JP2020122137A - Resin film, thermoplastic carbon fiber prepreg, and method for producing the same - Google Patents
Resin film, thermoplastic carbon fiber prepreg, and method for producing the same Download PDFInfo
- Publication number
- JP2020122137A JP2020122137A JP2019230535A JP2019230535A JP2020122137A JP 2020122137 A JP2020122137 A JP 2020122137A JP 2019230535 A JP2019230535 A JP 2019230535A JP 2019230535 A JP2019230535 A JP 2019230535A JP 2020122137 A JP2020122137 A JP 2020122137A
- Authority
- JP
- Japan
- Prior art keywords
- resin film
- carbon fiber
- resin
- fiber prepreg
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 115
- 239000011347 resin Substances 0.000 title claims abstract description 115
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 84
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 84
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 55
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 claims abstract description 25
- 229920006287 phenoxy resin Polymers 0.000 claims description 8
- 239000013034 phenoxy resin Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000010408 film Substances 0.000 description 105
- 238000011156 evaluation Methods 0.000 description 11
- 238000005470 impregnation Methods 0.000 description 11
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920003233 aromatic nylon Polymers 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するための樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法に関する。 The present invention relates to a resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method, a thermoplastic carbon fiber prepreg using the same, and a method for producing the same.
炭素繊維強化プラスチックは、軽量で優れた強度、および高い耐久性などの特性から、自動車、航空機、土木仮設資材など幅広い分野で利用されている。炭素繊維強化プラスチックとしては、含浸させる樹脂の性質の違いにより、熱硬化性炭素繊維強化プラスチックと、熱可塑性炭素繊維強化プラスチックとがある。このうち、熱可塑性炭素繊維強化プラスチックは、成形時間が短く、また加熱によってリサイクル利用が可能であるといった利点から、特に自動車の構成材料として用いられている。 Carbon fiber reinforced plastics are used in a wide range of fields such as automobiles, aircraft, and civil engineering temporary materials because of their characteristics such as light weight, excellent strength, and high durability. As the carbon fiber reinforced plastic, there are a thermosetting carbon fiber reinforced plastic and a thermoplastic carbon fiber reinforced plastic depending on the difference in properties of the resin to be impregnated. Among them, the thermoplastic carbon fiber reinforced plastic is particularly used as a constituent material of automobiles because it has a short molding time and can be recycled by heating.
こうした熱可塑性炭素繊維強化プラスチックは、中間材料である熱可塑性炭素繊維プリプレグを用いて製造される。熱可塑性炭素繊維プリプレグは、炭素繊維のトウ(束)を開繊して、熱可塑性樹脂を炭素繊維に含浸させることによって得られる。
プリプレグの中でも、炭素繊維のトウ(束)を開繊して一方向に整列させたものを、一方向(UD)プリプレグという。
Such a thermoplastic carbon fiber reinforced plastic is manufactured using a thermoplastic carbon fiber prepreg which is an intermediate material. The thermoplastic carbon fiber prepreg is obtained by opening a tow (bundle) of carbon fibers and impregnating the carbon fibers with the thermoplastic resin.
Among the prepregs, those obtained by opening the tow (bundle) of carbon fibers and aligning them in one direction are called unidirectional (UD) prepregs.
従来、熱可塑性炭素繊維プリプレグの製造方法としては、ドライパウダーコーティング法、引抜法、混繊法、およびフィルムスタッキング法が一般的に知られている。
このうち、フィルムスタッキング法は、炭素繊維に樹脂フィルムを積層し、加熱、加圧により樹脂フィルムを構成する樹脂を炭素繊維に含浸させる方法である(例えば、特許文献1を参照)。また、熱可塑性樹脂としてフェノキシ樹脂を使用したプリプレグも一般的に知られている(例えば、特許文献2を参照)。
Conventionally, as a method for producing a thermoplastic carbon fiber prepreg, a dry powder coating method, a drawing method, a fiber mixing method, and a film stacking method are generally known.
Among them, the film stacking method is a method in which a resin film is laminated on carbon fiber and the resin forming the resin film is impregnated into the carbon fiber by heating and pressurizing (for example, refer to Patent Document 1). Also, a prepreg using a phenoxy resin as a thermoplastic resin is generally known (for example, refer to Patent Document 2).
しかしながら、特許文献1に開示されたポリ力一ボネート樹脂製プリプレグは、樹脂フィルムの厚みが100μm以上であり、厚みが厚いことによりポリ力一ボネート樹脂製プリプレグの炭素繊維の含有率(Vf値)が低くなるため、得られたポリ力一ボネート樹脂製プリプレグの強度を高めることが困難であるという課題があった。 However, in the prepreg made of poly-force-bonate resin disclosed in Patent Document 1, the resin film has a thickness of 100 μm or more, and due to the large thickness, the carbon fiber content (Vf value) of the prepreg made of poly-force-bonate resin is high. Therefore, there is a problem that it is difficult to increase the strength of the obtained prepreg made of polycarbonate resin.
また、熱可塑性炭素繊維プリプレグの炭素繊維の含有率(Vf値)を上げ、強度を高めるためには、樹脂フィルムの厚みを薄くする必要がある。しかし、樹脂フィルムを薄くすると、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる際に樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じ、炭素繊維が中央寄りになり熱可塑性炭素繊維プリプレグのTD(幅方向)の物性にバラつきが生じるという課題があった。
さらに、樹脂フィルムを薄くすると、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる際に、樹脂フィルムが破断し、製造安定性に欠けるという課題もあった。
なお、特許文献2には、熱可塑性樹脂としてフェノキシ樹脂とプリプレグに関する記載があるものの、フィルムスタッキング法でプリプレグを製造する場合に重要となる、樹脂フィルムの引裂き強度や加熱収縮率といった特性に関する記載がない。
Further, in order to increase the carbon fiber content (Vf value) of the thermoplastic carbon fiber prepreg and increase the strength, it is necessary to reduce the thickness of the resin film. However, if the resin film is made thin, thermal contraction (neck-in) occurs in the TD (width direction) of the resin film when the resin film is impregnated into the carbon fiber by the film stacking method, and the carbon fiber becomes closer to the center and the thermoplastic carbon There is a problem in that the TD (width direction) physical properties of the fiber prepreg vary.
Further, when the resin film is made thin, there is a problem that the resin film is broken when impregnating the carbon fiber with the resin film by the film stacking method and the manufacturing stability is deteriorated.
Although Patent Document 2 describes a phenoxy resin and a prepreg as a thermoplastic resin, a description about properties such as tear strength and heat shrinkage ratio of a resin film, which are important when a prepreg is manufactured by a film stacking method, is described. Absent.
本発明は、前述した事情に鑑みてなされたものであって、薄膜化が可能であり、かつ熱可塑性炭素繊維プリプレグに用いた際に炭素繊維の含有率を高めて強度を向上させることが可能な熱可塑性炭素繊維プリプレグ形成用の樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, can be made into a thin film, and when used in a thermoplastic carbon fiber prepreg, it is possible to increase the content rate of carbon fibers and improve the strength. Another object of the present invention is to provide a resin film for forming a thermoplastic carbon fiber prepreg, a thermoplastic carbon fiber prepreg using the same, and a method for producing the same.
本発明は、下記の態様を有する。
<1> フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するための樹脂フィルムであって、
厚みが8μm以上55μm以下、かつ、JIS7128に準拠した幅方向の引裂き強度が28mN以上、かつ、幅方向の加熱収縮率が7%未満であることを特徴とする樹脂フィルム。
なお、本発明における幅方向の加熱収縮率の測定方法は、TD(幅方向)50mm×MD(流れ方向)100mmの樹脂フィルムの流れ方向の両端部を幅方向に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブンに入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのTD(幅方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からTD(幅方向)の収縮率を算出したものである。
The present invention has the following aspects.
<1> A resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method,
A resin film having a thickness of 8 μm or more and 55 μm or less, a tear strength in the width direction according to JIS 7128 of 28 mN or more, and a heat shrinkage ratio in the width direction of less than 7%.
The method for measuring the heat shrinkage ratio in the width direction in the present invention is as follows. The both ends of the resin film of TD (width direction) 50 mm×MD (flow direction) 100 mm in the flow direction are made of aluminum tape having a thickness of 0 along the width direction. After being fixed on a SUS plate of 3 mm, placed in an oven and maintained at a damper opening of 50% and 100° C. for 2 minutes, the length (mm) of the most contracted part of the TD (width direction) of the resin film Was measured and the TD (width direction) shrinkage ratio was calculated from the ratio to 50 mm.
<2> 流れ方向の加熱収縮率に対する幅方向の加熱収縮率の差分が10%未満であることを特徴とする<1>に記載の樹脂フィルム。
なお、本発明における流れ方向の加熱収縮率の測定方法は、MD(流れ方向)50mm×TD(幅方向)100mmの樹脂フィルムのTD(幅方向)の両端部をMD(流れ方向)に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブンに入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのMD(流れ方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からMD(流れ方向)の収縮率を算出したものである。
<2> The resin film according to <1>, wherein the difference between the heat shrinkage in the width direction and the heat shrinkage in the width direction is less than 10%.
The method for measuring the heat shrinkage ratio in the flow direction in the present invention is as follows: MD (flow direction) 50 mm×TD (width direction) 100 mm resin film along both ends of TD (width direction) along MD (flow direction). After being fixed on a SUS plate having a thickness of 0.3 mm with aluminum tape and placed in an oven and maintained at a damper opening of 50% and 100° C. for 2 minutes, the most contracted portion of MD (flow direction) of the resin film (Mm), and the shrinkage rate in MD (flow direction) was calculated from the ratio to 50 mm.
<3> 前記樹脂フィルムはフェノキシ樹脂を含むことを特徴とする<1>または<2>に記載の樹脂フィルム。 <3> The resin film according to <1> or <2>, wherein the resin film contains a phenoxy resin.
<4> <1>から<3>のいずれか一項に記載の樹脂フィルムを炭素繊維に含浸させたことを特徴とする熱可塑性炭素繊維プリプレグ。 <4> A thermoplastic carbon fiber prepreg obtained by impregnating carbon fibers with the resin film according to any one of <1> to <3>.
<5> <1>から<3>のいずれか一項に記載の樹脂フィルムを炭素繊維に含浸させる工程を備えたことを特徴とする熱可塑性炭素繊維プリプレグの製造方法。 <5> A method for producing a thermoplastic carbon fiber prepreg, comprising a step of impregnating carbon fiber with the resin film according to any one of <1> to <3>.
本発明によれば、薄膜化が可能であり、かつ熱可塑性炭素繊維プリプレグの炭素繊維の含有率を高めて強度を向上させることが可能な熱可塑性炭素繊維プリプレグ形成用の樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法を提供することができる。 According to the present invention, a resin film for forming a thermoplastic carbon fiber prepreg, which can be thinned and which can improve the strength by increasing the content rate of the carbon fiber of the thermoplastic carbon fiber prepreg, is used. A thermoplastic carbon fiber prepreg and a method for producing the same can be provided.
以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
MD(流れ方向)は、帯状の樹脂フィルムの押出方向(長手方向)である。また、TD(幅方向)は、樹脂フィルム面に沿ってMD(流れ方向)に対して直角な方向である。
The following definitions of terms apply throughout the specification and claims.
MD (flow direction) is the extrusion direction (longitudinal direction) of the strip-shaped resin film. TD (width direction) is a direction perpendicular to MD (flow direction) along the resin film surface.
以下、本発明の一実施形態の樹脂フィルムおよびこれを用いた熱可塑性炭素繊維プリプレグについて説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, a resin film of one embodiment of the present invention and a thermoplastic carbon fiber prepreg using the same will be described. The following embodiments are specifically described in order to better understand the gist of the invention, and do not limit the invention unless otherwise specified.
(樹脂フィルム)
本発明の樹脂フィルムは、シート状の炭素繊維の一面および他面にそれぞれ配して、フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するためのものであり、種々の熱可塑性樹脂から選択することができる。
(Resin film)
The resin film of the present invention is disposed on one surface and the other surface of the sheet-like carbon fiber, respectively, to form a thermoplastic carbon fiber prepreg by a film stacking method, and it is selected from various thermoplastic resins. You can
樹脂フィルムの具体例としては、ナイロン6(登録商標)、ナイロン66(登録商標)、芳香族ナイロン(登録商標)等のポリアミド樹脂、ポリカーボネイト樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、エポキシ樹脂を直鎖状に高分子量化したフェノキシ樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ABS樹脂等のシート材が挙げられる。
また、本発明の樹脂フィルムは、例えばインフレーション法、Tダイ押出し法、カレンダー法などによって製造される。
インフレーション法によって製造する場合は、溶融された熱可塑性樹脂を、リングダイから押出し連続したチューブ状に成形する。このチューブ状の樹脂に内側から圧搾空気を送り込んで徐々に所定の幅のフィルムにまで膨張させ、引取機のニップロールに挟んで引き取ることにより、本発明の樹脂フィルムを製造することができる。
Specific examples of the resin film include polyamide resins such as nylon 6 (registered trademark), nylon 66 (registered trademark), and aromatic nylon (registered trademark), polycarbonate resins, polyolefin resins such as polyethylene and polypropylene, polyphenylene sulfide resins, and epoxies. Examples of the sheet material include a phenoxy resin, a polyester resin, a polysulfone resin, a polyether ether ketone resin, a polyimide resin, a polystyrene resin, and an ABS resin in which a resin is linearly polymerized.
Moreover, the resin film of the present invention is produced by, for example, an inflation method, a T-die extrusion method, a calender method, or the like.
In the case of manufacturing by the inflation method, the molten thermoplastic resin is extruded from a ring die and molded into a continuous tube. The resin film of the present invention can be produced by sending compressed air from the inside to the tubular resin to gradually expand it into a film having a predetermined width, and sandwiching the film between nip rolls of a take-up machine to take it out.
樹脂フィルムを上述したインフレーション法によって製造する際に、リングダイの出口の樹脂温度がガラス転移温度よりも例えば60℃以上高い状態で目標の厚みなるように製膜し、その後、その形状を保ったまま徐冷する様に圧搾空気の風量と引取り速度とを調整する。引取り速度は早くし過ぎず、10m/min以上30m/min未満が好ましく、10〜20m/minがより好ましい。引取り速度が10m/min以上30m/min未満であれば、樹脂フィルムのMD(流れ方向)の延伸および配向を制御することができ、熱収縮が生じにくい。 When the resin film was manufactured by the above-mentioned inflation method, the resin temperature at the exit of the ring die was formed to a target thickness at a temperature higher than the glass transition temperature by, for example, 60° C. or more, and then the shape was maintained. The air volume and the take-up speed of the compressed air are adjusted so that the air is gradually cooled. The take-up speed is not too fast, and is preferably 10 m/min or more and less than 30 m/min, more preferably 10 to 20 m/min. When the take-up speed is 10 m/min or more and less than 30 m/min, MD (flow direction) stretching and orientation of the resin film can be controlled, and thermal shrinkage is unlikely to occur.
圧搾空気の風量を調節しブロー比率(樹脂フィルムの直径/リングダイの口径)を1.5〜6.0と低く抑えることが好ましい。ブロー比率が1.5〜6.0の範囲であれば、樹脂フィルムのTD(幅方向)とMD(流れ方向)の延伸および配向を制御することができ、TD(幅方向)とMD(流れ方向)の熱収縮が生じにくい。 It is preferable that the blow ratio (diameter of the resin film/diameter of the ring die) is adjusted to a low value of 1.5 to 6.0 by adjusting the air volume of the compressed air. If the blow ratio is in the range of 1.5 to 6.0, it is possible to control the stretching and orientation of the TD (width direction) and MD (flow direction) of the resin film, and the TD (width direction) and MD (flow direction) can be controlled. Direction) heat shrinkage is hard to occur.
また、本発明の樹脂フィルムが、Tダイ押出し法によっても製造される場合は、リップ幅1mmのTダイを設置した20〜80mmφ単軸または2軸押出機のシリンダー温度とダイス温度を熱可塑性樹脂のガラス転移点より60℃高い温度に設定し、熱可塑性樹脂を押出機に投入し、スクリュー回転数5〜50rpmで溶融混練し、Tダイから押し出した。その後、この押し出したものを、チルロール温度10〜50℃、引取り速度10m/min以上30m/min未満で引き取ることにより、厚さ8〜55μmの樹脂フィルムを得ることができる。 When the resin film of the present invention is also produced by the T-die extrusion method, the cylinder temperature and the die temperature of a 20 to 80 mmφ single-screw or twin-screw extruder with a T-die having a lip width of 1 mm are set to the thermoplastic resin. The temperature was set to be 60° C. higher than the glass transition point of No. 3, the thermoplastic resin was put into the extruder, melt-kneaded at a screw rotation speed of 5 to 50 rpm, and extruded from the T-die. Thereafter, the extruded product is taken out at a chill roll temperature of 10 to 50° C. and a take-up speed of 10 m/min or more and less than 30 m/min to obtain a resin film having a thickness of 8 to 55 μm.
フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる場合、樹脂フィルムの融点及びガラス転移点付近の温度で予備含浸させて、本含浸を行う。例えば、フェノキシ樹脂は、105℃がガラス転移点であり、その温度に近い100℃で予備含浸する。100℃を超える温度域では樹脂フィルムが破断してしまい、それ以下の温度では予備含浸が不足する。100℃で樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じると、炭素繊維が熱可塑性炭素繊維プリプレグの中央部に寄ってしまい、面内で物性のバラつきが生じる可能性がある。このため、樹脂フィルムの寸法安定性が求められる。樹脂フィルムの寸法安定性の評価は、例えば、庫内温度を100℃に設定したオーブンで2分間の加熱を行い、加熱収縮率を測定することで行う。 When the carbon fiber is impregnated with the resin film by the film stacking method, the main impregnation is performed by pre-impregnation at a temperature near the melting point and glass transition point of the resin film. For example, the phenoxy resin has a glass transition point of 105° C., and is pre-impregnated at 100° C. close to that temperature. In a temperature range exceeding 100° C., the resin film is broken, and at a temperature below that, pre-impregnation is insufficient. When heat shrinkage (neck-in) occurs in the TD (width direction) of the resin film at 100° C., the carbon fibers may move closer to the center of the thermoplastic carbon fiber prepreg, and the physical properties may vary within the plane. .. Therefore, the dimensional stability of the resin film is required. The dimensional stability of the resin film is evaluated, for example, by heating for 2 minutes in an oven in which the internal temperature is set to 100° C. and measuring the heat shrinkage ratio.
樹脂フィルムのTD(幅方向)の加熱収縮率は少なくとも7%未満が好ましく、5%未満がより好ましく、3%未満がさらに好ましい。TD(幅方向)の加熱収縮率が7%未満の場合は、樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じず、炭素繊維が熱可塑性炭素繊維プリプレグの中央部に寄ることがない。 The TD (width direction) heat shrinkage ratio of the resin film is preferably at least less than 7%, more preferably less than 5%, even more preferably less than 3%. When the heat shrinkage ratio in TD (width direction) is less than 7%, heat shrinkage (neck-in) does not occur in TD (width direction) of the resin film, and the carbon fibers are close to the center of the thermoplastic carbon fiber prepreg. There is no.
樹脂フィルムのMD(流れ方向)の加熱収縮率は15%未満が好ましく、10%未満がより好ましい。また、樹脂フィルムのMD(流れ方向)の加熱収縮率に対するTD(幅方向)の加熱収縮率の差分は10%未満が好ましく、6%未満がより好ましい。 The heat shrinkage in MD (flow direction) of the resin film is preferably less than 15%, more preferably less than 10%. Further, the difference in the TD (width direction) heat shrinkage ratio with respect to the MD (flow direction) heat shrinkage ratio of the resin film is preferably less than 10%, and more preferably less than 6%.
MD(流れ方向)の加熱収縮率が15%未満、またMD(流れ方向)の加熱収縮率に対するTD(幅方向)の加熱収縮率の差分が10%未満の場合、熱可塑性炭素繊維プリプレグの厚みがバラつかず、熱可塑性炭素繊維プリプレグを積層して熱可塑性炭素繊維強化プラスチックを成形する際の成形不良を解消する。また、熱可塑性炭素繊維プリプレグ製造時の歩留まりが向上し、生産効率が上がる。 When the heat shrinkage in MD (flow direction) is less than 15%, and the difference between the heat shrinkage in TD (width direction) and the heat shrinkage in MD (flow direction) is less than 10%, the thickness of the thermoplastic carbon fiber prepreg Does not vary, and a molding defect when a thermoplastic carbon fiber prepreg is laminated to mold a thermoplastic carbon fiber reinforced plastic is eliminated. In addition, the yield at the time of producing the thermoplastic carbon fiber prepreg is improved, and the production efficiency is increased.
フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる場合、樹脂フィルムの引裂き強度が低いと、含浸工程において樹脂フィルムが破断する可能性がある。このため、樹脂フィルムの含浸作業性が求められる。樹脂フィルムの含浸作業性の評価は、引裂き強度を測定することで行う。 When the carbon fiber is impregnated with the resin film by the film stacking method, if the resin film has low tear strength, the resin film may be broken in the impregnation step. Therefore, workability of impregnation of the resin film is required. The impregnating workability of the resin film is evaluated by measuring the tear strength.
JIS K7128(プラスチック−フィルム及びシートの引裂き強さ試験方法)に準拠した樹脂フィルムのTD(幅方向)の引裂き強度は少なくとも28mN以上が好ましく、50mN以上がより好ましい。 The TD (width direction) tear strength of the resin film according to JIS K7128 (Plastic film and sheet tear strength test method) is preferably at least 28 mN or more, more preferably 50 mN or more.
樹脂フィルムのTD(幅方向)の引裂き強度が28mN以上の場合、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる含浸工程において、樹脂フィルムが破断しない。 When the TD (width direction) tear strength of the resin film is 28 mN or more, the resin film is not broken in the impregnation step of impregnating the carbon fiber with the resin film by the film stacking method.
樹脂フィルムの厚みが厚いと熱可塑性炭素繊維プリプレグの繊維含有率が下がり、炭素繊維強化プラスチックにした時に必要な強度が得られない。このため、熱可塑性炭素繊維プリプレグの繊維含有率の評価は、樹脂フィルムの厚みを測定することで行う。 If the thickness of the resin film is large, the fiber content of the thermoplastic carbon fiber prepreg decreases, and the required strength cannot be obtained when a carbon fiber reinforced plastic is used. Therefore, the fiber content of the thermoplastic carbon fiber prepreg is evaluated by measuring the thickness of the resin film.
樹脂フィルムの厚みは、少なくとも8μm以上55μm以下の範囲が好ましく、10μm以上30μm以下の範囲がより好ましい。樹脂フィルムの厚みが8μm以上の場合、炭素繊維の直径が5〜10μmのため、熱可塑性炭素繊維プリプレグを製造した際に、樹脂フィルムを構成する樹脂を炭素繊維に十分含浸させることができ、炭素繊維間に空隙が発生するといった樹脂不足が起こらない。樹脂フィルムの厚みが55μm以下の場合、熱可塑性炭素繊維プリプレグを製造した際の炭素繊維の含有率(Vf値)が50〜60%となり、強度が高くなる。 The thickness of the resin film is preferably in the range of at least 8 μm and 55 μm, and more preferably in the range of 10 μm and 30 μm. When the thickness of the resin film is 8 μm or more, since the diameter of the carbon fiber is 5 to 10 μm, the carbon fiber can be sufficiently impregnated with the resin forming the resin film when the thermoplastic carbon fiber prepreg is manufactured, There is no resin shortage such as voids between fibers. When the thickness of the resin film is 55 μm or less, the carbon fiber content (Vf value) in the production of the thermoplastic carbon fiber prepreg is 50 to 60% and the strength is high.
(熱可塑性炭素繊維プリプレグ)
本発明の熱可塑性炭素繊維プリプレグは、例えば炭素繊維を開繊・含浸機に供給して、本発明の樹脂フィルムによって挟み込んで、樹脂を炭素繊維に含浸させることによって得られる。
(Thermoplastic carbon fiber prepreg)
The thermoplastic carbon fiber prepreg of the present invention is obtained, for example, by supplying carbon fiber to a fiber-spreading/impregnation machine, sandwiching it with the resin film of the present invention, and impregnating the carbon fiber with resin.
本発明の樹脂フィルムをマトリクス樹脂として用いることによって、樹脂フィルムの厚みが8μm以上55μm以下の範囲で薄いため、熱可塑性炭素繊維プリプレグの炭素繊維含有率(Vf値)を高めることができ、強度の高い熱可塑性炭素繊維プリプレグを実現することができる。 By using the resin film of the present invention as a matrix resin, the thickness of the resin film is thin in the range of 8 μm or more and 55 μm or less, so that the carbon fiber content (Vf value) of the thermoplastic carbon fiber prepreg can be increased and A high thermoplastic carbon fiber prepreg can be realized.
また、本発明の樹脂フィルムのTD(幅方向)の加熱収縮率が7%未満であるため、熱可塑性炭素繊維プリプレグを製造する際に、樹脂フィルムが大きく熱収縮して炭素繊維が中央寄りになるといった熱可塑性炭素繊維プリプレグの幅方向の物性のバラつきを抑制して、面内で均一な特性の熱可塑性炭素繊維プリプレグを実現することができる。そして、熱可塑性炭素繊維プリプレグの製造時の歩留まりを向上させ、熱可塑性炭素繊維プリプレグのコストダウンを実現できる。 In addition, since the resin film of the present invention has a heat shrinkage ratio in the TD (width direction) of less than 7%, when the thermoplastic carbon fiber prepreg is manufactured, the resin film undergoes large heat shrinkage and the carbon fiber is moved toward the center. It is possible to realize the thermoplastic carbon fiber prepreg having uniform properties in the plane by suppressing the variation in the physical properties in the width direction of the thermoplastic carbon fiber prepreg. Then, the yield at the time of manufacturing the thermoplastic carbon fiber prepreg can be improved, and the cost reduction of the thermoplastic carbon fiber prepreg can be realized.
更に、本発明の樹脂フィルムのTD(幅方向)の引裂き強度を28mN以上にすることによって、熱可塑性炭素繊維プリプレグの製造時に樹脂フィルムの破断を抑制し、フィルムスタッキング法による製造のメリットである生産速度の速さを生かして、安定して高い生産性で熱可塑性炭素繊維プリプレグを製造することができる。 Furthermore, by setting the TD (width direction) tear strength of the resin film of the present invention to 28 mN or more, it is possible to suppress breakage of the resin film during production of the thermoplastic carbon fiber prepreg, which is an advantage of production by the film stacking method. By utilizing the high speed, the thermoplastic carbon fiber prepreg can be stably manufactured with high productivity.
(熱可塑性炭素繊維プリプレグの製造方法)
図1は、本発明の熱可塑性炭素繊維プリプレグの製造方法を示す模式図である。
本発明の熱可塑性炭素繊維プリプレグの製造方法では、開繊・含浸機10の供給ローラ対11によってシート状の炭素繊維CSをプレートヒーター12に向けて繰出すとともに、この炭素繊維CSの一面および他面に、それぞれ本発明の樹脂フィルムRF1,RF2を重ねる。そしてこの積層体を第1ローラ対13および第2ローラ対14によって挟持して、プレートヒーター12を通過させる。これにより、積層体の樹脂フィルムRF1,RF2が軟化して炭素繊維CS中に含浸される。これにより、本発明の熱可塑性炭素繊維プリプレグPを得ることができる。
(Method for producing thermoplastic carbon fiber prepreg)
FIG. 1 is a schematic view showing a method for producing a thermoplastic carbon fiber prepreg of the present invention.
In the method for manufacturing a thermoplastic carbon fiber prepreg of the present invention, the sheet-shaped carbon fiber CS is fed toward the
以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and their modifications are included in the scope of the invention and the scope thereof, as well as in the invention described in the claims and the scope of equivalents thereof.
以下、実施例を挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本発明の実施例および従来の比較例の樹脂フィルムを検証した。
(実施例1〜6)
フェノキシ樹脂をインフレーション法で樹脂フィルムにした。具体的には、リングダイから溶融樹脂を押出し連続したチューブ状に成形し、内側から圧搾空気を送り込んで徐々に所定の幅のフィルムまで膨張させ、引取機のニップロールに挟んで引き取り、厚みが10μm〜50μmの樹脂フィルムを得た。リングダイ出口の樹脂温度がガラス転移温度より60℃以上十分に高い状態で目標の厚さに製膜し、その後その形状を保ったまま徐冷する様に圧搾空気の風量と引取り速度を調整した。圧搾空気の風量は、ブロー比率(樹脂フィルムの直径/リングダイの口径)が1.5〜6.0になるように調整し、引取り速度は12〜20m/minの範囲にした。そして、得られた樹脂フィルムと炭素繊維トウを図1に示すような開繊・含浸機10に供給し、フェノキシ樹脂フィルムで炭素繊維を挟み込み幅100mm以上、厚さ30μm〜50μmの熱可塑性炭素繊維プリプレグを得た。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The resin films of the example of the present invention and the conventional comparative example were verified.
(Examples 1 to 6)
The phenoxy resin was made into a resin film by the inflation method. Specifically, molten resin is extruded from a ring die to form a continuous tube, compressed air is fed from the inside to gradually expand to a film with a predetermined width, and the film is sandwiched between nip rolls of a take-off machine and taken to a thickness of 10 μm. A resin film of ˜50 μm was obtained. Adjust the air volume and take-up speed of the compressed air so that the resin temperature at the exit of the ring die is sufficiently higher than the glass transition temperature by 60°C or more to form a target thickness, and then gradually cool while maintaining its shape. did. The air volume of the compressed air was adjusted so that the blow ratio (diameter of the resin film/diameter of the ring die) was 1.5 to 6.0, and the take-up speed was in the range of 12 to 20 m/min. Then, the obtained resin film and carbon fiber tow are supplied to a fiber-spreading/
(比較例1〜3)
実施例1〜6と同様に樹脂フィルムを成形したが、比較例1は厚みが5μm、比較例3は厚みが60μmである。また、比較例2では、TD(幅方向)の引裂き強度が28mN未満の25.4mNである。なお、比較例1は厚みが薄すぎて(5μm)樹脂フィルムを成形できなかった。
実施例および比較例の条件および評価結果を表1に示す。
(Comparative Examples 1 to 3)
A resin film was molded in the same manner as in Examples 1 to 6, except that Comparative Example 1 has a thickness of 5 μm and Comparative Example 3 has a thickness of 60 μm. Further, in Comparative Example 2, the tear strength in TD (width direction) is 25.4 mN, which is less than 28 mN. In Comparative Example 1, the resin film was too thin (5 μm) to be molded.
Table 1 shows conditions and evaluation results of Examples and Comparative Examples.
「評価方法」
(1)加熱収縮率
TD(幅方向)の加熱収縮率は、TD(幅方向)50mm×MD(流れ方向)100mmの樹脂フィルムのMD(流れ方向)の両端部をTD(幅方向)に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブン(エスペック社製、型式:PHH−201M)に入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのTD(幅方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からTD(幅方向)の収縮率を算出した。試験回数は10回である。
"Evaluation method"
(1) Heat Shrinkage Ratio The heat shrinkage ratio of TD (width direction) is TD (width direction) 50 mm × MD (flow direction) 100 mm resin film MD (flow direction) at both ends along TD (width direction). After fixing it on a SUS plate having a thickness of 0.3 mm with an aluminum tape and placing it in an oven (manufactured by ESPEC Corp., model: PHH-201M) and maintaining it at a damper opening of 50% and 100° C. for 2 minutes, the resin The length (mm) of the most contracted part of the TD (width direction) of the film was measured, and the contraction rate of TD (width direction) was calculated from the ratio to 50 mm. The number of tests is 10.
MD(流れ方向)の加熱収縮率は、樹脂フィルムをアルミニウムテープで厚さ0.3mmのSUS板上に固定する際に、MD(流れ方向)50mm×TD(幅方向)100mmの樹脂フィルムのTD(幅方向)の両端部をMD(流れ方向)に沿って固定し、樹脂フィルムのMD(流れ方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からMD(流れ方向)の収縮率を算出した以外は、TD(幅方向)の加熱収縮率と同様に測定した。 The heat shrinkage of MD (flow direction) is TD of resin film of MD (flow direction) 50 mm × TD (width direction) 100 mm when the resin film is fixed on a SUS plate having a thickness of 0.3 mm with aluminum tape. Both ends of (width direction) are fixed along MD (flow direction), the length (mm) of the most contracted part of MD (flow direction) of the resin film is measured, and MD (flow direction) is calculated from the ratio to 50 mm. ) The heat shrinkage was measured in the same manner as the TD (width direction) except that the shrinkage was calculated.
(1−1)MDの評価:15%以上が×、10%以上15%未満が○、10%未満は◎とした。
(1−2)TDの評価:7%以上が×、3%以上7%未満が○、3%未満は◎とした。なお、含浸時にネックインなどの問題があるため、MDの加熱収縮率よりもTDの加熱収縮率方が、評価基準を高くしている。
(1−3)|MD−TD|の評価:10%以上が×、6%以上10%未満が○、6%未満は◎とした。
(1−4)寸法安定性の評価:(1−1)〜(1−3)の評価の総合評価として、良◎、可○、不可×とした。
(1-1) MD evaluation: 15% or more was x, 10% or more and less than 15% was o, and less than 10% was o.
(1-2) TD evaluation: 7% or more was rated as ×, 3% or more and less than 7% was rated as ◯, and 3% or less was rated as ◎. Since there is a problem such as neck-in during impregnation, the heat shrinkage rate of TD is higher than the heat shrinkage rate of MD as a criterion for evaluation.
(1-3) |MD-TD| Evaluation: 10% or more was evaluated as ×, 6% or more and less than 10% was evaluated as ◯, and less than 6% was evaluated as ⊚.
(1-4) Evaluation of dimensional stability: Good ⊚, acceptable ∘, and unacceptable × as the overall evaluation of the evaluations of (1-1) to (1-3).
(2)引裂き強度
JIS K7128(プラスチック−フィルム及びシートの引裂き強さ試験方法)に準拠して、得られた樹脂フィルムのMDおよびTDの引裂き強度を実測した。
(2−1)含浸作業性の評価:TDの引裂き強度が28mN未満で×、28mN以上50mN未満が○、50mN以上は◎とした。
(2) Tear strength Based on JIS K7128 (Test method for tear strength of plastic film and sheet), the tear strength of MD and TD of the obtained resin film was measured.
(2-1) Evaluation of impregnating workability: The tear strength of TD was less than 28 mN, x, 28 mN or more and less than 50 mN was evaluated as o, and 50 mN or more was evaluated as o.
(3)厚み
樹脂フィルムの厚みを測定した。
(3−1)繊維含有率の評価:樹脂フィルムの厚みが50μmより厚いが×、25μm以上50μm以下が○、25μm未満は◎とした。
(3) Thickness The thickness of the resin film was measured.
(3-1) Evaluation of fiber content: The thickness of the resin film was thicker than 50 μm, but was ×, 25 μm or more and 50 μm or less was ◯, and less than 25 μm was ◎.
10…開繊・含浸機
11…供給ローラ対
12…プレートヒーター
13…第1ローラ対
14…第2ローラ対
10... Fiber opening/
Claims (5)
厚みが8μm以上55μm以下、かつ、JIS7128に準拠した幅方向の引裂き強度が28mN以上、かつ、幅方向の加熱収縮率が7%未満であることを特徴とする樹脂フィルム。 A resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method,
A resin film having a thickness of 8 μm or more and 55 μm or less, a tear strength in the width direction according to JIS 7128 of 28 mN or more, and a heat shrinkage ratio in the width direction of less than 7%.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019014339 | 2019-01-30 | ||
JP2019014339 | 2019-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020122137A true JP2020122137A (en) | 2020-08-13 |
JP7352462B2 JP7352462B2 (en) | 2023-09-28 |
Family
ID=71992256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019230535A Active JP7352462B2 (en) | 2019-01-30 | 2019-12-20 | Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7352462B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61217237A (en) * | 1985-03-22 | 1986-09-26 | 住友化学工業株式会社 | Vibration-damping composite material |
JPH0361530A (en) * | 1989-04-17 | 1991-03-18 | Toppan Printing Co Ltd | Wrapping material having gas barrier property |
JP2001526130A (en) * | 1997-12-19 | 2001-12-18 | ザ ダウ ケミカル カンパニー | Hydroxy-functional polyether laminate |
WO2016152856A1 (en) * | 2015-03-26 | 2016-09-29 | 新日鉄住金化学株式会社 | Fiber-reinforced plastic molding material, method for producing same, and molded article |
JP2017031342A (en) * | 2015-08-04 | 2017-02-09 | 福井県 | Method for producing fiber-reinforced resin sheet material |
WO2018182038A1 (en) * | 2017-03-31 | 2018-10-04 | 新日鉄住金化学株式会社 | Metal/fiber-reinforced resin material composite body and method for producing same |
-
2019
- 2019-12-20 JP JP2019230535A patent/JP7352462B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61217237A (en) * | 1985-03-22 | 1986-09-26 | 住友化学工業株式会社 | Vibration-damping composite material |
JPH0361530A (en) * | 1989-04-17 | 1991-03-18 | Toppan Printing Co Ltd | Wrapping material having gas barrier property |
JP2001526130A (en) * | 1997-12-19 | 2001-12-18 | ザ ダウ ケミカル カンパニー | Hydroxy-functional polyether laminate |
WO2016152856A1 (en) * | 2015-03-26 | 2016-09-29 | 新日鉄住金化学株式会社 | Fiber-reinforced plastic molding material, method for producing same, and molded article |
JP2017031342A (en) * | 2015-08-04 | 2017-02-09 | 福井県 | Method for producing fiber-reinforced resin sheet material |
WO2018182038A1 (en) * | 2017-03-31 | 2018-10-04 | 新日鉄住金化学株式会社 | Metal/fiber-reinforced resin material composite body and method for producing same |
Non-Patent Citations (1)
Title |
---|
三菱ケミカル株式会社: "無延伸ナイロンフィルム ダイアミロンC−Z", ダイアミロンC−Z, JPN7023001717, 10 October 2020 (2020-10-10), JP, pages 1 - 4, ISSN: 0005051533 * |
Also Published As
Publication number | Publication date |
---|---|
JP7352462B2 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2775053C (en) | Thermoplastic composites and methods of making and using same | |
CN108214980B (en) | Equipment and method for preparing continuous fiber reinforced thermoplastic prepreg tape | |
US4883552A (en) | Pultrusion process and apparatus | |
US20200180260A1 (en) | Fiber-reinforced composite material | |
US20170051438A1 (en) | Flexible composite prepreg materials | |
JP2014004797A (en) | Composite material for molding and method for producing the same | |
WO2017006832A1 (en) | Method for manufacturing fiber-reinforced composite material | |
WO2022075265A1 (en) | Fiber-reinforced resin pultruded article and method for producing same | |
JP5608818B2 (en) | Carbon fiber composite material, molded product using the same, and production method thereof | |
JP6561630B2 (en) | Manufacturing method of fiber reinforced composite material | |
JP2020122137A (en) | Resin film, thermoplastic carbon fiber prepreg, and method for producing the same | |
JP2016172322A (en) | Method for producing fiber-reinforced thermoplastic resin-molded article | |
JPS5914924A (en) | Manufacture of prepreg | |
CN114375257A (en) | Prepreg parent roll and slitting belt and method | |
JP6561629B2 (en) | Manufacturing method of fiber reinforced composite material | |
JP2017519054A (en) | Method for producing thermoplastic prepreg and thermoplastic prepreg produced thereby | |
JP7519891B2 (en) | Thermoplastic resin film, prepreg, and prepreg laminate | |
CN114901731A (en) | Member for composite material, moving body, and method for producing film for composite material | |
KR20180130699A (en) | Continuous fiber reinforced composites and method for manufacturing the same | |
Pilipović | Films for sheet lamination | |
CN111844521B (en) | Melt impregnation device and preparation method of continuous fiber reinforced thermoplastic prepreg tape | |
KR20230078351A (en) | Multi-Layer Blown Film Machine | |
JPH02216237A (en) | Production of fibrous composite material | |
AU2010298260B2 (en) | Thermoplastic composites and methods of making and using same | |
CN114846060A (en) | Member for composite material, moving body, and method for producing film for composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7352462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |