 1 of FIG. FIG. 8 is a flowchart showing the positional deviation correction control operation of the movement control circuit 17 of the non-contact power feeding device 1. Here, when the power receiving coil 30 is shifted leftward in the x-axis direction with respect to the power feeding coil 3, it is assumed that an induced voltage with a phase advanced by 90 degrees is generated in the detection coil 4.

まず、ステップS1において、移動制御回路17は、位置ずれ検出回路16が検出する位置ずれ量Δxが、所定の閾値εよりも大きいか否かを判定する。Δx≦εの場合には、ステップS1の判定動作を繰り返す。Δx>εの場合には、次のステップS2に進む。   First, in step S1, the movement control circuit 17 determines whether the positional deviation amount Δx detected by the positional deviation detection circuit 16 is larger than a predetermined threshold ε. In the case of Δx ≦ ε, the determination operation of step S1 is repeated. If Δx> ε, the process proceeds to the next step S2.

次に、ステップS2において、移動制御回路17は、位相差検出回路18が検出する位相差Δφ43の正負を判定する。ここで、Δφ43が正の場合には、移動制御回路17は、給電コイルアッセンブリ6が右向きに移動する回転方向に、モータ7を1ステップ回転させ(S3)、Δφ43が負の場合には、移動制御回路17は、給電コイルアッセンブリ6が左向きに移動する回転方向に、モータ7を1ステップ回転さる(S4)。そして、再びステップS1へ戻る。   Next, in step S2, the movement control circuit 17 determines whether the phase difference Δφ 43 detected by the phase difference detection circuit 18 is positive or negative. Here, when Δφ 43 is positive, the movement control circuit 17 rotates the motor 7 by one step in the rotation direction in which the feeding coil assembly 6 moves rightward (S 3), and when Δφ 43 is negative, the movement control circuit 17 The control circuit 17 rotates the motor 7 by one step in the rotation direction in which the feeding coil assembly 6 moves leftward (S4). Then, the process returns to step S1 again.

この動作によって、給電コイルアッセンブリ6は、受電コイル30の位置に追随して、給電コイル3が受電コイル30の真下の位置となるように位置制御がされる。   By this operation, the feeding coil assembly 6 is controlled in position so that the feeding coil 3 is positioned just below the receiving coil 30 following the position of the receiving coil 30.

尚、本実施例に於いては、給電コイル3に対する受電コイル30のずれのうち、y方向のずれについては無視できると仮定した。これは、例えば、本実施例の非接触給電システムを電動車椅子の充電器に応用した場合において、充電時に電動車椅子の車輪を所定のレール上に乗せてセットした場合などを想定している。この場合、レールに沿った方向をx軸とし、x軸方向の位置ずれのみを考慮すればよい。   In the present embodiment, it is assumed that among the deviations of the power receiving coil 30 with respect to the feeding coil 3, the deviation in the y direction can be ignored. This assumes, for example, the case where the wheel of the electric wheelchair is placed on a predetermined rail and set at the time of charging, when the non-contact power feeding system of this embodiment is applied to the charger of the electric wheelchair. In this case, the direction along the rail may be the x-axis, and only the positional deviation in the x-axis direction may be considered.

また、通電制御回路12は、位置ずれの調整を行っている間は、位置ずれ検出のために給電コイル3に間欠的に通電し、位置ずれ検出回路16が検出する位置ずれ量Δxが、Δx≦εとなった場合に、連続通電するように切り替えるように構成してもよい。   The energization control circuit 12 intermittently energizes the feeding coil 3 to detect misalignment while the misalignment control is being performed, and the misalignment amount Δx detected by the misalignment detection circuit 16 is Δx. In the case of ≦ ε, switching may be performed so as to continuously energize.

図9は、本発明の実施例2に係る非接触給電システムの構成を表すブロック図である。図10は、図9における給電コイル3及び検出コイル4a,4bの配置を示す模式図である。図11は、図10の給電コイル3及び検出コイル4a,4bの具体的な構成例を表す図である。   FIG. 9 is a block diagram showing the configuration of a non-contact power feeding system according to a second embodiment of the present invention. FIG. 10 is a schematic view showing the arrangement of the feeding coil 3 and the detection coils 4a and 4b in FIG. FIG. 11 is a diagram showing a specific configuration example of the feed coil 3 and the detection coils 4a and 4b of FIG.

本実施例の非接触給電システムにおいては、実施例1と比較して、図1の検出コイル4、起電力検出回路13、位置ずれ検出回路16、位相差検出回路18及び位置ずれ方向検出回路19が、それぞれ2つずつ(図9の検出コイル4a,4b、起電力検出回路13a,13b、位置ずれ検出回路16a,16b、位相差検出回路18a,18b及び位置ずれ方向検出回路19a,19b)設けられ、検出コイル4a,4bは互いに直交して配設された点、給電コイルアッセンブリ6を駆動するスライダ機構(図示せず)がx軸に加えてy軸方向にも平行移動を可能とし、このスライダ機構を駆動するモータ7として、x軸方向のモータ7a及びy軸方向のモータ7bを設けた点、移動制御回路17は位置ずれ検出回路16及び位置ずれ方向検出回路19a,19bが検出する位置ずれ量及びx軸及びy軸方向の位置ずれ向きに基づき、位置ずれ量が最小となるように、2つのモータ7a,7bの駆動制御を行う点が異なっている。それ以外は実施例1と同様である。   In the noncontact power feeding system of the present embodiment, the detection coil 4, the electromotive force detection circuit 13, the displacement detection circuit 16, the phase difference detection circuit 18, and the displacement direction detection circuit 19 of FIG. Provided two each (detection coils 4a and 4b, electromotive force detection circuits 13a and 13b, displacement detection circuits 16a and 16b, phase difference detection circuits 18a and 18b, and displacement direction detection circuits 19a and 19b in FIG. 9). The detection coils 4a and 4b are disposed orthogonal to each other, and a slider mechanism (not shown) for driving the feeding coil assembly 6 enables parallel movement in the y-axis direction in addition to the x-axis. As the motor 7 for driving the slider mechanism, a motor 7a in the x-axis direction and a motor 7b in the y-axis direction are provided, and the movement control circuit 17 detects the misalignment detection circuit 16 and misalignment direction. The difference is that drive control of the two motors 7a and 7b is performed so as to minimize the amount of misalignment based on the amount of misalignment detected by the circuits 19a and 19b and the direction of misalignment in the x-axis and y-axis directions. . Other than that is the same as that of the first embodiment.

本実施例の給電コイルアッセンブリ6は、図10,図11のように給電コイル3と検出コイル4a,4bとが一体的に組み込まれている。図10に示したように、給電コイル3の中心軸をL0、中心軸L0を含む一平面を第1の中心横断面S1、中心軸L0を含み第1の中心横断面S1に垂直な平面を第2の中心横断面S2、給電コイル3の中心点Oを通り且つ第1の中心横断面S1に垂直な座標軸をx軸、給電コイル3の中心点Oを通り且つ第2の中心横断面S2に垂直な座標軸をy軸とする。   In the feed coil assembly 6 of the present embodiment, as shown in FIGS. 10 and 11, the feed coil 3 and the detection coils 4a and 4b are integrally incorporated. As shown in FIG. 10, the central axis of the feeding coil 3 is L0, and a plane including the central axis L0 is a plane including the first central cross section S1 and the central axis L0, and a plane perpendicular to the first central cross section S1. The second central cross section S2 passes through the central point O of the feed coil 3 and has a coordinate axis perpendicular to the first central cross section S1 as the x axis, and passes through the central point O of the feed coil 3 and the second central cross section S2. Let y be the coordinate axis perpendicular to.

検出コイル4a,4bは、ともにコイル環内に給電コイル3を内包するように互いに直交して配置され、非接触受電装置2の受電コイル30(後述)がない状態に於いて、誘導電流が最小となる位置に配置されている。具体的には、給電コイル3が図10のような円筒形コイルの場合、検出コイル4aは、実施例1の検出コイル4と同様に、第1の中心横断面S1内に配置され、その巻軸が第1の中心横断面S1に対して垂直となる向き(x軸方向)となるように配向されている。検出コイル4bは、第2の中心横断面S2内に配置され、その巻軸が第2の中心横断面S2に対して垂直となる向き(y軸方向)となるように配向される。   The detection coils 4a and 4b are both arranged orthogonal to each other so as to enclose the feeding coil 3 in the coil ring, and in a state where there is no power receiving coil 30 (described later) of the non-contact power receiving device 2, induced current is minimum. It is arranged at the position where Specifically, in the case where the feeding coil 3 is a cylindrical coil as shown in FIG. 10, the detecting coil 4a is disposed within the first central cross section S1 in the same manner as the detecting coil 4 of the first embodiment. The axis is oriented so as to be perpendicular to the first central cross section S1 (x-axis direction). The detection coil 4b is disposed within the second central cross section S2 and is oriented such that its winding axis is oriented (y-axis direction) perpendicular to the second central cross section S2.

尚、本発明に於いては、給電コイル3及び給電コイルのコア3aの形状はこれに限定されず、例えば、四角筒型コイル等を使用してもよい。尚、後述するように、非接触受電装置2の位置ずれ量の検出を容易にするため、給電コイル3及び給電コイルのコア3aの形状は、その中心軸を通る一平面に対して左右対称の形状とするのが好ましい。   In the present invention, the shapes of the feeding coil 3 and the core 3a of the feeding coil are not limited to this, and for example, a square cylindrical coil may be used. As described later, in order to facilitate detection of the positional deviation of the non-contact power reception device 2, the shapes of the feeding coil 3 and the core 3a of the feeding coil are symmetrical with respect to one plane passing through the central axis thereof. It is preferable to make it a shape.

このように、本実施例の非接触給電システムにおいては、互いに直交する2つの検出コイル4a,4bを備えたことにより、給電コイル3に対する受電コイル30の位置ずれのx軸方向成分及びy軸方向成分を検出することが可能となる。そして、位置ずれ検出回路16a,16b及び位置ずれ方向検出回路19a,19bにより検出した2方向(x軸方向及びy軸方向)の位置ずれ量及び方向に基づき、移動制御回路17がモータ7a,7bを制御して、給電コイルアッセンブリ6の2方向の位置調整を行い、最適な位置に給電コイル3を移動させて給電を行うことができる。尚、移動制御回路17の制御動作は、x軸方向及びy軸方向の各方向で独立に行われ、各方向に対して実施例1の図8で説明したプロセスと同様のプロセスで行えばよい。   As described above, in the non-contact power feeding system of the present embodiment, by providing the two detection coils 4 a and 4 b orthogonal to each other, the x-axis direction component and y-axis direction component of the positional deviation of the power receiving coil 30 with respect to the power feeding coil 3 It becomes possible to detect the component. The movement control circuit 17 controls the motors 7a and 7b based on the displacement amounts and directions in two directions (x-axis direction and y-axis direction) detected by the misalignment detection circuits 16a and 16b and the misalignment direction detection circuits 19a and 19b. Can be adjusted to adjust the position of the feeding coil assembly 6 in two directions, and the feeding coil 3 can be moved to the optimum position to perform feeding. The control operation of the movement control circuit 17 may be performed independently in each of the x-axis direction and the y-axis direction, and may be performed in the same process as the process described in FIG. .

