JP2020122090A - Method for manufacturing gel - Google Patents

Method for manufacturing gel Download PDF

Info

Publication number
JP2020122090A
JP2020122090A JP2019015251A JP2019015251A JP2020122090A JP 2020122090 A JP2020122090 A JP 2020122090A JP 2019015251 A JP2019015251 A JP 2019015251A JP 2019015251 A JP2019015251 A JP 2019015251A JP 2020122090 A JP2020122090 A JP 2020122090A
Authority
JP
Japan
Prior art keywords
group
self
hydrogel
producing
paa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015251A
Other languages
Japanese (ja)
Other versions
JP7189611B2 (en
Inventor
寺尾 啓二
Keiji Terao
啓二 寺尾
円香 木村
Madoka Kimura
円香 木村
善行 石田
Yoshiyuki Ishida
善行 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CYCLOCHEM-BIO CO Ltd
Original Assignee
CYCLOCHEM-BIO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CYCLOCHEM-BIO CO Ltd filed Critical CYCLOCHEM-BIO CO Ltd
Priority to JP2019015251A priority Critical patent/JP7189611B2/en
Publication of JP2020122090A publication Critical patent/JP2020122090A/en
Application granted granted Critical
Publication of JP7189611B2 publication Critical patent/JP7189611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a method for more simply and safely manufacturing a polymer material with self-healing ability.SOLUTION: A method for more simply and safely manufacturing hydrogel with self-healing ability can be provided by including the step of adding a host group and a guest group to an amine-based polymer in a method for more simply and safely manufacturing a polymer material with self-healing ability.SELECTED DRAWING: None

Description

本発明はハイドロゲル(以下、単にゲルと示す場合がある)の新規の製造方法に関する。さらに詳しくは、自己修復能を有するハイドロゲルを簡便かつ安全に製造できる新規の製造方法に関する。 The present invention relates to a novel method for producing a hydrogel (hereinafter sometimes simply referred to as a gel). More specifically, the present invention relates to a novel method for producing a hydrogel having a self-repairing ability simply and safely.

自己修復能を有する高分子材料は、摩擦や衝撃等により穴や切断面が生じても再結合して元通りに戻る性質を有することから、接着剤、塗料やコーティングフィルム等として有用である。そのため、様々な高分子材料が開発されてきた。
例えば、特許文献1ではホスト基含有モノマー、ゲスト基含有モノマー及びアクリル系モノマーの水系溶媒溶液を製造し、このモノマーを共重合させることにより自己修復性及び形状記憶性を有するゲルを製造することが開示されている。
特許文献2ではホスト基を側鎖に有する高分子からなるホスト体と、ゲスト基を側鎖に有する高分子からなるゲスト体を接触させてなる集合体が開示されており、ホスト体ゲルとゲスト体ゲルが接着することで自己組織化すること等が開示されている。
A polymer material having a self-repairing ability is useful as an adhesive, a paint, a coating film, or the like because it has a property of recombining and returning to its original state even if a hole or a cut surface is formed due to friction, impact, or the like. Therefore, various polymeric materials have been developed.
For example, in Patent Document 1, an aqueous solvent solution of a host group-containing monomer, a guest group-containing monomer, and an acrylic monomer is produced, and a copolymer having these monomers is produced to produce a gel having a self-repairing property and a shape memory property. It is disclosed.
Patent Document 2 discloses an assembly obtained by contacting a host body composed of a polymer having a host group in the side chain with a guest body composed of a polymer having a guest group in the side chain. The host body gel and the guest body are disclosed. It is disclosed that the body gel is adhered to self-assemble.

特許文献3ではアクリルアミド(AAm)、6-(メタ)アクリルアミド-β-シクロデキストリン(AAm-βCD)と1-アクリルアミドアダマンタン(AAm-Ad)を原料として、重合反応を行うことで架橋構造を形成させ、接着構造体とすることが開示されている。
特許文献4ではN-(1-アダマンチル)アクリルアミドを用い、アクリルアミド、過硫酸アンモニウム及びN,N,N,N-テトラメチルエチレンジアミンを加えて25℃で24時間重合を行うことで自己修復能を有するβ-CD/ゲスト基含有重合体を得たことが開示されている。
In Patent Document 3, acrylamide (AAm), 6-(meth)acrylamide-β-cyclodextrin (AAm-βCD) and 1-acrylamide adamantane (AAm-Ad) are used as raw materials to carry out a polymerization reaction to form a crosslinked structure. , An adhesive structure is disclosed.
In Patent Document 4, N-(1-adamantyl)acrylamide is used, and acrylamide, ammonium persulfate and N,N,N,N-tetramethylethylenediamine are added, and polymerization is carried out at 25° C. for 24 hours to obtain β having self-repairing ability. -It is disclosed that a polymer containing a CD/guest group is obtained.

このように自己修復性、形状記憶性や自己組織化能等を有する様々なゲル、集合体、接着構造体等が開発されているが、これらはいずれもホスト基含有モノマーやホスト重合体、ゲスト基含有モノマーやゲスト体等の様々な原料を事前に合成したり、重合反応を行わせたりする等の多段階からなる準備が必要であり、ゲル化においても様々な段階において加温が必要になる等、工程が煩雑であった。そこで、より簡便で安全な自己修復能を有する高分子材料の提供が望まれていた。 As described above, various gels, aggregates, adhesive structures, etc. having self-repairing property, shape memory property, self-assembling property, etc. have been developed. These are all host group-containing monomers, host polymers and guests. Preparations in multiple stages such as pre-synthesizing various raw materials such as group-containing monomers and guest bodies, and carrying out polymerization reactions are required, and heating is also required at various stages in gelation. The process was complicated. Therefore, it has been desired to provide a simpler and safer polymer material having a self-repairing ability.

国際公開第2013/162019号パンフレットInternational Publication 2013/162019 Pamphlet 国際公開第2012/036069号パンフレットInternational Publication No. 2012/036069 Pamphlet 特開2018-111788号公報JP 2018-111788 JP 特開2018-16704号公報JP 2018-16704

本発明は自己修復能を有する高分子材料をより簡便で安全に製造できる方法の提供を課題とする。 An object of the present invention is to provide a method capable of more easily and safely producing a polymer material having a self-repairing ability.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、自己修復能を有する高分子材料であるハイドロゲルの製造にあたり、ホスト基及びゲスト基をアミン系ポリマーに付加させる工程を含ませることにより、簡便かつ安全に自己修復能を有するハイドロゲルをワンポット合成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have conducted a step of adding a host group and a guest group to an amine-based polymer in the production of a hydrogel which is a polymer material having a self-repairing ability. It was found that the inclusion of the hydrogel enables self-repairing hydrogel to be easily and safely synthesized in one pot, and the present invention has been completed.

すなわち、本発明は次の(1)〜(10)に示されるゲルの製造方法等に関する。
(1)ホスト基及びゲスト基をアミン系ポリマーに付加させる工程を含むゲルの製造方法。
(2)ホスト基が下記式(I)で示される化合物である上記(1)に記載のゲルの製造方法。

(3)ホスト基がモノクロロトリアジニル-β-シクロデキストリンである上記(1)又は(2)に記載のゲルの製造方法。
(4)ゲスト基が下記式(II)で示される化合物である上記(1)〜(3)のいずれかに記載のゲルの製造方法。

(5)ゲスト基がアダマンチル基である上記(1)〜(4)のいずれかに記載のゲルの製造方法。
(6)アミン系ポリマーが下記式(III)で示される化合物である上記(1)〜(5)のいずれかに記載のゲルの製造方法。

(7)アミン系ポリマーがポリアリルアミン(登録商標)又はポリエチレンイミンである上記(1)〜(6)のいずれかに記載のゲルの製造方法。
(8)ホスト基及びゲスト基をアミン系ポリマーに付加させる工程が、水及び/又は溶媒中でホスト基、ゲスト基、及びアミン系ポリマーを混合する工程である上記(1)〜(7)のいずれかに記載のゲルの製造方法。
(9)溶媒がアルコールである上記(8)に記載のゲルの製造方法。
(10)次のA又はBのいずれかを縮合剤として用いる上記(1)〜(9)のいずれかに記載のゲルの製造方法。
A.4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド
B.2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン及びN-メチルモルホリン
That is, the present invention relates to a method for producing a gel and the like shown in the following (1) to (10).
(1) A method for producing a gel, which comprises a step of adding a host group and a guest group to an amine-based polymer.
(2) The method for producing a gel according to (1) above, wherein the host group is a compound represented by the following formula (I).

(3) The method for producing a gel according to (1) or (2) above, wherein the host group is monochlorotriazinyl-β-cyclodextrin.
(4) The method for producing a gel according to any one of (1) to (3) above, wherein the guest group is a compound represented by the following formula (II).

(5) The method for producing a gel according to any one of (1) to (4) above, wherein the guest group is an adamantyl group.
(6) The method for producing a gel according to any one of (1) to (5) above, wherein the amine-based polymer is a compound represented by the following formula (III).

(7) The method for producing a gel according to any one of (1) to (6) above, wherein the amine-based polymer is polyallylamine (registered trademark) or polyethyleneimine.
(8) The step of adding the host group and the guest group to the amine-based polymer is the step of mixing the host group, the guest group, and the amine-based polymer in water and/or a solvent, according to the above (1) to (7). The method for producing the gel according to any one of claims.
(9) The method for producing a gel according to (8) above, wherein the solvent is alcohol.
(10) The method for producing a gel according to any one of the above (1) to (9), wherein the following A or B is used as a condensing agent.
A. 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
B. 2-Chloro-4,6-dimethoxy-1,3,5-triazine and N-methylmorpholine

本発明により簡便かつ安全に自己修復能を有するゲルを製造することが可能となった。本発明のハイドロゲルは優れた自己修復能を有するため、着脱可能な接着剤、塗料、コーティングフィルム、ハードコート剤の代替、衝撃吸収剤等の様々な用途に使用できる。 According to the present invention, it becomes possible to easily and safely produce a gel having self-repairing ability. Since the hydrogel of the present invention has an excellent self-repairing ability, it can be used in various applications such as removable adhesives, paints, coating films, substitutes for hard coating agents, and shock absorbers.

A.ハイドロゲル又は比較品における自己修復能の検討方法を模式的に示した図である(実施例1)。B.切断面におけるハイドロゲルの自己修復能を示した図である(実施例1)。A. It is the figure which showed typically the examination method of the self-repair ability in a hydrogel or a comparative product (Example 1). B. It is a figure which showed the self-repair ability of the hydrogel in a cut surface (Example 1).

本発明の「ゲルの製造方法」は、ホスト基及びゲスト基をアミン系ポリマーに付加させる工程を含む方法であれば良く、自己修復能を有するゲルを製造するために有用なその他の工程をさらに含む方法であっても良い。
例えば、次のような工程を含む「ゲルの製造方法」が挙げられる。
a. ホスト基及びゲスト基を混合する工程
b.上記aの工程で混合したホスト基及びゲスト基を添加しアミン系ポリマーに混合させる工程
c.上記bの工程を経たものにさらに縮合剤を添加する工程
The “gel manufacturing method” of the present invention may be a method including a step of adding a host group and a guest group to an amine-based polymer, and further includes other steps useful for manufacturing a gel having self-repairing ability. The method of including may be sufficient.
For example, a “gel manufacturing method” including the following steps may be mentioned.
a. Mixing host group and guest group
b. A step of adding the host group and guest group mixed in the above step a and mixing with the amine polymer
c. A step of adding a condensing agent to the product obtained through the above step b

本発明の「ゲルの製造方法」における、「ホスト基及びゲスト基をアミン系ポリマーに付加させる工程」は、水及び/又は溶媒中でホスト基、ゲスト基、及びアミン系ポリマーを混合する工程であることが好ましい。
使用する「溶媒」は、本発明の自己修復能を有するゲルを製造できる溶媒であればいずれのものであっても良いが、アルコールであることが好ましく、特にエタノールであることが好ましい。
The "step of adding a host group and a guest group to an amine-based polymer" in the "gel production method" of the present invention is a step of mixing a host group, a guest group, and an amine-based polymer in water and/or a solvent. Preferably.
The "solvent" to be used may be any solvent as long as it can produce the gel having self-repairing ability of the present invention, but is preferably alcohol, and particularly preferably ethanol.

本発明の「自己修復能」とは、摩擦や衝撃等により本発明の製造方法によって得られるゲルに穴や切断面が生じても再結合して元通りに戻る能力のことをいう。この「自己修復能」は、例えば、切断されたゲルの切断面を水で濡らしたり、切断片を水に浸漬したりした後に切断された箇所を密着させて室温で静置すること等で発揮することができる。 The "self-healing ability" of the present invention refers to the ability to recombine and return to the original state even if holes or cut surfaces are formed in the gel obtained by the production method of the present invention due to friction or impact. This "self-healing ability" is exhibited, for example, by wetting the cut surface of the cut gel with water or immersing the cut piece in water and then bringing the cut parts into close contact and leaving them at room temperature. can do.

本発明の製造方法における「ホスト基」とは、下記式(I)で示される化合物のことをいう。 The “host group” in the production method of the present invention refers to a compound represented by the following formula (I).

ここで、X1はシクロデキストリン(CD)であれば良く、α-CD、β-CD、γ-CD又はこれらの化学修飾体であれば良い。このようなCDの化学修飾体として、例えば、ヒドロキシプロピル化α-CD、ヒドロキシプロピル化β-CD、ヒドロキシプロピル化γ-CD、メチル化α-CD、メチル化β-CD又はメチル化γ-CD等が挙げられる。Xは特にβ-CD又はβ-CDの化学修飾体であることが好ましい。 Here, X 1 may be cyclodextrin (CD), and may be α-CD, β-CD, γ-CD or a chemically modified product thereof. Examples of such chemically modified CDs include hydroxypropylated α-CD, hydroxypropylated β-CD, hydroxypropylated γ-CD, methylated α-CD, methylated β-CD or methylated γ-CD. Etc. X is particularly preferably β-CD or a chemically modified form of β-CD.

Yはハロゲン原子であれば良く、例えば、塩素、臭素又はヨウ素等が挙げられる。Yは特に塩素であることが好ましい。 Y may be a halogen atom, and examples thereof include chlorine, bromine, iodine and the like. Particularly preferably, Y is chlorine.

R1は水素、炭素数1〜4のアルキル基又は炭素数6〜8のアリール基であれば良く、例えば、メチル基、エチル基又はフェニル基等が挙げられる。R1は特に水素であることが好ましい。 R 1 may be hydrogen, an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 8 carbon atoms, and examples thereof include a methyl group, an ethyl group and a phenyl group. R 1 is particularly preferably hydrogen.

このような本発明の「ホスト基」はモノクロロトリアジニル-β-シクロデキストリン(MCT-β-CD)であることが特に好ましい。MCT-β-CDは従来知られているいずれものを用いてもよく、独自に調製したものや、市販のMCTCD(株式会社シクロケムバイオ)等を用いても良い。
本発明のホスト基として、MCT-β-CDを用いる場合、DS値(Degree of substitution)を調節して用いることが好ましい。このDS値は0より大きく3.0以下であれば良い。さらに0.14〜0.63に調節することが好ましく、特に0.14に調節して用いることが好ましい。
It is particularly preferred that such a “host group” of the present invention is monochlorotriazinyl-β-cyclodextrin (MCT-β-CD). As MCT-β-CD, any conventionally known MCT-β-CD may be used, or an independently prepared one or a commercially available MCTCD (Cyclochem Bio Inc.) may be used.
When MCT-β-CD is used as the host group of the present invention, it is preferable to adjust the DS value (Degree of substitution) before use. This DS value should be greater than 0 and less than or equal to 3.0. Further, it is preferably adjusted to 0.14 to 0.63, and particularly preferably adjusted to 0.14 for use.

本発明の製造方法における「ゲスト基」とは、下記式(II)で示される化合物のことをいう。 The "guest group" in the production method of the present invention means a compound represented by the following formula (II).

このような本発明の「ゲスト基」はアダマンチル基であることが特に好ましい。本発明のハイドロゲルの製造にあたり、ゲスト基を有する化合物であればいずれのものも用いることができる。このような化合物として、例えば、アダマンタンカルボン酸(Ad-COOH)が挙げられる。Ad-COOHは従来知られているいずれものを用いてもよく、独自に調製したものや、市販のAd-COOH(東京化成工業株式会社)等を用いても良い。 It is particularly preferable that such a "guest group" of the present invention is an adamantyl group. In producing the hydrogel of the present invention, any compound having a guest group can be used. Examples of such a compound include adamantanecarboxylic acid (Ad-COOH). As the Ad-COOH, any conventionally known one may be used, or an independently prepared one, a commercially available Ad-COOH (Tokyo Chemical Industry Co., Ltd.) or the like may be used.

本発明の製造方法における「アミン系ポリマー」とは、下記式(III)で示される化合物のことをいう。 The “amine-based polymer” in the production method of the present invention refers to a compound represented by the following formula (III).

このような「アミン系ポリマー」として例えば、ポリアリルアミン(PAA)(登録商標)、ポリジアリルアミン、アリルアミンもしくはジアリルアミンで合成される共重合体、ポリエチレンイミン(PEI)、キトサン、ポリペプチド、又はたんぱく質などに代表される求核性を示すアミノ基を有する高分子等が挙げられる。
本発明の「アミン系ポリマー」はポリアリルアミン(PAA)(登録商標)であることが特に好ましい。ポリアリルアミン(PAA)(登録商標)は従来知られているいずれものを用いてもよく、独自に調製したものや、(PAA-15C(平均分子量15,000、ニットーボーメディカル株式会社)、PAA-HCL-10L(平均分子量150,000、ニットーボーメディカル株式会社)等の市販のものを用いても良い。PAA-HCL-10Lを用いる場合は、アルカリ性にして用いることが好ましい。
Examples of such "amine-based polymer" include polyallylamine (PAA) (registered trademark), polydiallylamine, copolymers synthesized with allylamine or diallylamine, polyethyleneimine (PEI), chitosan, polypeptide, protein, etc. Examples thereof include polymers having an amino group showing nucleophilicity.
The "amine-based polymer" of the present invention is particularly preferably polyallylamine (PAA) (registered trademark). As the polyallylamine (PAA) (registered trademark), any of the conventionally known ones may be used, and those that are independently prepared (PAA-15C (average molecular weight 15,000, Nitto Bo Medical Co., Ltd.), PAA-HCL-10L A commercially available product such as (average molecular weight 150,000, Nitto Bo Medical Co., Ltd.) may be used, and when PAA-HCL-10L is used, it is preferable to make it alkaline.

本発明の「ゲルの製造方法」は縮合剤を用いて行うことが好ましく、特に、次のA又はBのいずれかを縮合剤とすることが好ましい。
A.4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)
B.2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン(CDMT)及びN-メチルモルホリン(NMM)
The "gel production method" of the present invention is preferably carried out using a condensing agent, and it is particularly preferable to use either A or B below as the condensing agent.
A. 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM)
B. 2-Chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and N-methylmorpholine (NMM)

以下に実施例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例、比較例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples and comparative examples.

本発明の実施例、比較例等で使用する試料を次に示した。以下、単に略語で示す場合がある。
<試料>
1)モノクロロトリアジニル-β-シクロデキストリン(MCTCD、株式会社シクロケムバイオ)
2)ジエチルアミン(DEA、富士フィルム和光純薬株式会社)
3)アダマンタンカルボン酸(Ad-COOH、東京化成工業株式会社)
4)ポリアリルアミン(登録商標)
(1)PAA-15C(平均分子量15,000、ニットーボーメディカル株式会社)
(2)PAA-HCL-10L(平均分子量150,000、ニットーボーメディカル株式会社)
5)4-メチルモルホリン(NMM、東京化成工業株式会社)
6)2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン(CDMT、東京化成工業株式会社)
7)ポリエチレンイミン(PEI、平均分子量70,000、富士フィルム和光純薬株式会社)
The samples used in Examples and Comparative Examples of the present invention are shown below. Hereinafter, they may be simply indicated by abbreviations.
<Sample>
1) Monochlorotriazinyl-β-cyclodextrin (MCTCD, Cyclochem Bio Inc.)
2) Diethylamine (DEA, Fujifilm Wako Pure Chemical Industries, Ltd.)
3) Adamantanecarboxylic acid (Ad-COOH, Tokyo Chemical Industry Co., Ltd.)
4) Polyallylamine (registered trademark)
(1) PAA-15C (average molecular weight 15,000, Nitto Bo Medical Co., Ltd.)
(2) PAA-HCL-10L (average molecular weight 150,000, Nitto Bo Medical Co., Ltd.)
5) 4-Methylmorpholine (NMM, Tokyo Chemical Industry Co., Ltd.)
6) 2-Chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, Tokyo Chemical Industry Co., Ltd.)
7) Polyethyleneimine (PEI, average molecular weight 70,000, Fujifilm Wako Pure Chemical Industries, Ltd.)

8)4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム クロライド n-ハイドレート
(1)DMT-MM(富士フィルム和光純薬株式会社)
(2)独自に調整したDMT-MM
<DMT-MMの調整>
三角フラスコ(50 mL)に、NMM 609mg(6.02mmol)を量り取り、そこに水19.35mLを加えた。この溶液に、CDMT 1.06g(6.04mmol)を添加し、マグネチックスターラーで1時間攪拌することで、DMT-MMを調整した。反応の進行は、UVスペクトルを測定することで確認した。
8) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (1) DMT-MM (Fuji Film Wako Pure Chemical Industries, Ltd.)
(2) Originally adjusted DMT-MM
<Adjustment of DMT-MM>
In an Erlenmeyer flask (50 mL), 609 mg (6.02 mmol) of NMM was weighed, and 19.35 mL of water was added thereto. To this solution, 1.06 g (6.04 mmol) of CDMT was added and stirred with a magnetic stirrer for 1 hour to adjust DMT-MM. The progress of the reaction was confirmed by measuring the UV spectrum.

〔実施例1〕
1.ハイドロゲルの製造方法(1)
1)DEAによるMCT-β-CDのDS値の調節
メスフラスコ(50mL)に、MCTCD 22.14g(0.0087mol)を量り取り、水を加え全量を50mLとした。これを三角フラスコに移し、DEA 1.92g(0.026mol)を添加し、遮光、室温で40時間攪拌させることでMCT-β-CD-DEAを得た。反応の進行状態は、UVスペクトルを測定することで確認した。また、この反応液のpHが12以上を保つよう、適宜1N水酸化ナトリウムを滴下した。この処理によりDS値を0.14に調節したMCT-β-CDを得た。
[Example 1]
1. Method for producing hydrogel (1)
1) Adjustment of DS value of MCT-β-CD by DEA 22.14 g (0.0087 mol) of MCTCD was weighed into a volumetric flask (50 mL), and water was added to bring the total volume to 50 mL. This was transferred to an Erlenmeyer flask, 1.92 g (0.026 mol) of DEA was added, and MCT-β-CD-DEA was obtained by stirring at room temperature for 40 hours while shielding from light. The progress of the reaction was confirmed by measuring the UV spectrum. In addition, 1N sodium hydroxide was appropriately added dropwise so that the pH of the reaction solution was kept at 12 or higher. By this treatment, MCT-β-CD whose DS value was adjusted to 0.14 was obtained.

2)ハイドロゲルの製造
上記1)において調製したMCT-β-CD-DEA反応液をビーカーに量り取り、Ad-COOHを添加し、溶解させた。これとは別のビーカーに、15% PAA-15Cを量り取り、そこに、MCT-β-CD-DEAとAd-COOHの水溶液を滴下した。DMT-MMをAd-COOHの2モル当量なるように添加し、溶解させ、室温で一晩静置し、ハイドロゲルA〜Cを得た。各ハイドロゲルの製造にあたり、使用したMCT-β-CD-DEA反応液、Ad-COOH及び15% PAA-15Cの添加量を表1に示した。
2) Production of hydrogel The MCT-β-CD-DEA reaction liquid prepared in 1) above was weighed into a beaker, and Ad-COOH was added and dissolved. In a beaker other than this, 15% PAA-15C was weighed, and an aqueous solution of MCT-β-CD-DEA and Ad-COOH was added dropwise thereto. DMT-MM was added so as to be 2 molar equivalents of Ad-COOH, dissolved, and allowed to stand at room temperature overnight to obtain hydrogels A to C. Table 1 shows the addition amounts of the MCT-β-CD-DEA reaction solution, Ad-COOH and 15% PAA-15C used in the production of each hydrogel.

各ハイドロゲルのMCT-β-CD、Ad-COOH及びPAAのモノマー単位(mol%)の比率(MCT-β-CD:Ad-COOH:PAA)を表2に示した。また、表2に記載のモノマー単位(mol%)の比率となるように、MCT-β-CD、Ad-COOH及びPAAを用いた比較品a〜gも製造した。 Table 2 shows the ratio (MCT-β-CD:Ad-COOH:PAA) of the monomer units (mol%) of MCT-β-CD, Ad-COOH and PAA of each hydrogel. Comparative products a to g using MCT-β-CD, Ad-COOH and PAA were also produced so that the ratio of the monomer units (mol%) shown in Table 2 was obtained.

さらに、各ハイドロゲルや比較品に対して、濃度が半分(1/2)となるように水で希釈したMCT-β-CD反応液(1/2)、Ad-COOH(1/2)及びPAA(1/2)を用いてハイドロゲルA1/2〜C1/2を製造した。
即ち、ハイドロゲルA1/2〜C1/2は、MCT-β-CD-DEA反応液(1/2)にAd-COOH(1/2)を溶解させた水溶液を15% PAA-15C(1/2)を入れたビーカーに滴下し、これにDMT-MM 101mg(0.37mmol)を添加し、溶解させ、室温で一晩静置することで得た。また、水の替わりに、濃度が半分(1/2)となるようにエタノールで希釈したMCT-β-CD反応液(1/2et)、Ad-COOH(1/2et)及びPAA(1/2et)を用いて同様の手順によりハイドロゲルBetも製造した。
Furthermore, MCT-β-CD reaction solution (1/2), Ad-COOH (1/2) and diluted with water to half the concentration of each hydrogel and comparative product. Hydrogels A1 /2- C1 /2 were prepared using PAA (1/2).
That is, the hydrogel A 1/2 to C 1/2 is a 15% PAA-15C (MCT-β-CD-DEA reaction solution (1/2) prepared by dissolving Ad-COOH (1/2) in an aqueous solution. It was added dropwise to a beaker containing 1/2), 101 mg (0.37 mmol) of DMT-MM was added and dissolved, and the mixture was allowed to stand at room temperature overnight to obtain it. Also, instead of water, MCT-β-CD reaction solution (1/2et), Ad-COOH (1/2et) and PAA (1/2et) diluted with ethanol so that the concentration becomes half (1/2). The hydrogel Bet was also manufactured by the same procedure.

2.ゲル化の確認
上記1において製造した各ハイドロゲル及び比較品のゲル化については次のように判断した。
即ち、室温で一晩静置して得た各ハイドロゲル又は比較品を含むビーカーを倒置させた際にサンプルが落下しなければゲル化している(○)、サンプルが落下すればゲル化していない(×)とした。
2. Confirmation of Gelation The gelation of each hydrogel and the comparative product produced in the above 1 was judged as follows.
That is, if the sample does not drop when the beaker containing each hydrogel or comparative product obtained by standing overnight at room temperature is inverted, it is gelated (○), if the sample is dropped, it is not gelled (X)

3.自己修復能の確認
上記1において製造した各ハイドロゲル及び比較品をそれぞれカッターで切断した後シャーレに入れ、水1mL程を添加して切断面を湿らせた。この切断面を再度密着させ、室温で静置した。その後任意の時間後に再度接着させた切断面の一方をピンセットで持ち上げ、修復を確認した。持ち上げた際に揺らしても落下せず接着面に亀裂が見られないことが確認できれば、自己修復能がある(○)、揺らした際に接着面に再度亀裂が見られた場合は自己修復能が弱い(△)、その他の場合は自己修復能がない(×)と判断した。
3. Confirmation of Self-Healing Ability Each hydrogel and comparative product produced in the above 1 were cut with a cutter and then placed in a petri dish, and about 1 mL of water was added to wet the cut surface. The cut surface was brought into close contact again and left at room temperature. Then, after an arbitrary time, one of the cut surfaces re-bonded was lifted with tweezers to confirm repair. If it can be confirmed that it does not fall even if it shakes when lifted and no cracks are seen on the adhesive surface (○), it has self-healing ability, and if cracks are seen again on the adhesive surface when it is shaken, it is self-healing ability. Was judged to be weak (△), and in other cases to have no self-repairing ability (×).

4.結果
各ハイドロゲル及び比較品のゲル化と及び自己修復能の有無を表2に示した。自己修復能は切断面を再度密着させ、室温で4時間静置した場合の結果である。その結果、ハイドロゲルA〜Cはいずれもゲル化しており、自己修復能があることが確認できた。さらに、ハイドロゲルA1/2及びハイドロゲルBetにおいてもゲル化しており自己修復能があることが確認できた。
4. Results Table 2 shows the presence or absence of gelation and self-repairing ability of each hydrogel and the comparative product. The self-healing ability is the result when the cut surfaces are brought into close contact with each other again and allowed to stand at room temperature for 4 hours. As a result, it was confirmed that all of the hydrogels A to C were gelled and had self-repair ability. Further, it was confirmed that the hydrogel A 1/2 and the hydrogel Bet were also gelated and had self-repair ability.

従って、本発明のハイドロゲルの製造にあたり、縮合剤としてDMT‐MMを用いる場合、MCT-β-CD、Ad-COOH及びPAA(PAA-15C)のモノマー単位(mol%)の比率は4:4:92、5:5:90又は6:6:88とすることが好ましいことが示された。
さらに、水で希釈して濃度を半分としたMCT-β-CD(1/2)、Ad-COOH(1/2)及びPAA(1/2)を用いてハイドロゲルを製造する場合は、これらのモノマー単位(mol%)の比率が4:4:92であることが好ましく、エタノールで希釈して濃度を半分としたMCT-β-CD(1/2et)、Ad-COOH(1/2et)及びPAA(1/2et)を用いてハイドロゲルを製造する場合は、これらのモノマー単位(mol%)の比率が5:5:90であることが好ましいことも確認できた。
Therefore, in the production of the hydrogel of the present invention, when DMT-MM is used as a condensing agent, the ratio of monomer units (mol%) of MCT-β-CD, Ad-COOH and PAA (PAA-15C) is 4:4. It was shown that it is preferable to use :92, 5:5:90 or 6:6:88.
Furthermore, when producing hydrogels using MCT-β-CD (1/2), Ad-COOH (1/2) and PAA (1/2) diluted in water to half the concentration, The ratio of the monomer units (mol%) is preferably 4:4:92, and the concentration is halved by diluting with MCT-β-CD (1/2et), Ad-COOH (1/2et) It was also confirmed that when a hydrogel is produced using PAA (1/2et), the ratio of these monomer units (mol%) is preferably 5:5:90.

[試験例]
自己修復能の検討
まず、ハイドロゲルBを図1A.に示すように6分割した。次に図1A.中のア、イ、ウの各2片について、次のように処理した後室温で一晩静置した。ハイドロゲルの自己修復能を確認したところ、図1B.に示されるようにピンセットでつまんで持ち上げても割れることなくイの2片のみが接着していた。
アではβ-シクロデキストリン水溶液に含まれるβ-CDがPAAに付加されたアダマンタンを包接したことにより再包接が生じず、ウではAd-COOH水溶液に含まれるアダマンタンがPAAに付加されたβ-CDに包接されたことにより再包接が生じなかったものと推察された。
従ってこの結果より、本発明におけるハイドロゲルの形成及び自己修復能はもともとハイドロゲルに含まれるβ-CDが同じくハイドロゲルに含まれるアダマンタンを包接することによって行われることが確認できた。
ア:各片をそれぞれβ-シクロデキストリン水溶液(10mM)に2分間浸した後、2片の切断面を再度密着させた。
イ:各片をそれぞれ水に2分間浸した後、2片の切断面を再度密着させた。
ウ:各片をそれぞれAd-COOH水溶液(10mM)に2分間浸した後、2片の切断面を再度密着させた。
[Test example]
Examination of self-repair ability First, hydrogel B was divided into 6 as shown in Fig. 1A. Next, two pieces of each of A, A, and C in FIG. 1A. were treated as follows, and then left overnight at room temperature. When the self-repairing ability of the hydrogel was confirmed, as shown in Fig. 1B., even if it was picked up with tweezers and lifted, only two pieces of a were adhered without breaking.
In A, β-CD contained in β-cyclodextrin aqueous solution did not cause re-inclusion due to inclusion of adamantane added to PAA. -It is speculated that re-inclusion did not occur because it was included in the CD.
Therefore, from these results, it was confirmed that the hydrogel formation and self-repairing ability in the present invention were performed by including β-CD originally contained in the hydrogel with adamantane also included in the hydrogel.
A: Each piece was immersed in a β-cyclodextrin aqueous solution (10 mM) for 2 minutes, and then the cut surfaces of the two pieces were brought into close contact with each other again.
B: After immersing each piece in water for 2 minutes, the cut surfaces of the two pieces were brought into close contact again.
C: Each piece was immersed in an Ad-COOH aqueous solution (10 mM) for 2 minutes, and then the cut surfaces of the two pieces were brought into close contact with each other again.

〔実施例2〕
1.ハイドロゲルの製造方法(2)
1)PAAの調製
40.2% PAA-HCL-10Lを、10Nに調整した水酸化ナトリウムを用いてアルカリ性(pH13)にした後、水でポリアリルアミン(登録商標)濃度を15%に調製した。
[Example 2]
1. Hydrogel production method (2)
1) Preparation of PAA
40.2% PAA-HCL-10L was made alkaline (pH 13) with sodium hydroxide adjusted to 10 N, and then the polyallylamine (registered trademark) concentration was adjusted to 15% with water.

2)ハイドロゲルの製造
実施例1、1.1)と同様の方法により調製したMCT-β-CD-DEA反応液3.01mL(内、MCT-β-CDを0.37mmol含む)をビーカーに量り取り、Ad-COOH 66mg(0.37mmol)を添加し、溶解させた。これとは別のビーカーに、上記1)において調製した15% PAA-HCL-10L 2.5g(6.58mmol)を量り取り、そこに、MCT-β-CD-DEAとAd-COOHの水溶液を滴下した。DMT-MM 202mg(0.73mmol)を添加し、溶解させ、室温で一晩静置し、ハイドロゲルDを得た。また、表3に記載のモノマー単位(mol%)の比率(MCT-β-CD:Ad-COOH:PAA)となるように、MCT-β-CD、Ad-COOH及びPAAを用いた比較品h〜kも製造した。
2) Production of hydrogel 3.01 mL of MCT-β-CD-DEA reaction solution (including 0.37 mmol of MCT-β-CD) prepared by the same method as in Example 1, 1.1) was weighed into a beaker. 66 mg (0.37 mmol) of Ad-COOH was added and dissolved. Into another beaker, weigh 2.5 g (6.58 mmol) of 15% PAA-HCL-10L prepared in 1) above, and add an aqueous solution of MCT-β-CD-DEA and Ad-COOH dropwise to it. .. 202 mg (0.73 mmol) of DMT-MM was added, dissolved and allowed to stand at room temperature overnight to obtain hydrogel D. Further, a comparative product using MCT-β-CD, Ad-COOH and PAA so that the ratio of monomer units (mol%) (MCT-β-CD:Ad-COOH:PAA) shown in Table 3 was obtained. Also produced ~k.

さらに、ハイドロゲルや各比較品に対して、濃度が半分(1/2)となるように水で希釈したMCT-β-CD反応液(1/2)、Ad-COOH(1/2)及び上記1)において調製した15% PAA-HCL-10L(1/2)を用いてハイドロゲルD1/2、比較品h1/2〜k1/2を製造した。
即ち、ハイドロゲルD1/2、比較品h1/2〜k1/2は、MCT-β-CD-DEA反応液(1/2)にAd-COOH(1/2)を溶解させた水溶液を15% PAA-HCL-10L(1/2)を入れたビーカーに滴下し、これにDMT-MM 202mg(0.73mmol)を添加し、溶解させ、室温で一晩静置することで得た。
Furthermore, MCT-β-CD reaction solution (1/2), Ad-COOH (1/2) and diluted with water to half the concentration of hydrogel and each comparative product. Hydrogel D 1/2 and comparative products h 1/2 to k 1/2 were produced using 15% PAA-HCL-10L (1/2) prepared in 1) above.
That is, hydrogel D 1/2 and comparative products h 1/2 to k 1/2 are aqueous solutions of Ad-COOH (1/2) dissolved in MCT-β-CD-DEA reaction solution (1/2). Was dropped into a beaker containing 15% PAA-HCL-10L (1/2), 202 mg (0.73 mmol) of DMT-MM was added and dissolved, and the mixture was allowed to stand at room temperature overnight.

2.自己修復能の確認
実施例1、2.と同様の方法により、製造したハイドロゲル及び各比較品の自己修復能を確認した。その結果、表3に示すように、ハイドロゲルDはゲル化しており、やや低いが自己修復能もあることが確認できた。一方、比較品h〜k、比較品j1/2、比較品k1/2はゲル化するものの自己修復能はなく、その他の比較品はゲル化せず自己修復能もなかった。
従って、本発明のハイドロゲルの製造にあたり、縮合剤としてDMT‐MMを用いる場合、MCT-β-CD、Ad-COOH及びPAA(PAA-HCL-10L)のモノマー単位(mol%)の比率は1:1:98とすることが好ましいことが示された。
2. Confirmation of self-repairing ability Examples 1, 2. By the same method as described above, the self-repair ability of the produced hydrogel and each comparative product was confirmed. As a result, as shown in Table 3, it was confirmed that the hydrogel D was gelled and had a self-repairing ability although it was slightly low. On the other hand, the comparative products h to k, the comparative product j 1/2 , and the comparative product k 1/2 did not gel but did not self-repair, and the other comparative products did not gel and did not self-repair.
Therefore, in the production of the hydrogel of the present invention, when DMT-MM is used as the condensing agent, the ratio of the monomer units (mol%) of MCT-β-CD, Ad-COOH and PAA (PAA-HCL-10L) is 1 It was shown that the ratio of 1:1:98 is preferable.

〔比較例〕
ハイドロゲルの製造方法の検討
実施例1と同様に、MCT-β-CD(0.37mmol)、Ad-COOH 66mg(0.37mmol)、15% PAA-15C 2.5g(6.58mmol)、DMT-MM 202mg(0.73mmol)を用い、次のエ〜カのいずれかの方法でハイドロゲルが製造できるか検討した。
1.方法エ
DMT-MM水溶液に15% PAA-15Cを添加し、溶解させた。これにAd-COOHを添加した。その結果、白い析出物が発生し、ゲルは製造できなかった。
2.方法オ
15% PAA-15Cに水を加えて溶解させた。これにAd-COOHを加えた結果、白い析出物が発生し、ゲルは製造できなかった。
3.方法カ
Ad-COOHに水を加えて溶解させた。これにNaOH水溶液を加え、その後、15% PAA-15Cを加えた。さらにDMT-MMを加えた結果、白い析出物が発生し、ゲルは製造できなかった。
(Comparative example)
Examination of production method of hydrogel Similar to Example 1, MCT-β-CD (0.37 mmol), Ad-COOH 66 mg (0.37 mmol), 15% PAA-15C 2.5 g (6.58 mmol), DMT-MM 202 mg ( 0.73 mmol) was used to examine whether the hydrogel could be produced by any of the following methods.
1. Method d
15% PAA-15C was added to the DMT-MM aqueous solution and dissolved. To this was added Ad-COOH. As a result, a white precipitate was generated and a gel could not be manufactured.
2. Method Oh
Water was added to 15% PAA-15C to dissolve it. As a result of adding Ad-COOH to this, a white precipitate was generated and a gel could not be produced.
3. Method
Water was added to Ad-COOH and dissolved. An aqueous NaOH solution was added thereto, and then 15% PAA-15C was added. As a result of adding DMT-MM, a white precipitate was generated and a gel could not be produced.

上記方法エ〜カではいずれもMCT-βCD反応液を添加し、反応させる以前に析出物が生じてしまうため、ゲルの製造自体が困難であった。従って、これらの結果より本願発明のハイドロゲルの製造には次の順番で処理を行うことが重要であることが確認できた。
a. ホスト基及びゲスト基を混合する工程
b.上記aの工程で混合したホスト基、ゲスト基アミン系ポリマーに混合させる工程
c.上記bの工程を経たものにさらに縮合剤を添加する工程。
In any of the above methods d) to (c), the MCT-βCD reaction solution was added and a precipitate was formed before the reaction, so that the gel production itself was difficult. Therefore, it was confirmed from these results that it is important to perform the treatments in the following order in order to produce the hydrogel of the present invention.
a. Step of mixing host group and guest group
b. Step of mixing with the host group and guest group amine-based polymer mixed in the above step a
c. A step of further adding a condensing agent to the product obtained through the above step b.

〔実施例3〕
1.ハイドロゲルの製造方法(3)
表4に記載の比率(mol%)(MCT-β-CD:Ad-COOH:PAA(モノマー単位))となるように、MCT-β-CD、Ad-COOH及びPAAを用い、さらに縮合剤としてCDMTおよびNMMを用いてハイドロゲルの製造を行った。
即ち、MCT-β-CD-DEA反応液をビーカーに量り取り、Ad-COOHを添加し、溶解させた。これとは別のビーカーに、15% PAA-15Cを量り取り、そこに、MCT-β-CD-DEAとAd-COOHの水溶液を滴下した。CDMT、又はCDMT及びNMMを添加し、溶解させ、室温で一晩静置し、ハイドロゲルE、Fを得た。また、CDMT、又はCDMT及びNMM、さらにNMMのみを添加した比較品l〜oも製造した。
[Example 3]
1. Method for producing hydrogel (3)
MCT-β-CD, Ad-COOH and PAA were used so that the ratio (mol%) (MCT-β-CD:Ad-COOH:PAA (monomer unit)) described in Table 4 was obtained, and as a condensing agent. Hydrogels were produced using CDMT and NMM.
That is, the MCT-β-CD-DEA reaction solution was weighed into a beaker and Ad-COOH was added and dissolved. In a beaker other than this, 15% PAA-15C was weighed, and an aqueous solution of MCT-β-CD-DEA and Ad-COOH was added dropwise thereto. CDMT, or CDMT and NMM was added, dissolved, and allowed to stand at room temperature overnight to obtain hydrogels E and F. In addition, CDMT, or CDMT and NMM, and comparative products l to o to which only NMM was added were also manufactured.

2.自己修復能の確認
実施例1、2.と同様の方法により、製造した各ハイドロゲル及び各比較品の自己修復能を確認した。その結果、表4に示すように、ハイドロゲルEはゲル化しており、自己修復能を示した。又はイドロゲルFもゲル化しており、やや低いが自己修復能もあることが確認できた。一方、比較品l〜oはゲル化せず自己修復能もなかった。
従って、本発明のハイドロゲルの製造にあたり、縮合剤としてCDMT及びNMMを用いる場合、MCT-β-CD、Ad-COOH及びPAA(PAA-15C)のモノマー単位(mol%)の比率は4:4:92とすることが好ましいことが示された。また縮合剤としてCDMTを用いる場合は5:5:90とすることが好ましいことが確認できた。
2. Confirmation of self-repairing ability Examples 1, 2. By the same method as described above, the self-repair ability of each produced hydrogel and each comparative product was confirmed. As a result, as shown in Table 4, hydrogel E was gelated and showed self-repair ability. Alternatively, idrogel F was also gelled, and it was confirmed that it also has a self-repairing ability although it is somewhat low. On the other hand, the comparative products l to o did not gel and had no self-repair ability.
Therefore, in the production of the hydrogel of the present invention, when CDMT and NMM are used as the condensing agent, the ratio of monomer units (mol%) of MCT-β-CD, Ad-COOH and PAA (PAA-15C) is 4:4. It was shown that: 92 is preferable. Further, it was confirmed that when CDMT is used as the condensing agent, it is preferable to set it to 5:5:90.

本発明の実施例、比較例等から示されるように、MCT-β-CD、DEA、Ad-COOH及びPAAを用い、縮合剤としてDMT-MM又はCDMTとNMMを用いることにより、自己修復能を有するハイドロゲルが室温で簡便かつ安全にワンポット合成できることが確認できた。 Examples of the present invention, as shown from Comparative Examples, etc., using MCT-β-CD, DEA, Ad-COOH and PAA, by using DMT-MM or CDMT and NMM as a condensing agent, self-repair ability It was confirmed that the hydrogel possessed could be easily and safely synthesized in one pot at room temperature.

本発明により簡便かつ安全に自己修復能を有するゲルを製造することが可能となった。本発明のゲルは優れた自己修復能を有するため、着脱可能な接着剤、塗料、コーティングフィルム、ハードコート剤の代替、衝撃吸収剤等の様々な用途に使用できる。
According to the present invention, it becomes possible to easily and safely produce a gel having self-repairing ability. Since the gel of the present invention has an excellent self-repairing ability, it can be used for various applications such as removable adhesives, paints, coating films, substitutes for hard coating agents, and shock absorbers.

Claims (10)

ホスト基及びゲスト基をアミン系ポリマーに付加させる工程を含むゲルの製造方法。 A method for producing a gel, comprising the step of adding a host group and a guest group to an amine-based polymer. ホスト基が下記式(I)で示される化合物である請求項1に記載のゲルの製造方法。
The method for producing a gel according to claim 1, wherein the host group is a compound represented by the following formula (I).
ホスト基がモノクロロトリアジニル-β-シクロデキストリンである請求項1又は2に記載のゲルの製造方法。 The method for producing a gel according to claim 1, wherein the host group is monochlorotriazinyl-β-cyclodextrin. ゲスト基が下記式(II)で示される化合物である請求項1〜3のいずれかに記載のゲルの製造方法。
The method for producing a gel according to claim 1, wherein the guest group is a compound represented by the following formula (II).
ゲスト基がアダマンチル基である請求項1〜4のいずれかに記載のゲルの製造方法。 The method for producing a gel according to claim 1, wherein the guest group is an adamantyl group. アミン系ポリマーが下記式(III)で示される化合物である請求項1〜5のいずれかに記載のゲルの製造方法。
The method for producing a gel according to claim 1, wherein the amine polymer is a compound represented by the following formula (III).
アミン系ポリマーがポリアリルアミン(登録商標)又はポリエチレンイミンである請求項1〜6のいずれかに記載のゲルの製造方法。 The method for producing a gel according to claim 1, wherein the amine-based polymer is polyallylamine (registered trademark) or polyethyleneimine. ホスト基及びゲスト基をアミン系ポリマーに付加させる工程が、水及び/又は溶媒中でホスト基、ゲスト基、及びアミン系ポリマーを混合する工程である請求項1〜7のいずれかに記載のゲルの製造方法。 The gel according to any one of claims 1 to 7, wherein the step of adding the host group and the guest group to the amine-based polymer is a step of mixing the host group, the guest group, and the amine-based polymer in water and/or a solvent. Manufacturing method. 溶媒がアルコールである請求項8に記載のゲルの製造方法。 The method for producing a gel according to claim 8, wherein the solvent is alcohol. 次のA又はBのいずれかを縮合剤として用いる請求項1〜9のいずれかに記載のゲルの製造方法。
A.4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド
B.2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン及びN-メチルモルホリン
The method for producing a gel according to claim 1, wherein the following A or B is used as a condensing agent.
A. 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
B. 2-Chloro-4,6-dimethoxy-1,3,5-triazine and N-methylmorpholine
JP2019015251A 2019-01-31 2019-01-31 Gel manufacturing method Active JP7189611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015251A JP7189611B2 (en) 2019-01-31 2019-01-31 Gel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015251A JP7189611B2 (en) 2019-01-31 2019-01-31 Gel manufacturing method

Publications (2)

Publication Number Publication Date
JP2020122090A true JP2020122090A (en) 2020-08-13
JP7189611B2 JP7189611B2 (en) 2022-12-14

Family

ID=71992173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015251A Active JP7189611B2 (en) 2019-01-31 2019-01-31 Gel manufacturing method

Country Status (1)

Country Link
JP (1) JP7189611B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543243A (en) * 1999-04-29 2002-12-17 ビーエーエスエフ アクチェンゲゼルシャフト Superabsorbent polymer containing odor control compound
WO2016163550A1 (en) * 2015-04-10 2016-10-13 国立大学法人大阪大学 Self-repairing material and manufacturing method therefor
JP2017071710A (en) * 2015-10-08 2017-04-13 国立大学法人大阪大学 Self-repairing material and production method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543243A (en) * 1999-04-29 2002-12-17 ビーエーエスエフ アクチェンゲゼルシャフト Superabsorbent polymer containing odor control compound
WO2016163550A1 (en) * 2015-04-10 2016-10-13 国立大学法人大阪大学 Self-repairing material and manufacturing method therefor
JP2017071710A (en) * 2015-10-08 2017-04-13 国立大学法人大阪大学 Self-repairing material and production method of the same

Also Published As

Publication number Publication date
JP7189611B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US10329386B2 (en) Self-restoring macromolecular material and production method for same
Perera et al. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels
Zhao et al. Tannin‐tethered gelatin hydrogels with considerable self‐healing and adhesive performances
Mota-Morales et al. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials
JP6239043B2 (en) Inclusion complex, gel with self-healing and shape memory
Kiuchi et al. Preparation and characterization of poly (ethylene glycol) crosslinked chitosan films
Low et al. The role of hydrogen bonding in alginate/poly (acrylamide-co-dimethylacrylamide) and alginate/poly (ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels
Huang et al. A simple and versatile method for the construction of nearly ideal polymer networks
JP2020073660A (en) Macromolecular material, method for producing same, and polymerizable monomer composition
Zhang et al. Redox-and pH-responsive polymer gels with reversible sol–gel transitions and self-healing properties
JP2017071710A (en) Self-repairing material and production method of the same
JP7130446B2 (en) self-healing gel
Bingol et al. Stimuli‐responsive poly (hydroxyethyl methacrylate) hydrogels from carboxylic acid‐functionalized crosslinkers
Zhang et al. In situ synthesis of protein-loaded hydrogels via biocatalytic ATRP
JP7032941B2 (en) Self-healing gel
JP2020122090A (en) Method for manufacturing gel
Lee et al. pH and thermo‐responsive poly (N‐isopropylacrylamide) copolymer grafted to poly (ethylene glycol)
Fischer et al. Highly Swellable Hydrogels from Waterborne Poly (Vinylamine‐co‐Acetamide)
An et al. Self-healable hydrogels with NaHCO 3 degradability and a reversible gel–sol–gel transition from phenolic ester containing polymers
JP2008248224A (en) Ionic organic compound and manufacturing method thereof as well as hydrogelling agent comprising the ionic organic compound and hydrogel
JP2020122085A (en) Novel compound
JP4547620B2 (en) Method for producing crosslinked allylamine polymers
WO2022080408A1 (en) Composition
Mu et al. Spontaneous hydrogel formation through hydrophobic interactions in an ABA-type block copolymer composed of poly (2-methacryloyloxyethyl phosphorylcholine) and poly (n-butyl methacrylate) segments
JP7206612B2 (en) block copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7189611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150