JP2020122427A - Fluid power generator - Google Patents

Fluid power generator Download PDF

Info

Publication number
JP2020122427A
JP2020122427A JP2019014274A JP2019014274A JP2020122427A JP 2020122427 A JP2020122427 A JP 2020122427A JP 2019014274 A JP2019014274 A JP 2019014274A JP 2019014274 A JP2019014274 A JP 2019014274A JP 2020122427 A JP2020122427 A JP 2020122427A
Authority
JP
Japan
Prior art keywords
generator
swing
receiving surface
wind receiving
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014274A
Other languages
Japanese (ja)
Other versions
JP7212325B2 (en
Inventor
伊藤 辰哉
Tatsuya Ito
辰哉 伊藤
均 纐纈
Hitoshi Koketsu
纐纈  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mkr Co Ltd
Higashihara Kogyosho KK
Original Assignee
Mkr Co Ltd
Higashihara Kogyosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mkr Co Ltd, Higashihara Kogyosho KK filed Critical Mkr Co Ltd
Priority to JP2019014274A priority Critical patent/JP7212325B2/en
Publication of JP2020122427A publication Critical patent/JP2020122427A/en
Application granted granted Critical
Publication of JP7212325B2 publication Critical patent/JP7212325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

To increase a power generation amount in daytime by using a solar panel in a pendulum type, and improve the shape of a swing plate to perform swing movement efficiently even with wind from any direction.SOLUTION: A fluid power generator comprises: a machine frame 4; a swing shaft 2 mounted in the lateral direction of the machine frame; a swing blade 1 that has a front wind receiving surface 1f and a rear wind receiving surface 1g, is suspended with an upper edge fixed to the swing shaft 2, and reciprocally swings around a swing rotational shaft; a generator 6 rotated by the swing rotational shaft 2; a rotation converter 3 that is installed between the swing rotational shaft 2 and the generator 6, converts the reciprocating rotation of the swing rotational shaft 2 into unidirectional rotation, and connects it to a generator rotational shaft 11; a flywheel 5 that is fixed to the power rotational shaft 11 and rotates; and a front solar panel 10a and/or a rear solar panel 10b attached to one or both of the front wind receiving surface 1f and the rear wind receiving surface 1g of the swing blade 1.SELECTED DRAWING: Figure 1

Description

本発明は、再生可能エネルギーを利用する発電装置に係り、特に風力と太陽光等の流体を用いた簡素かつ高効率の流体発電装置に関する。 The present invention relates to a power generation device that uses renewable energy, and more particularly to a simple and highly efficient fluid power generation device that uses a fluid such as wind power and sunlight.

所謂再生可能エネルギーとして利用可能な自然エネルギーには、風力、水力、太陽光や太陽熱、地熱、バイオマス等がある。このような自然エネルギーは一度利用しても比較的短時間に再生が可能であり、石油などの化石燃料に代わるクリーンなエネルギーとして利用されている。特に、風力を用いた発電、太陽光を用いた所謂ソーラー発電は急激に普及が進んでいる。 Natural energy that can be used as so-called renewable energy includes wind power, water power, sunlight, solar heat, geothermal heat, biomass, and the like. Such natural energy can be regenerated in a relatively short time even if used once, and is used as clean energy to replace fossil fuel such as petroleum. In particular, power generation using wind power and so-called solar power generation using sunlight are rapidly spreading.

風力を利用する発電は、一般的には回転する風車で風を受け、それから得た回転力で発電機を回転させることで電力を生成する風車発電装置が知られている。また、太陽光を利用する発電では所謂ソーラーパネルと称する光―電変換装置を用いている。 BACKGROUND ART Power generation using wind power is generally known as a wind turbine generator that receives wind from a rotating wind turbine and generates electric power by rotating a generator with the rotational force obtained from the wind. Further, in power generation using sunlight, a photoelectric conversion device called a so-called solar panel is used.

風力発電分野では、上記した風車を用いるものの他に振り子式と称する発電装置も知られている。例えば、特許文献1に開示された板状の揺動板(ブレード)の揺動運動を用いた発電装置では、横方向に設置した軸に揺動板を固定し、この揺動板が風を受けて往復揺動することによる上記軸の往復回転を、一方向クラッチを介して発電機の軸に伝達するものである。また、この特許文献1にはフライホイールで回転ムラを軽減するとの記載もある。 In the field of wind power generation, a power generator called a pendulum type is also known in addition to the one using the above-described wind turbine. For example, in a power generation device using the oscillating motion of a plate-like oscillating plate (blade) disclosed in Patent Document 1, the oscillating plate is fixed to a shaft installed in the lateral direction, and the oscillating plate generates wind. The reciprocating rotation of the shaft caused by receiving and reciprocatingly oscillating is transmitted to the shaft of the generator through the one-way clutch. In addition, Patent Document 1 also describes that the rotation unevenness is reduced by a flywheel.

また、揺動板を用いた風力エネルギーと太陽光エネルギーを併用したものとして、本願の発明者等による特許文献2を挙げることができる。特許文献2は、揺動板の揺動運動を、リニヤ式電磁誘導発電装置(リニア発電機)を構成する電機子の往復運動に変換して発電を行うものを開示している。また、その揺動板の面にソーラーパネルを貼り付けて太陽エネルギーも発電に利用する流体発電装置を開示する。 In addition, Patent Document 2 by the inventors of the present application can be cited as an example in which wind energy using a rocking plate and solar energy are used in combination. Patent Document 2 discloses a structure in which the oscillating motion of an oscillating plate is converted into the reciprocating motion of an armature that constitutes a linear electromagnetic induction power generator (linear generator) to generate electric power. Also disclosed is a fluid power generation device in which a solar panel is attached to the surface of the oscillating plate and solar energy is also used for power generation.

特開2017−2885号公報JP, 2017-28885, A 特許第5969154号公報Patent No. 5969154

特許文献1に開示の振り子式発電装置は揺動板を懸架する軸に互いに回転反転方向が異なる一対のフライホイールを取り付けて揺動板の往復運動による軸の回転むらを抑制するものである。そのための回転変換装置は複雑な磁力回転構造を用いている。また、発電機軸を揺動板の軸とは別個に設け、かつ一方向クラッチを二個備える、等の複雑な構成としている。 The pendulum-type power generation device disclosed in Patent Document 1 is provided with a pair of flywheels having different rotation reversal directions attached to a shaft that suspends the rocking plate to suppress uneven rotation of the shaft due to reciprocating motion of the rocking plate. The rotation conversion device for that purpose uses a complicated magnetic rotation structure. Further, the generator shaft is provided separately from the shaft of the oscillating plate, and two one-way clutches are provided, so that the structure is complicated.

特許文献2に開示のハイブリッド発電装置は、断続的な風力の瞬間発生風力による振り子運動での揺動軸の伝達トルクはリニヤ式電磁誘導発電装置では十分なエネルギー回収はできない。また、ソーラーパネルは夜間や天候次第で発電能力が低下する。このままでは風の状況(風力、風向)、夜間・天候状況に大きく影響され、安定した電力を得ることは難しい。 In the hybrid power generation device disclosed in Patent Document 2, the transmission torque of the oscillating shaft in the pendulum motion due to intermittently generated wind power of intermittent wind power cannot be sufficiently recovered by the linear electromagnetic induction power generation device. In addition, the power generation capacity of solar panels decreases at night and depending on the weather. As it is, it is difficult to obtain stable power because it is greatly affected by wind conditions (wind force, wind direction), nighttime and weather conditions.

大規模な風力発電装置やメガソーラー発電施設などと異なり、振り子式の発電装置は簡易かつ安全な発電手段として小規模事業所や一般家庭の電源として有効である。しかしながら、上記したように、現時点では解決すべき課題は多く普及の妨げとなっている。 Unlike large-scale wind power generators and mega-solar power generation facilities, pendulum type power generators are effective as a simple and safe power generation means for small businesses and households. However, as described above, many problems to be solved at present are hindering the spread.

本発明は、上記従来技術の課題を解決することにあり、振り子式にソーラーパネルを併用することで昼間の電力生成量を増加させると共に、揺動板の形状を改良してどの方向からの風でも揺動運動が効率よく行われることを可能とした。これにより、発電装置の設置位置(発電サイト)を風向が統計的に大きい位置に固定したままで風力を効率よく利用でき、また降雪地帯では積雪の反射光も積極的に利用できることで、ソーラー発電の効率も向上できるようにした。さらに、フライホイール及びバッテリにエネルギーを蓄積することで風力あるいは太陽光エネルギーが低下したときにフライホイールの回転数をバッテリの補助で上昇させることができる。 The present invention is to solve the above-mentioned problems of the prior art. In addition to increasing the amount of electric power generated during the day by using a solar panel in a pendulum system, the shape of the oscillating plate is improved to improve wind from any direction. However, the swing motion can be performed efficiently. As a result, the wind power can be used efficiently while the installation position of the power generator (power generation site) is fixed at a position where the wind direction is statistically large, and the reflected light of the snow cover can also be used positively in the snowfall area, which results in solar power generation. The efficiency of can be improved. Further, by accumulating energy in the flywheel and the battery, the rotational speed of the flywheel can be increased with the assistance of the battery when the wind power or the solar energy decreases.

上記目的を達成するための本発明の代表的な構成を下記する。なお、この項目では、本発明の理解を容易にするため、各構成要件に対応する実施例における符号を付記する。 A typical configuration of the present invention for achieving the above object will be described below. In addition, in this item, in order to facilitate understanding of the present invention, reference numerals in the embodiments corresponding to the respective constituents are added.

本発明は、風力から得た回転エネルギーで発電機回転軸11を回転させ電力を発生させるための揺動板(揺動ブレード)1と太陽光を電気エネルギーに変換するソーラーパネル10との協働で電力を生成する流体発電装置であり、以下の構成としたことを特徴とする。 The present invention cooperates with a oscillating plate (oscillating blade) 1 for generating electric power by rotating a generator rotating shaft 11 with rotational energy obtained from wind power, and a solar panel 10 for converting sunlight into electric energy. It is a fluid power generation device that generates electric power by using the following features.

(1)機枠4と、機枠の横方向に装架した揺動軸(揺動回転軸とも称する)2と、前方風受け面1fと後方風受け面1gを有し、前記揺動軸2に上方縁を固定して懸垂して当該揺動回転軸の周りに往復揺動を行う揺動ブレード1と、前記揺動回転軸2で回転される発電機6と、前記揺動回転軸2と前記発電機6との間に設置されて前記揺動回転軸2の往復動回転を一方向回転に変換して前記発電機回転軸11に接続する回転変換器3と、前記発電機回転軸11に固定されて回転するフライホイール5と、前記揺動ブレード1の前方風受け面1fと後方風受け面1gの双方又は一方に貼り付けた表面ソーラーパネル10a及び/又は裏面ソーラーパネル10bとを有する。 (1) A machine frame 4, a rocking shaft (also referred to as a rocking rotary shaft) 2 mounted in the lateral direction of the machine frame, a front wind receiving surface 1f and a rear wind receiving surface 1g, and the rocking shaft. 2, an upper edge of which is fixed and suspended to reciprocally swing around the swing rotation axis, a generator 6 which is rotated by the swing rotation axis 2, and the swing rotation axis. A rotary converter 3 installed between the generator 2 and the generator 6 to convert the reciprocating rotation of the swinging rotary shaft 2 into a unidirectional rotation for connection to the generator rotary shaft 11; A flywheel 5 fixed to a shaft 11 to rotate; a front solar panel 10a and/or a rear solar panel 10b attached to one or both of a front wind receiving surface 1f and a rear wind receiving surface 1g of the swing blade 1. Have.

(2)前記(1)における揺動板1は横断面が前方風受け面側に凸のアーク形状とした。 (2) The oscillating plate 1 in (1) above has an arc shape whose cross section is convex toward the front wind receiving surface side.

(3)前記(2)における揺動板1は縦方向の側縁から中央部にかけた横方向断面の厚みが漸次小さい翼形状とした。 (3) The oscillating plate 1 in (2) above has a blade shape in which the thickness of the lateral cross section from the side edge in the vertical direction to the central portion is gradually smaller.

(4)前記(1)の揺動板1の横断面の両側端縁は前方風受け面側に弓弦形状(凹)で、後方風受け面側は平面とした。 (4) Both side edges of the cross section of the oscillating plate 1 of the above (1) are bow chordal (concave) toward the front wind receiving surface side, and the rear wind receiving surface side is flat.

(5)前記(4)の揺動板1は縦方向の側縁から中央部にかけた横方向断面の厚みが漸次小さい翼形状とした。 (5) The oscillating plate 1 of (4) has a blade shape in which the thickness of the lateral cross section from the side edge in the vertical direction to the central portion is gradually smaller.

(6)前記(1)乃至(5)の揺動板1の前方面及び後方面に、通過する空気流に乱流を与える多数の微小凸部(突状部)12aをランダムに形成した。この微小凸部はソーラー基板の表面に透明樹脂などをスポット的に滴下し、硬化させて形成することができる。これにより、揺動板の表面を高速に通過する空気流に発生する乱流やボルテックス等を回避して揺動板の震度王などを抑制する。 (6) On the front surface and the rear surface of the oscillating plate 1 of (1) to (5), a large number of minute convex portions (protruding portions) 12a that give a turbulent flow to the passing air flow are randomly formed. This minute convex portion can be formed by spotting a transparent resin or the like on the surface of the solar substrate and curing it. This avoids turbulence, vortex, and the like that occur in the airflow that passes through the surface of the oscillating plate at high speed, and suppresses the seismic intensity of the oscillating plate.

(7)前記(1)乃至(5)の揺動板1の前方面及び後方面に、通過する空気流に乱流を与える多数の微小凹部12bをランダムに形成した。この微小凹部12bはソーラーパネルの表面基板に予めディンプル状に形成することで得ることができる。 (7) On the front surface and the rear surface of the oscillating plate 1 of (1) to (5), a large number of minute recesses 12b that give a turbulent flow to the passing air flow are randomly formed. The minute recesses 12b can be obtained by forming dimples on the surface substrate of the solar panel in advance.

(8)前記発電機は電動機として動作する電動発電機(MG)であり、発電した電力を貯蔵するバッテリ23を備え、このバッテリの電力で前記電動発電機が前記フライホイールを回転可能とした。 (8) The generator is a motor generator (MG) that operates as an electric motor, and includes a battery 23 that stores generated electric power, and the electric power of the battery allows the motor generator to rotate the flywheel.

なお、本発明は上記の構成及び後述する実施例に記載される構成で限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることは言うまでもない。 It is needless to say that the present invention is not limited to the above-mentioned configuration and the configurations described in the examples described later, and various modifications can be made within the scope of the technical idea of the present invention.

本発明に係る流体発電装置は、振り子式発電装置にソーラーパネルを併用すると共に、揺動板の形状を改良してどの方向からの風でも揺動運動が効率よく行われることが可能である。また、揺動板の設置位置を、年間の風向が統計的に大きい位置に固定したままで、風向が変化しても風力を効率よく利用できる。さらに、降雪地帯では背面のソーラーパネルが積雪からの反射光を利用して発電効率を向上させることができる。 In the fluid power generation device according to the present invention, the pendulum type power generation device is used together with the solar panel, and the shape of the rocking plate is improved so that the rocking motion can be efficiently performed by wind from any direction. Further, even if the installation position of the oscillating plate is fixed at a position where the annual wind direction is statistically large, the wind force can be efficiently used even if the wind direction changes. Furthermore, in a snowfall area, the solar panel on the back can utilize the reflected light from the snow cover to improve power generation efficiency.

揺動板の形状を航空機などの翼形状の類似としたことで、揺動板の揚力効果が向上する。また、表面に微小な凹部または凸部を形成することで、空気流の乱流による揚力低下を低減して効率よく揺動させることができる。 By making the shape of the rocking plate similar to the shape of a wing of an aircraft, the lift effect of the rocking plate is improved. In addition, by forming a minute concave portion or convex portion on the surface, it is possible to reduce the lift reduction due to the turbulent air flow and efficiently swing.

発電機の回転と共に回転するフライホイールの回転数が十分でないとき(始動時、無風時など)、フライホイールに回転状況を検出するセンサを設け、設定値以下の回転を検出したときに発電機を電動機モードとしてバッテリからの電力でフライホイールを所定回転数まで回転させる。これにより、バッテリだけでなく、フライホイールによるエネルギー貯蔵を確保でき、間欠揺動する揺動板による発電ムラを低減できる。 When the rotation speed of the flywheel that rotates with the rotation of the generator is not sufficient (starting, no wind, etc.), the flywheel is equipped with a sensor that detects the rotation status, and the generator is activated when rotation below the set value is detected. In the electric motor mode, the flywheel is rotated up to a predetermined rotation speed with the electric power from the battery. As a result, not only the battery but also the flywheel can secure energy storage, and uneven power generation by the rocking plate that intermittently rocks can be reduced.

本発明に係る流体発電装置の第1実施例の全体構成の説明図。FIG. 1 is an explanatory diagram of the overall configuration of a first embodiment of a fluid power generation device according to the present invention. 図1における揺動板の作用の説明図。Explanatory drawing of the effect|action of the rocking|fluctuation board in FIG. 図2のB−B線に沿った断面図。Sectional drawing which followed the BB line|wire of FIG. 図2の矢印Cから視た揺動板の上面図。The top view of the rocking|swiveling plate seen from the arrow C of FIG. 本発明に係る流体発電装置の第2実施例に用いる揺動板の説明図。Explanatory drawing of the oscillating plate used for the 2nd Example of the fluid power generation device which concerns on this invention. 本発明に係る流体発電装置の第3実施例に用いる揺動板の説明図。Explanatory drawing of the rocking|fluctuation board used for 3rd Example of the fluid power generation device which concerns on this invention. 本発明に係る流体発電装置の第4実施例に用いる揺動板の説明図。Explanatory drawing of the rocking|fluctuation board used for 4th Example of the fluid power generation device which concerns on this invention. 図1における回転変換器の構成例の説明図。Explanatory drawing of the structural example of the rotation converter in FIG. 本発明に係る流体発電装置の第5実施例の全体構成の説明図。Explanatory drawing of the whole structure of 5th Example of the fluid power generation apparatus which concerns on this invention. 本発明に係る流体発電装置の制御系を説明するブロック図。The block diagram explaining the control system of the fluid power generation device which concerns on this invention.

以下、本発明に係る流体発電装置の実施の形態について実施例の図面を参照して詳細に説明する。 Hereinafter, embodiments of a fluid power generation device according to the present invention will be described in detail with reference to the drawings of the embodiments.

図1は本発明に係る流体発電装置の第1実施例の全体構成の説明図である。図2は図1における揺動板の作用の説明図、図3は図2のB−B線に沿った断面図、図4は図2の矢印Cから視た揺動板の上面図である。この発電機は地面等(発電機設置場所)に基礎14で設置された機枠4に組み込まれ、南側を前方として設置するものとして説明する。機枠4は強風にも耐えられるように鉄パイプを好適とする強靭な材料で組み立てられている。この機枠4の中央領域で横方向(水平方向)に装架した揺動軸2に揺動板(風受け板、ブレードとも称する)1が固定されている。 FIG. 1 is an explanatory diagram of the overall configuration of a first embodiment of a fluid power generation device according to the present invention. 2 is an explanatory view of the action of the oscillating plate in FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB of FIG. 2, and FIG. 4 is a top view of the oscillating plate viewed from the arrow C in FIG. .. The generator will be described as being installed in the machine frame 4 installed on the ground or the like (generator installation place) by the foundation 14 and installed with the south side facing forward. The machine frame 4 is constructed of a strong material, which is preferably an iron pipe, so as to withstand strong winds. An oscillating plate (also referred to as a wind receiving plate or a blade) 1 is fixed to an oscillating shaft 2 mounted laterally (horizontally) in a central region of the machine frame 4.

揺動板1は、前方風受け面1fと後方風受け面1gを有し、前記揺動軸2に上方縁に設けられた上部カバー1aを固定して懸垂され、当該揺動軸2の周りに往復揺動を行う揺動板1と、前記揺動軸2から伝達される回転力で回転される発電機6と、前記揺動軸2と前記発電機6との間に設置されて前記揺動軸2の往復動回転(往復揺動)を一方向回転に変換して発電機回転軸11に接続する回転変換器3からなる。 The oscillating plate 1 has a front wind receiving surface 1f and a rear wind receiving surface 1g, and is suspended by fixing an upper cover 1a provided on an upper edge of the oscillating shaft 2 around the oscillating shaft 2. Is installed between the swing shaft 2 and the generator 6, and the generator 6 is rotated by the rotational force transmitted from the swing shaft 2. The rotation converter 3 is configured to convert reciprocating rotation (reciprocating rocking) of the rocking shaft 2 into one-direction rotation and connect the same to the generator rotating shaft 11.

揺動板1の往復運動からシャフト回転運動へ変換に於いて、安定した発電量を得るには発電機につながるシャフトを増速する必要がある。そのため往復運動を一方向回転運動に変換する回転変換器3に、増速ギアを設けることができる。また、発電機回転軸11に固定されて回転するフライホイール5が設けられている。フライホイール5は、風が強いときの瞬間的な高いエネルギーを保存することができ、蓄積されたエネルギーは必要に応じ回転を増速することができるため、風力エネルギーを平均化する効果がある。フライホイール5の容量は、設置場所の風力データ、発電機の必要トルク等を勘案して決定される。
そして、揺動板1の前方風受け面1fと後方風受け面1gの双方又は一方に、前方ソーラーパネル10aと後方ソーラーパネル10bが貼り付けられている。なお、X−Xは横方向(水平方向)、Y−Yは垂直方向(縦方向)、図5と図6に示されたZ−Zは前後方向を示す。
In converting the reciprocating motion of the oscillating plate 1 into the shaft rotating motion, it is necessary to accelerate the shaft connected to the generator in order to obtain a stable power generation amount. Therefore, the rotation converter 3 that converts the reciprocating motion into the unidirectional rotating motion can be provided with a speed increasing gear. Further, a flywheel 5 that is fixed to the generator rotating shaft 11 and rotates is provided. The flywheel 5 can store momentary high energy when the wind is strong, and the stored energy can accelerate the rotation as needed, and thus has an effect of averaging wind energy. The capacity of the flywheel 5 is determined in consideration of wind power data of the installation site, required torque of the generator, and the like.
The front solar panel 10a and the rear solar panel 10b are attached to both or one of the front wind receiving surface 1f and the rear wind receiving surface 1g of the rocking plate 1. XX is a horizontal direction (horizontal direction), Y-Y is a vertical direction (longitudinal direction), and ZZ shown in FIGS. 5 and 6 is a front-back direction.

揺動板1の横断面(水平方向断面)は、表面風受け面側に凸のアーク形状としてある(図1乃至図3参照)。図2に示したように、この揺動板1に対して大まかに4方向からの風が到来すると考えることができる。これらの風は、揺動板1の前方で範囲がW1で示した方向から到来する前方風、揺動板1の後方で範囲がW2で示した方向から到来する後方風、揺動板1の右側方で範囲がW3で示した方向から到来する右方風、揺動板1の左側方で範囲がW4で示した方向から到来する左方風、の4方向で示すことができる。 The transverse section (horizontal section) of the oscillating plate 1 has an arc shape that is convex toward the surface wind receiving surface side (see FIGS. 1 to 3 ). As shown in FIG. 2, it can be considered that winds roughly come from four directions to the rocking plate 1. These winds are the front wind coming from the direction of the range W1 in front of the rocking plate 1, the rear wind coming from the direction of the range W2 behind the rocking plate 1, and the wind of the rocking plate 1. It can be shown in four directions: the right wind coming from the direction indicated by W3 on the right side and the left wind coming from the direction shown by W4 on the left side of the oscillating plate 1.

自然に地上に吹く風は常に一方向からとは決まっておらず、季節、気圧配置、地形、建造物や樹林などの周囲環境などで常に変化している。回転翼を用いる風車発電では、風向きセンサで風向を検出し、回転翼の向きをその風向きに向ける制御を行っているものが多い。しかしながら、小規模の発電装置に風向対応機構を付与することは構成を複雑とし、コスト高を招く。特に、揺動板を利用する簡易な発電装置では、できるだけ簡単な構造とすることが要求される。 The wind that blows naturally on the ground is not always determined from one direction, but it constantly changes depending on the season, atmospheric pressure arrangement, topography, surrounding environment such as buildings and forests. In many wind turbine power generation systems that use rotor blades, the wind direction sensor detects the wind direction and controls the direction of the rotor blade to the wind direction. However, adding a wind direction response mechanism to a small-scale power generation device complicates the configuration and increases the cost. In particular, a simple power generator using an oscillating plate is required to have a structure as simple as possible.

本実施例に係る揺動板1は、図2に示したように、周囲360度の何れの方向からの風にも対応できるようにしたことで、揺動板の向きを風向きに対抗することなく好適に発電を行うことができるようにしたものである。もっとも、揺動板1が効率よく風力を受ける方向は図2の前方風W1と後方風W2である。図2に揺動板1の前方風受け面1f、後方風受け面1gの主要領域を示した。なお、図2にはソーラーパネルの図示は省略してある。 As shown in FIG. 2, the oscillating plate 1 according to the present embodiment is adapted to cope with wind from any direction of 360 degrees around, so that the oscillating plate can be opposed to the wind direction. Without this, it is possible to preferably perform power generation. However, the directions in which the oscillating plate 1 efficiently receives the wind force are the front wind W1 and the rear wind W2 in FIG. FIG. 2 shows the main regions of the front wind receiving surface 1f and the rear wind receiving surface 1g of the rocking plate 1. The solar panel is not shown in FIG.

また、図2に示した右方風W3と左方風W4のうちの真横近辺の風に対しては、揺動板1の横断面を弧状(弓弦形(アーク形状))として航空機の翼と同様の原理を用いた揚力を利用することで、単なる平板状の揺動板と比べて横方向からの風に対して格段に効率のよい揺動運動を得ることができる。右方風W3と左方風W4の前方領域側の風は主として前方風受け面1fに作用し、右方風W3と左方風W4の後方領域側の風は主として後方風受け面1gに作用する。 Further, with respect to the rightward wind W3 and the leftward wind W4 shown in FIG. 2, the transverse cross section of the oscillating plate 1 has an arc shape (bow chord shape (arc shape)) and an aircraft wing. By utilizing the lift force based on the same principle, it is possible to obtain a rocking motion that is much more efficient with respect to the wind from the lateral direction than a mere flat rocking plate. The winds on the front region side of the right wind W3 and the left wind W4 mainly act on the front wind receiving face 1f, and the winds on the rear region side of the right wind W3 and the left wind W4 mainly act on the rear wind receiving face 1g. To do.

図3は図2に示した揺動板1のB−B線断面を示す。また、図4は図2の→C方向から視た上面図である。揺動板1は横断面が弧状で揺動板1bの上部を覆って上部カバー1aが取り付けられている。この上部カバー1aは後方から到来する風が上方に抜け去って揺動板1にかかる風圧が低減するのを回避する作用を持つ。この上部カバーに揺動軸2が固定されており、揺動板1が揺動軸2に懸垂した状態で前後に揺動するようになっている。 FIG. 3 shows a cross section taken along line BB of the rocking plate 1 shown in FIG. Further, FIG. 4 is a top view seen from the direction of →C in FIG. The oscillating plate 1 has an arc-shaped cross section, and an upper cover 1a is attached to cover the upper part of the oscillating plate 1b. The upper cover 1a has a function of preventing the wind coming from the rear from escaping upward and reducing the wind pressure applied to the oscillating plate 1. The swing shaft 2 is fixed to the upper cover, and the swing plate 1 swings back and forth while being suspended from the swing shaft 2.

揺動板1の前方と後方の各表面には、それぞれ前方ソーラーパネル10a、後方ソーラーパネル10bが貼付されている。本実施例では、これらのソーラーパネルは揺動板1の前方と後方の各全面を覆って貼付したものとしてあるが、これに限るものではなく、これらの各表面を部分的に覆うようにしてもよい。 A front solar panel 10a and a rear solar panel 10b are attached to the front and rear surfaces of the oscillating plate 1, respectively. In this embodiment, these solar panels are attached so as to cover the entire front surface and the rear surface of the oscillating plate 1, but the present invention is not limited to this, and each surface may be partially covered. Good.

揺動板1が風力を受けて揺動し、揺動軸2の往復揺動を発電機軸の一方向回転に変換して発電機回転軸11(後述する図8参照)を回転させることで発電を行う。風力が一定でないことによる発電機回転軸11の回転不均一をフライホイール5に蓄積されている回転エネルギーで補足し平滑化する。 The oscillating plate 1 oscillates in response to wind force, converts the reciprocal oscillating oscillation of the oscillating shaft 2 into unidirectional rotation of the generator shaft, and rotates the generator rotating shaft 11 (see FIG. 8 described later) to generate power I do. The non-uniform rotation of the generator rotating shaft 11 due to the non-uniform wind force is supplemented by the rotational energy accumulated in the flywheel 5 and smoothed.

また、揺動板1に貼付されたソーラーパネル10a,10bは昼間においては太陽光を受けて発電する。後方風受面に貼付したソーラーパネル10bは周囲の反射光を受けて発電する。雪国などでは、積雪からの反射光が強いので、ソーラーパネル10bはより有効に機能する。砂漠地帯、水面状あるいはその近傍でも同様である。 Further, the solar panels 10a and 10b attached to the rocking plate 1 receive sunlight in the daytime to generate electricity. The solar panel 10b attached to the rear wind receiving surface receives the reflected light from the surroundings to generate electricity. In a snowy country or the like, the reflected light from the snow is strong, so that the solar panel 10b functions more effectively. The same applies to desert areas, water surfaces, and their vicinity.

以上説明した実施例1により、風力から得た回転エネルギーで発電機回転軸11を回転させ電力を発生させるための揺動板(揺動ブレード)1と太陽光を電気エネルギーに変換するソーラーパネル10との協働で電力を生成する流体発電装置を提供できる。 According to the first embodiment described above, the oscillating plate (oscillating blade) 1 for rotating the generator rotating shaft 11 with the rotational energy obtained from the wind power to generate electric power, and the solar panel 10 for converting sunlight into electric energy. It is possible to provide a fluid power generation device that generates electric power in cooperation with.

図5は本発明に係る流体発電装置の第2実施例に用いる揺動板の説明図である。この実施例では、実施例1に使用されている揺動板の横方向X−Xの側端縁1c断面形状を航空機の翼型に近似させたものである。すなわち、揺動板1の両側側縁1cの厚みd1を大とし、縦方向Y−Yの中央部1dの板厚d2を最も薄くなるように漸次薄くしたものである。なお、Z−Zは前後方向を示す。そのほかの構成は実施例1と同様である。 FIG. 5 is an explanatory view of an oscillating plate used in the second embodiment of the fluid power generation system according to the present invention. In this embodiment, the cross-sectional shape of the side edge 1c of the oscillating plate used in the first embodiment in the lateral direction XX is approximated to the airfoil shape of an aircraft. That is, the thickness d1 of both side edges 1c of the oscillating plate 1 is made large, and the plate thickness d2 of the central portion 1d in the vertical direction YY is gradually thinned to be the thinnest. In addition, ZZ shows the front-back direction. Other configurations are similar to those of the first embodiment.

本実施例によれば、このような揺動板形状としたことで、右方向からの風W3あるいは左方向からの風W4による揺動板1の前方方向への揚力を増加させて揺動量(揺動角)を大きくすることができ、モータ軸の回転量を大きくして発電量を増すことができる。 According to the present embodiment, by adopting such an oscillating plate shape, the lift amount in the forward direction of the oscillating plate 1 by the wind W3 from the right direction or the wind W4 from the left direction is increased and the oscillating amount ( The swing angle) can be increased, and the amount of rotation of the motor shaft can be increased to increase the amount of power generation.

図6は本発明に係る流体発電装置の第3実施例に用いる揺動板の説明図である。この実施例では、実施例1に使用されている揺動板に代えて単一板体とし、横方向X−Xの側端縁断面形状を前方側のみ大きな厚みd3とし、航空機の他の翼型に近似させたものである。すなわち、揺動板1の両側側縁1cの厚み1cの厚みを大とし、縦方向Y−Yの中央部の中央部1dを最小板厚d4として漸次薄くしたものである。そのほかの構成は実施例1と同様である。 FIG. 6 is an explanatory view of an oscillating plate used in a third embodiment of the fluid power generation system according to the present invention. In this embodiment, the rocking plate used in the first embodiment is replaced with a single plate body, and the side edge cross-sectional shape in the lateral direction XX has a large thickness d3 only on the front side, and the other wings of the aircraft. It is an approximation of the type. That is, the thickness 1c of both side edges 1c of the oscillating plate 1 is increased, and the central portion 1d of the central portion in the vertical direction YY is gradually reduced to the minimum plate thickness d4. Other configurations are similar to those of the first embodiment.

本実施例によっても、右方向からの風W3あるいは左方向からの風W4による揺動板1の前方方向への揚力を増加させて揺動量(揺動角)を大きくすることができ、モータ軸の回転量を大きくして発電量を増すことができる。 Also in this embodiment, the amount of rocking (rocking angle) can be increased by increasing the lift of the rocking plate 1 in the forward direction by the wind W3 from the right direction or the wind W4 from the left direction, and thus the motor shaft. The amount of power generation can be increased by increasing the rotation amount of the.

図7は本発明に係る流体発電装置の第4実施例に用いる揺動板の説明図である。本実施例の揺動板1は、その表面及び背面に、通過する空気流に乱流を与える多数の微小凸部12aをランダムに形成したものである。この微小凸部はソーラー基板の表面に透明樹脂などをスポット的に滴下し、硬化させて形成することができる。これにより、揺動板の表面を高速に通過する空気流に発生する乱流やボルテックスの発生等を回避して揺動板の振動などを抑制することができる。 FIG. 7 is an explanatory view of an oscillating plate used in the fourth embodiment of the fluid power generation system according to the present invention. The oscillating plate 1 according to the present embodiment has a large number of minute convex portions 12a that randomly generate turbulence in the air flow passing through the front surface and the back surface thereof. This minute convex portion can be formed by spotting a transparent resin or the like on the surface of the solar substrate and curing it. As a result, it is possible to avoid the turbulent flow and the vortex generated in the air flow that passes through the surface of the oscillating plate at high speed, and suppress the vibration of the oscillating plate.

なお、前記した微小凸部12aに代えて多数の微小凹部12bをランダムに形成することもできる。この微小凹部12bはソーラーパネルの表面基板に予めディンプル状を形成することで得ることができる。 Note that a large number of minute concave portions 12b can be formed at random instead of the minute convex portions 12a described above. The minute recesses 12b can be obtained by forming dimples on the surface substrate of the solar panel in advance.

本実施例により、前記各実施例における効果に加えて、揺動板の表面を高速に通過する空気流に発生する乱流やボルテックスの発生等を回避して揺動板の振動などを抑制することができる。 According to the present embodiment, in addition to the effects of each of the above-described embodiments, turbulent flow and vortex generated in the air flow that passes through the surface of the oscillating plate at high speed are avoided, and vibration of the oscillating plate is suppressed. be able to.

図8は図1における回転変換器3の構成例の説明図である。図9の流体発電装置にも同様に適用できる。この回転変換器3は、揺動板1と発電機6との間に設置して揺動板1の往復運動による揺動板1の往復回転を発電機回転軸11の一方向回転に変換するための機構の一例である。図8において、第1ギア31は揺動軸2に固定され、第5ギア35は発電機回転軸11に固定されている。 FIG. 8 is an explanatory diagram of a configuration example of the rotation converter 3 in FIG. The same can be applied to the fluid power generation device of FIG. The rotation converter 3 is installed between the oscillating plate 1 and the generator 6, and converts the reciprocal rotation of the oscillating plate 1 due to the reciprocating motion of the oscillating plate 1 into one-direction rotation of the generator rotating shaft 11. It is an example of a mechanism for. In FIG. 8, the first gear 31 is fixed to the swing shaft 2, and the fifth gear 35 is fixed to the generator rotating shaft 11.

第3ギア33と第4ギア34は従動ギア軸37に固定されて共に同一方向に回転可能とされている。ただし第3ギア33は一方向回転ギアで白抜き太矢印方向の回転のみを従動ギア軸37に伝える。中間軸36に回転可能に装荷された中間ギアである第2ギア32も一方向回転ギアとすることで、白抜き太矢印の方向の回転のみを第3ギア33を介して従動ギア軸37に伝える。符号30は揺動軸2と発電機回転軸11を断接するクラッチを示す。 The third gear 33 and the fourth gear 34 are fixed to the driven gear shaft 37 and are rotatable in the same direction. However, the third gear 33 is a one-way rotating gear and transmits only the rotation in the direction of the outline thick arrow to the driven gear shaft 37. The second gear 32, which is an intermediate gear rotatably loaded on the intermediate shaft 36, is also a one-way rotating gear, so that only the rotation in the direction of the white thick arrow is transmitted to the driven gear shaft 37 via the third gear 33. Tell. Reference numeral 30 denotes a clutch that connects and disconnects the swing shaft 2 and the generator rotating shaft 11.

揺動板1の揺動で揺動軸2が黒太矢印方向に回転するとき、クラッチ30はON(接)となり、ONとなったクラッチ30から発電機回転軸11を黒太矢印方向に回転させ、発電機を回転させて発電を行う。このとき、第1ギア31にかみ合う第2ギア32、及び第3ギア33はフリーに回転し、第1ギア31の回転を第5ギア35に伝達しない。 When the rocking shaft 2 rotates in the direction of the thick black arrow due to the rocking of the rocking plate 1, the clutch 30 is turned on (contact), and the generator rotating shaft 11 is rotated from the clutch 30 that is turned on in the direction of the thick black arrow. Then, the generator is rotated to generate electricity. At this time, the second gear 32 and the third gear 33 that mesh with the first gear 31 rotate freely, and the rotation of the first gear 31 is not transmitted to the fifth gear 35.

一方、揺動板1の揺動で揺動軸2が白抜き太矢印方向に回転するとき、クラッチ30はOFF(断)となり、この回転は第2ギア32→第3ギア33→第4ギア34から第5ギア35に伝達される。これにより、発電機回転軸11は黒太矢印方向と同じ白抜き太矢印方向に回転され、発電機6は継続して発電を行う。 On the other hand, when the oscillating plate 1 oscillates to rotate the oscillating shaft 2 in the direction of the thick white arrow, the clutch 30 is turned off (disengaged), and the rotation is the second gear 32→the third gear 33→the fourth gear. It is transmitted from 34 to the fifth gear 35. As a result, the generator rotating shaft 11 is rotated in the same white thick arrow direction as the black thick arrow direction, and the generator 6 continues to generate power.

発電機回転軸11にはフライホイールが固定されるが、図8では図示を省略してある。
図8に示した回転変換機構は一例にすぎず、同様の作用を得るためのギア機構は、この他にも多数考えられる。
A flywheel is fixed to the generator rotating shaft 11, but is not shown in FIG.
The rotation conversion mechanism shown in FIG. 8 is merely an example, and many gear mechanisms other than this may be considered for achieving the same operation.

図9は本発明に係る流体発電装置の第5実施例の全体構成の説明図である。この実施例は前記実施例1で説明した発電機まわりの構成を揺動板1の左右両側に配置したものである。図9は図1の(a)に相当する。
本実施例の流体発電装置は図1で説明した本発明の実施例1に発電部を2台としたものである。その他の構成は実施例1と同様なので説明は省略する。
FIG. 9 is an explanatory diagram of the overall configuration of the fifth embodiment of the fluid power generation device according to the present invention. In this embodiment, the structure around the generator described in the first embodiment is arranged on both left and right sides of the oscillating plate 1. FIG. 9 corresponds to (a) of FIG.
The fluid power generation device of this embodiment is the same as the first embodiment of the present invention described with reference to FIG. The other configuration is similar to that of the first embodiment, and thus the description thereof is omitted.

本実施例によれば、揺動板1の受風面積を大きくして比較的に大規模な流体発電装置を構成できる。図9に示したものに限らず、さらに多数の揺動板と多数の発電機及びソーラーパネルを接続してより大きな電力源とすることも可能である。 According to the present embodiment, a relatively large-scale fluid power generation device can be configured by increasing the air receiving area of the oscillating plate 1. The power source is not limited to that shown in FIG. 9, and it is also possible to connect a larger number of rocking plates, a larger number of generators, and solar panels to form a larger power source.

図10は本発明に係る流体発電装置の制御系を説明するブロック図である。なお、本発明に係る流体発電装置に使用する発電機は電動機モード(モータモード)を備えた電動発電機(MG)とするのが好適である。
図10では発電機6として図9に示した二個の電動発電機6a、6bを用いたものとして説明するが、図1の場合は一個の電動発電機6a、及び一枚のソーラーパネル10aのみを用いたものと理解すべきである。
FIG. 10 is a block diagram illustrating a control system of the fluid power generation device according to the present invention. The generator used in the fluid power generator according to the present invention is preferably a motor generator (MG) having an electric motor mode (motor mode).
In FIG. 10, the two generators 6a and 6b shown in FIG. 9 are used as the generator 6, but in the case of FIG. 1, only one motor generator 6a and one solar panel 10a are used. Should be understood as using.

図10において、この流体発電装置で構成される制御系(発電システム)は発電機6の発電電力(交流電力)を所要の電圧と電流に変換して負荷等の利用者の利用に対応する形式に変換するための電力変換/変圧器21、ソーラーパネルの発電電力(直流電力)を、同様に負荷等の利用者の利用に対応する形式に変換するパワーコンデショナ(コンバータ/インバータ含む)20、電力変換/変圧器21からの発電機6の発電電力と、パワーコンデショナ20からのソーラーパネル10の電力を統合して負荷や系統に供給するための電力統合器23、ローカル負荷25と電力系統26への電力供給を切替える切替器24、及びバッテリ29で構成される。そして、これらの構成部分を統括制御する制御装置22を備える。 In FIG. 10, a control system (power generation system) configured by this fluid power generation device converts generated power (AC power) of the power generator 6 into required voltage and current and supports a user such as a load. A power converter/transformer 21 for converting into a power converter, a power conditioner (including a converter/inverter) 20 for converting the generated power (DC power) of the solar panel into a format corresponding to the use by a user such as a load, A power integrator 23, a local load 25, and a power system for integrating the power generated by the power generator/generator 6 from the power converter/transformer 21 and the power from the solar panel 10 from the power conditioner 20 into a load or a grid. 26, and a battery 29. A control device 22 that integrally controls these components is provided.

制御装置22は発電機6とソーラーパネルの10の通常動作を制御すると共にフライホイール5の回転数を監視する回転数センサ27、揺動板1の揺動方向(前後移動)を検知する揺動板の揺動板方向を検出する揺動板揺動方向検出センサ28を備えている。なお、この他に発電機6の発電電力やソーラーパネルの発電電力を監視して最適発電状態を得るための各種センサ、制御プログラムを備えている。余剰な電力が生じた場合には電力系統に接続して売電することもできる。 The control device 22 controls the normal operation of the generator 6 and the solar panel 10, and a rotation speed sensor 27 that monitors the rotation speed of the flywheel 5 and a swing that detects the swing direction (back and forth movement) of the swing plate 1. A swing plate swing direction detection sensor 28 for detecting the swing plate direction of the plate is provided. In addition to this, various sensors and control programs for monitoring the generated power of the generator 6 and the generated power of the solar panel to obtain the optimum power generation state are provided. When surplus power is generated, it can be connected to the power grid and sold.

回転数センサ27は、フライホイールの回転が規定値以下になった場合に、バッテリ29に常時充電されている電力を利用して回転を上げるように制御装置22に指令を発することができる。なお、バッテリ29は発電機やソーラーパネルの発電電力が低下した場合のバックアップ電源として負荷25に電力を供給する。 The rotation speed sensor 27 can issue a command to the control device 22 to increase the rotation speed by using the electric power constantly charged in the battery 29 when the rotation speed of the flywheel becomes equal to or less than a specified value. The battery 29 supplies power to the load 25 as a backup power source when the power generated by the generator or the solar panel is reduced.

方向検出センサ28は揺動板1の揺動方向を検出して図8のクラッチ30のON/OFFを実行する。これにより、揺動板1の揺動方向に関わらずに発電機の軸に対して一方向の回転力を供給する。
[産業上の利用分野]
The direction detection sensor 28 detects the swing direction of the swing plate 1 and turns on/off the clutch 30 shown in FIG. As a result, unidirectional torque is supplied to the shaft of the generator regardless of the swing direction of the swing plate 1.
[Industrial application]

本発明は、風力、波力等の流体を用いた発電装置に適用できる。波力エネルギーを用いた発電装置の場合、揺動板を水中に全没する方法と、揺動板の一部または相当部分を空中に露出させることで、その露出部分にソーラーパネルを設置して太陽光の直接エネルギーと水面反射光のエネルギーを利用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a power generator using a fluid such as wind power or wave power. In the case of a power generator using wave energy, a method of completely submerging the oscillating plate in water and exposing a part or a considerable part of the oscillating plate in the air to install a solar panel on the exposed part The direct energy of sunlight and the energy of light reflected on the water surface can be used.

1・・・揺動板(揺動ブレード)
2・・・揺動軸(揺動回転軸)
3・・・回転変換器
4・・・機枠
5・・・フライホイール
6・・・発電機(電動発電機:MG)
7・・・(7a,7b・・・)回転軸受
8・・・ジョイント
9・・・ブラケット
10・・・ソーラーパネル
11・・・発電機回転軸
12・・・微小突起
13・・・設置面
14・・・基礎
20・・・パワーコンデショナ
21・・・電力変換/変圧器(コンバータ/インバータを含む)
22・・・制御装置
23・・・統合器
24・・・切替器
25・・・負荷
26・・・電力系統
27・・・回転数センサ
28・・・方向検出センサ
29・・・バッテリ
30・・・クラッチ
31・・・第1ギア
32・・・第12ギア
33・・・第3ギア
34・・・第4ギア
35・・・第5ギア
36・・・中間ギア軸
37・・・従動ギア軸

1... Oscillating plate (oscillating blade)
2. Oscillating shaft (oscillating rotary shaft)
3... Rotation converter 4... Machine frame 5... Flywheel 6... Generator (motor generator: MG)
7... (7a, 7b...) Rotating bearing 8... Joint 9... Bracket 10... Solar panel 11... Generator rotating shaft 12... Micro projection 13... Installation surface 14... Foundation 20... Power conditioner 21... Power conversion/transformer (including converter/inverter)
22... Control device 23... Integrator 24... Switching device 25... Load 26... Electric power system 27... Rotation speed sensor 28... Direction detection sensor 29... Battery 30... ..Clutch 31... First gear 32... Twelve gear 33... Third gear 34... Fourth gear 35... Fifth gear 36... Intermediate gear shaft 37... Gear shaft

Claims (8)

風力から得た回転エネルギーで発電機回転軸を回転させて電力を発生させるための揺動板と太陽光を電気エネルギーに変換するソーラーパネルとの協働で電力を生成する流体発電装置であって、
機枠と、
機枠の横方向に装架した揺動軸と、
前方風受け面と後方風受け面を有し、前記揺動軸に上方縁を固定して懸垂し、当該揺動軸の周りに往復揺動を行う揺動板と、
前記揺動軸の往復揺動に基づく発電機回転軸の回転により発電する発電機と、
前記揺動軸と前記発電機との間に設置されて前記揺動軸の往復動揺動を一方向の回転に変換して前記発電機の発電機回転軸に回転力を接続する回転変換器と、
前記発電機回転軸に固定されて回転するフライホイールと、
前記揺動板の前方風受け面と後方風受け面の一方又は双方に貼り付けられた前方ソーラーパネル及び/又は後方ソーラーパネルと
を有することを特徴とする流体発電装置。
A fluid power generation device that generates electric power in cooperation with a wobble plate for rotating a generator rotating shaft to generate electric power with rotational energy obtained from wind power and a solar panel that converts sunlight into electric energy. ,
Machine frame,
A swing shaft mounted in the lateral direction of the machine frame,
A swing plate having a front wind receiving surface and a rear wind receiving surface, suspending the upper edge fixed to the swing shaft and reciprocally swinging around the swing shaft,
A generator that generates power by rotation of a generator rotating shaft based on the reciprocating swing of the swing shaft;
A rotary converter that is installed between the swing shaft and the generator, converts the reciprocating swing of the swing shaft into rotation in one direction, and connects the rotating force to the generator rotary shaft of the generator. ,
A flywheel fixed to the rotating shaft of the generator and rotating,
A fluid power generation device comprising a front solar panel and/or a rear solar panel attached to one or both of the front wind receiving surface and the rear wind receiving surface of the oscillating plate.
前記揺動板は横方向断面が前方風受け面側に凸のアーク形状であることを特徴とする請求項1に記載の流体発電装置。 The fluid power generator according to claim 1, wherein the swing plate has an arc shape whose lateral cross section is convex toward the front wind receiving surface side. 前記揺動板は縦方向の側縁から中央部にかけた横方向断面の厚みが漸次小さい翼形状であることを特徴とする請求項2に記載の流体発電装置。 3. The fluid power generator according to claim 2, wherein the oscillating plate has a blade shape in which a thickness of a lateral cross section extending from a vertical side edge to a central portion is gradually reduced. 前記揺動板の横方向断面が前方風受け側に両側端縁が凸形状を有し、後方風受け面は平面であることを特徴とする請求項1に記載の流体発電装置。 The fluid power generation device according to claim 1, wherein a lateral cross section of the oscillating plate has a convex shape on both side edges on the front wind receiving side and a rear wind receiving surface is a flat surface. 前記揺動板は縦方向の側縁から中央部にかけた横方向断面の厚みが漸次小さい翼形状であることを特徴とする請求項4に記載の流体発電装置。 The fluid power generator according to claim 4, wherein the oscillating plate has a blade shape in which a thickness of a lateral cross section from a side edge in a vertical direction to a central portion is gradually reduced. 前記揺動板の前方風受け面及び後方風受け面の一方又は双方に、通過する空気流に乱流を与える多数の微小凸部をランダムに形成したことを特徴とする請求項1乃至5の何れかに記載の流体発電装置。 6. A large number of minute convex portions which give a turbulent flow to a passing air flow are randomly formed on one or both of the front wind receiving surface and the rear wind receiving surface of the oscillating plate. The fluid power generation device according to any one of claims. 前記揺動板の前方風受け面及び後方風受け面の一方又は双方に、通過する空気流に乱流を与える多数の微小凹部をランダムに形成したことを特徴とする請求項1乃至5の何れかに記載の流体発電装置。 6. A large number of minute recesses that give turbulent flow to a passing air flow are randomly formed on one or both of the front wind receiving surface and the rear wind receiving surface of the oscillating plate. The fluid power generation device according to claim 1. 前記発電機は電動機として動作する電動発電機であり、発電した電力を貯蔵するバッテリを備え、このバッテリの電力で前記電動発電機が前記フライホイールを回転可能としたことを特徴とする請求項1乃至7の何れかに記載の流体発電装置。



The generator is a motor generator that operates as an electric motor, and includes a battery that stores generated electric power, and the electric power of the battery allows the motor generator to rotate the flywheel. The fluid power generation device according to any one of 1 to 7.



JP2019014274A 2019-01-30 2019-01-30 fluid power generator Active JP7212325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014274A JP7212325B2 (en) 2019-01-30 2019-01-30 fluid power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014274A JP7212325B2 (en) 2019-01-30 2019-01-30 fluid power generator

Publications (2)

Publication Number Publication Date
JP2020122427A true JP2020122427A (en) 2020-08-13
JP7212325B2 JP7212325B2 (en) 2023-01-25

Family

ID=71993498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014274A Active JP7212325B2 (en) 2019-01-30 2019-01-30 fluid power generator

Country Status (1)

Country Link
JP (1) JP7212325B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138781A (en) * 1983-01-27 1984-08-09 Mitsubishi Electric Corp Wind-force power generator
JP2002371949A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Wind power generator
US20100187830A1 (en) * 2010-04-01 2010-07-29 Saavedra John A Electric power generator utilizing intermittent wind
JP2011256747A (en) * 2010-06-07 2011-12-22 Birumen Kagoshima:Kk Wind power generation apparatus
JP2017155627A (en) * 2016-02-29 2017-09-07 Mkr株式会社 Hybrid power generation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138781A (en) * 1983-01-27 1984-08-09 Mitsubishi Electric Corp Wind-force power generator
JP2002371949A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Wind power generator
US20100187830A1 (en) * 2010-04-01 2010-07-29 Saavedra John A Electric power generator utilizing intermittent wind
JP2011256747A (en) * 2010-06-07 2011-12-22 Birumen Kagoshima:Kk Wind power generation apparatus
JP2017155627A (en) * 2016-02-29 2017-09-07 Mkr株式会社 Hybrid power generation device

Also Published As

Publication number Publication date
JP7212325B2 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US8894348B2 (en) Wind turbine
KR20100066420A (en) Integrated power plant that utilizes renewable and alternative energy sources
JP2013519025A (en) Large-scale vertical axis wind power generator, wind power generator, and wind receiver blade structure
CN103929116B (en) A kind of wind and solar hybrid generating system
JP2003314429A (en) Wind power generator
JP2006046306A (en) Windmill for wind power generation, and power generator driving method
JP3187822U (en) Wind power generator combined with solar panel and power generator composed thereof
CN205725563U (en) A kind of solaode scene photovoltaic generating system
JP7212325B2 (en) fluid power generator
JPH06167269A (en) Windmill equipped with solar battery
KR200454230Y1 (en) Generator using solar and wind power
KR102142243B1 (en) Sail device
CA2975109C (en) Solar and wind energy collection system and method
CN204013328U (en) Wind-light complementing power generation device
KR101261367B1 (en) Electric power generator using water power, magnetic force and wind force
KR101116123B1 (en) Alternative energy system using the building vents
CN201428558Y (en) Light-air startup device of wind generator
CN201810468U (en) Multipurpose generator of wind power, water power, ocean waves and tides power
KR100886803B1 (en) Solar collector
JP2004068622A (en) Power generating device and rotor of wind mill
JP6416678B2 (en) Power generator using reciprocating motion
CN212079514U (en) Fan
US11035341B1 (en) System and method for restarting a wind turbine
CN218022073U (en) Buoy for generating power by combining wind energy, solar energy and wave energy
AU2021106548A4 (en) Transportable hybrid wind-solar power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7212325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150