図12は、本発明の実施例3に係る非接触給電システムの構成を表すブロック図である。図13は、図12における給電コイルアッセンブリ6を示す模式図である。本実施例において、非接触受電装置2の構成は実施例1,2と同様である。また、非接触給電装置1については、実施例2と同様の部分については同符号を付している。本実施例の非接触給電装置1を、実施例2と比較すると、検出コイル5、起電力検出回路13c、位相差検出回路18c、共振周波数制御回路20を備えた点において相違している。   FIG. 12 is a block diagram showing the configuration of a non-contact power feeding system according to a third embodiment of the present invention. FIG. 13 is a schematic view showing the feeding coil assembly 6 in FIG. In the present embodiment, the configuration of the non-contact power reception device 2 is the same as in the first and second embodiments. Moreover, about the non-contact electric power supply apparatus 1, the same code | symbol is attached | subjected about the part similar to Example 2. FIG. The non-contact power feeding device 1 of the present embodiment is different from that of the second embodiment in that a detection coil 5, an electromotive force detection circuit 13c, a phase difference detection circuit 18c, and a resonance frequency control circuit 20 are provided.

本実施例の給電コイルアッセンブリ6は、図13に示したように、実施例2で説明した直交配置された2つの検出コイル4a,4bに加えて、給電コイル3の側方に近接して配置された、検出コイル4bと同軸の検出コイル5を備えている。ここで、検出コイル5の巻軸は、給電コイル3の近傍に受電コイル30が存在しない状態に於いて、給電コイル3が作る磁束に対し垂直となる向きとなっている。従って、給電コイル3の近傍に受電コイル30が存在しないときは、給電コイル3が作る磁束の内、検出コイル5を鎖交する磁束数は略0であり、検出コイル5には起電圧(又は起電流)は発生しない。   As shown in FIG. 13, the feeding coil assembly 6 of this embodiment is disposed adjacent to the side of the feeding coil 3 in addition to the two orthogonally arranged detection coils 4a and 4b described in the second embodiment. The detection coil 5 coaxial with the detection coil 4b is provided. Here, the winding axis of the detection coil 5 is in a direction perpendicular to the magnetic flux generated by the feeding coil 3 in a state where the receiving coil 30 is not present in the vicinity of the feeding coil 3. Therefore, when the power receiving coil 30 does not exist in the vicinity of the power feeding coil 3, the number of magnetic fluxes linking the detection coil 5 among the magnetic flux generated by the power feeding coil 3 is approximately zero. (Electromotive current) does not occur.

一方、給電コイル3の近傍に受電コイル30が接近すると、給電コイル3の周囲の磁場が受電コイル30の影響によって乱されるため(図4参照)、検出コイル5を鎖交する磁束数は0ではなくなる。従って、検出コイル5には起電圧(又は起電流)が発生する。給電コイル3の真上の給電コイル3と同軸となる位置に受電コイル30が接近した場合、実施例1,2で説明した通り、検出コイル4a,4bの起電圧(又は起電流)は略0となる。一方、検出コイル5は、給電コイル3の中心Oから偏倚して設けられているため、このとき検出コイル5を鎖交する磁束数は0ではなく、起電圧(又は起電流)が発生する。この起電圧(又は起電流)の位相φ5は、理想的な場合(給電コイル3の通電周波数が、給電コイル3と受電コイル30の間の共振周波数に一致する場合)には給電コイル3に通電される電流の位相φ3に対して丁度90度ずれた状態となる。   On the other hand, when the receiving coil 30 approaches in the vicinity of the feeding coil 3, the magnetic field around the feeding coil 3 is disturbed by the influence of the receiving coil 30 (see FIG. 4). It will not be. Therefore, an electromotive voltage (or electromotive current) is generated in the detection coil 5. When the power receiving coil 30 approaches the position coaxial with the power feeding coil 3 right above the power feeding coil 3, as described in the first and second embodiments, the electromotive voltage (or electromotive current) of the detection coils 4a and 4b is substantially zero. It becomes. On the other hand, since the detection coil 5 is provided offset from the center O of the feed coil 3, the number of magnetic fluxes linking the detection coil 5 at this time is not zero, and an electromotive voltage (or electromotive current) is generated. The phase φ5 of this electromotive voltage (or electromotive current) is energized to the feeding coil 3 in the ideal case (when the energizing frequency of the feeding coil 3 matches the resonant frequency between the feeding coil 3 and the receiving coil 30) With respect to the phase φ3 of the current to be

従って、起電力検出回路13cが検出する検出電圧値(又はそれを増幅した電圧値)V5が所定の閾値Vth5以上となったか否かを判定することで、給電コイル3の近傍に受電コイル30が接近したか否かを判定することができる。   Therefore, it is determined whether the detection voltage value (or the voltage value obtained by amplifying it) V5 detected by the electromotive force detection circuit 13c is equal to or higher than the predetermined threshold value Vth5. It can be determined whether or not it has approached.

また、実際の非接触給電システムにおいては、給電コイル3や受電コイル30の経時劣化等により、給電コイル3や受電コイル30のインダクタンスが長い時間の間に変化する。従って、給電コイル3と受電コイル30の間の共振周波数は、使用期間が長くなると設計値からずれる現象がみられる。給電コイル3の通電周波数は共振周波数からずれるに伴い、給電コイル3の通電電流の位相φ3に対する検出コイル5の誘起電流の位相φ5の位相差Δφ53=φ5−φ3の絶対値が90度からシフトする。従って、位相差|Δφ53|を検査することによって、共振周波数に対する給電コイル3の通電周波数のずれを検出することが可能となる。   Further, in an actual non-contact power feeding system, the inductance of the power feeding coil 3 and the power receiving coil 30 changes during a long time due to deterioration with time of the power feeding coil 3 and the power receiving coil 30. Therefore, the phenomenon that the resonance frequency between the feeding coil 3 and the receiving coil 30 deviates from the design value as the use period becomes long is observed. The absolute value of the phase difference Δφ53 = φ5-φ3 of the phase φ5 of the induced current of the detection coil 5 with respect to the phase φ3 of the energizing current of the feed coil 3 shifts from 90 degrees as the energization frequency of the feed coil 3 deviates from the resonance frequency. . Therefore, by checking the phase difference | Δφ 53 |, it is possible to detect the deviation of the energization frequency of the feeding coil 3 with respect to the resonance frequency.

そこで、共振周波数制御回路20は、位相差検出回路18cが検出する位相差に基づき、誘起電圧V5の位相と給電電圧V3の位相との位相差が90度となるように、発振回路11の周波数制御を行う。具体的には、発振回路11には電圧制御発振器(VCO)、位相差検出回路18cには位相差を電圧として出力する位相比較器(PC)、共振周波数制御回路19には位相比較器の出力から電圧制御発振器の制御電圧を生成するローパスフィルタ(LPF)を使用し、VCO,PC,LPFにより周波数負帰還回路(Phase Locked Loop:PLL)を構成すればよい。   Therefore, based on the phase difference detected by the phase difference detection circuit 18c, the resonance frequency control circuit 20 sets the frequency of the oscillation circuit 11 so that the phase difference between the phase of the induced voltage V5 and the phase of the feed voltage V3 is 90 degrees. Take control. Specifically, a voltage controlled oscillator (VCO) for the oscillation circuit 11, a phase comparator (PC) for outputting the phase difference as a voltage to the phase difference detection circuit 18c, and an output of the phase comparator for the resonance frequency control circuit 19. A low-pass filter (LPF) that generates a control voltage of the voltage control oscillator may be used to form a frequency negative feedback circuit (Phase Locked Loop: PLL) using VCO, PC, and LPF.

図14は、図12の非接触給電装置1の移動制御回路17の位置ずれ補正制御動作及び通電制御回路12の通電モード切替動作を表すフローチャートである。移動制御回路17の位置ずれ補正制御は、x軸方向とy軸方向とで独立で実行され、図14(a)では、x軸方向の位置ずれ補正制御のみを示す。y軸方向も図14(a)と同様である。   FIG. 14 is a flowchart showing the misalignment correction control operation of the movement control circuit 17 of the non-contact power feeding device 1 of FIG. 12 and the conduction mode switching operation of the conduction control circuit 12. The positional deviation correction control of the movement control circuit 17 is executed independently in the x-axis direction and the y-axis direction, and FIG. 14A shows only the positional deviation correction control in the x-axis direction. The y-axis direction is also the same as in FIG.

まず、ステップS10において、起電力検出回路13cは、検出コイル5の誘起電圧の検出値V5が、所定の閾値Vth5よりも大きいか否かを判定する。ここで、閾値Vth5は、検出コイル5に誘起電圧(誘起電流)が発生したか否かを判定するための閾値であり、十分小さい値に設定される。実際には、給電コイル3の周囲には、ケーシング等の様々な物体が配置されるため、受電コイル30が給電コイル3の近傍に存在しない場合に於いても、検出コイル5の誘起電圧(誘起電流)は完全には0にはならない。閾値Vth5はこのノイズ的に発生する誘起電圧(誘起電流)による誤判定を防止するために設定される。V5<Vth5の場合、受電コイル30が給電コイル3の近傍に存在しないと判定し、通電制御回路12は、通電モードを「給電待機モード」に設定し(S11)、ステップS10に戻る。一方、V5≧Vth5の場合、次のステップS12に移行する。   First, in step S10, the electromotive force detection circuit 13c determines whether or not the detected value V5 of the induced voltage of the detection coil 5 is larger than a predetermined threshold value Vth5. Here, the threshold value Vth5 is a threshold value for determining whether or not an induced voltage (induced current) is generated in the detection coil 5, and is set to a sufficiently small value. In fact, since various objects such as a casing are disposed around the feeding coil 3, even when the receiving coil 30 is not present in the vicinity of the feeding coil 3, the induced voltage of the detection coil 5 (induced voltage The current) can not be completely zero. The threshold value Vth5 is set to prevent an erroneous determination due to the induced voltage (induced current) generated in a noise manner. If V5 <Vth5, it is determined that the power receiving coil 30 is not present in the vicinity of the power feeding coil 3, and the energization control circuit 12 sets the energization mode to the "power feeding standby mode" (S11), and returns to step S10. On the other hand, if V5 ≧ Vth5, the process proceeds to the next step S12.

ここで、通電制御回路12の通電モードには「給電待機モード」と「給電モード」がある。「給電待機モード」は、通電制御回路12が一定の時間間隔(例えば5秒間隔)で、間歇的にパルス状の通電を行う通電モードである。この給電待機モードでは、受電コイル30の存在の検出のみを目的とした通電である。一方、「給電モード」は、通電制御回路12が連続的に通電を行う通電モードである。   Here, the energization modes of the energization control circuit 12 include a “feed standby mode” and a “feed mode”. The “power supply standby mode” is a power supply mode in which the power supply control circuit 12 performs pulse-like power supply intermittently at constant time intervals (for example, 5 seconds interval). In the power supply standby mode, it is energization for the purpose of detecting the presence of the power receiving coil 30 only. On the other hand, the "power supply mode" is a power supply mode in which the power supply control circuit 12 continuously supplies power.

