JP2020122156A - 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 - Google Patents
繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 Download PDFInfo
- Publication number
- JP2020122156A JP2020122156A JP2020071605A JP2020071605A JP2020122156A JP 2020122156 A JP2020122156 A JP 2020122156A JP 2020071605 A JP2020071605 A JP 2020071605A JP 2020071605 A JP2020071605 A JP 2020071605A JP 2020122156 A JP2020122156 A JP 2020122156A
- Authority
- JP
- Japan
- Prior art keywords
- fibrous cellulose
- containing material
- mass
- acid group
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】本発明は、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得る場合において、金属成分の残存量が低減された繊維状セルロース含有物を提供することを課題とする。【解決手段】本発明は、繊維幅が1000nm以下であり、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物であって、繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.65以上である、繊維状セルロース含有物に関する。【選択図】なし
Description
本発明は、繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体に関する。
従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。
微細繊維状セルロースを例えば増粘剤として使用する場合には、微細繊維状セルロースを分散させた液体を加工工場等に輸送することが行われている。しかし、微細繊維状セルロースを分散させた液体には大量の分散媒が含まれているため、輸送に係る費用が高いという問題がある。このため、輸送コストを削減するために、微細繊維状セルロースを分散させた液体を出来る限り濃縮した形態とすることが望まれている。
例えば、特許文献1及び2には、微細繊維状セルロースと金属成分を含む繊維状セルロース含有物(凝集物)が開示されている。これらの文献における実施例では、得られる繊維状セルロース含有物(凝集物)に、凝集工程で使用される多価金属成分が多く残留している。なお、特許文献3には、無機物からなる陽イオンを含む亜リン酸のエステルが導入されたセルロース微細繊維を含有するセルロース微細繊維含有物が開示されている。特許文献3の実施例では、亜リン酸基の対イオンとして、ナトリウムイオンを含むセルロース繊維が開示されているが、凝集剤としての金属成分の添加はなく、105℃に6時間静置するといった乾燥工程を経てセルロース微細繊維含有物を得ている。
上述したように、微細繊維状セルロースに多価金属成分を含む凝集剤を添加して、微細繊維状セルロースの濃縮物を得る手法が知られている。このような場合、得られる濃縮物を洗浄することで凝集剤を除去することが考えられるが、特に多価金属成分を含む凝集剤を用いた場合に、凝集剤を取り除ききれないという課題がある。
そこで本発明者らは、このような従来技術の課題を解決するために、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得る場合において、金属成分の残存量が低減された繊維状セルロース含有物を提供することを目的として検討を進めた。
上記の課題を解決するために鋭意検討を行った結果、本発明者らは、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する微細繊維状セルロースを含有する繊維状セルロース含有物において、微細繊維状セルロースにおける第1解離酸量をA1とし、微細繊維状セルロースにおける総解離酸量をA2とした場合に、A1/A2の値を0.65以上とすることにより、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得る場合であっても、多価金属等の金属成分の残存量が低減された繊維状セルロース含有物が得られることを見出した。
具体的に、本発明は、以下の構成を有する。
具体的に、本発明は、以下の構成を有する。
[1] 繊維幅が1000nm以下であり、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物であって、
繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.65以上である、繊維状セルロース含有物。
[2] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物。
[3] 下記測定条件(a)で測定した全光線透過率が95%以上である、[1]又は[2]に記載の繊維状セルロース含有物;
測定方法(a):
繊維状セルロース含有物にイオン交換水を加えて固形分濃度が0.5質量%の水懸濁液Aを調製する;水懸濁液AのpHを10に調整したのち、2.5m/秒で5分間撹拌する;得られた水懸濁液にイオン交換水を加えて固形分濃度を0.2質量%とし、24時間静置した後、JIS K 7361に準拠して、光路長1cmの条件で全光線透過率を測定する。
[4] 繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量が5質量%以上である[1]〜[3]のいずれかに記載の繊維状セルロース含有物。
[5] 固形状である[1]〜[4]のいずれかに記載の繊維状セルロース含有物。
[6] [1]〜[5]のいずれかに記載の繊維状セルロース含有物と、溶媒とを混合してなる繊維状セルロース含有液状組成物。
[7] 繊維状セルロース含有液状組成物中の固形分濃度を0.5質量%以下とし、JIS K 7361に準拠して、光路長1cmの条件で測定した場合の全光線透過率が95%以上である[6]に記載の繊維状セルロース含有液状組成物。
[8] [1]〜[5]のいずれかに記載の繊維状セルロース含有物、もしくは、[6]又は[7]に記載の繊維状セルロース含有液状組成物から形成される成形体。
繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.65以上である、繊維状セルロース含有物。
[2] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物。
[3] 下記測定条件(a)で測定した全光線透過率が95%以上である、[1]又は[2]に記載の繊維状セルロース含有物;
測定方法(a):
繊維状セルロース含有物にイオン交換水を加えて固形分濃度が0.5質量%の水懸濁液Aを調製する;水懸濁液AのpHを10に調整したのち、2.5m/秒で5分間撹拌する;得られた水懸濁液にイオン交換水を加えて固形分濃度を0.2質量%とし、24時間静置した後、JIS K 7361に準拠して、光路長1cmの条件で全光線透過率を測定する。
[4] 繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量が5質量%以上である[1]〜[3]のいずれかに記載の繊維状セルロース含有物。
[5] 固形状である[1]〜[4]のいずれかに記載の繊維状セルロース含有物。
[6] [1]〜[5]のいずれかに記載の繊維状セルロース含有物と、溶媒とを混合してなる繊維状セルロース含有液状組成物。
[7] 繊維状セルロース含有液状組成物中の固形分濃度を0.5質量%以下とし、JIS K 7361に準拠して、光路長1cmの条件で測定した場合の全光線透過率が95%以上である[6]に記載の繊維状セルロース含有液状組成物。
[8] [1]〜[5]のいずれかに記載の繊維状セルロース含有物、もしくは、[6]又は[7]に記載の繊維状セルロース含有液状組成物から形成される成形体。
本発明によれば、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得る場合において、金属成分の残存量が低減された繊維状セルロース含有物を得ることができる。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(繊維状セルロース含有物)
本発明の第1の態様は、繊維幅が1000nm以下であり、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物に関する。ここで、繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値は0.65以上である。
本発明の第1の態様は、繊維幅が1000nm以下であり、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物に関する。ここで、繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値は0.65以上である。
