JP7352462B2 - Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof - Google Patents

Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof Download PDF

Info

Publication number
JP7352462B2
JP7352462B2 JP2019230535A JP2019230535A JP7352462B2 JP 7352462 B2 JP7352462 B2 JP 7352462B2 JP 2019230535 A JP2019230535 A JP 2019230535A JP 2019230535 A JP2019230535 A JP 2019230535A JP 7352462 B2 JP7352462 B2 JP 7352462B2
Authority
JP
Japan
Prior art keywords
resin film
carbon fiber
resin
fiber prepreg
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019230535A
Other languages
Japanese (ja)
Other versions
JP2020122137A (en
Inventor
侑平 谷川
忠智 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Takiron Corp
Original Assignee
CI Takiron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Takiron Corp filed Critical CI Takiron Corp
Publication of JP2020122137A publication Critical patent/JP2020122137A/en
Application granted granted Critical
Publication of JP7352462B2 publication Critical patent/JP7352462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するための樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法に関する。 The present invention relates to a resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method, a thermoplastic carbon fiber prepreg using the resin film, and a method for manufacturing the same.

炭素繊維強化プラスチックは、軽量で優れた強度、および高い耐久性などの特性から、自動車、航空機、土木仮設資材など幅広い分野で利用されている。炭素繊維強化プラスチックとしては、含浸させる樹脂の性質の違いにより、熱硬化性炭素繊維強化プラスチックと、熱可塑性炭素繊維強化プラスチックとがある。このうち、熱可塑性炭素繊維強化プラスチックは、成形時間が短く、また加熱によってリサイクル利用が可能であるといった利点から、特に自動車の構成材料として用いられている。 Carbon fiber reinforced plastics are used in a wide range of fields, including automobiles, aircraft, and temporary civil engineering materials, due to their light weight, excellent strength, and high durability. Carbon fiber reinforced plastics include thermosetting carbon fiber reinforced plastics and thermoplastic carbon fiber reinforced plastics, depending on the properties of the resin to be impregnated. Among these, thermoplastic carbon fiber-reinforced plastics are particularly used as constituent materials for automobiles because of their short molding time and their ability to be recycled by heating.

こうした熱可塑性炭素繊維強化プラスチックは、中間材料である熱可塑性炭素繊維プリプレグを用いて製造される。熱可塑性炭素繊維プリプレグは、炭素繊維のトウ(束)を開繊して、熱可塑性樹脂を炭素繊維に含浸させることによって得られる。
プリプレグの中でも、炭素繊維のトウ(束)を開繊して一方向に整列させたものを、一方向(UD)プリプレグという。
Such thermoplastic carbon fiber reinforced plastics are manufactured using thermoplastic carbon fiber prepreg as an intermediate material. Thermoplastic carbon fiber prepreg is obtained by opening a tow (bundle) of carbon fibers and impregnating the carbon fibers with a thermoplastic resin.
Among prepregs, those made by opening carbon fiber tows (bundles) and aligning them in one direction are called unidirectional (UD) prepregs.

従来、熱可塑性炭素繊維プリプレグの製造方法としては、ドライパウダーコーティング法、引抜法、混繊法、およびフィルムスタッキング法が一般的に知られている。
このうち、フィルムスタッキング法は、炭素繊維に樹脂フィルムを積層し、加熱、加圧により樹脂フィルムを構成する樹脂を炭素繊維に含浸させる方法である(例えば、特許文献1を参照)。また、熱可塑性樹脂としてフェノキシ樹脂を使用したプリプレグも一般的に知られている(例えば、特許文献2を参照)。
Conventionally, dry powder coating methods, pultrusion methods, mixed fiber methods, and film stacking methods are generally known as methods for producing thermoplastic carbon fiber prepregs.
Among these, the film stacking method is a method in which a resin film is laminated onto carbon fibers, and the carbon fibers are impregnated with a resin constituting the resin film by heating and pressurizing (see, for example, Patent Document 1). Additionally, prepregs using phenoxy resin as a thermoplastic resin are also generally known (see, for example, Patent Document 2).

国際公開第2016/18610号International Publication No. 2016/18610 特開2010-126694号公報Japanese Patent Application Publication No. 2010-126694

しかしながら、特許文献1に開示されたポリ力一ボネート樹脂製プリプレグは、樹脂フィルムの厚みが100μm以上であり、厚みが厚いことによりポリ力一ボネート樹脂製プリプレグの炭素繊維の含有率(Vf値)が低くなるため、得られたポリ力一ボネート樹脂製プリプレグの強度を高めることが困難であるという課題があった。 However, in the polycarbonate resin prepreg disclosed in Patent Document 1, the resin film has a thickness of 100 μm or more, and the thick thickness reduces the carbon fiber content (Vf value) of the polycarbonate resin prepreg. Therefore, there was a problem in that it was difficult to increase the strength of the obtained polycarbonate resin prepreg.

また、熱可塑性炭素繊維プリプレグの炭素繊維の含有率(Vf値)を上げ、強度を高めるためには、樹脂フィルムの厚みを薄くする必要がある。しかし、樹脂フィルムを薄くすると、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる際に樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じ、炭素繊維が中央寄りになり熱可塑性炭素繊維プリプレグのTD(幅方向)の物性にバラつきが生じるという課題があった。
さらに、樹脂フィルムを薄くすると、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる際に、樹脂フィルムが破断し、製造安定性に欠けるという課題もあった。
なお、特許文献2には、熱可塑性樹脂としてフェノキシ樹脂とプリプレグに関する記載があるものの、フィルムスタッキング法でプリプレグを製造する場合に重要となる、樹脂フィルムの引裂き強度や加熱収縮率といった特性に関する記載がない。
Furthermore, in order to increase the carbon fiber content (Vf value) of the thermoplastic carbon fiber prepreg and increase its strength, it is necessary to reduce the thickness of the resin film. However, if the resin film is made thinner, heat shrinkage (neck-in) occurs in the TD (width direction) of the resin film when the resin film is impregnated with carbon fibers using the film stacking method, and the carbon fibers become closer to the center and the thermoplastic carbon There was a problem in that the physical properties of the fiber prepreg in the TD (width direction) varied.
Furthermore, when the resin film is made thinner, there is a problem that the resin film breaks when carbon fibers are impregnated with the resin film using a film stacking method, resulting in a lack of manufacturing stability.
Although Patent Document 2 includes descriptions of phenoxy resin and prepreg as thermoplastic resins, it does not include descriptions of properties such as the tear strength and heat shrinkage rate of resin films, which are important when manufacturing prepregs by the film stacking method. do not have.

本発明は、前述した事情に鑑みてなされたものであって、薄膜化が可能であり、かつ熱可塑性炭素繊維プリプレグに用いた際に炭素繊維の含有率を高めて強度を向上させることが可能な熱可塑性炭素繊維プリプレグ形成用の樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法を提供することを目的とする。 The present invention was made in view of the above-mentioned circumstances, and it is possible to make a thin film, and when used in a thermoplastic carbon fiber prepreg, it is possible to increase the carbon fiber content and improve the strength. The present invention aims to provide a resin film for forming a thermoplastic carbon fiber prepreg, a thermoplastic carbon fiber prepreg using the same, and a method for manufacturing the same.

本発明は、下記の態様を有する。
<1> フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するための樹脂フィルムであって、
厚みが8μm以上55μm以下、かつ、JIS7128に準拠した幅方向の引裂き強度が28mN以上、かつ、幅方向の加熱収縮率が7%未満であり、前記樹脂フィルムはフェノキシ樹脂を含むことを特徴とする樹脂フィルム。
なお、本発明における幅方向の加熱収縮率の測定方法は、TD(幅方向)50mm×MD(流れ方向)100mmの樹脂フィルムの流れ方向の両端部を幅方向に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブンに入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのTD(幅方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からTD(幅方向)の収縮率を算出したものである。
The present invention has the following aspects.
<1> A resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method,
The resin film has a thickness of 8 μm or more and 55 μm or less, a tear strength in the width direction according to JIS 7128 of 28 mN or more, and a heat shrinkage rate in the width direction of less than 7% , and the resin film contains a phenoxy resin. resin film.
In addition, the method for measuring the heat shrinkage rate in the width direction in the present invention is to measure both ends of a resin film in the machine direction of 50 mm in TD (width direction) x 100 mm in MD (machine direction) along the width direction with an aluminum tape with a thickness of 0. .The length (mm) of the most shrunk part of the resin film in the TD (width direction) after fixing it on a 3mm SUS plate, putting it in an oven, and maintaining it at 100°C for 2 minutes with the damper opening 50%. was measured, and the shrinkage rate in TD (width direction) was calculated from the ratio to 50 mm.

<2> 流れ方向の加熱収縮率に対する幅方向の加熱収縮率の差分が10%未満であることを特徴とする<1>に記載の樹脂フィルム。
なお、本発明における流れ方向の加熱収縮率の測定方法は、MD(流れ方向)50mm×TD(幅方向)100mmの樹脂フィルムのTD(幅方向)の両端部をMD(流れ方向)に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブンに入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのMD(流れ方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からMD(流れ方向)の収縮率を算出したものである。
<2> The resin film according to <1>, wherein the difference in the heat shrinkage rate in the width direction with respect to the heat shrinkage rate in the machine direction is less than 10%.
The method for measuring the heat shrinkage rate in the machine direction in the present invention is to After fixing it on a 0.3 mm thick SUS plate with aluminum tape, putting it in an oven, and maintaining it at 100°C for 2 minutes with the damper opening 50%, the most contracted part of the resin film in MD (machine direction) The length (mm) was measured, and the MD (machine direction) shrinkage rate was calculated from the ratio to 50 mm.

> <1>または<2>に記載の樹脂フィルムを炭素繊維に含浸させたことを特徴とする熱可塑性炭素繊維プリプレグ。 <3> A thermoplastic carbon fiber prepreg characterized in that carbon fibers are impregnated with the resin film described in <1> or <2> .

> <1>または<2>に記載の樹脂フィルムを炭素繊維に含浸させる工程を備えたことを特徴とする熱可塑性炭素繊維プリプレグの製造方法。 <4> A method for producing a thermoplastic carbon fiber prepreg, comprising a step of impregnating carbon fibers with the resin film according to <1> or <2> .

本発明によれば、薄膜化が可能であり、かつ熱可塑性炭素繊維プリプレグの炭素繊維の含有率を高めて強度を向上させることが可能な熱可塑性炭素繊維プリプレグ形成用の樹脂フィルム、これを用いた熱可塑性炭素繊維プリプレグ、およびその製造方法を提供することができる。 According to the present invention, there is provided a resin film for forming a thermoplastic carbon fiber prepreg that can be made into a thin film and that can increase the carbon fiber content of the thermoplastic carbon fiber prepreg to improve its strength. It is possible to provide a thermoplastic carbon fiber prepreg and a method for producing the same.

本発明の熱可塑性炭素繊維プリプレグの製造方法の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the manufacturing method of the thermoplastic carbon fiber prepreg of this invention.

以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
MD(流れ方向)は、帯状の樹脂フィルムの押出方向(長手方向)である。また、TD(幅方向)は、樹脂フィルム面に沿ってMD(流れ方向)に対して直角な方向である。
The following definitions of terms apply throughout the specification and claims.
MD (machine direction) is the extrusion direction (longitudinal direction) of the strip-shaped resin film. Moreover, TD (width direction) is a direction perpendicular to MD (flow direction) along the resin film surface.

以下、本発明の一実施形態の樹脂フィルムおよびこれを用いた熱可塑性炭素繊維プリプレグについて説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, a resin film according to an embodiment of the present invention and a thermoplastic carbon fiber prepreg using the same will be described. It should be noted that the embodiments shown below are specifically explained in order to better understand the gist of the invention, and unless otherwise specified, the embodiments are not intended to limit the invention.

(樹脂フィルム)
本発明の樹脂フィルムは、シート状の炭素繊維の一面および他面にそれぞれ配して、フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するためのものであり、種々の熱可塑性樹脂から選択することができる。
(resin film)
The resin film of the present invention is arranged on one side and the other side of sheet-like carbon fibers to form a thermoplastic carbon fiber prepreg by a film stacking method, and can be selected from various thermoplastic resins. I can do it.

樹脂フィルムの具体例としては、ナイロン6(登録商標)、ナイロン66(登録商標)、芳香族ナイロン(登録商標)等のポリアミド樹脂、ポリカーボネイト樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、エポキシ樹脂を直鎖状に高分子量化したフェノキシ樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ABS樹脂等のシート材が挙げられる。
また、本発明の樹脂フィルムは、例えばインフレーション法、Tダイ押出し法、カレンダー法などによって製造される。
インフレーション法によって製造する場合は、溶融された熱可塑性樹脂を、リングダイから押出し連続したチューブ状に成形する。このチューブ状の樹脂に内側から圧搾空気を送り込んで徐々に所定の幅のフィルムにまで膨張させ、引取機のニップロールに挟んで引き取ることにより、本発明の樹脂フィルムを製造することができる。
Specific examples of resin films include polyamide resins such as nylon 6 (registered trademark), nylon 66 (registered trademark), and aromatic nylon (registered trademark), polycarbonate resins, polyolefin resins such as polyethylene and polypropylene, polyphenylene sulfide resins, and epoxy resins. Examples include sheet materials such as phenoxy resin, polyester resin, polysulfone resin, polyether ether ketone resin, polyimide resin, polystyrene resin, and ABS resin, which are made by increasing the molecular weight of resin into a linear chain.
Further, the resin film of the present invention is manufactured by, for example, an inflation method, a T-die extrusion method, a calender method, or the like.
When manufacturing by the inflation method, a molten thermoplastic resin is extruded from a ring die and formed into a continuous tube shape. The resin film of the present invention can be produced by feeding compressed air into this tube-shaped resin from the inside to gradually expand it to a film of a predetermined width, and then taking it between the nip rolls of a take-off machine.

樹脂フィルムを上述したインフレーション法によって製造する際に、リングダイの出口の樹脂温度がガラス転移温度よりも例えば60℃以上高い状態で目標の厚みなるように製膜し、その後、その形状を保ったまま徐冷する様に圧搾空気の風量と引取り速度とを調整する。引取り速度は早くし過ぎず、10m/min以上30m/min未満が好ましく、10~20m/minがより好ましい。引取り速度が10m/min以上30m/min未満であれば、樹脂フィルムのMD(流れ方向)の延伸および配向を制御することができ、熱収縮が生じにくい。 When manufacturing a resin film by the above-mentioned inflation method, the film is formed to a target thickness while the resin temperature at the exit of the ring die is higher than the glass transition temperature by, for example, 60°C or more, and then the film is kept in its shape. The compressed air volume and take-up speed are adjusted so that the air is gradually cooled. The take-up speed is not too high, preferably 10 m/min or more and less than 30 m/min, more preferably 10 to 20 m/min. When the take-up speed is 10 m/min or more and less than 30 m/min, the MD (machine direction) stretching and orientation of the resin film can be controlled, and thermal shrinkage is less likely to occur.

圧搾空気の風量を調節しブロー比率(樹脂フィルムの直径/リングダイの口径)を1.5~6.0と低く抑えることが好ましい。ブロー比率が1.5~6.0の範囲であれば、樹脂フィルムのTD(幅方向)とMD(流れ方向)の延伸および配向を制御することができ、TD(幅方向)とMD(流れ方向)の熱収縮が生じにくい。 It is preferable to keep the blow ratio (resin film diameter/ring die diameter) as low as 1.5 to 6.0 by adjusting the amount of compressed air. If the blow ratio is in the range of 1.5 to 6.0, it is possible to control the stretching and orientation of the resin film in the TD (width direction) and MD (machine direction). Direction) heat shrinkage is less likely to occur.

また、本発明の樹脂フィルムが、Tダイ押出し法によっても製造される場合は、リップ幅1mmのTダイを設置した20~80mmφ単軸または2軸押出機のシリンダー温度とダイス温度を熱可塑性樹脂のガラス転移点より60℃高い温度に設定し、熱可塑性樹脂を押出機に投入し、スクリュー回転数5~50rpmで溶融混練し、Tダイから押し出した。その後、この押し出したものを、チルロール温度10~50℃、引取り速度10m/min以上30m/min未満で引き取ることにより、厚さ8~55μmの樹脂フィルムを得ることができる。 In addition, when the resin film of the present invention is also produced by T-die extrusion, the cylinder temperature and die temperature of a 20 to 80 mmφ single-screw or twin-screw extruder equipped with a T-die with a lip width of 1 mm should be adjusted to the temperature of the thermoplastic resin. The thermoplastic resin was charged into an extruder, melted and kneaded at a screw rotation speed of 5 to 50 rpm, and extruded from a T-die. Thereafter, this extruded product is taken off at a chill roll temperature of 10 to 50°C and a take-up speed of 10 m/min or more and less than 30 m/min to obtain a resin film with a thickness of 8 to 55 μm.

フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる場合、樹脂フィルムの融点及びガラス転移点付近の温度で予備含浸させて、本含浸を行う。例えば、フェノキシ樹脂は、105℃がガラス転移点であり、その温度に近い100℃で予備含浸する。100℃を超える温度域では樹脂フィルムが破断してしまい、それ以下の温度では予備含浸が不足する。100℃で樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じると、炭素繊維が熱可塑性炭素繊維プリプレグの中央部に寄ってしまい、面内で物性のバラつきが生じる可能性がある。このため、樹脂フィルムの寸法安定性が求められる。樹脂フィルムの寸法安定性の評価は、例えば、庫内温度を100℃に設定したオーブンで2分間の加熱を行い、加熱収縮率を測定することで行う。 When impregnating carbon fibers with a resin film using the film stacking method, preliminary impregnation is performed at a temperature near the melting point and glass transition point of the resin film, and then main impregnation is performed. For example, phenoxy resin has a glass transition point of 105°C, and is pre-impregnated at 100°C, which is close to that temperature. If the temperature exceeds 100°C, the resin film will break, and if the temperature is lower than that, the preliminary impregnation will be insufficient. If heat shrinkage (neck-in) occurs in the TD (width direction) of the resin film at 100°C, the carbon fibers will move toward the center of the thermoplastic carbon fiber prepreg, which may cause variations in physical properties within the plane. . Therefore, dimensional stability of the resin film is required. The dimensional stability of the resin film is evaluated, for example, by heating it for 2 minutes in an oven with an internal temperature of 100° C. and measuring the heat shrinkage rate.

樹脂フィルムのTD(幅方向)の加熱収縮率は少なくとも7%未満が好ましく、5%未満がより好ましく、3%未満がさらに好ましい。TD(幅方向)の加熱収縮率が7%未満の場合は、樹脂フィルムのTD(幅方向)に熱収縮(ネックイン)が生じず、炭素繊維が熱可塑性炭素繊維プリプレグの中央部に寄ることがない。 The heat shrinkage rate in the TD (width direction) of the resin film is preferably at least less than 7%, more preferably less than 5%, and even more preferably less than 3%. If the heat shrinkage rate in the TD (width direction) is less than 7%, heat shrinkage (neck-in) will not occur in the TD (width direction) of the resin film, and the carbon fibers will be closer to the center of the thermoplastic carbon fiber prepreg. There is no.

樹脂フィルムのMD(流れ方向)の加熱収縮率は15%未満が好ましく、10%未満がより好ましい。また、樹脂フィルムのMD(流れ方向)の加熱収縮率に対するTD(幅方向)の加熱収縮率の差分は10%未満が好ましく、6%未満がより好ましい。 The MD (machine direction) heat shrinkage rate of the resin film is preferably less than 15%, more preferably less than 10%. Further, the difference in heat shrinkage rate in TD (width direction) with respect to heat shrinkage rate in MD (machine direction) of the resin film is preferably less than 10%, more preferably less than 6%.

MD(流れ方向)の加熱収縮率が15%未満、またMD(流れ方向)の加熱収縮率に対するTD(幅方向)の加熱収縮率の差分が10%未満の場合、熱可塑性炭素繊維プリプレグの厚みがバラつかず、熱可塑性炭素繊維プリプレグを積層して熱可塑性炭素繊維強化プラスチックを成形する際の成形不良を解消する。また、熱可塑性炭素繊維プリプレグ製造時の歩留まりが向上し、生産効率が上がる。 If the MD (machine direction) heat shrinkage rate is less than 15%, and the difference in the TD (width direction) heat shrinkage rate from the MD (machine direction) heat shrinkage rate is less than 10%, the thickness of the thermoplastic carbon fiber prepreg This eliminates molding defects when thermoplastic carbon fiber reinforced plastics are molded by laminating thermoplastic carbon fiber prepregs. In addition, the yield during the production of thermoplastic carbon fiber prepreg is improved, increasing production efficiency.

フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる場合、樹脂フィルムの引裂き強度が低いと、含浸工程において樹脂フィルムが破断する可能性がある。このため、樹脂フィルムの含浸作業性が求められる。樹脂フィルムの含浸作業性の評価は、引裂き強度を測定することで行う。 When impregnating carbon fibers with a resin film using the film stacking method, if the tear strength of the resin film is low, the resin film may break during the impregnation process. For this reason, impregnating workability of the resin film is required. The impregnation workability of the resin film is evaluated by measuring the tear strength.

JIS K7128(プラスチック-フィルム及びシートの引裂き強さ試験方法)に準拠した樹脂フィルムのTD(幅方向)の引裂き強度は少なくとも28mN以上が好ましく、50mN以上がより好ましい。 The tear strength of the resin film in TD (width direction) according to JIS K7128 (Tear strength testing method for plastic films and sheets) is preferably at least 28 mN or more, more preferably 50 mN or more.

樹脂フィルムのTD(幅方向)の引裂き強度が28mN以上の場合、フィルムスタッキング法で樹脂フィルムを炭素繊維に含浸させる含浸工程において、樹脂フィルムが破断しない。 When the tear strength of the resin film in the TD (width direction) is 28 mN or more, the resin film does not break during the impregnation step of impregnating carbon fibers with the resin film using the film stacking method.

樹脂フィルムの厚みが厚いと熱可塑性炭素繊維プリプレグの繊維含有率が下がり、炭素繊維強化プラスチックにした時に必要な強度が得られない。このため、熱可塑性炭素繊維プリプレグの繊維含有率の評価は、樹脂フィルムの厚みを測定することで行う。 If the resin film is thick, the fiber content of the thermoplastic carbon fiber prepreg will decrease, making it impossible to obtain the necessary strength when made into carbon fiber reinforced plastic. Therefore, the fiber content of the thermoplastic carbon fiber prepreg is evaluated by measuring the thickness of the resin film.

樹脂フィルムの厚みは、少なくとも8μm以上55μm以下の範囲が好ましく、10μm以上30μm以下の範囲がより好ましい。樹脂フィルムの厚みが8μm以上の場合、炭素繊維の直径が5~10μmのため、熱可塑性炭素繊維プリプレグを製造した際に、樹脂フィルムを構成する樹脂を炭素繊維に十分含浸させることができ、炭素繊維間に空隙が発生するといった樹脂不足が起こらない。樹脂フィルムの厚みが55μm以下の場合、熱可塑性炭素繊維プリプレグを製造した際の炭素繊維の含有率(Vf値)が50~60%となり、強度が高くなる。 The thickness of the resin film is preferably at least 8 μm or more and 55 μm or less, more preferably 10 μm or more and 30 μm or less. When the thickness of the resin film is 8 μm or more, the diameter of the carbon fiber is 5 to 10 μm, so when thermoplastic carbon fiber prepreg is manufactured, the carbon fiber can be sufficiently impregnated with the resin constituting the resin film, and the carbon Resin shortages such as voids between fibers do not occur. When the thickness of the resin film is 55 μm or less, the carbon fiber content (Vf value) when producing a thermoplastic carbon fiber prepreg will be 50 to 60%, and the strength will be high.

(熱可塑性炭素繊維プリプレグ)
本発明の熱可塑性炭素繊維プリプレグは、例えば炭素繊維を開繊・含浸機に供給して、本発明の樹脂フィルムによって挟み込んで、樹脂を炭素繊維に含浸させることによって得られる。
(Thermoplastic carbon fiber prepreg)
The thermoplastic carbon fiber prepreg of the present invention can be obtained, for example, by feeding carbon fibers into an opening/impregnating machine and sandwiching the fibers between the resin films of the present invention to impregnate the carbon fibers with resin.

本発明の樹脂フィルムをマトリクス樹脂として用いることによって、樹脂フィルムの厚みが8μm以上55μm以下の範囲で薄いため、熱可塑性炭素繊維プリプレグの炭素繊維含有率(Vf値)を高めることができ、強度の高い熱可塑性炭素繊維プリプレグを実現することができる。 By using the resin film of the present invention as a matrix resin, the thickness of the resin film is thin in the range of 8 μm or more and 55 μm or less, so it is possible to increase the carbon fiber content (Vf value) of the thermoplastic carbon fiber prepreg and improve the strength. Highly thermoplastic carbon fiber prepreg can be achieved.

また、本発明の樹脂フィルムのTD(幅方向)の加熱収縮率が7%未満であるため、熱可塑性炭素繊維プリプレグを製造する際に、樹脂フィルムが大きく熱収縮して炭素繊維が中央寄りになるといった熱可塑性炭素繊維プリプレグの幅方向の物性のバラつきを抑制して、面内で均一な特性の熱可塑性炭素繊維プリプレグを実現することができる。そして、熱可塑性炭素繊維プリプレグの製造時の歩留まりを向上させ、熱可塑性炭素繊維プリプレグのコストダウンを実現できる。 In addition, since the heat shrinkage rate in the TD (width direction) of the resin film of the present invention is less than 7%, when producing a thermoplastic carbon fiber prepreg, the resin film will undergo a large heat shrinkage and the carbon fibers will move closer to the center. It is possible to suppress variations in the physical properties of the thermoplastic carbon fiber prepreg in the width direction, and to realize a thermoplastic carbon fiber prepreg with uniform properties in the plane. Then, the yield during production of thermoplastic carbon fiber prepreg can be improved, and the cost of thermoplastic carbon fiber prepreg can be reduced.

更に、本発明の樹脂フィルムのTD(幅方向)の引裂き強度を28mN以上にすることによって、熱可塑性炭素繊維プリプレグの製造時に樹脂フィルムの破断を抑制し、フィルムスタッキング法による製造のメリットである生産速度の速さを生かして、安定して高い生産性で熱可塑性炭素繊維プリプレグを製造することができる。 Furthermore, by setting the TD (width direction) tear strength of the resin film of the present invention to 28 mN or more, breakage of the resin film is suppressed during the production of thermoplastic carbon fiber prepreg, and production is improved, which is an advantage of production by the film stacking method. Taking advantage of the high speed, thermoplastic carbon fiber prepreg can be manufactured stably and with high productivity.

(熱可塑性炭素繊維プリプレグの製造方法)
図1は、本発明の熱可塑性炭素繊維プリプレグの製造方法を示す模式図である。
本発明の熱可塑性炭素繊維プリプレグの製造方法では、開繊・含浸機10の供給ローラ対11によってシート状の炭素繊維CSをプレートヒーター12に向けて繰出すとともに、この炭素繊維CSの一面および他面に、それぞれ本発明の樹脂フィルムRF1,RF2を重ねる。そしてこの積層体を第1ローラ対13および第2ローラ対14によって挟持して、プレートヒーター12を通過させる。これにより、積層体の樹脂フィルムRF1,RF2が軟化して炭素繊維CS中に含浸される。これにより、本発明の熱可塑性炭素繊維プリプレグPを得ることができる。
(Method for manufacturing thermoplastic carbon fiber prepreg)
FIG. 1 is a schematic diagram showing a method for manufacturing a thermoplastic carbon fiber prepreg of the present invention.
In the method for manufacturing thermoplastic carbon fiber prepreg of the present invention, a sheet-like carbon fiber CS is fed out toward a plate heater 12 by a supply roller pair 11 of a fiber opening/impregnation machine 10, and one side of this carbon fiber CS and other The resin films RF1 and RF2 of the present invention are respectively superimposed on the surfaces. This laminate is then held between the first pair of rollers 13 and the second pair of rollers 14 and passed through the plate heater 12 . As a result, the resin films RF1 and RF2 of the laminate are softened and impregnated into the carbon fibers CS. Thereby, the thermoplastic carbon fiber prepreg P of the present invention can be obtained.

以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.

以下、実施例を挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本発明の実施例および従来の比較例の樹脂フィルムを検証した。
(実施例1~6)
フェノキシ樹脂をインフレーション法で樹脂フィルムにした。具体的には、リングダイから溶融樹脂を押出し連続したチューブ状に成形し、内側から圧搾空気を送り込んで徐々に所定の幅のフィルムまで膨張させ、引取機のニップロールに挟んで引き取り、厚みが10μm~50μmの樹脂フィルムを得た。リングダイ出口の樹脂温度がガラス転移温度より60℃以上十分に高い状態で目標の厚さに製膜し、その後その形状を保ったまま徐冷する様に圧搾空気の風量と引取り速度を調整した。圧搾空気の風量は、ブロー比率(樹脂フィルムの直径/リングダイの口径)が1.5~6.0になるように調整し、引取り速度は12~20m/minの範囲にした。そして、得られた樹脂フィルムと炭素繊維トウを図1に示すような開繊・含浸機10に供給し、フェノキシ樹脂フィルムで炭素繊維を挟み込み幅100mm以上、厚さ30μm~50μmの熱可塑性炭素繊維プリプレグを得た。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
Resin films of Examples of the present invention and conventional comparative examples were verified.
(Examples 1 to 6)
Phenoxy resin was made into a resin film using the inflation method. Specifically, the molten resin is extruded from a ring die and formed into a continuous tube shape, and compressed air is sent in from the inside to gradually expand the film to a predetermined width, which is then pulled between the nip rolls of a take-off machine and taken off to a thickness of 10 μm. A resin film of ~50 μm was obtained. The film is formed to the target thickness while the resin temperature at the ring die exit is 60°C or more higher than the glass transition temperature, and then the compressed air volume and take-up speed are adjusted so that the film is slowly cooled while maintaining its shape. did. The volume of compressed air was adjusted so that the blow ratio (resin film diameter/ring die diameter) was 1.5 to 6.0, and the take-up speed was in the range of 12 to 20 m/min. Then, the obtained resin film and carbon fiber tow are supplied to a fiber opening/impregnation machine 10 as shown in FIG. Got prepreg.

(比較例1~3)
実施例1~6と同様に樹脂フィルムを成形したが、比較例1は厚みが5μm、比較例3は厚みが60μmである。また、比較例2では、TD(幅方向)の引裂き強度が28mN未満の25.4mNである。なお、比較例1は厚みが薄すぎて(5μm)樹脂フィルムを成形できなかった。
実施例および比較例の条件および評価結果を表1に示す。
(Comparative Examples 1 to 3)
Resin films were molded in the same manner as Examples 1 to 6, but Comparative Example 1 had a thickness of 5 μm, and Comparative Example 3 had a thickness of 60 μm. Moreover, in Comparative Example 2, the tear strength in TD (width direction) is 25.4 mN, which is less than 28 mN. In addition, in Comparative Example 1, the thickness was too thin (5 μm) and a resin film could not be formed.
Table 1 shows the conditions and evaluation results of Examples and Comparative Examples.

Figure 0007352462000001
Figure 0007352462000001

「評価方法」
(1)加熱収縮率
TD(幅方向)の加熱収縮率は、TD(幅方向)50mm×MD(流れ方向)100mmの樹脂フィルムのMD(流れ方向)の両端部をTD(幅方向)に沿ってアルミニウムテープで厚さ0.3mmのSUS板上に固定し、オーブン(エスペック社製、型式:PHH-201M)に入れて、ダンパーの開度50%、100℃で2分間維持した後に、樹脂フィルムのTD(幅方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からTD(幅方向)の収縮率を算出した。試験回数は10回である。
"Evaluation method"
(1) Heat shrinkage rate The heat shrinkage rate in TD (width direction) is the heat shrinkage rate in TD (width direction) of a resin film of 50 mm in TD (width direction) x 100 mm in MD (machine direction) when both ends of MD (machine direction) are measured along TD (width direction). The resin was fixed on a 0.3 mm thick SUS plate with aluminum tape, placed in an oven (manufactured by ESPEC, model: PHH-201M), and kept at 100°C for 2 minutes with the damper opening 50%. The length (mm) of the most shrunk portion in the TD (width direction) of the film was measured, and the shrinkage rate in the TD (width direction) was calculated from the ratio to 50 mm. The number of tests was 10 times.

MD(流れ方向)の加熱収縮率は、樹脂フィルムをアルミニウムテープで厚さ0.3mmのSUS板上に固定する際に、MD(流れ方向)50mm×TD(幅方向)100mmの樹脂フィルムのTD(幅方向)の両端部をMD(流れ方向)に沿って固定し、樹脂フィルムのMD(流れ方向)の最も収縮した部分の長さ(mm)を測定し、50mmに対する割合からMD(流れ方向)の収縮率を算出した以外は、TD(幅方向)の加熱収縮率と同様に測定した。 The heat shrinkage rate in MD (machine direction) is the TD of a resin film of 50 mm MD (machine direction) x 100 mm TD (width direction) when fixing the resin film on a 0.3 mm thick SUS plate with aluminum tape. (width direction) along the MD (machine direction), measure the length (mm) of the most contracted part in MD (machine direction) of the resin film, and calculate the ratio to 50 mm in MD (machine direction). ) was measured in the same manner as the heat shrinkage rate in the TD (width direction), except that the shrinkage rate in the TD (width direction) was calculated.

(1-1)MDの評価:15%以上が×、10%以上15%未満が○、10%未満は◎とした。
(1-2)TDの評価:7%以上が×、3%以上7%未満が○、3%未満は◎とした。なお、含浸時にネックインなどの問題があるため、MDの加熱収縮率よりもTDの加熱収縮率方が、評価基準を高くしている。
(1-3)|MD-TD|の評価:10%以上が×、6%以上10%未満が○、6%未満は◎とした。
(1-4)寸法安定性の評価:(1-1)~(1-3)の評価の総合評価として、良◎、可○、不可×とした。
(1-1) Evaluation of MD: 15% or more was rated as ×, 10% or more and less than 15% was rated as ○, and less than 10% was rated as ◎.
(1-2) Evaluation of TD: 7% or more was marked as ×, 3% or more and less than 7% was marked as ○, and less than 3% was marked as ◎. Note that because there are problems such as neck-in during impregnation, the TD heat shrinkage rate is set as a higher evaluation standard than the MD heat shrinkage rate.
(1-3) Evaluation of |MD-TD|: 10% or more is ×, 6% or more and less than 10% is ○, and less than 6% is ◎.
(1-4) Evaluation of dimensional stability: As a comprehensive evaluation of the evaluations (1-1) to (1-3), it was evaluated as good ◎, fair ○, and poor ×.

(2)引裂き強度
JIS K7128(プラスチック-フィルム及びシートの引裂き強さ試験方法)に準拠して、得られた樹脂フィルムのMDおよびTDの引裂き強度を実測した。
(2-1)含浸作業性の評価:TDの引裂き強度が28mN未満で×、28mN以上50mN未満が○、50mN以上は◎とした。
(2) Tear strength The MD and TD tear strengths of the obtained resin film were measured in accordance with JIS K7128 (Tear strength test method for plastic films and sheets).
(2-1) Evaluation of impregnation workability: TD tear strength of less than 28 mN was evaluated as ×, 28 mN or more and less than 50 mN was evaluated as ○, and 50 mN or more was evaluated as ◎.

(3)厚み
樹脂フィルムの厚みを測定した。
(3-1)繊維含有率の評価:樹脂フィルムの厚みが50μmより厚いが×、25μm以上50μm以下が○、25μm未満は◎とした。
(3) Thickness The thickness of the resin film was measured.
(3-1) Evaluation of fiber content: The thickness of the resin film was evaluated as × if it was thicker than 50 μm, ○ if it was 25 μm or more and 50 μm or less, and ◎ if it was less than 25 μm.

10…開繊・含浸機
11…供給ローラ対
12…プレートヒーター
13…第1ローラ対
14…第2ローラ対
10...Fiber opening/impregnation machine 11...Supply roller pair 12...Plate heater 13...First roller pair 14...Second roller pair

Claims (4)

フィルムスタッキング法によって熱可塑性炭素繊維プリプレグを形成するための樹脂フィルムであって、
厚みが8μm以上55μm以下、かつ、JIS7128に準拠した幅方向の引裂き強度が28mN以上、かつ、幅方向の加熱収縮率が7%未満であり、
前記樹脂フィルムはフェノキシ樹脂を含むことを特徴とする樹脂フィルム。
A resin film for forming a thermoplastic carbon fiber prepreg by a film stacking method,
The thickness is 8 μm or more and 55 μm or less, the tear strength in the width direction according to JIS 7128 is 28 mN or more, and the heat shrinkage rate in the width direction is less than 7%,
The resin film is characterized in that the resin film contains phenoxy resin .
流れ方向の加熱収縮率に対する幅方向の加熱収縮率の差分が10%未満であることを特徴とする請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the difference in heat shrinkage rate in the width direction with respect to heat shrinkage rate in the machine direction is less than 10%. 請求項1または2に記載の樹脂フィルムを炭素繊維に含浸させたことを特徴とする熱可塑性炭素繊維プリプレグ。 A thermoplastic carbon fiber prepreg characterized in that carbon fibers are impregnated with the resin film according to claim 1 or 2 . 請求項1または2に記載の樹脂フィルムを炭素繊維に含浸させる工程を備えたことを特徴とする熱可塑性炭素繊維プリプレグの製造方法。 A method for producing a thermoplastic carbon fiber prepreg, comprising the step of impregnating carbon fibers with the resin film according to claim 1 or 2 .
JP2019230535A 2019-01-30 2019-12-20 Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof Active JP7352462B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014339 2019-01-30
JP2019014339 2019-01-30

Publications (2)

Publication Number Publication Date
JP2020122137A JP2020122137A (en) 2020-08-13
JP7352462B2 true JP7352462B2 (en) 2023-09-28

Family

ID=71992256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019230535A Active JP7352462B2 (en) 2019-01-30 2019-12-20 Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7352462B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526130A (en) 1997-12-19 2001-12-18 ザ ダウ ケミカル カンパニー Hydroxy-functional polyether laminate
WO2016152856A1 (en) 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
JP2017031342A (en) 2015-08-04 2017-02-09 福井県 Method for producing fiber-reinforced resin sheet material
WO2018182038A1 (en) 2017-03-31 2018-10-04 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217237A (en) * 1985-03-22 1986-09-26 住友化学工業株式会社 Vibration-damping composite material
JPH0825245B2 (en) * 1989-04-17 1996-03-13 凸版印刷株式会社 Gas barrier packaging bag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526130A (en) 1997-12-19 2001-12-18 ザ ダウ ケミカル カンパニー Hydroxy-functional polyether laminate
WO2016152856A1 (en) 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
JP2017031342A (en) 2015-08-04 2017-02-09 福井県 Method for producing fiber-reinforced resin sheet material
WO2018182038A1 (en) 2017-03-31 2018-10-04 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三菱ケミカル株式会社,無延伸ナイロンフィルム ダイアミロンC-Z,ダイアミロンC-Z,日本,2020年10月10日,1-4

Also Published As

Publication number Publication date
JP2020122137A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US4883552A (en) Pultrusion process and apparatus
CN108214980B (en) Equipment and method for preparing continuous fiber reinforced thermoplastic prepreg tape
CA2775053C (en) Thermoplastic composites and methods of making and using same
US5114516A (en) Method for pultruding fiber-reinforced, thermoplastic stock
US10626235B2 (en) Flexible composite prepreg materials
EP3578339B1 (en) Filament resin molded article
KR102334459B1 (en) Continuous fiber reinforced thermoplastic polymer composite and manufacturing method thereof
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
US20200114544A1 (en) Method and Apparatus for Manufacturing Fiber Composite Parts Utilizing Direct, Continuous Conversion of Raw Materials
JP7352462B2 (en) Resin film, thermoplastic carbon fiber prepreg, and manufacturing method thereof
JPS5914924A (en) Manufacture of prepreg
CN217553378U (en) Bio-based polyamide composite board
WO2022075265A1 (en) Fiber-reinforced resin pultruded article and method for producing same
WO2023115768A1 (en) Continuous fiber-reinforced thermoplastic helmet shell material and preparation method therefor
EP0847845A1 (en) Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
US20220119606A1 (en) Process for producing a fiber composite
US9724904B2 (en) Method and system for producing composite component
JP2013203942A (en) Thermoplastic prepreg and method of manufacturing the same
CN111844521B (en) Melt impregnation device and preparation method of continuous fiber reinforced thermoplastic prepreg tape
Lengsfeld et al. Prepreg technology
JP2646029B2 (en) Molding materials and mixtures thereof
JPS6072707A (en) Preparation of prepreg
AU2010298260B2 (en) Thermoplastic composites and methods of making and using same
KR20190033686A (en) Method for preparing Long-fiber reinforced sheet using prepreg
JP2005161744A (en) Method for producing resin-coated release film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R150 Certificate of patent or registration of utility model

Ref document number: 7352462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150