ステップS12において、移動制御回路17は、位置ずれ検出回路16aが検出する位置ずれ量Δxが、所定の閾値εよりも大きいか否かを判定する。Δx≦εの場合には、後述の給電モード移行判定処理(図14(b))を行った後(S13)、ステップS10の判定動作に戻る。Δx>εの場合には、次のステップS14に進む。   In step S12, the movement control circuit 17 determines whether or not the positional deviation amount Δx detected by the positional deviation detection circuit 16a is larger than a predetermined threshold value ε. In the case of Δx ≦ ε, after performing the power supply mode shift determination processing (FIG. 14B) described later (S13), the process returns to the determination operation of step S10. If Δx> ε, the process proceeds to the next step S14.

次に、ステップS14において、移動制御回路17は、位相差検出回路18aが検出する位相差Δφ43の正負を判定する。ここで、Δφ43が正の場合には、移動制御回路17は、給電コイルアッセンブリ6がx軸に沿って右向きに移動する回転方向に、モータ7aを1ステップ回転させ(S15)、Δφ43が負の場合には、移動制御回路17は、給電コイルアッセンブリ6がx軸に沿って左向きに移動する回転方向に、モータ7aを1ステップ回転さる(S16)。そして、再びステップS12へ戻る。   Next, in step S14, the movement control circuit 17 determines whether the phase difference Δφ43 detected by the phase difference detection circuit 18a is positive or negative. Here, when Δφ 43 is positive, the movement control circuit 17 rotates the motor 7 a by one step in the rotation direction in which the feeding coil assembly 6 moves rightward along the x axis (S 15), and Δφ 43 is negative. In this case, the movement control circuit 17 rotates the motor 7a by one step in the rotational direction in which the feeding coil assembly 6 moves leftward along the x axis (S16). Then, the process returns to step S12 again.

この動作によって、給電コイルアッセンブリ6は、受電コイル30のx軸方向の位置に追随して、給電コイル3が受電コイル30のx軸方向について真下の位置となるように位置制御がされる。y軸方向についても、図14(a)と同様に位置調整が行われる。   By this operation, the feeding coil assembly 6 follows the position of the power receiving coil 30 in the x-axis direction, and the position control is performed such that the feeding coil 3 is positioned directly below the power receiving coil 30 in the x-axis direction. Also in the y-axis direction, position adjustment is performed as in FIG.

ステップS13の給電モード移行判定処理は、図14(b)のフローにより実行される。まず、通電制御回路12は、位置ずれ検出回路16aが検出する位置ずれ量Δxと、位置ずれ検出回路16bが検出する位置ずれ量Δyが、共に所定の閾値ε以下となったか否かを判定し(S21)、(Δx≦ε∧Δy≦ε)の場合には、通電制御回路12は通電モードを「給電モード」に設定する。そうでない場合には、「給電待機モード」を維持する。これにより、給電コイル3が受電コイル30のx軸方向及びy軸方向について真下の位置となったときに給電が開始されることになる。   The feed mode transition determination process of step S13 is performed according to the flow of FIG. First, the energization control circuit 12 determines whether or not both the positional deviation amount Δx detected by the positional deviation detection circuit 16a and the positional deviation amount Δy detected by the positional deviation detection circuit 16b have become equal to or less than a predetermined threshold ε. In the case of (S21), (Δx ≦ ε∧Δy ≦ ε), the energization control circuit 12 sets the energization mode to the “feed mode”. If not, the "power feeding standby mode" is maintained. As a result, when the feeding coil 3 is at a position immediately below in the x-axis direction and the y-axis direction of the receiving coil 30, feeding is started.

図15は、本発明の実施例4に係る非接触給電システムの構成を表すブロック図である。本実施例では、実施例2の非接触給電装置において使用した位置ずれ検出機構と位置調節機構を、非接触受電装置2の側に適用したものである。従って、実施例2(図9参照)と同様の構成部分については同符号を付して説明は省略する。また、非接触給電装置1の側については、内部構成は実施例3と同様であるため省略している。尚、非接触受電装置2の側では、送電は行わないため、図9における電源回路10,発振回路11,通電制御回路12はない。このように、非接触受電装置2の側にも全く同様に適用することで、非接触受電装置2の側で位置ずれ検出と位置調整を行うことが可能となる。   FIG. 15 is a block diagram showing the configuration of a non-contact power feeding system according to a fourth embodiment of the present invention. In this embodiment, the displacement detection mechanism and the position adjustment mechanism used in the non-contact power feeding device of the second embodiment are applied to the non-contact power receiving device 2 side. Therefore, the same components as in the second embodiment (see FIG. 9) are assigned the same reference numerals and descriptions thereof will be omitted. Moreover, about the non-contact electric power feeding apparatus 1, since it is the same as that of Example 3, an internal structure is abbreviate | omitted. Since power transmission is not performed on the non-contact power reception device 2 side, the power supply circuit 10, the oscillation circuit 11, and the energization control circuit 12 in FIG. 9 are not provided. As described above, by applying the same to the non-contact power reception device 2 in exactly the same manner, it is possible to perform positional deviation detection and position adjustment on the non-contact power reception device 2 side.

尚、本実施例では、非接触受電装置2を電気自動車や電動車いすに適用した例を想定しており、非接触受電装置2の全体を移動するための車輪及びその駆動機構(モータ駆動回路33及びモータ34)を有する。車輪はモータ34により駆動され、非接触受電装置2の位置調節が行われる。   In this embodiment, it is assumed that the non-contact power reception device 2 is applied to an electric car or an electric wheelchair, and a wheel for moving the entire non-contact power reception device 2 and its drive mechanism (motor drive circuit 33 And a motor 34). The wheels are driven by the motor 34 to adjust the position of the non-contact power reception device 2.