本発明の第2の態様は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物に関する。
本発明の繊維状セルロース含有物は、上記構成を有するものであるため、多価金属を含むものではあるが、多価金属を含む金属成分の残存量が低減されている。具体的には、本発明の繊維状セルロース含有物を得る際には、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得ているが、このような場合において、多価金属を含む金属成分の残存量を低減することができる。従来、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得ることをした場合、濃縮された繊維状セルロース含有物に含まれる凝集剤(多価金属)を洗浄によって除去しきれず、多量の金属成分が残存してしまう場合があった。一方で、濃縮された繊維状セルロース含有物の用途によっては、残存する多価金属等の金属成分が悪影響を及ぼす場合があるため、多価金属等の金属成分を極力除去したいとの要望がある。そこで、本発明においては、上述した第1の態様や第2の態様の構成とすることで、濃縮された繊維状セルロース含有物における金属成分の残存量を低減することを可能とした。
上述したように、本発明の繊維状セルロース含有物における金属成分の残存量は少ない。具体的には、繊維状セルロース含有物における多価金属含有量は、0.070mmol/g以下であることが好ましく、0.060mmol/g以下であることがより好ましく、0.050mmol/g以下であることがさらに好ましく、0.045mmol/g以下であることが特に好ましい。なお、繊維状セルロース含有物における多価金属含有量は、0.0001mmol/g以上であることが好ましい。ここで、繊維状セルロース含有物における多価金属含有量は、繊維状セルロース含有物の固形分量1g当たりの多価金属含有量(mmol)である。具体的には、以下のようにして得られた希釈溶液についてICP−AES測定を行うことで多価金属量(mmol)を測定する。測定に供される希釈溶液を得る際には、まず、繊維状セルロース含有物10gを525℃で加熱して灰化させ、1%硝酸5mLで溶解し湿式分解させる。その後、この溶液を0.45μmのフィルターでろ過したのち、超純水を加えて50mLとなるよう定容することで希釈溶液が得られる。ICP−AES測定により測定された多価金属量(mmol)を、供試した繊維状セルロース含有物の固形分量(g)で除すことで、上述した多価金属含有量(mmol/g)が算出される。
本発明においては、多価金属含有量は上記上限値以下であり、その含有量が低く抑えられている。但し、多価金属の一部は多価金属イオンとして繊維状セルロース含有物中に残存している。これは、リンオキソ酸基がアニオン性基であるため、多価金属イオンの少なくとも一部は、リンオキソ酸基と静電相互作用によりイオン結合を形成することで、微量が残留するためである。しかし、本発明においては、A1/A2の値を0.65以上とするか、もしくは、繊維状セルロースがリンオキソ酸基として亜リン酸基又は亜リン酸基に由来する置換基を有することにより、繊維状セルロース含有物中に残留する多価金属含有量を極力減らすことができる。このように、本発明の繊維状セルロース含有物においては、多価金属含有量が抑えられているため、例えば、後工程で繊維状セルロース含有物を加工した場合であっても、多価金属成分に由来する分散液における沈殿の生成や成形体の脆化等を抑制することができる。
本発明の繊維状セルロース含有物は、溶媒への再分散性にも優れている。具体的には、繊維状セルロース含有物を溶媒に再分散させた場合、再分散液中で沈降物を生成しない。このため、微細繊維状セルロースを溶媒中に分散させて得られるスラリーは高透明である。例えば、下記測定条件(a)で測定した全光線透過率は、95%以上であることが好ましく、96%以上であることがより好ましい。
測定方法(a):
繊維状セルロース含有物にイオン交換水を加えて固形分濃度が0.5質量%の水懸濁液Aを調製する。水懸濁液AのpHを10に調整したのち、2.5m/秒で5分間撹拌する。得られた水懸濁液にイオン交換水を加えて固形分濃度を0.2質量%とし、24時間静置した後、JIS K 7361に準拠して、光路長1cmの条件で全光線透過率を測定する。
測定方法(a):
繊維状セルロース含有物にイオン交換水を加えて固形分濃度が0.5質量%の水懸濁液Aを調製する。水懸濁液AのpHを10に調整したのち、2.5m/秒で5分間撹拌する。得られた水懸濁液にイオン交換水を加えて固形分濃度を0.2質量%とし、24時間静置した後、JIS K 7361に準拠して、光路長1cmの条件で全光線透過率を測定する。
測定方法(a)において、固形分濃度が0.5質量%の水懸濁液Aを調製する際には、まず、繊維状セルロース含有物をイオン交換水に添加し、固形分濃度が0.5質量%のスラリー100gを得る。そして、得られたスラリーをマグネチックスターラーで5分間撹拌して水懸濁液Aとする。水懸濁液AのpHを10に調整する際には、マグネチックスターラーで同様に撹拌を行いながら1N水酸化ナトリウムを滴下する。その後、ディスパーザーを用いて、1500rpm(2.5m/s)で5分間撹拌し、24時間後、スラリーをイオン交換水で固形分濃度が0.2質量%になるように希釈し、ディスパーザーにて、1500rpm(2.5m/s)で5分間撹拌する。次いで、得られたスラリーについて脱泡処理した後に23℃の環境下で24時間静置し、JIS K 7361に準拠して全光線透過率を測定する。この際に用いるヘーズメータとしては、村上色彩技術研究所社製のHM−150を用いることができる。また、脱泡処理を行う際には、自転公転型スーパーミキサーを用いることができ、例えば、シンキー社製のARE−250を用いて、2200rpmで、2分間撹拌することで脱泡処理を行うことができる。なお、全光線透過率を測定する際には、光路長1cmの液体用ガラスセルを用い、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量は5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。なお、繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量の上限値は特に限定されるものではないが、例えば95質量%とすることができる。なお、繊維状セルロース含有物における繊維状セルロースの含有量は、繊維状セルロースの質量を、繊維状セルロース含有物の質量で除すことで算出した値である。ただし、繊維状セルロースの質量は、繊維状セルロースが有するアニオン性基の対イオンが水素イオン(H+)であると仮定した際の質量とする。ここで、繊維状セルロースの質量は、繊維状セルロースを、適切な方法で抽出し、この操作を経た後に残る固形分が繊維状セルロースの質量となる。抽出方法としては、例えば、酸処理によって、微細繊維状セルロースが有するリンオキソ酸基の対イオンとして存在する成分を塩として選択的に抽出する方法などが挙げられる。
本発明の繊維状セルロース含有物においては、水の含有量は少ない方が好ましい。繊維状セルロース含有物における水の含有量は、繊維状セルロース含有物の全質量に対して、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。また、繊維状セルロース含有物における水の含有量は0質量%であってもよい。なお、繊維状セルロース含有物中の水分含有量は、繊維状セルロース含有物を水分計(エー・アンド・デイ社製、MS−70)に200mg載せ、140℃で加熱することで測定することができる。測定された水分量から繊維状セルロース含有物中の水分含有量を算出することができる。
本発明の繊維状セルロース含有物は、液状であってもよく、固形状やゲル状であってもよい。中でも、本発明の繊維状セルロース含有物は、固形状であることが好ましい。また、本発明の繊維状セルロース含有物は、シート等の成形体を形成するために用いられることが好ましい。すなわち、本発明の繊維状セルロース含有物は、成形体形成用組成物であることが好ましく、シート形成用組成物であることが好ましい。
本発明の繊維状セルロース含有物が固形状である場合、その形態は特に限定されるものではないが、例えば、シート状物や粉粒物であることが好ましく、粉粒物であることがより好ましい。ここで、粉粒物は、粉状及び/又は粒状の物質である。なお、粉状物質は、粒状物質よりも小さいものをいう。一般的には、粉状物質は粒子径が1nm以上0.1mm未満の微粒子をいい、粒状物質は、粒子径が0.1mm以上10mm以下の粒子をいうが、特に限定されない。なお、本明細書においては、粉粒物は粉体と呼ぶこともある。本明細書における粉粒物の粒子径はレーザー回折法を用いて測定・算出することができる。具体的には、レーザー回折散乱式粒子径分布測定装置(Microtrac3300EXII、日機装株式会社)を用いて測定した値とする。
(繊維状セルロース)
本発明の繊維状セルロース含有物は、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースを含有する。ここで、繊維状セルロースの繊維幅は1000nm以下である。繊維状セルロースの繊維幅は100nm以下であることが好ましく、8nm以下であることがより好ましい。これにより、有機溶媒に対する分散性をより効果的に高めることができる。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースと呼ぶこともある。
本発明の繊維状セルロース含有物は、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースを含有する。ここで、繊維状セルロースの繊維幅は1000nm以下である。繊維状セルロースの繊維幅は100nm以下であることが好ましく、8nm以下であることがより好ましい。これにより、有機溶媒に対する分散性をより効果的に高めることができる。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースと呼ぶこともある。
繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。
繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。特に、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
繊維状セルロースはリンオキソ酸基又はリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)を有する。なお、リンオキソ酸基に由来する置換基には、リンオキソ酸基の塩、リンオキソ酸エステル基などの置換基が含まれる。
繊維状セルロースにおけるリンオキソ酸基の導入量(リンオキソ酸基量)は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、繊維状セルロースにおけるリンオキソ酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、リンオキソ酸基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。さらに、リンオキソ酸基の導入量を上記範囲内とすることにより、繊維状セルロースの溶媒に対する分散性をより効果的に高めることができる。
繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
なお、滴定法によるリンオキソ酸基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いリンオキソ酸基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔として、例えば、0.1N水酸化ナトリウム水溶液を5〜30秒に10〜50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から窒素ガスなどの不活性ガスをスラリーに吹き込みながら滴定するなどが望ましい。
本発明の第1の態様において、繊維状セルロースにおける第1解離酸量(mmol/g)をA1とし、繊維状セルロースにおける総解離酸量(mmol/g)をA2とした場合、A1/A2の値は0.65以上であればよく、0.68以上であることが好ましく、0.70以上であることがより好ましく、0.80以上であることがさらに好ましい。また、A1/A2の値の上限値は1.00であることが好ましい。ここで、繊維状セルロースにおける第1解離酸量(A1)は、上述した滴定曲線において、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値である。すなわち、第1解離酸量(A1)は第1段階で電離し、中和される酸の物質量(mmol)を滴定対象スラリー中の固形分(g)で除した値である。また、繊維状セルロースにおける総解離酸量(A2)は滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値である。すなわち、総解離酸量(A2)は全段階で電離し、中和される全ての酸の物質量(mmol)を滴定対象スラリー中の固形分(g)で除した値である。このため、A1/A2の値が1に近いほど弱酸量(リンオキソ酸基における弱酸性基量など)が少ないことを意味する。本発明の第1の態様では、A1/A2の値を上記範囲内とすることにより、微細繊維状セルロースの分散液に多価金属を含む凝集剤を添加することで繊維状セルロース含有物を得る場合であっても、金属成分の残存量が低減された繊維状セルロース含有物を得ることができる。
なお、A1/A2の値は、リン酸基が縮合した場合、亜リン酸基が存在する場合、どちらの場合でも1に近づく。A1/A2が1に近づく要因が、リン酸基の縮合か、亜リン酸基の存在か、どちらに因るものか判断する方法としては、例えば、酸加水分解などのリン酸の縮合構造を切断する処理を行ってから上記の滴定操作を行う方法、酸化処理などの亜リン酸基をリン酸基へ変換する処理を行ってから前記の滴定操作を行う方法などが挙げられる。
リンオキソ酸基又はリンオキソ酸基に由来する置換基は、たとえば下記式(1)で表される置換基である。なお、リンオキソ酸基に由来する置換基には、リンオキソ酸基の塩、リンオキソ酸エステル基などの置換基が含まれる。また、リンオキソ酸基に由来する置換基には、リンオキソ酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。
式(1)中、a、b及びnは自然数であり、mは整数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR、ORのいずれかである。ここで、Rは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。Rはセルロース分子鎖に由来する基であってもよい。中でも、αn又はα’のいずれかはRであることが好ましく、Rは水素原子であることが特に好ましい。また、nは1であることが好ましい。すなわち、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、亜リン酸基又は亜リン酸基に由来する置換基であることが好ましい。
本発明の第2の態様においては、繊維状セルロースは、亜リン酸基又は亜リン酸基に由来する置換基を有する。すなわち、式(1)中、αn及びα’のうちa個がO-であり、αn又はα’のいずれかはRである。中でもRは水素原子であることが好ましい。
なお、リンオキソ酸基又はリンオキソ酸基に由来する置換基の一部は、リン酸基又はリン酸基に由来する置換基であってもよく、また、リンオキソ酸基が縮合した基(たとえばピロリン酸基)であってもよい。このように、繊維状セルロースが、亜リン酸基又は亜リン酸基に由来する置換基(以下、単に亜リン酸基ともいう)と、リン酸基又はリン酸基に由来する置換基(以下、単にリン酸基ともいう)の両方を置換基として有する場合は、式(1)で表される置換基のうち亜リン酸基の割合は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。
式(1)のRで表される飽和−直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、又はn−ブチル基等が挙げられるが、特に限定されない。飽和−分岐鎖状炭化水素基としては、i−プロピル基、又はt−ブチル基等が挙げられるが、特に限定されない。飽和−環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和−直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和−分岐鎖状炭化水素基としては、i−プロペニル基、又は3−ブテニル基等が挙げられるが、特に限定されない。不飽和−環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。
βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
繊維状セルロースが亜リン酸基を置換基として有することは、繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースが亜リン酸基を置換基として有することは、NMRを用いて化学シフトを確認する方法や、元素分析に各種の滴定法を組み合わせる方法が挙げられる。
なお、繊維状セルロースはリンオキソ酸基又はリンオキソ酸基に由来する置換基に加えて、他のアニオン性基を有していてもよい。このようなアニオン性基としては、例えば、パルプが元来含むカルボキシ基等を挙げることができる。
<微細繊維状セルロースの製造工程>
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リンオキソ酸基導入工程>
微細繊維状セルロースの製造工程は、リンオキソ酸基導入工程を含む。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
微細繊維状セルロースの製造工程は、リンオキソ酸基導入工程を含む。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物が挙げられるが、化合物Aは、少なくとも亜リン酸基を有する化合物及び/又はその塩を含む。亜リン酸基を有する化合物としては亜リン酸を挙げることができ、亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。亜リン酸の塩としては、亜リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、または亜リン酸のアンモニウム塩が好ましく、亜リン酸がより好ましい。なお、化合物Aは、亜リン酸基を有する化合物及び/又はその塩に加えて、リン酸基を有する化合物及び/又はその塩、脱水縮合リン酸及び/又はその塩、無水リン酸(五酸化二リン)等を含んでもよい。この場合、リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。
繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1−フェニル尿素、1−ベンジル尿素、1−メチル尿素、および1−エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リンオキソ酸基導入工程を2回行う場合が挙げられる。
<洗浄工程>
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてリンオキソ酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりリンオキソ酸基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてリンオキソ酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりリンオキソ酸基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<アルカリ処理工程>
微細繊維状セルロースを製造する場合、リンオキソ酸基導入工程と、後述する解繊処理工程との間に、リンオキソ酸基導入繊維に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、リンオキソ酸基導入繊維を浸漬する方法が挙げられる。
微細繊維状セルロースを製造する場合、リンオキソ酸基導入工程と、後述する解繊処理工程との間に、リンオキソ酸基導入繊維に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、リンオキソ酸基導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるリンオキソ酸基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばリンオキソ酸基導入繊維の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、リンオキソ酸基導入工程の後であってアルカリ処理工程の前に、リンオキソ酸基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったリンオキソ酸基導入繊維を水や有機溶媒により洗浄することが好ましい。
<酸処理工程>
微細繊維状セルロースを製造する場合、リンオキソ酸基を導入する工程と、後述する解繊処理工程の間に、リンオキソ酸基導入繊維に対して酸処理を行ってもよい。例えば、リンオキソ酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
微細繊維状セルロースを製造する場合、リンオキソ酸基を導入する工程と、後述する解繊処理工程の間に、リンオキソ酸基導入繊維に対して酸処理を行ってもよい。例えば、リンオキソ酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。
酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
<解繊処理>
リンオキソ酸基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
リンオキソ酸基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
解繊処理工程においては、たとえばリンオキソ酸基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n−ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリジノン(NMP)等が挙げられる。
解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、リンオキソ酸基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのリンオキソ酸基導入繊維以外の固形分が含まれていてもよい。
(多価金属)
本発明の繊維状セルロース含有物は、多価金属を含有する。本明細書において、多価金属は、2価以上の金属である。繊維状セルロース含有物中に含まれる多価金属は、多価金属イオンであってもよい。リンオキソ酸基は、アニオン性基であるため、多価金属イオンの少なくとも一部は、リンオキソ酸基と静電相互作用によりイオン結合を形成していてもよい。また、繊維状セルロース含有物中には、遊離した多価金属元素や多価金属イオンが存在していてもよい。
本発明の繊維状セルロース含有物は、多価金属を含有する。本明細書において、多価金属は、2価以上の金属である。繊維状セルロース含有物中に含まれる多価金属は、多価金属イオンであってもよい。リンオキソ酸基は、アニオン性基であるため、多価金属イオンの少なくとも一部は、リンオキソ酸基と静電相互作用によりイオン結合を形成していてもよい。また、繊維状セルロース含有物中には、遊離した多価金属元素や多価金属イオンが存在していてもよい。
多価金属は、後述する繊維状セルロース含有物の製造工程の凝集工程において、金属塩として添加される成分に由来する。このような金属塩は、微細繊維状セルロースを凝集させる働きをするため、凝集剤と呼ぶこともできる。多価金属を含む金属塩としては、例えば、硫酸アルミニウム(硫酸バンド)、塩化アルミニウム、ポリ塩化アルミニウム、塩化カルシウム、塩化マグネシウム、硫酸カルシウム、硫酸マグネシウム、塩化銅、硫酸銅、塩化鉄、硫酸鉄、塩化鉛、硫化鉛等が挙げられる。2価以上の金属成分を含む金属塩としては、上記塩のうち1種のみが添加されてもよく、2種以上が添加されてもよい。中でも、2価以上の金属成分を含む金属塩としては、硫酸アルミニウム(硫酸バンド)、塩化アルミニウム、ポリ塩化アルミニウム、塩化カルシウム及び硫酸カルシウムから選択される少なくとも1種を用いることが好ましく、塩化アルミニウム及び塩化カルシウムから選択される少なくとも1種を用いることがより好ましい。
(任意成分)
本発明の繊維状セルロース含有物は、さらに任意成分を含んでいてもよい。任意成分としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤等を挙げることができる。また、繊維状セルロース含有物は、任意成分として、親水性高分子、親水性低分子、有機イオン等を含有していてもよい。
本発明の繊維状セルロース含有物は、さらに任意成分を含んでいてもよい。任意成分としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤等を挙げることができる。また、繊維状セルロース含有物は、任意成分として、親水性高分子、親水性低分子、有機イオン等を含有していてもよい。
親水性高分子は、親水性の含酸素有機化合物(但し、上記セルロース繊維は除く)であることが好ましく、含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。
親水性低分子は、親水性の含酸素有機化合物であることが好ましく、多価アルコールであることがさらに好ましい。多価アルコールとしては、例えば、グリセリン、ソルビトール、エチレングリコール等が挙げられる。
有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn−プロピルオニウムイオン、テトラn−ブチルオニウムイオンなども挙げることができる。
また、任意成分としては、吸湿剤を挙げることもできる。吸湿剤としては、例えば、シリカゲル、ゼオライト、アルミナ、セピオライト、酸化カルシウム、ケイソウ土、活性炭、活性白土、ホワイトカーボン、塩化カルシウム、塩化マグネシウム、酢酸カリウム、第二リン酸ナトリウム、クエン酸ナトリウム等が挙げられる。
(繊維状セルロース含有物の製造方法)
繊維状セルロース含有物の製造工程は、微細繊維状セルロース含有スラリーに、多価金属塩を添加する工程を含む。具体的には、上述した解繊処理工程で得られた微細繊維状セルロース含有スラリーに、上述したような多価金属塩を添加する。この際、多価金属塩は、多価金属塩を含有した水溶液として添加することが好ましい。
繊維状セルロース含有物の製造工程は、微細繊維状セルロース含有スラリーに、多価金属塩を添加する工程を含む。具体的には、上述した解繊処理工程で得られた微細繊維状セルロース含有スラリーに、上述したような多価金属塩を添加する。この際、多価金属塩は、多価金属塩を含有した水溶液として添加することが好ましい。
多価金属塩を添加する工程は、微細繊維状セルロースを金属成分によって凝集させるため、凝集工程とも呼ばれる。凝集工程では、分散液中に含まれる微細繊維状セルロース100質量部に対して、多価金属を含む金属塩を1質量部以上となるように添加することが好ましく、5質量部以上となるように添加することがより好ましい。また、分散液中に含まれる微細繊維状セルロース100質量部に対して、多価金属を含む金属塩を100質量部以下となるように添加することが好ましく、50質量部以下となるように添加することがより好ましい。
凝集工程は、多価金属塩を添加し、撹拌を行った後に濾過工程をさらに含むことが好ましい。このような濾過工程を設けることで、濃縮物を得ることができる。濾過工程で使用する濾材は特に限定されないが、ステンレス製、濾紙、ポリプロピレン製、ナイロン製、ポリエチレン製、ポリエステル製などの濾材を使用できる。酸を使用することもあるため、ポリプロピレン製の濾材が好ましい。濾材の通気度は低いほど歩留りが高まるため、30cm3/cm2・sec以下、より好ましくは10cm3/cm2・sec以下、さらに好ましくは1cm3/cm2・sec以下である。
濾過工程はさらに圧縮工程を含んでもよい。圧縮工程では、圧搾装置を用いることもできる。このような装置としては、ベルトプレス、スクリュープレス、フィルタープレスなど一般的なプレス装置を用いることができ、装置は特に限定されない。圧縮時の圧力は0.2MPa以上であることが好ましく、0.4MPa以上であることがより好ましい。
濾過工程の後には、酸添加工程を含んでもよい。繊維状セルロース含有物の製造方法では、微細繊維状セルロースを含む分散液に多価金属成分を添加し、その後に酸を添加することにより2価以上の金属成分の少なくとも一部が除去される。酸添加工程で添加する酸成分は、無機酸および有機酸のいずれであってもよい。無機酸としては、硫酸、塩酸、硝酸、リン酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等が挙げられる。中でも、硫酸及び塩酸から選択される少なくとも1種を添加することが好ましい。使用する酸成分(酸性液)の濃度は特に限定されないが、5N以下であることが好ましく、1N以下であることがより好ましい。酸性液の濃度を上記範囲とすることにより、セルロースの分解による劣化を抑制することができる。なお、上記酸のうち少なくとも一部が繊維状セルロース含有物に残留してもよい。
酸添加工程の後には、さらに濾過工程が設けられることが好ましい。このような濾過工程を設けることで、濃縮物を効率よく得ることができる。また、濾過工程は、圧縮工程を含んでいてもよい。
繊維状セルロース含有物の製造方法は、酸添加工程の後に粉末化工程をさらに含んでもよい。繊維状セルロース含有物の製造方法が粉末化工程を含む場合、ミキサー粉砕、噴霧乾燥、オーブン乾燥、有機溶剤による脱水等の方法を採用することができる。これらの方法は適宜組み合わせて行うこともできる。なお、得られる繊維状セルロース含有物は粉粒体であってもよく、フロック状やフレーク状、ペースト状であってもよい。
(繊維状セルロース含有液状組成物)
本発明は、上述した繊維状セルロース含有物と、溶媒と、を混合してなる繊維状セルロース含有液状組成物(以下、単に液状組成物ともいう)に関するものでもある。液状組成物は、上述した微細繊維状セルロース含有物が、分散媒中に分散した繊維状セルロース含有分散液(再分散液)である。
本発明は、上述した繊維状セルロース含有物と、溶媒と、を混合してなる繊維状セルロース含有液状組成物(以下、単に液状組成物ともいう)に関するものでもある。液状組成物は、上述した微細繊維状セルロース含有物が、分散媒中に分散した繊維状セルロース含有分散液(再分散液)である。
溶媒の種類は、特に限定されないが、水、有機溶媒、水と有機溶媒との混合物を挙げることができる。有機溶媒としては、例えば、アルコール類、多価アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)等が挙げられる。アルコール類としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブチルアルコール等が挙げられる。多価アルコール類としては、エチレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン等が挙げられる。エーテル類としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテル、エチレングリコールモノt−ブチルエーテル等が挙げられる。
微細繊維状セルロース含有物の再分散は常法により行うことができる。例えば、微細繊維状セルロース含有物に、上記した溶媒を添加して微細繊維状セルロース含有物を含む液を調製する工程と、この微細繊維状セルロース含有物を含む液中の微細繊維状セルロースを分散させる工程により、再分散を行うことができる。微細繊維状セルロース含有物を含む液中の微細繊維状セルロースを分散させる工程に用いる分散装置としては、上記の<解繊処理>において記載した解繊処理装置と同様のものを使用してもよい。
液状組成物における固形分濃度は、液状組成物の全質量に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、液状組成物における固形分濃度は、液状組成物の全質量に対して、90質量%以下であることが好ましく、50質量%以下であることがより好ましい。
繊維状セルロース含有液状組成物中の固形分濃度を0.5質量%以下とし、JIS K 7361に準拠して、光路長1cmの条件で測定した場合の全光線透過率は95%以上であることが好ましく、98%以上であることがより好ましく、99%以上であることがさらに好ましい。このように、本発明の液状組成物は透明性に優れている。なお、全光線透過率を測定する際に用いるヘーズメータとしては、村上色彩技術研究所社製のHM−150を用いることができる。全光線透過率を測定する際には、光路長1cmの液体用ガラスセルを用い、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
液状組成物は、さらに樹脂成分を含んでもよい。樹脂成分が親水性樹脂である場合には、液状組成物の溶媒は水系溶媒であってもよく、樹脂成分が疎水性樹脂である場合には、液状組成物の溶媒は有機溶媒であることが好ましい。
樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。樹脂としては、例えば、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、これらの樹脂の前駆体等を挙げることができる。中でも、樹脂は、フッ素系樹脂、塩素系樹脂、及びアクリル系樹脂から選択される少なくとも1種であることが好ましい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。
液状組成物は、樹脂成分として、上述した樹脂種とは別にさらに水溶性高分子や水溶性低分子を含んでいてもよい。水溶性高分子としては、たとえば、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチンなどに例示される増粘多糖類、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。水溶性低分子としては、たとえば、グリセリンやジグリセリン等が挙げられる。
液状組成物は、さらに他の添加剤を含有していてもよい。他の添加剤としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤、吸湿剤等を挙げることができる。また、繊維状セルロース分散液は、任意成分としては、上述したような親水性高分子や有機イオン等を含有していてもよい。
(成形体)
本発明は、上述した繊維状セルロース含有物、もしくは上述した液状組成物から形成される成形体に関するものでもある。本明細書において成形体とは、所望の形状となるように成形された固形状体である。成形体としては、例えば、シート、ビーズ、フィラメント等を挙げることができる。中でも、成形体は、シート、ビーズ又はフィラメントであることが好ましい。成形体がビーズ状である場合、ビーズの粒子径は、0.1mm以上10mm以下であることが好ましい。また、成形体がフィラメント状である場合、フィラメントの幅は0.1mm以上10mm以下であることが好ましく、フィラメントの長さは1mm以上10000mm以下であることが好ましい。
本発明は、上述した繊維状セルロース含有物、もしくは上述した液状組成物から形成される成形体に関するものでもある。本明細書において成形体とは、所望の形状となるように成形された固形状体である。成形体としては、例えば、シート、ビーズ、フィラメント等を挙げることができる。中でも、成形体は、シート、ビーズ又はフィラメントであることが好ましい。成形体がビーズ状である場合、ビーズの粒子径は、0.1mm以上10mm以下であることが好ましい。また、成形体がフィラメント状である場合、フィラメントの幅は0.1mm以上10mm以下であることが好ましく、フィラメントの長さは1mm以上10000mm以下であることが好ましい。
中でも、成形体はシートであることが好ましい。成形体がシートである場合、シートの厚みは、特に限定されないが、たとえば5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。またシートの厚みの上限値は、特に限定されないが、たとえば1000μmとすることができる。シートの厚みは、たとえば触針式厚さ計(マール社製、ミリトロン1202D)で測定することができる。
シートのヘーズは、たとえば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。一方で、シートのヘーズの下限値は、特に限定されず、たとえば0%であってもよい。ここで、シートのヘーズは、たとえばJIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。
シートの全光線透過率は、たとえば85%以上であることが好ましく、90%以上であることがより好ましく、91%以上であることがさらに好ましい。一方で、シートの全光線透過率の上限値は、特に限定されず、たとえば100%であってもよい。ここで、シートの全光線透過率は、たとえばJIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。
シートの坪量は、特に限定されないが、たとえば10g/m2以上であることが好ましく、20g/m2以上であることがより好ましく、30g/m2以上であることがさらに好ましい。また、シートの坪量は、特に限定されないが、たとえば200g/m2以下であることが好ましく、180g/m2以下であることがより好ましい。ここで、シートの坪量は、たとえばJIS P 8124に準拠し、算出することができる。
シートの密度は、特に限定されないが、たとえば0.1g/cm3以上であることが好ましく、0.5g/cm3以上であることがより好ましく、1.0g/cm3以上であることがさらに好ましい。また、シートの密度は、特に限定されないが、たとえば5.0g/cm3以下であることが好ましく、3.0g/cm3以下であることがより好ましい。ここで、シートの密度は、50mm角のシートを23℃、相対湿度50%条件下で24時間調湿した後、シートの厚みおよび質量を測定することにより算出することができる。
シート中における繊維状セルロースの含有量は、たとえばシートの全質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以上であることがさらに好ましく、10質量%以上であることが特に好ましい。一方で、シート中における繊維状セルロースの含有量の上限値は、特に限定されず、シートの全質量に対して100質量%であってもよく、95質量%であってもよい。
シートは、液状組成物に含まれ得る樹脂成分や他の添加剤を含んでいてもよい。また、シートには、水や有機溶媒が含まれていてもよい。
(成形体の製造方法)
成形体がシートである場合、シートの製造方法は、後述するように、繊維状セルロース含有物もしくは液状組成物を基材上に塗工する塗工工程、または当該スラリーを抄紙する抄紙工程を含むことが好ましく、中でも、シートの製造方法は、繊維状セルロース含有物もしくは液状組成物を基材上に塗工する塗工工程を含むことが好ましい。
成形体がシートである場合、シートの製造方法は、後述するように、繊維状セルロース含有物もしくは液状組成物を基材上に塗工する塗工工程、または当該スラリーを抄紙する抄紙工程を含むことが好ましく、中でも、シートの製造方法は、繊維状セルロース含有物もしくは液状組成物を基材上に塗工する塗工工程を含むことが好ましい。
<塗工工程>
塗工工程では、たとえば繊維状セルロースを含む繊維状セルロース含有物もしくは液状組成物(以下、単にスラリーともいう)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
塗工工程では、たとえば繊維状セルロースを含む繊維状セルロース含有物もしくは液状組成物(以下、単にスラリーともいう)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
塗工工程で用いる基材の材質は、特に限定されないが、繊維状セルロース含有物もしくは液状組成物(スラリー)に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。たとえばポリプロピレン、アクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。
塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、特に限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばポリプロピレン板、アクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。スラリーを基材に塗工する塗工機としては、特に限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが特に好ましい。
スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。
塗工工程においては、シートの仕上がり坪量が好ましくは10g/m2以上200g/m2以下となるように、より好ましくは20g/m2以上180g/m2以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたシートが得られる。
塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、特に限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。
非接触の乾燥方法としては、特に限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、特に限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。
加熱乾燥法における加熱温度は、特に限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。
<抄紙工程>
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、特に限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、特に限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、特に限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、特に限定されないが、たとえば有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、たとえばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。
シート化工程において、スラリーからシートを製造する方法は、たとえば繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。
抄紙工程において用いられる脱水方法としては、特に限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、特に限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。
(用途)
本発明の繊維状セルロース含有物は、増粘剤や粒子分散安定剤として使用することができる。本発明の微細繊維状セルロースと溶媒を混合することで、微細繊維状セルロースが均一に分散したシートを形成することができる。また、本発明の繊維状セルロース含有物は、樹脂成分を含む有機溶媒との混合に好ましく用いることもできる。本発明の微細繊維状セルロースと、樹脂成分を含む有機溶媒を混合することで、微細繊維状セルロースが均一に分散した樹脂複合体を形成することができる。同様に微細繊維状セルロース再分散スラリーを用いて製膜し、各種フィルムとして使用することができる。
本発明の繊維状セルロース含有物は、増粘剤や粒子分散安定剤として使用することができる。本発明の微細繊維状セルロースと溶媒を混合することで、微細繊維状セルロースが均一に分散したシートを形成することができる。また、本発明の繊維状セルロース含有物は、樹脂成分を含む有機溶媒との混合に好ましく用いることもできる。本発明の微細繊維状セルロースと、樹脂成分を含む有機溶媒を混合することで、微細繊維状セルロースが均一に分散した樹脂複合体を形成することができる。同様に微細繊維状セルロース再分散スラリーを用いて製膜し、各種フィルムとして使用することができる。
また、本発明の繊維状セルロース含有物は、例えば、補強剤や添加剤として、セメント、塗料、インク、潤滑剤などに使用することができる。また、繊維状セルロース含有物を基材上に塗工することで得られる成形体は、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途にも適している。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<製造例1>
〔微細繊維状セルロース分散液Aの製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
〔微細繊維状セルロース分散液Aの製造〕
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、亜リン酸(ホスホン酸)と尿素の混合水溶液を添加して、亜リン酸(ホスホン酸)33質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリンオキソ酸基を導入し、リンオキソ酸化パルプ1を得た。
次いで、得られたリンオキソ酸化パルプ1に対して洗浄処理を行った。洗浄処理は、100g(絶乾質量)のリンオキソ酸化パルプ1に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後のリンオキソ酸化パルプ1に対して中和処理を次のようにして行った。まず、洗浄後のリンオキソ酸化パルプ1を10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリンオキソ酸化パルプスラリー1を得た。次いで、当該リンオキソ酸化パルプスラリー1を脱水して、中和処理が施されたリンオキソ酸化パルプ1を得た。次いで、中和処理後のリンオキソ酸化パルプ1に対して、上記洗浄処理を行った。
これにより得られたリンオキソ酸化パルプ1に対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。
また、得られたリンオキソ酸化パルプ1を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
得られたリンオキソ酸化パルプ1にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。なお、後述する測定方法で測定される第1解離酸量は、1.51mmol/gだった。また、総解離酸量は、1.55mmol/gであった。
<製造例2>
〔微細繊維状セルロース分散液Bの製造〕
薬液含浸パルプを165℃の熱風乾燥機で200秒加熱した以外は、製造例1と同様にして、リンオキソ酸化パルプ2及び微細繊維状セルロース分散液Bを得た。
〔微細繊維状セルロース分散液Bの製造〕
薬液含浸パルプを165℃の熱風乾燥機で200秒加熱した以外は、製造例1と同様にして、リンオキソ酸化パルプ2及び微細繊維状セルロース分散液Bを得た。
これにより得られたリンオキソ酸化パルプ1に対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。なお、後述する測定方法で測定される第1解離酸量は1.20mmol/gだった。また、総解離酸量は、1.22mmol/gであった。
<製造例3>
〔微細繊維状セルロース分散液Cの製造〕
亜リン酸(ホスホン酸)33質量部の代わりに、リン酸二水素アンモニウム45質量部を用い、165℃の熱風乾燥機での乾燥時間を200秒とした以外は、製造例1と同様に操作を行い、リンオキソ酸化パルプ3および微細繊維状セルロース分散液Cを得た。
〔微細繊維状セルロース分散液Cの製造〕
亜リン酸(ホスホン酸)33質量部の代わりに、リン酸二水素アンモニウム45質量部を用い、165℃の熱風乾燥機での乾燥時間を200秒とした以外は、製造例1と同様に操作を行い、リンオキソ酸化パルプ3および微細繊維状セルロース分散液Cを得た。
これにより得られたリンオキソ酸化パルプ3に対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
また、得られたリンオキソ酸化パルプ3を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。なお、後述する測定方法で測定される第1解離酸量は、1.45mmol/gだった。また、総解離酸量は、2.45mmol/gであった。
<製造例4>
〔微細繊維状セルロース分散液Dの製造〕
亜リン酸(ホスホン酸)33質量部の代わりに、リン酸19質量部および亜リン酸(ホスホン酸)16質量部を用いた以外は、製造例1と同様にして、リンオキソ酸化パルプ4及び微細繊維状セルロース分散液Dを得た。
〔微細繊維状セルロース分散液Dの製造〕
亜リン酸(ホスホン酸)33質量部の代わりに、リン酸19質量部および亜リン酸(ホスホン酸)16質量部を用いた以外は、製造例1と同様にして、リンオキソ酸化パルプ4及び微細繊維状セルロース分散液Dを得た。
これにより得られたリンオキソ酸化パルプ4に対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)およびリン酸基が付加されていることが確認された。
X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。なお、後述する測定方法で測定される第1解離酸量は1.60mmol/gだった。なお、総解離酸量は、2.25mmol/gであった。
<実施例1>
微細繊維状セルロースの分散液A500gに、0.5質量%の塩化カルシウム水溶液500gを添加して1分間撹拌したのち、濾過した。次いで、濾別した固形分を濾紙にて圧搾し、固形分濃度が20質量%の濃縮物1を得た。濃縮物1を0.1N塩酸水溶液1000gに30分間浸漬したのち、濾過した。次いで、濾別した固形分を濾紙にて圧搾し、固形分濃度が20質量%の濃縮物2を得た。濃縮物2を、ミキサー(岩谷産業社製、ミルサー800DG)を用いて粉砕することで、固形分濃度が20質量%の繊維状セルロース含有物Aを得た。
微細繊維状セルロースの分散液A500gに、0.5質量%の塩化カルシウム水溶液500gを添加して1分間撹拌したのち、濾過した。次いで、濾別した固形分を濾紙にて圧搾し、固形分濃度が20質量%の濃縮物1を得た。濃縮物1を0.1N塩酸水溶液1000gに30分間浸漬したのち、濾過した。次いで、濾別した固形分を濾紙にて圧搾し、固形分濃度が20質量%の濃縮物2を得た。濃縮物2を、ミキサー(岩谷産業社製、ミルサー800DG)を用いて粉砕することで、固形分濃度が20質量%の繊維状セルロース含有物Aを得た。
<実施例2>
実施例1において、微細繊維状セルロース分散液Aの代わりに、微細繊維状セルロース分散液Bを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Bを得た。
実施例1において、微細繊維状セルロース分散液Aの代わりに、微細繊維状セルロース分散液Bを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Bを得た。
<実施例3>
実施例1において、塩化カルシウムの代わりに塩化アルミニウムを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Cを得た。
実施例1において、塩化カルシウムの代わりに塩化アルミニウムを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Cを得た。
<実施例4>
実施例1において、微細繊維状セルロース分散液Aの代わりに、微細繊維状セルロース分散液Dを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Dを得た。
実施例1において、微細繊維状セルロース分散液Aの代わりに、微細繊維状セルロース分散液Dを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Dを得た。
<比較例1>
実施例1において、微細繊維状セルロース分散液Aの代わりに微細繊維状セルロース分散液Cを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Eを得た。
実施例1において、微細繊維状セルロース分散液Aの代わりに微細繊維状セルロース分散液Cを用いたこと以外は実施例1と同様にして、繊維状セルロース含有物Eを得た。
<比較例2>
比較例1において、塩化カルシウムの代わりに塩化アルミニウムを用いたこと以外は比較例1と同様にして、繊維状セルロース含有物Fを得た。
比較例1において、塩化カルシウムの代わりに塩化アルミニウムを用いたこと以外は比較例1と同様にして、繊維状セルロース含有物Fを得た。
<評価方法>
〔第1解離酸量と総解離酸量の測定〕
微細繊維状セルロースのリンオキソ酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μlずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を第1解離酸量(mmol/g)とした。また、滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を総解離酸量(mmol/g)とした。
〔第1解離酸量と総解離酸量の測定〕
微細繊維状セルロースのリンオキソ酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μlずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を第1解離酸量(mmol/g)とした。また、滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を総解離酸量(mmol/g)とした。
〔多価金属含有量の分析〕
実施例及び比較例で得た繊維状セルロース含有物を10g取り、525℃で加熱して灰化させ、1%硝酸5mLで溶解し、湿式分解させた。この溶液を0.45μmのフィルターでろ過したのち、超純水を加えて50mLとなるよう定容したもので、ICP−AES測定を行った。繊維状セルロース含有物中における多価金属含有量(mmol/g)は、ICP−AES測定により得られた多価金属量(mmol)を、供試した繊維状セルロース含有物の固形分量(g)で除して算出した。
実施例及び比較例で得た繊維状セルロース含有物を10g取り、525℃で加熱して灰化させ、1%硝酸5mLで溶解し、湿式分解させた。この溶液を0.45μmのフィルターでろ過したのち、超純水を加えて50mLとなるよう定容したもので、ICP−AES測定を行った。繊維状セルロース含有物中における多価金属含有量(mmol/g)は、ICP−AES測定により得られた多価金属量(mmol)を、供試した繊維状セルロース含有物の固形分量(g)で除して算出した。
〔再分散性の評価〕
実施例及び比較例で得た繊維状セルロース含有物をイオン交換水に添加し、固形分濃度が0.5質量%のスラリー100gを得た。得られたスラリーをマグネチックスターラーで5分間撹拌したのち、同様に撹拌しながら1N水酸化ナトリウムを滴下し、スラリーのpHを10に調整した。このスラリーをディスパーザー(プライミクス社製、TKロボミックス)にて、1500rpm(2.5m/s)で5分間撹拌した。24時間後、スラリーをイオン交換水で固形分濃度が0.2質量%になるように希釈し、ディスパーザーにて、1500rpm(2.5m/s)で5分間撹拌した。得られたスラリーを50mL容量のガラススクリュービンに入れ、自転公転型スーパーミキサー(シンキー社製、ARE−250)にて、2200rpmで、2分間撹拌し、脱泡処理を行った。23℃の環境下で24時間静置した後、JIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて全光線透過率を測定した。測定の際には、光路長1cmの液体用ガラスセル(藤原製作所製、MG−40、逆光路)にスラリーを入れ、測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。
実施例及び比較例で得た繊維状セルロース含有物をイオン交換水に添加し、固形分濃度が0.5質量%のスラリー100gを得た。得られたスラリーをマグネチックスターラーで5分間撹拌したのち、同様に撹拌しながら1N水酸化ナトリウムを滴下し、スラリーのpHを10に調整した。このスラリーをディスパーザー(プライミクス社製、TKロボミックス)にて、1500rpm(2.5m/s)で5分間撹拌した。24時間後、スラリーをイオン交換水で固形分濃度が0.2質量%になるように希釈し、ディスパーザーにて、1500rpm(2.5m/s)で5分間撹拌した。得られたスラリーを50mL容量のガラススクリュービンに入れ、自転公転型スーパーミキサー(シンキー社製、ARE−250)にて、2200rpmで、2分間撹拌し、脱泡処理を行った。23℃の環境下で24時間静置した後、JIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて全光線透過率を測定した。測定の際には、光路長1cmの液体用ガラスセル(藤原製作所製、MG−40、逆光路)にスラリーを入れ、測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。
実施例で得られた繊維状セルロース含有物においては、金属成分の残存量が低減されていた。
Claims (8)
- 繊維幅が1000nm以下であり、リンオキソ酸基又はリンオキソ酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物であって、
前記繊維状セルロースにおける第1解離酸量をA1とし、前記繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.65以上である、繊維状セルロース含有物。 - 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、多価金属とを含有する繊維状セルロース含有物。
- 下記測定条件(a)で測定した全光線透過率が95%以上である、請求項1又は2に記載の繊維状セルロース含有物;
測定方法(a):
繊維状セルロース含有物にイオン交換水を加えて固形分濃度が0.5質量%の水懸濁液Aを調製する;水懸濁液AのpHを10に調整したのち、2.5m/秒で5分間撹拌する;得られた水懸濁液にイオン交換水を加えて固形分濃度を0.2質量%とし、24時間静置した後、JIS K 7361に準拠して、光路長1cmの条件で全光線透過率を測定する。 - 前記繊維状セルロース含有物の全質量に対する前記繊維状セルロースの含有量が5質量%以上である請求項1〜3のいずれか1項に記載の繊維状セルロース含有物。
- 固形状である請求項1〜4のいずれか1項に記載の繊維状セルロース含有物。
- 請求項1〜5のいずれか1項に記載の繊維状セルロース含有物と、溶媒とを混合してなる繊維状セルロース含有液状組成物。
- 前記繊維状セルロース含有液状組成物中の固形分濃度を0.5質量%以下とし、JIS K 7361に準拠して、光路長1cmの条件で測定した場合の全光線透過率が95%以上である請求項6に記載の繊維状セルロース含有液状組成物。
- 請求項1〜5のいずれか1項に記載の繊維状セルロース含有物、もしくは、請求項6又は7に記載の繊維状セルロース含有液状組成物から形成される成形体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071605A JP2020122156A (ja) | 2020-04-13 | 2020-04-13 | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071605A JP2020122156A (ja) | 2020-04-13 | 2020-04-13 | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018248484A Division JP6978403B2 (ja) | 2018-12-28 | 2018-12-28 | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020122156A true JP2020122156A (ja) | 2020-08-13 |
Family
ID=71992161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020071605A Pending JP2020122156A (ja) | 2020-04-13 | 2020-04-13 | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020122156A (ja) |
-
2020
- 2020-04-13 JP JP2020071605A patent/JP2020122156A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7443769B2 (ja) | 繊維状セルロース含有樹脂組成物、シート及び成形体 | |
JP6680392B1 (ja) | 繊維状セルロースの製造方法、繊維状セルロース分散液及びシート | |
JP6683242B1 (ja) | 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法 | |
JP2020105470A (ja) | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 | |
JP6604448B1 (ja) | 繊維状セルロース含有組成物、液状組成物及び成形体 | |
JP7255106B2 (ja) | 固形状体及び繊維状セルロース含有組成物 | |
WO2020138159A1 (ja) | 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法 | |
WO2020138156A1 (ja) | 繊維状セルロース及び繊維状セルロースの製造方法 | |
JP7351305B2 (ja) | 繊維状セルロース含有組成物、液状組成物及び成形体 | |
JP2020152926A (ja) | 繊維状セルロース及び繊維状セルロースの製造方法 | |
JP6741111B1 (ja) | シート | |
JP6607328B1 (ja) | 固形状体及び繊維状セルロース含有組成物 | |
JP6978403B2 (ja) | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 | |
JP2020122156A (ja) | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 | |
JP7135729B2 (ja) | セルロース含有組成物、液状組成物、固形状体及びセルロース含有組成物の製造方法 | |
JP2020172035A (ja) | 積層体 | |
JP2020158736A (ja) | 微細繊維状セルロース含有分散液の製造方法 | |
JP2020109153A (ja) | 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 | |
JP6708274B1 (ja) | 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体 | |
JP6680382B1 (ja) | 組成物 | |
JP7452108B2 (ja) | 繊維状セルロース、繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体 | |
JP6579284B1 (ja) | 繊維状セルロース含有樹脂組成物、シート及び成形体 | |
JP2020204041A (ja) | 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法 | |
JP2020109190A (ja) | 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法 | |
JP2021161353A (ja) | 繊維状セルロース、繊維状セルロース含有物及び成形体 |