JPH02216237A - Production of fibrous composite material - Google Patents

Production of fibrous composite material

Info

Publication number
JPH02216237A
JPH02216237A JP3499989A JP3499989A JPH02216237A JP H02216237 A JPH02216237 A JP H02216237A JP 3499989 A JP3499989 A JP 3499989A JP 3499989 A JP3499989 A JP 3499989A JP H02216237 A JPH02216237 A JP H02216237A
Authority
JP
Japan
Prior art keywords
melting point
point continuous
bundle
fibrous composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3499989A
Other languages
Japanese (ja)
Inventor
Akira Emura
江村 章
Hisao Nishiyama
西山 尚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yachiyo MicroScience Inc
Original Assignee
Yachiyo MicroScience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yachiyo MicroScience Inc filed Critical Yachiyo MicroScience Inc
Priority to JP3499989A priority Critical patent/JPH02216237A/en
Publication of JPH02216237A publication Critical patent/JPH02216237A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • D07B2207/4059Heat treating devices; Corresponding methods to soften the filler material

Abstract

PURPOSE:To obtain a fibrous composite material which has high strength and can be readily produced and fabricated by allowing a specifically arranged line combination of high-melting continuous filaments and low-melting continuous filaments to pass through a hot dice under specific conditions and then being cooled. CONSTITUTION:High-melting continuous filaments as a reinforcing material 1 and low-melting continuous filaments as a matrix 2 are set in parallel lines in a specific arrangement to form a bundle 3. The bundle 3 is pulled out through a hot dice of a tapered cross section. The temperature of the dice is set lower than the melting point of the filament 1 and higher than that of the filament 2 so that the filaments 2 are fused to the filaments 1. After pulling out, the bundle is cooled down until the matrix is solidified to give the subject fibrous composite.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は1a維状複合材の製造方法、詳しくはマトリ
ックス材料として熱可塑性樹脂製の繊維を用いた高強度
で汎用性に富む繊維状複合材の製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a 1a fibrous composite material, and more specifically, a method for producing a 1a fibrous composite material, specifically a high-strength and versatile fibrous composite material using thermoplastic resin fibers as a matrix material. The invention relates to a method for manufacturing materials.

[従来の技術] マトリックスとして合成樹脂を、補強材として高強度の
繊維状物を用いる複合材料は従来から広く用いられてお
り、熱硬化性樹脂系のものと熱可塑性樹脂系のものとに
大別することかできる。
[Prior art] Composite materials that use synthetic resin as a matrix and high-strength fibrous materials as reinforcing materials have been widely used, and there are two types of composite materials: thermosetting resin-based and thermoplastic resin-based. It is possible to separate.

[発明か解決しようとする課題] 熱硬化性樹脂系、熱可塑性樹脂系、いずれの場合もマト
リックスである合成樹脂と補強材である臓雄との接着か
完全てないと所期の強度を得ることは困難てあり、両者
の接着性の向上か重要な課題てあった。
[Invention or problem to be solved] In both thermosetting resin and thermoplastic resin systems, the desired strength must be achieved unless the synthetic resin matrix and the reinforcing material are completely bonded. However, improving the adhesion between the two was an important issue.

又、一般に高分子熱可塑性樹脂は流動性に乏しく、ダイ
スによる連続的な成形は非常に困難であり、この点も課
題の一つであった。
Additionally, polymeric thermoplastic resins generally have poor fluidity and are extremely difficult to continuously mold using dies, which has also been a problem.

一方、液状樹脂や樹脂溶液を用いた成形では含浸した余
分な樹脂はスクイージロールやナイフで絞り取る必要か
あり、作業性において問題かあった。
On the other hand, in molding using liquid resin or resin solution, it is necessary to squeeze out the impregnated excess resin with a squeegee roll or knife, which poses a problem in workability.

更に2硬化反応によって成形を行う熱硬化性樹脂系のも
のにおいては反応ガス抜きの工程も必要であり、乾燥、
硬化の為の加熱時間も必要としていた。又、射出成形さ
れる熱可塑性樹脂系のものにおいては、補強繊維は射出
成形の性能上短繊維しか用いることができず、限界繊維
長の関係から連続長miaを用いた場合に比較して強化
効率が50〜90%しか得られないという強度上の問題
もあった。
Furthermore, in the case of thermosetting resin products that are molded through a two-curing reaction, a process of reaction gas degassing is also required, which requires drying,
It also required heating time for curing. In addition, in thermoplastic resin products that are injection molded, only short fibers can be used as reinforcing fibers due to the performance of injection molding, and due to the limit fiber length, compared to using continuous length mia, the reinforcing fibers are There was also a strength problem in that the efficiency was only 50-90%.

この発明は複合材料に関するこれら課題を解決すること
を目的とするものであり、大きな強度を持ち、製造か簡
単で二次加工も容易な繊維状複合材料の製造方法を提供
せんとするものである。
The purpose of this invention is to solve these problems regarding composite materials, and to provide a method for manufacturing fibrous composite materials that have high strength, are easy to manufacture, and are easy to secondary process. .

[課題を解決するための手段] この発明は、補強材用の高融点連続繊維とマトリックス
用の低融点連続繊維とをあらかじめ定められた配列で引
きそろえて集束体とし、この集束体を出口側か入口側よ
り断面積が小さいテーパー状となっており、低融点連続
#a雄の溶融温度以上かつ高融点連続繊維の溶融温度以
下に加熱されたダイス中を引抜き通過させ、該ダイス中
において前記高融点連続繊維に低融点連続繊維を熱融着
させ、引抜き後に冷却せしめて繊維状複合材を製造する
ことにより上記課題を解決せんとするものである。
[Means for Solving the Problems] The present invention provides a bundle of high melting point continuous fibers for reinforcing material and low melting point continuous fibers for matrix in a predetermined arrangement, and this bundle is arranged on the outlet side. The fibers have a tapered shape with a smaller cross-sectional area than the inlet side, and are drawn and passed through a die heated to a temperature above the melting temperature of the low melting point continuous fiber #a and below the melting temperature of the high melting point continuous fiber. The above-mentioned problem is solved by producing a fibrous composite material by heat-sealing a low-melting point continuous fiber to a high-melting point continuous fiber and cooling it after drawing.

[作 用] この様にして作られた複合材共を原料とし、これを集束
化し、所望の各種形状に成形するものであり、積層法や
FW法、TW法の様に加熱による圧縮成形も可能である
[Function] The composite materials made in this way are used as raw materials, which are bundled and molded into various desired shapes. Compression molding by heating, such as the lamination method, FW method, and TW method, is also possible. It is possible.

又、他の種類の熱可塑性樹脂m維と集束化して成形する
ことも可能で、糸、ロープ、テープ、パイプ、シート等
に成形することかできる。
It is also possible to form the fibers into bundles with other types of thermoplastic resin fibers, such as threads, ropes, tapes, pipes, sheets, etc.

[実施例] 以下図面を参照しながら、この発明の実施例について説
明する。
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る繊維状複合材の製造方法の一実
施例を示すものであり、図中1は補強材として用いる高
融点連続Fa雄、2はマトリックスとして用いる低融点
連続繊維であり、高融点連続ffl雄1の周囲に低融点
連続m維2があらかじめ定められたパターンで配列かつ
引きそろえられ集束体3となっている。この集束体3を
出口側4か入口側5より断面積が小さいテーパー状にな
ったダイス6中を通過させる。このダイス6は低融点連
続繊維2の溶融温度以上かつ高融点連ataa1の溶融
温度以下に加熱されており、このダイス6内で低融点連
続繊維2は溶融し、出口側4方向に弓出されるに従って
ダイス6の断面積は小さくなっているので圧縮され、高
融点連続繊81間に侵入し、これに接着融着しマトリッ
クス9となる。
FIG. 1 shows an example of the method for manufacturing a fibrous composite material according to the present invention, in which 1 is a high melting point continuous Fa male used as a reinforcing material, and 2 is a low melting point continuous fiber used as a matrix. , low melting point continuous m fibers 2 are arranged and aligned in a predetermined pattern around a high melting point continuous ffl male 1 to form a bundle 3. The bundle 3 is passed through a tapered die 6 having a smaller cross-sectional area than either the outlet side 4 or the inlet side 5. This die 6 is heated above the melting temperature of the low melting point continuous fiber 2 and below the melting temperature of the high melting point continuous fiber 2, and the low melting point continuous fiber 2 is melted in this die 6 and bowed in 4 directions on the exit side. Accordingly, since the cross-sectional area of the die 6 is reduced, it is compressed, enters between the high melting point continuous fibers 81, and is adhesively fused thereto to form the matrix 9.

この様にしてダイス6の出口側4から引出された繊維状
複合材7は冷却器8で冷却され固化される。
The fibrous composite material 7 drawn out from the outlet side 4 of the die 6 in this manner is cooled and solidified by the cooler 8.

なお、図中12はボビン、13は集束ガイド、14は引
張りロール、15は巻取ボビンである。
In addition, in the figure, 12 is a bobbin, 13 is a focusing guide, 14 is a tension roll, and 15 is a winding bobbin.

高融点連続縁H1は補強材として用いるものであり、ス
テンレス、鋼、銅、アルミニウム等の金属ia雄、ガラ
ス、セラミック、アルミナ、炭化珪素等の無機繊維、ア
ラミド、炭素繊維等の有機繊維を用いることかできる。
The high melting point continuous edge H1 is used as a reinforcing material, and is made of metal ia male such as stainless steel, steel, copper, aluminum, inorganic fiber such as glass, ceramic, alumina, silicon carbide, or organic fiber such as aramid or carbon fiber. I can do it.

又、低融点連続縁ftn2は熱可塑性樹脂繊維ならばど
れても使用できるか、ポリエチレン、ポリプロピレン、
ポリエステル、塩化ビニール、塩化モリブデン等が好適
に使用てきる。又高融点連続繊維lと低融点連続繊維2
との融着を良好にする為、高融点連続繊維Jに予め表面
処理を施しても良い。
Also, can any thermoplastic resin fiber be used for the low melting point continuous edge ftn2? Polyethylene, polypropylene,
Polyester, vinyl chloride, molybdenum chloride, etc. can be suitably used. Also, high melting point continuous fiber 1 and low melting point continuous fiber 2
In order to improve the fusion bond with the high melting point continuous fiber J, the high melting point continuous fiber J may be subjected to a surface treatment in advance.

実際の試作例は次の通りである。An actual prototype example is as follows.

φ10ルのステンレスffl維2本を高融点連続縁m1
、φ2.5にのポリプロピ1218m93木を低融点連
続m維2としてそれぞれ用い、第2図に示す様に配列し
て集束体3とした。そして、この集束体3をポリプロピ
レンの融点である175℃に加熱したダイス6中を通過
させ、その後室温に冷却して第3図の断面形状をした繊
維状複合材を得た。なお、第4図は第3図におけるA−
A線断面図である。
High melting point continuous edge m1 of two φ10 stainless steel fibers
, 1218 m93 polypropy wood with a diameter of 2.5 mm were used as the low melting point continuous m fibers 2, and arranged as shown in FIG. 2 to form a bundle 3. Then, this bundle 3 was passed through a die 6 heated to 175° C., which is the melting point of polypropylene, and then cooled to room temperature to obtain a fibrous composite material having the cross-sectional shape shown in FIG. In addition, Fig. 4 shows A- in Fig. 3.
It is an A-line sectional view.

なお、この実施例において用いたダイス6の断面形状は
小判形であるか、円形、三角形、多角形その他の断面形
状のものを用いても良く、更にこれらの中空材、■形、
口形の断面形状のものを用いることも可能である。又、
三角形、多角形の辺か内部にくぼんだ断面形状のものを
用いても良い。
The cross-sectional shape of the die 6 used in this example is oval, or may be circular, triangular, polygonal, or other cross-sectional shapes.
It is also possible to use one with a mouth-shaped cross section. or,
A cross-sectional shape with a triangular or polygonal side or a concave interior may also be used.

又、通常の一般的なダイスではなく、第5図及び第6図
に示す様に互いに接した一対のローラー10.10の周
面の対向位置に半円形断面の溝11.11を設け、この
ローラー10.10を加熱しつつ回転させ、集束体3を
この溝11.11中を通過させながら融着、成形させる
様にした異形ダイス6′を用いても良い。
In addition, instead of the usual general die, as shown in FIGS. 5 and 6, a pair of rollers 10.10 that are in contact with each other are provided with grooves 11.11 having semicircular cross sections at opposing positions on the circumferential surface of the rollers 10.10. It is also possible to use a modified die 6' in which rollers 10.10 are heated and rotated to fuse and shape the bundle 3 while passing through the grooves 11.11.

この異形ダイス6′においては溝11の形状を変化させ
ることにより第7図に示すものの様に異形の繊維状複合
材7′を製造することもてきる。
By changing the shape of the groove 11 in this irregularly shaped die 6', it is also possible to produce an irregularly shaped fibrous composite material 7' as shown in FIG.

[発明の効果] この譲雄状複合材の製造法においては原料はいずれも入
手容易で安価な繊維状をしており、粉体てないので在庫
環境の条件がきびしくなく、取扱いも容易である。
[Effects of the invention] In this method for producing a composite material, all raw materials are in the form of fibers, which are easily available and inexpensive, and are not powdered, so the stock environment conditions are not severe and handling is easy. .

長繊維の連続生産か可能で半乾燥、未硬化の加熱時間を
必要とせず、生産速度が制限されない。
Continuous production of long fibers is possible, no semi-drying or uncured heating time is required, and production speed is not limited.

大規模な生産設備を必要とせず、生産切換も容易で原料
のロスも少なく、稼動立上がり静間を必要とせず、多種
類少量生産も可能である。
It does not require large-scale production equipment, it is easy to change production, there is little loss of raw materials, there is no need for standstill time during start-up, and it is possible to produce a wide variety of products in small quantities.

数種類の繊維の組合わせが可能で、製造に熟練技術を必
要としない。
It is possible to combine several types of fibers, and does not require skilled technology to manufacture.

熱可塑性樹脂の溶融着によるので樹脂溶液や液状樹脂を
使用する場合の様に厳密なな樹脂調整や含浸条件管理を
必要としない。
Since it is based on melt bonding of thermoplastic resin, it does not require strict resin adjustment or impregnation condition control unlike when using a resin solution or liquid resin.

流動性に劣る高分子量の熱可塑性樹脂の成形も可能であ
る。
It is also possible to mold high molecular weight thermoplastic resins with poor fluidity.

連続fa維による溶融引出し成形であるので限界m!a
長に関係なく強度を高めることができる。
Since it is melt pultrusion molding using continuous fa fibers, the limit is m! a
Strength can be increased regardless of length.

ダイスの断面形状を変えたり異形ダイスを用いることに
より任意の断面形状をもった製品を得ることがてきる。
By changing the cross-sectional shape of the die or using irregularly shaped dies, products with arbitrary cross-sectional shapes can be obtained.

等の効果を有し、二次成形を行って極めて広い用途に用
いることかできる効果を有する。
It has the following effects and can be used for a very wide range of purposes by performing secondary molding.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明に係るmMI状複合材料の一実施例に関
するものであり、第1図はその工程を説明する製造装置
の側面図、第2図はその集束体の横断面図、第3図は最
終製品の横断面図、第4図は第3図におけるA−A線断
面図である。又、第5図は他の実施例で用いる異形ダイ
スの側面図、第6図はその正面図、第7図はこの異形ダ
イスを用いて製造した繊維状複合材の側面図である。 1・・・高融点連続#a、1dIO・・・ローラー2・
・・低融点連続@[11・・・溝 3・・・集束体     12・・・ボビン4・・・出
口側     13・・・集束ガイド5・・・入口側 
    14・・・引張りロール6・・・ダイス   
  15・・・巻取りボビン7・・・繊維状複合材 8・・・冷却器 9・・・マトリックス 第1 図 第2図 第 第4図 第50 弗6図 矛7囚
The drawings relate to an embodiment of the mmI-like composite material according to the present invention, and FIG. 1 is a side view of a manufacturing apparatus for explaining the process, FIG. 2 is a cross-sectional view of the bundle, and FIG. 3 is a cross-sectional view of the bundle. A cross-sectional view of the final product, FIG. 4, is a cross-sectional view taken along the line A--A in FIG. 3. Further, FIG. 5 is a side view of an irregularly shaped die used in another example, FIG. 6 is a front view thereof, and FIG. 7 is a side view of a fibrous composite material manufactured using this irregularly shaped die. 1... High melting point continuous #a, 1dIO... Roller 2.
... Low melting point continuous @ [11... Groove 3... Focusing body 12... Bobbin 4... Outlet side 13... Focusing guide 5... Inlet side
14...Tension roll 6...Dice
15... Winding bobbin 7... Fibrous composite material 8... Cooler 9... Matrix 1 Figure 2 Figure 4 Figure 50 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 補強材用の高融点連続繊維とマトリックス用の低融点連
続繊維とをあらかじめ定められた配列で引きそろえて集
束体とし、この集束体を出口側が入口側より断面積が小
さいテーパー状となっており、低融点連続繊維の溶融温
度以上かつ高融点連続繊維の溶融温度以下に加熱された
ダイス中を引抜き通過させ、該ダイス中において前記高
融点連続繊維に低融点連続繊維を熱融着させ、引抜き後
に冷却せしめることを特徴とする繊維状複合材の製造方
法。
The high-melting point continuous fibers for the reinforcing material and the low-melting point continuous fibers for the matrix are arranged in a predetermined arrangement to form a bundle, and the bundle has a tapered shape with the outlet side having a smaller cross-sectional area than the inlet side. , drawing and passing through a die heated to a temperature above the melting temperature of the low-melting point continuous fiber and below the melting temperature of the high-melting point continuous fiber, heat-sealing the low-melting point continuous fiber to the high-melting point continuous fiber in the die, and drawing. A method for producing a fibrous composite material, which comprises cooling the material afterwards.
JP3499989A 1989-02-16 1989-02-16 Production of fibrous composite material Pending JPH02216237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3499989A JPH02216237A (en) 1989-02-16 1989-02-16 Production of fibrous composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3499989A JPH02216237A (en) 1989-02-16 1989-02-16 Production of fibrous composite material

Publications (1)

Publication Number Publication Date
JPH02216237A true JPH02216237A (en) 1990-08-29

Family

ID=12429827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3499989A Pending JPH02216237A (en) 1989-02-16 1989-02-16 Production of fibrous composite material

Country Status (1)

Country Link
JP (1) JPH02216237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695819A1 (en) * 1994-08-03 1996-02-07 Hoechst Celanese Corporation Heterofilament composite yarn, heterofilament and wire reinforced bundle
KR101956118B1 (en) * 2018-12-31 2019-03-08 이선자 Polymer fiber puck manufacturing method for structural reinforcing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695819A1 (en) * 1994-08-03 1996-02-07 Hoechst Celanese Corporation Heterofilament composite yarn, heterofilament and wire reinforced bundle
KR101956118B1 (en) * 2018-12-31 2019-03-08 이선자 Polymer fiber puck manufacturing method for structural reinforcing

Similar Documents

Publication Publication Date Title
US4883552A (en) Pultrusion process and apparatus
US5019450A (en) Fiber reinforced compositions and method of producing such compositions
US4549920A (en) Method for impregnating filaments with thermoplastic
US5213889A (en) Fibre-reinforced compositions and methods for producing such compositions
US4992229A (en) Thermoplastic re-pultrusion
EP0056703B1 (en) Fibre-reinforced compositions and methods for producing such compositions
US4883625A (en) Process for the manufacture of sections of thermoplastic resin reinforced with continuous fibers
US11141949B2 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
CN107735433A (en) The manufacture method of fiber-reinforced resin sheet material
CN106903906B (en) A kind of continuous fiber reinforced thermoplastic resin melt impregnation device and preparation method
JP6454399B1 (en) Melt impregnation apparatus and melt impregnation method
US20230241837A1 (en) Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same
JPS6337694B2 (en)
EP0185460A2 (en) Reformable composites and methods of making same
US20200114544A1 (en) Method and Apparatus for Manufacturing Fiber Composite Parts Utilizing Direct, Continuous Conversion of Raw Materials
US5336526A (en) Primary processing of laminated thermoplastic sheets
JP2000355629A (en) Molding material impregnated with thermoplastic resin and its production
JPH0144144B2 (en)
JPH02216237A (en) Production of fibrous composite material
JPS5914924A (en) Manufacture of prepreg
CN106328275A (en) Composite core for overhead conductor and manufacturing method thereof
CN105599323A (en) Thermoplastic-composite-material pultrusion technology
JPH06143273A (en) Molding material and filament winding molded product
CN108177412A (en) A kind of fiber-reinforced multi-layer composite band and its preparation process containing functional unit
RU2152306C1 (en) Method of manufacture of articles from thermoplastic composite materials by winding