また、本実施例では、非接触受電装置2の側に、実施例2の非接触給電装置において使用した位置ずれ検出機構と位置調節機構を適用した例を示したが、本発明では、非接触受電装置2の側に、実施例3の非接触給電装置において使用した位置ずれ検出機構と位置調節機構を適用することもできる。   Moreover, although the example which applied the positional offset detection mechanism and the position adjustment mechanism which were used in the non-contact electric power supply apparatus of Example 2 was shown in the present Example at the side of the non-contact power reception apparatus 2, in this invention, non-contact The positional deviation detection mechanism and the positional adjustment mechanism used in the non-contact power feeding device of the third embodiment can also be applied to the power receiving device 2 side.

1 非接触給電装置
2 非接触受電装置
3 給電コイル
3a コイルコア
3b コイルワイヤ
4,4a,4b 検出コイル
5 検出コイル
6 給電コイルアッセンブリ
7,7a,7b モータ
10 電源回路
11 発振回路
12 通電制御回路
13,13a,13b,13c 起電力検出回路
16,16a,16b 位置ずれ検出回路
17 移動制御回路
18,18a,18b,18c 位相差検出回路
19,19a,19b 位置ずれ方向検出回路
20 共振周波数制御回路
30 受電コイル
31 整流回路
32 2次電池
DESCRIPTION OF SYMBOLS 1 noncontact power feeding device 2 noncontact power receiving device 3 feeding coil 3a coil core 3b coil wire 4, 4a, 4b detecting coil 5 detecting coil 6 feeding coil assembly 7, 7a, 7b motor 10 power supply circuit 11 oscillation circuit 12 conduction control circuit 13, 13a, 13b, 13c EMF detection circuit 16, 16a, 16b Misalignment detection circuit 17 Movement control circuit 18, 18a, 18b, 18c Phase difference detection circuit 19, 19a, 19b Misalignment direction detection circuit 20 Resonant frequency control circuit 30 Power reception Coil 31 Rectifier circuit 32 Secondary battery

Claims (6)

交流電力が給電される給電コイルを具備する非接触給電装置と、前記給電コイルに対し着脱可能に装着され、前記給電コイルと共鳴して前記給電コイルから電力供給を受ける受電コイルを具備する非接触受電装置とを備えた非接触給電システムにおいて使用される非接触給電装置であって、
前記給電コイルの中心軸を含む面である第1の中心横断面の面内に、巻軸が前記第1の中心横断面に対し垂直となる向きに配設された第1の検出コイルを備え、
前記第1の検出コイルは、該第1の検出コイルのコイル環内に前記給電コイルを内包するように配置されたものであり、
前記第1の検出コイルに発生する起電圧又は起電流の強度を検出する第1の起電力検出手段と、
前記給電コイルに供給される電圧又は電流の位相と前記第1の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第1の位相差検出手段と、
前記第1の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第1の位置ずれ検出手段と、
前記第1の位相差検出手段が検出する位相差により、前記第1の検出コイルの中心軸方向(以下「x軸方向」という。)の位置ずれ向きを検出する第1の位置ずれ方向検出手段と、を備えたことを特徴とする非接触給電装置。
A noncontact power feeding device comprising a feeding coil to which alternating current power is fed, and a noncontacting power receiving coil detachably mounted on the feeding coil and receiving a power supply from the feeding coil in resonance with the feeding coil A contactless power supply device used in a contactless power supply system comprising a power receiving device, comprising:
In a plane of a first central cross section which is a plane including a central axis of the feeding coil, a first detection coil is provided, the winding axis of which is oriented in a direction perpendicular to the first central cross section. ,
The first detection coil is disposed so as to enclose the feeding coil in a coil ring of the first detection coil,
First electromotive force detection means for detecting an intensity of an electromotive voltage or an electromotive current generated in the first detection coil;
First phase difference detection means for detecting a phase difference between a phase of a voltage or current supplied to the feeding coil and a phase of an electromotive voltage or current generated in the first detection coil;
A first positional deviation detection unit that determines presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil by determining a threshold of the strength of the electromotive voltage or electromotive current detected by the first electromotive force detection unit;
First misregistration direction detection means for detecting misregistration direction in the central axis direction (hereinafter referred to as “x-axis direction”) of the first detection coil based on the phase difference detected by the first phase difference detection means And a contactless power supply device characterized by comprising.
前記給電コイルの中心軸を含み、前記第1の中心横断面に垂直な面である第2の中心横断面の面内に、巻軸が前記第2の中心横断面に対し垂直となる向きに配設された第2の検出コイルを備え、
前記第2の検出コイルは、該第2の検出コイルのコイル環内に前記給電コイルを内包するように配置されたものであり、
前記第2の検出コイルに発生する起電圧又は起電流の強度を検出する第2の起電力検出手段と、
前記給電コイルに供給される電圧又は電流の位相と前記第2の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第2の位相差検出手段と、
前記第2の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第2の位置ずれ検出手段と、
前記第2の位相差検出手段が検出する位相差により、前記第2の検出コイルの中心軸方向(以下「y軸方向」という。)の位置ずれ向きを検出する第2の位置ずれ方向検出手段と、を備えたことを特徴とする請求項1記載の非接触給電装置。
The direction in which the winding axis is perpendicular to the second central cross section within the plane of the second central cross section which is the plane including the central axis of the feeding coil and perpendicular to the first central cross section Comprising a second detection coil arranged
The second detection coil is disposed so as to enclose the feeding coil in a coil ring of the second detection coil,
A second electromotive force detection unit that detects the intensity of an electromotive voltage or an electromotive current generated in the second detection coil;
Second phase difference detection means for detecting a phase difference between the phase of the voltage or current supplied to the feeding coil and the phase of the electromotive voltage or current generated in the second detection coil;
Second positional deviation detection means for judging presence / absence of positional deviation of the power receiving coil with respect to the power feeding coil by making a threshold judgment on the strength of the electromotive voltage or electromotive current detected by the second electromotive force detecting means;
Second misalignment direction detecting means for detecting misalignment direction of the central axis direction (hereinafter referred to as “y-axis direction”) of the second detection coil based on the phase difference detected by the second phase difference detection means And a non-contact power feeding device according to claim 1.
前記給電コイルの側部に、巻軸が、前記給電コイルに前記受電コイルが接近していない状態に於いて前記給電コイルが作る磁束に対し垂直となる向きに配設された第3の検出コイルと、
前記給電コイルに供給される電圧又は電流の位相と前記第3の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第3の位相差検出手段と、
前記第3の位相差検出手段により検出される位相差が所定の値となるように、前記給電コイルに供給される電圧又は電流の周波数を制御する共振周波数制御手段と、を備えたことを特徴とする請求項1又は2記載の非接触給電装置。
A third detection coil in which a winding shaft is disposed on a side portion of the feeding coil in a direction perpendicular to a magnetic flux generated by the feeding coil in a state where the receiving coil does not approach the feeding coil. When,
Third phase difference detection means for detecting a phase difference between the phase of the voltage or current supplied to the feeding coil and the phase of the electromotive voltage or current generated in the third detection coil;
And resonance frequency control means for controlling the frequency of the voltage or current supplied to the feeding coil such that the phase difference detected by the third phase difference detecting means becomes a predetermined value. The non-contact electric power supply according to claim 1 or 2.
前記第3の検出コイルに発生する起電圧又は起電流の強度を検出する第3
の起電力検出手段と、
前記第3の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルの近傍に前記受電コイルが存在するか否かを判定する存否検出手段と、を備えたことを特徴とする請求項3記載の非接触給電装置。
Third detecting a magnitude of an electromotive voltage or an electromotive current generated in the third detection coil
EMF detection means of
Presence / absence detection means for determining whether or not the power receiving coil is present in the vicinity of the power feeding coil by determining the threshold of the strength of the electromotive voltage or the electromotive current detected by the third electromotive force detection means; The contactless power supply device according to claim 3, characterized in that:
交流電力が給電される給電コイルを具備する非接触給電装置と、前記給電コイルに対し着脱可能に装着され、前記給電コイルと共鳴して前記給電コイルから電力供給を受ける受電コイルを具備する非接触受電装置とを備えた非接触給電システムにおいて使用される非接触受電装置であって、
前記受電コイルの中心軸を含む面である第1の中心横断面の面内に、巻軸が前記第1の中心横断面に対し垂直となる向きに配設された第1の検出コイルを備え、
前記第1の検出コイルは、該第1の検出コイルのコイル環内に前記受電コイルを内包するように配置されたものであり、
前記第1の検出コイルに発生する起電圧又は起電流の強度を検出する第1の起電力検出手段と、
前記給電コイルが作る交番磁場により前記受電コイルに誘導される電圧又は電流の位相と前記第1の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第1の位相差検出手段と、
前記第1の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第1の位置ずれ検出手段と、
前記第1の位相差検出手段が検出する位相差により、前記第1の検出コイルの中心軸方向(以下「x軸方向」という。)の位置ずれ向きを検出する第1の位置ずれ方向検出手段と、を備えたことを特徴とする非接触受電装置。
A noncontact power feeding device comprising a feeding coil to which alternating current power is fed, and a noncontacting power receiving coil detachably mounted on the feeding coil and receiving a power supply from the feeding coil in resonance with the feeding coil A noncontact power reception device used in a noncontact power feeding system comprising a power reception device,
In a plane of a first central cross section which is a plane including a central axis of the power receiving coil, a first detection coil is provided, the winding axis of which is oriented in a direction perpendicular to the first central cross section. ,
The first detection coil is disposed so as to enclose the power receiving coil in a coil ring of the first detection coil,
First electromotive force detection means for detecting an intensity of an electromotive voltage or an electromotive current generated in the first detection coil;
First phase difference detection for detecting a phase difference between a phase of voltage or current induced in the power receiving coil by an alternating magnetic field generated by the feeding coil and a phase of electromotive voltage or current generated in the first detection coil Means,
A first positional deviation detection unit that determines presence or absence of positional deviation of the power receiving coil with respect to the power feeding coil by determining a threshold of the strength of the electromotive voltage or electromotive current detected by the first electromotive force detection unit;
First misregistration direction detection means for detecting misregistration direction in the central axis direction (hereinafter referred to as “x-axis direction”) of the first detection coil based on the phase difference detected by the first phase difference detection means And a non-contact power reception device characterized by comprising.
前記受電コイルの中心軸を含み、前記第1の中心横断面に垂直な面である第2の中心横断面の面内に、巻軸が前記第2の中心横断面に対し垂直となる向きに配設された第2の検出コイルを備え、
前記第2の検出コイルは、該第2の検出コイルのコイル環内に前記受電コイルを内包するように配置されたものであり、
前記第2の検出コイルに発生する起電圧又は起電流の強度を検出する第2の起電力検出手段と、
前記給電コイルが作る交番磁場により前記受電コイルに誘導される電圧又は電流の位相と前記第2の検出コイルに発生する起電圧又は起電流の位相との位相差を検出する第2の位相差検出手段と、
前記第2の起電力検出手段が検出する起電圧又は起電流の強度を閾値判定することにより、前記給電コイルに対する前記受電コイルの位置ずれの有無を判定する第2の位置ずれ検出手段と、
前記第2の位相差検出手段が検出する位相差により、前記第2の検出コイルの中心軸方向(以下「y軸方向」という。)の位置ずれ向きを検出する第2の位置ずれ方向検出手段と、を備えたことを特徴とする請求項5記載の非接触受電装置。
The direction in which the winding axis is perpendicular to the second central cross section within the plane of the second central cross section, which is the plane including the central axis of the power receiving coil and perpendicular to the first central cross section Comprising a second detection coil arranged
The second detection coil is disposed so as to enclose the power receiving coil in a coil ring of the second detection coil,
A second electromotive force detection unit that detects the intensity of an electromotive voltage or an electromotive current generated in the second detection coil;
A second phase difference detection that detects a phase difference between a phase of a voltage or current induced in the power receiving coil by an alternating magnetic field generated by the feeding coil and a phase of an electromotive voltage or current generated in the second detection coil Means,
Second positional deviation detection means for judging presence / absence of positional deviation of the power receiving coil with respect to the power feeding coil by making a threshold judgment on the strength of the electromotive voltage or electromotive current detected by the second electromotive force detecting means;
Second misalignment direction detecting means for detecting misalignment direction of the central axis direction (hereinafter referred to as “y-axis direction”) of the second detection coil based on the phase difference detected by the second phase difference detection means And a non-contact power reception device according to claim 5.
JP2015113203A 2015-06-03 2015-06-03 Non-contact power feeding device and non-contact power receiving device Expired - Fee Related JP6507036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113203A JP6507036B2 (en) 2015-06-03 2015-06-03 Non-contact power feeding device and non-contact power receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113203A JP6507036B2 (en) 2015-06-03 2015-06-03 Non-contact power feeding device and non-contact power receiving device

Publications (2)

Publication Number Publication Date
JP2016226236A JP2016226236A (en) 2016-12-28
JP6507036B2 true JP6507036B2 (en) 2019-04-24

Family

ID=57746087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113203A Expired - Fee Related JP6507036B2 (en) 2015-06-03 2015-06-03 Non-contact power feeding device and non-contact power receiving device

Country Status (1)

Country Link
JP (1) JP6507036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909027B2 (en) * 2017-03-23 2021-07-28 東芝テック株式会社 Contactless power transmission equipment and transmission equipment
US20200274398A1 (en) * 2018-05-01 2020-08-27 Global Energy Transmission, Co. Systems and methods for wireless power transferring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135789A (en) * 1985-12-09 1987-06-18 Toyota Motor Corp Vehicle detecting device
JPS62175687A (en) * 1986-01-30 1987-08-01 Osaka Gas Co Ltd Detector for object placed in concealed place
JPH03119207U (en) * 1990-03-16 1991-12-09
CN101501532B (en) * 2006-06-02 2012-05-23 普利茅斯法国公司 Detection system suitable for identifying and tracking buried pipes or others bodies buried in the ground or embedded in civil engineering works
GB2455468B (en) * 2006-09-04 2011-03-02 Ecs Technology Ltd Apparatus for and method of detecting a conductive object
JP2009089465A (en) * 2007-09-27 2009-04-23 Panasonic Corp Charger and charging system
WO2009041058A1 (en) * 2007-09-27 2009-04-02 Panasonic Corporation Electronic device, recharger and recharging system
JP5577886B2 (en) * 2009-09-08 2014-08-27 Tdk株式会社 Wireless power supply apparatus and wireless power transmission system
US20110049997A1 (en) * 2009-09-03 2011-03-03 Tdk Corporation Wireless power feeder and wireless power transmission system
US8669677B2 (en) * 2010-12-28 2014-03-11 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JPWO2014156655A1 (en) * 2013-03-29 2017-02-16 日産自動車株式会社 Non-contact power transmission device

Also Published As

Publication number Publication date
JP2016226236A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5488760B2 (en) Wireless power feeding device, wireless power receiving device, and wireless power transmission system
JP5994771B2 (en) Wireless power feeding device, wireless power receiving device, wireless power transmission system and coil
JP5522271B2 (en) Wireless power feeding device, wireless power receiving device, wireless power transmission system
JP6369304B2 (en) Wireless power transmission system
US9595834B2 (en) Wireless power transmission system and power transmission device
US8922064B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system, and coil
JP6416567B2 (en) Wireless power feeder
KR101789457B1 (en) Power transmission apparatus
CN109211100B (en) Rotation angle sensor device, lidar system, operating device and operating method for a lidar system
JP2012023913A (en) Non-contact power feeding device
JP5389735B2 (en) Power transmission instruction transmission device
Luo et al. Mutual inductance analysis of planar coils with misalignment for wireless power transfer systems in electric vehicle
JP6507036B2 (en) Non-contact power feeding device and non-contact power receiving device
JP2012065484A (en) Non-contact power transmission apparatus
JP5849630B2 (en) Power repeater
JPWO2018221532A1 (en) Power transmission device, wireless power transmission system, and control device
WO2013051399A1 (en) Wireless power supply device
JP6240036B2 (en) Power transmission device, power reception device, and power transmission device
US20160216134A1 (en) Electromagnetic-induction-type position detector and detection method
JP6784473B2 (en) Wireless power supply
JP3266088B2 (en) Non-contact power supply
JP2019075916A (en) Non-contact charge system
JP2013251956A (en) Power transport method
JP2020156307A (en) Non-contact power supply device
EP2927652A2 (en) Eddy current load sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6507036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees