JP2020118418A - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP2020118418A
JP2020118418A JP2019012239A JP2019012239A JP2020118418A JP 2020118418 A JP2020118418 A JP 2020118418A JP 2019012239 A JP2019012239 A JP 2019012239A JP 2019012239 A JP2019012239 A JP 2019012239A JP 2020118418 A JP2020118418 A JP 2020118418A
Authority
JP
Japan
Prior art keywords
side member
acoustic
space
partition wall
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019012239A
Other languages
Japanese (ja)
Inventor
健 金内
Takeshi Kaneuchi
健 金内
西村 浩一
Koichi Nishimura
浩一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019012239A priority Critical patent/JP2020118418A/en
Publication of JP2020118418A publication Critical patent/JP2020118418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Abstract

To realize a thermoacoustic engine that can shorten a loop cylinder and a waveguide cylinder to reduce the entire size, is applicable even to household use, and is easy to assemble.SOLUTION: An acoustic cylinder T has a cylindrical body K1 in which an internal space is partitioned into a one-side space L1a and the other-side space L1b along a cylinder axis direction, and the one-side space L1a and the other-side space L1b form a circulation propagation path in a form in which the one-side space L1a and the other-side space L1b are connected at both end portions in the cylinder axis direction. The cylindrical body K1 is configured such that a one-side member T1a and the other-side member T1h are jointed, which are divided in a cross section passing through all the circulation propagation paths of itself.SELECTED DRAWING: Figure 1

Description

本発明は、作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上設けると共に、前記原動機にて増幅された音響エネルギを電力又は熱に変換する音響エネルギ変換部を一つ以上設ける熱音響機関に関する。 The present invention provides an acoustic tube in which a working medium is filled and in which sound waves propagate, between a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the heater and the cooler. A thermoacoustic, in which at least one prime mover including a first regenerator that amplifies acoustic energy of sound waves is provided, and at least one acoustic energy conversion unit that converts the acoustic energy amplified by the prime mover into electric power or heat is provided. Regarding the institution.

従来、熱音響機関として、音響筒として循環伝播路を形成するループ筒が設けられ、当該ループ筒に対して、作動媒体を外部から加熱する加熱器と作動媒体を外部から冷却する冷却器と加熱器と冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を備える構成のものが知られている(特許文献1を参照)。 Conventionally, as a thermoacoustic engine, a loop cylinder that forms a circulation propagation path is provided as an acoustic cylinder, and a heater that heats the working medium from the outside and a cooler that heats the working medium from the outside are heated to the loop cylinder. A configuration including a prime mover including a first regenerator that amplifies acoustic energy of sound waves between a cooling device and a cooling device is known (see Patent Document 1).

特開2017−184457号公報JP, 2017-184457, A

当該熱音響機関では、エネルギ密度を高めるべく、システムの小型化が望まれているが、既存の配筒、エルボ、及びチーズを連結してループ筒を形成する場合、特にエルボ及びチーズの形状の制限により、ループ筒が長くなると共に大型化することが避けられない。当該ループ筒の長さが長いほど、原動機にて生成される音波の共振周波数が低くなるため(波長が長くなるため)、上述したループ筒に導波筒を連結する構成を採用する場合や、原動機にて増幅された音響エネルギを電力又は熱に変換する音響エネルギ変換部が設けられる共鳴筒を導波筒に連結する構成を採用する場合、導波筒及び共鳴筒を長くせざるを得ず、システムが大型化してしまうという問題があった。 In the thermoacoustic engine, in order to increase the energy density, downsizing of the system is desired, but in the case of forming a loop cylinder by connecting existing distribution pipes, elbows, and cheese, especially in the shapes of elbows and cheeses. Due to the limitation, it is inevitable that the loop cylinder becomes long and large. When the length of the loop cylinder is longer, the resonance frequency of the sound wave generated by the prime mover is lower (because the wavelength is longer). Therefore, when the configuration in which the waveguide cylinder is connected to the loop cylinder is adopted, When adopting a configuration in which a resonance tube provided with an acoustic energy conversion unit for converting acoustic energy amplified by a prime mover into electric power or heat is connected to a waveguide tube, the waveguide tube and the resonance tube must be lengthened. However, there was a problem that the system became large.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、音響筒の小型化を図ることができ、家庭用にも適用し得るもので、且つ組み付けが容易な熱音響機関を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoacoustic engine that can reduce the size of an acoustic tube, can be applied to homes, and can be easily assembled. To provide.

上記目的を達成するための熱音響機関は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上設けると共に、前記原動機にて増幅された音響エネルギを電力又は熱に変換する音響エネルギ変換部を一つ以上設ける熱音響機関であって、その特徴構成は、
前記音響筒は、筒軸心方向に沿って内部空間を一方側空間と他方側空間とに仕切られると共に、前記筒軸心方向の両端部位にて前記一方側空間と前記他方側空間とが連結する形態で前記一方側空間と前記他方側空間とが循環伝播路を形成する筒状本体を有し、
前記循環伝播路に少なくとも前記原動機が配設され、
前記筒状本体は、自身のすべての前記循環伝播路を通る断面にて分割される一方側部材と他方側部材とが接合されて構成されている点にある。
The thermoacoustic engine for achieving the above object is
An acoustic tube filled with a working medium and in which sound waves propagate, a heater for heating the working medium from the outside, a cooler for cooling the working medium from the outside, and acoustic energy of sound waves between the heater and the cooler. A thermoacoustic engine having at least one or more prime mover composed of a first regenerator for amplifying the electric power, and one or more acoustic energy converting part for converting acoustic energy amplified by the prime mover into electric power or heat. , Its characteristic composition is
The acoustic tube has an inner space partitioned into one side space and the other side space along the cylinder axis direction, and the one side space and the other side space are connected at both end portions in the cylinder axis direction. In the form, the one side space and the other side space have a cylindrical main body forming a circulation propagation path,
At least the prime mover is disposed in the circulation propagation path,
The tubular body is configured by joining one side member and the other side member, which are divided in a cross section passing through all the circulation propagation paths of the tubular body.

上記特徴構成によれば、筒状本体を、自身のすべての循環伝播路を通る断面にて分割される一方側部材と他方側部材とを接合して構成するから、循環伝播路を形成する際に、従来技術の如くエルボやチーズを用いる必要がなくなり、更には循環伝播路としてのループ筒の中央に形成されていた空間も必要なくなるため、筒状本体の小型化を図ることができる。更に、筒状本体の小型化により、共鳴周波数を高くでき(波長を短くでき)、循環伝播路を形成するループ筒に連結される場合がある導波筒及び当該導波筒に連結される場合がある共鳴筒をも短くすることができる。これにより、熱音響機関の小型化を図ることができ、家庭用にも適用し得る熱音響機関を実現できる。
尚、本発明にあっては、一方側部材と他方側部材とを接合して循環伝播路を形成する筒状部材を構成するから、当該筒状部材の内部に原動機や往復動タービン型発電機等を設置する際に、一方側部材と他方側部材とを分割した状態で設置することができ、それらの位置決めや設置の容易性を向上できる。
以上より、音響筒の小型化を図ることができ、家庭用にも適用し得るもので、且つ組み付けが容易な熱音響機関を実現できる。
According to the above characteristic configuration, the tubular main body is configured by joining the one-side member and the other-side member that are divided by the cross section that passes through all of the circulation propagation paths of itself, so when forming the circulation propagation path. In addition, it is not necessary to use elbow or cheese as in the prior art, and the space formed in the center of the loop cylinder as the circulation propagation path is not necessary, so that the cylindrical main body can be downsized. Further, due to the miniaturization of the tubular body, the resonance frequency can be increased (wavelength can be shortened), and the waveguide tube that may be connected to the loop tube that forms the circulation propagation path There is also a resonance cylinder that can be shortened. As a result, the thermoacoustic engine can be downsized, and the thermoacoustic engine applicable to home use can be realized.
In the present invention, the one-side member and the other-side member are joined to form a tubular member that forms a circulation propagation path. Therefore, a prime mover and a reciprocating turbine generator are provided inside the tubular member. When installing the etc., the one-side member and the other-side member can be installed in a divided state, and the easiness of positioning and installing them can be improved.
From the above, it is possible to realize a thermoacoustic engine which can be downsized and can be applied to household use and which can be easily assembled.

熱音響機関の更なる特徴構成は、
前記音響筒は、前記筒状本体に連通接続される導波筒を有し、
前記一方側部材と前記他方側部材との何れか一方に、前記導波筒を接合する接合開口部が設けられている点にある。
Further features of the thermoacoustic engine are:
The acoustic tube has a waveguide tube that is connected to the tubular body for communication.
A point is that a joint opening for joining the waveguide is provided in either one of the one-side member and the other-side member.

上記特徴構成によれば、一方側部材と他方側部材との何れか一方に、導波筒を接合する接合開口部が設けられているから、音響筒を形成する際に、一方側部材と他方側部材との接合部位に干渉することなく、一方側部材と他方側部材とから成る筒状本体に導波筒を接合することができ、安定した接合状態を実現できる。 According to the above-mentioned characteristic configuration, the joint opening for joining the waveguide tube is provided in either one of the one-side member and the other-side member. The waveguide tube can be joined to the tubular body composed of the one side member and the other side member without interfering with the joining portion with the side member, and a stable joined state can be realized.

熱音響機関の更なる特徴構成は、
前記筒状本体の前記内部空間には、前記一方側部材と前記他方側部材との接合状態において、前記内部空間を前記一方側空間と前記他方側空間とに仕切る仕切壁の一部を構成する一部仕切壁が前記一方側部材に設けられると共に、前記仕切壁の残部を構成する残部仕切壁が前記他方側部材に設けられ、
前記一方側部材と前記他方側部材との接合状態において、前記一部仕切壁と前記残部仕切壁との間に、シール部材が介装されている点にある。
Further features of the thermoacoustic engine are:
The internal space of the tubular main body constitutes a part of a partition wall that partitions the internal space into the one side space and the other side space when the one side member and the other side member are joined. A part of the partition wall is provided on the one side member, and a remaining part partition wall that constitutes the remaining part of the partition wall is provided on the other side member,
In the joined state of the one-side member and the other-side member, a seal member is interposed between the partial partition wall and the remaining partition wall.

これまで説明してきた音響筒としての筒状本体の構成にあっては、仕切壁を通過して一方側空間と他方側空間との間で音波が伝播することは、音響エネルギの減衰に繋がるため避けることが好ましい。しかしながら、筒状本体の構成上、一部仕切壁と残部仕切壁との間を溶接等により封止することはできない。
上記特徴構成によれば、一方側部材と他方側部材との接合状態において、一部仕切壁と残部仕切壁との間に、シール部材が介装されているから、溶接等を用いることのない比較的簡易な構成を採用しつつも、仕切壁を通過して一方側空間と他方側空間との間で音波が伝播することを良好に防止することができる。
尚、音響筒としての筒状本体の内部には使用状態において、所望の出力を得るべく一定以上の圧力(例えば1MPaG以上の圧力)がかけられることになるが、一方側空間と他方側空間とは同圧となるため、両者の間で一部仕切壁と残部仕切壁とが接合されて構成される仕切壁には高い耐圧は必要とされず、シール部材を介装するだけで、上述の効果を良好に発揮できる。
In the configuration of the tubular main body as the acoustic tube that has been described so far, propagation of sound waves through the partition wall between the one side space and the other side space leads to attenuation of acoustic energy. It is preferable to avoid it. However, due to the structure of the tubular body, it is not possible to seal the space between the partial partition wall and the remaining partition wall by welding or the like.
According to the above characteristic configuration, in the joined state of the one side member and the other side member, since the seal member is interposed between the partial partition wall and the remaining partition wall, welding or the like is not used. It is possible to favorably prevent the sound waves from passing through the partition wall and propagating between the one side space and the other side space while adopting a relatively simple configuration.
It should be noted that in the use state, a pressure of a certain level or more (for example, a pressure of 1 MPaG or more) is applied to the inside of the tubular main body as the acoustic tube, but the one side space and the other side space are Since the same pressure is applied to the partition wall, a high pressure resistance is not required for the partition wall formed by joining the partial partition wall and the remaining partition wall to each other. The effect can be exhibited well.

熱音響機関の更なる特徴構成は、
前記音響筒の内径の最大値が2.0cm以上10cm以下である場合に、前記音響筒の内部圧力を1MPa以上に設定する点にある。
Further features of the thermoacoustic engine are:
When the maximum inner diameter of the acoustic tube is 2.0 cm or more and 10 cm or less, the internal pressure of the acoustic tube is set to 1 MPa or more.

これまで説明してきた発明の如く、音響筒を小型化して内径の小径化を図る場合、粘性ロスが増大し出力が低下するという問題がある。
本発明の発明者らは、検討の結果、音響筒の内径の最大値を2.0cm以上10cm以下に設定した場合、音響筒に内部圧力を1.0MPa以上に設定することで、音響筒を小型化し内径を小径化した場合であっても、一定以上の所望の出力を得られることを、シミュレーションにより確認した。
When the acoustic tube is downsized to reduce the inner diameter as in the inventions described so far, there is a problem that the viscous loss increases and the output decreases.
As a result of the study, the inventors of the present invention set the maximum value of the inner diameter of the acoustic tube to 2.0 cm or more and 10 cm or less, and set the internal pressure of the acoustic tube to 1.0 MPa or more, thereby It was confirmed by simulation that a desired output above a certain level can be obtained even when the size is reduced and the inner diameter is reduced.

熱音響機関の音響筒の分解斜視図Exploded perspective view of an acoustic tube of a thermoacoustic engine 熱音響機関の組み付け図Assembly diagram of thermoacoustic engine 熱音響機関の寸法関係及びエネルギバランスを示す概念図Conceptual diagram showing dimensional relationship and energy balance of thermoacoustic engine 音響筒が所定の筒径を有する場合における音響筒の内部圧力と出力との関係を示すグラフ図The graph figure which shows the relationship between the internal pressure of an acoustic cylinder, and an output in case an acoustic cylinder has a predetermined cylinder diameter. 音響筒の内径と伝搬効率等の関係を示すグラフ図Graph showing the relationship between the inner diameter of the acoustic tube and the propagation efficiency

本発明の実施形態に係る熱音響機関100は、音響筒の小型化を図ることができ、家庭用にも適用し得るもので、且つ組み付けが容易なものに関する。以下、図面に基づいて、実施形態に係る熱音響機関100について説明する。 The thermoacoustic engine 100 according to the embodiment of the present invention relates to a thermoacoustic engine which can be downsized and can be applied to home use and which can be easily assembled. Hereinafter, the thermoacoustic engine 100 according to the embodiment will be described with reference to the drawings.

熱音響機関100は、図3に示すように、作動媒体(例えば、ヘリウム)が充填され音波が伝播する音響筒Tに、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70を少なくとも1つ以上(当該実施形態では1つ)設けると共に、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る音響ヒートポンプ部80(音響エネルギを電力又は熱に変換する音響エネルギ変換部の一例)を少なくとも1つ以上(当該実施形態では1つ)有する。 As shown in FIG. 3, the thermoacoustic engine 100 cools the working medium from the outside with a heater 71 that heats the working medium from the outside in an acoustic tube T that is filled with the working medium (for example, helium) and propagates sound waves. At least one prime mover 70 (one in the embodiment) including a cooler 72, a heater 71, and a first regenerator 73 for amplifying acoustic energy of sound waves is provided between the cooler 72 and a working medium. A heat absorber 81 that absorbs heat from the outside, a radiator 82 that the working medium radiates heat to the outside, and a second regenerator 83 that compresses and expands between the heat absorber 81 and the radiator 82 in the form of sound waves consuming acoustic energy. At least one (in the embodiment, one) acoustic heat pump unit 80 (an example of an acoustic energy conversion unit that converts acoustic energy into electric power or heat) is provided.

説明を追加すると、熱音響機関100は、図3に示すように、作動媒体が充填され音波が伝播する第1ループ筒T1と第2ループ筒T2とが導波筒T3にて連結されて構成された音響筒Tを備え、当該実施形態においては、第1ループ筒T1に単一の原動機70が設けられると共に第2ループ筒T2に単一の音響ヒートポンプ部80が設けられている。 If a description is added, as shown in FIG. 3, the thermoacoustic engine 100 is configured by connecting a first loop cylinder T1 and a second loop cylinder T2, which are filled with a working medium and propagate sound waves, with a waveguide cylinder T3. In the embodiment, a single prime mover 70 is provided in the first loop cylinder T1 and a single acoustic heat pump unit 80 is provided in the second loop cylinder T2.

以下、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70について説明を加える。 Hereinafter, it comprises a heater 71 for heating the working medium from the outside, a cooler 72 for cooling the working medium from the outside, and a first regenerator 73 for amplifying acoustic energy of sound waves between the heater 71 and the cooler 72. The description of the prime mover 70 will be added.

加熱器71は、詳細な図示は省略するが、熱媒HWを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。加熱器71は、フィンがジャケット部を通流する熱媒HWにて加熱され、当該フィンから音響筒Tの内部の作動流体へ温熱を伝導する形態で、作動流体を加熱する。 Although not shown in detail, the heater 71 includes a jacket portion (not shown) that allows the heat medium HW to flow therethrough, and fins (not shown) that extend from the jacket portion into the acoustic tube T. The heater 71 heats the working fluid in a form in which the fin is heated by the heat medium HW flowing through the jacket portion and heat is transferred from the fin to the working fluid inside the acoustic tube T.

冷却器72は、冷媒を通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。冷却器72は、フィンがジャケット部を通流する冷媒CWにて冷却され、当該フィンから音響筒Tの内部の作動流体へ冷熱を伝導する形態で、作動流体を冷却する。 The cooler 72 includes a jacket portion (not shown) that allows the coolant to flow therethrough, and fins (not shown) that extend from the jacket portion into the acoustic tube T. The cooler 72 cools the working fluid in such a form that the fins are cooled by the refrigerant CW flowing through the jacket portion and the heat is conducted from the fins to the working fluid inside the acoustic tube T.

加熱器71と冷却器72との間に設けられる第1再生器73は、例えば、音響筒Tの筒軸心方向に直交する方向に板面を沿わせた状態で、当該筒軸心方向に沿って複数並べられる薄板状部材(図示せず)から構成されている。
当該薄板状部材は、例えば、厚さが50μm以上100μm以下で、300枚〜600枚程度設けられる。当該薄板状部材には、筒軸心方向に沿う方向に貫通する多数の貫通孔(図示せず)が、その直径が200μm〜300μm程度で、設けられる。
The first regenerator 73 provided between the heater 71 and the cooler 72 is, for example, in the cylinder axis direction with the plate surface along the direction orthogonal to the cylinder axis direction of the acoustic tube T. It is composed of a plurality of thin plate-like members (not shown) arranged along the line.
The thin plate member has, for example, a thickness of 50 μm or more and 100 μm or less, and is provided about 300 to 600 sheets. The thin plate member is provided with a large number of through holes (not shown) penetrating in the direction along the axial direction of the cylinder and having a diameter of about 200 μm to 300 μm.

作動流体は、音響筒Tの内部において、その筒軸心方向で、微小な揺らぎを生じる状態で、存在している。換言すると、作動流体を伝搬する音波は、加熱器71と冷却器72との両者間において、一方側から他方側への進行波と、他方側から一方側への進行波とを形成する。
作動流体を伝搬する音波は、冷却器72から加熱器71の側への進行波を形成する場合、加熱器71近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して加熱されると共に、加熱器71のフィンにて直接加熱されることで、膨張する。一方、作動流体を伝搬する音波は、加熱器71から冷却器72の側への進行波を形成する場合、冷却器72の近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して冷却されると共に、冷却器72のフィンにて直接冷却されることで、収縮する。
これにより、進行波としての音波が自己励起振動を起こし、その音響エネルギが増幅される形態で、熱エネルギが音波の音響エネルギに変換される。
The working fluid exists inside the acoustic cylinder T in a state of causing a slight fluctuation in the cylinder axial direction. In other words, the sound wave propagating through the working fluid forms a traveling wave from one side to the other side and a traveling wave from the other side to the one side between both the heater 71 and the cooler 72.
When forming a traveling wave from the cooler 72 to the heater 71 side, the sound wave propagating through the working fluid passes through a plurality of through holes of the thin plate member as the first regenerator 73 near the heater 71. At the same time, the inner wall of the through hole is brought into contact therewith to be heated, and at the same time, the fins of the heater 71 are directly heated to expand. On the other hand, when the sound wave propagating through the working fluid forms a traveling wave from the heater 71 to the cooler 72 side, a plurality of through holes of the thin plate member as the first regenerator 73 near the cooler 72 are formed. When it passes through, the inner wall of the through hole is brought into contact therewith to be cooled, and the fins of the cooler 72 are also directly cooled to shrink the through hole.
As a result, the sound wave as the traveling wave causes self-excited oscillation, and the acoustic energy is amplified, so that the heat energy is converted into the acoustic energy of the sound wave.

作動媒体としては、音波を伝播する気体から構成することができる。ここで、第1再生器73での熱交換が迅速になされることが望ましいため、作動媒体としては、熱拡散係数の高いヘリウム、水素が望ましい。また、発電を目的とする場合には、分子量の高い気体が望ましいため、アルゴン等の気体を混合しても良い。尚、熱的に安定していることから、当該実施形態では、作動媒体としてヘリウムを用いている。 The working medium may be composed of gas that propagates sound waves. Here, since it is desirable that heat exchange in the first regenerator 73 be performed quickly, helium or hydrogen having a high thermal diffusion coefficient is desirable as the working medium. Further, for the purpose of power generation, a gas having a high molecular weight is desirable, so a gas such as argon may be mixed. Since it is thermally stable, helium is used as the working medium in this embodiment.

原動機70にて増幅された音波の音響エネルギは、音響筒Tの第1ループ筒T1から第2ループ筒T2の音響ヒートポンプ部80へ伝搬する。
音響ヒートポンプ部80は、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る。
The acoustic energy of the sound wave amplified by the prime mover 70 propagates from the first loop cylinder T1 of the acoustic cylinder T to the acoustic heat pump unit 80 of the second loop cylinder T2.
The acoustic heat pump unit 80 compresses and compresses acoustic waves between the heat absorber 81 for absorbing the working medium from the outside, the radiator 82 for radiating the working medium to the outside, and the acoustic wave between the heat absorber 81 and the radiator 82. And an expanding second regenerator 83.

詳細な図示は省略するが、吸熱器81は、出力冷媒Woutを通流させるジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。吸熱器81では、フィンがジャケット部を通流する出力冷媒Woutから吸熱し、音響筒Tの内部の作動媒体がフィンから吸熱する。 Although not shown in detail, the heat absorber 81 includes a jacket (not shown) that allows the output refrigerant Wout to flow therethrough, and fins (not shown) that extend from the jacket to the inside of the acoustic tube T. In the heat absorber 81, the fins absorb heat from the output refrigerant Wout flowing through the jacket portion, and the working medium inside the acoustic tube T absorbs heat from the fins.

放熱器82は、冷媒CWを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。放熱器82では、音響筒Tの内部の作動媒体がフィンに放熱し、当該放熱された熱がジャケット部を通流する冷媒CWへ放熱される。 The radiator 82 includes a jacket portion (not shown) that allows the coolant CW to flow therethrough, and fins (not shown) that extend from the jacket portion into the acoustic tube T. In the radiator 82, the working medium inside the acoustic tube T radiates heat to the fins, and the radiated heat is radiated to the refrigerant CW flowing through the jacket portion.

ここで、音響ヒートポンプ部80は、作動流体を伝搬する音波が、吸熱器81から放熱器82の側への進行波を形成する場合に圧縮し、放熱器82から吸熱器81の側へ進行波を形成する場合に膨張するように、その吸熱器81と第2再生器83と放熱器82とが音響筒Tにおける適切な位置に配置されている。
これにより、作動流体を伝搬する音波が吸熱器81から放熱器82の側への進行波を形成する場合、第2再生器83にて圧縮しながら吸熱して昇温し、放熱器82にて高温となった状態で放熱する。これにより、放熱器82ではジャケット部を通流する冷媒CWが、吸熱器81のジャケット部を通流する出力冷媒Woutよりも高温の作動媒体と熱交換する形態で加熱される。
一方、作動流体を伝搬する音波が放熱器82から吸熱器81の側への進行波を形成する場合、作動媒体は、第2再生器83にて膨張しながら放熱して降温し、吸熱器81にて低温となった状態で吸熱する。これにより、吸熱器81ではジャケット部を通流する出力冷媒Woutは、十分に低温となった作動媒体に吸熱される形態で、降温することとなる。
因みに、上述の如く、第2再生器83にて圧縮しながら吸熱する工程、及び膨張しながら放熱する工程において、音波の音響エネルギが消費され、音波は減衰するが、音響エネルギは、原動機70から逐次補充されるので、音響ヒートポンプ部80のヒートポンプ機能が維持されることとなる。
Here, the acoustic heat pump unit 80 compresses the sound wave propagating through the working fluid when a traveling wave from the heat absorber 81 to the radiator 82 side is compressed, and the traveling wave from the radiator 82 to the heat absorber 81 side is compressed. The heat absorber 81, the second regenerator 83, and the heat radiator 82 are arranged at appropriate positions in the acoustic tube T so as to expand when forming the.
As a result, when the sound wave propagating through the working fluid forms a traveling wave from the heat absorber 81 to the radiator 82 side, the second regenerator 83 absorbs heat while raising the temperature, and the radiator 82 It radiates heat in a high temperature state. As a result, in the radiator 82, the refrigerant CW flowing through the jacket portion is heated in a form of exchanging heat with the working medium having a higher temperature than the output refrigerant Wout flowing through the jacket portion of the heat absorber 81.
On the other hand, when the sound wave propagating through the working fluid forms a traveling wave from the radiator 82 to the heat absorber 81 side, the working medium radiates and cools while expanding in the second regenerator 83, and the heat absorber 81 It absorbs heat at low temperature. Thus, in the heat absorber 81, the output refrigerant Wout flowing through the jacket portion is cooled in a form in which the working medium having a sufficiently low temperature absorbs heat.
Incidentally, as described above, in the step of absorbing heat while compressing in the second regenerator 83 and the step of radiating heat while expanding, the acoustic energy of the sound wave is consumed and the sound wave is attenuated, but the acoustic energy is absorbed from the prime mover 70. Since they are sequentially replenished, the heat pump function of the acoustic heat pump unit 80 is maintained.

吸熱器81と放熱器82との間に設けられる第2再生器83は、その形状や材質については、第1再生器73と変わるところがない。
尚、音響筒Tの筒径、筒長さ、形状等は、特に、第1再生器73及び第2再生器83の貫通孔の孔径に基づいて、原動機70の熱エネルギから音響エネルギへの変換効率、音響ヒートポンプ部80の音響エネルギから熱エネルギへの変換効率が高くなるように、適宜設定される。
The second regenerator 83 provided between the heat absorber 81 and the radiator 82 is the same in shape and material as the first regenerator 73.
Note that the cylinder diameter, the cylinder length, the shape, and the like of the acoustic cylinder T are converted from the thermal energy of the prime mover 70 into the acoustic energy, based on the hole diameters of the through holes of the first regenerator 73 and the second regenerator 83. The efficiency and the conversion efficiency of the acoustic heat pump unit 80 from acoustic energy to heat energy are appropriately set.

さて、当該実施形態に係る熱音響機関100にあっては、構成の小型化を図るべく、図1の分解斜視図及び図2の組み付け図に示すように、音響筒Tとしての第1ループ筒T1を筒状本体K1から構成している。
図1に示すように、筒状本体K1は、筒軸心方向(図2でP0)に沿って内部空間を一方側空間L1aと他方側空間L1bとに仕切られると共に、筒軸心方向の両端部位にて一方側空間L1aと他方側空間L1bとが連結する形態で一方側空間L1aと他方側空間L1bとが循環伝播路(L1a及びL1bとが連結された流路)を形成するものであり、筒状本体K1は、自身のすべての循環伝播路を通る断面にて分割される一方側部材T1aと他方側部材T1hとが接合されて構成されている。
因みに、一方側部材T1aと他方側部材T1hとは、その外周すべてを溶接される形態で接合状態となる。更に、筒状本体K1の内部空間には、一方側部材T1aと他方側部材T1hとの接合状態において、内部空間を一方側空間L1aと他方側空間L1bとに仕切る仕切壁の一部を構成する一部仕切壁T1bが一方側部材T1aに設けられると共に、仕切壁の残部を構成する残部仕切壁T1iが他方側部材T1hに設けられ、一方側部材T1aと他方側部材T1hとの接合状態において、一部仕切壁T1bと残部仕切壁T1iとの間に、シール部材T1jが介装されており、一部仕切壁T1bと残部仕切壁T1iとの間が気密に接続されている。
更に、筒状本体K1の内部空間の他方側空間L1bには、加熱器71と冷却器72と原動機70とから構成される原動機70が配設されており、一方側部材T1aには、内部空間の両端部位の何れか一方で他方側空間L1bに近い部位に、導波筒T3が溶接により接合される接合開口部T1cが形成されている。
因みに、当該実施形態においては、接合開口部T1cに係る構成を除き、一方側部材T1aと他方側部材T1hとは同一形状に構成されている。
Now, in the thermoacoustic engine 100 according to the embodiment, as shown in the exploded perspective view of FIG. 1 and the assembly view of FIG. 2, the first loop cylinder as the acoustic cylinder T in order to downsize the configuration. T1 is composed of a tubular body K1.
As shown in FIG. 1, the cylindrical main body K1 is divided into an inner space L1a and another space L1b along the cylinder axis direction (P0 in FIG. 2), and both ends in the cylinder axis direction. One side space L1a and the other side space L1b form a circulation propagation path (a flow path in which L1a and L1b are connected) in a form in which the one side space L1a and the other side space L1b are connected at a site. The tubular body K1 is configured by joining one side member T1a and the other side member T1h, which are divided in a cross section passing through all the circulation propagation paths of the tubular body K1.
Incidentally, the one-side member T1a and the other-side member T1h are in a joined state in a form in which the entire outer peripheries thereof are welded. Further, in the internal space of the tubular body K1, a part of a partition wall that partitions the internal space into the one side space L1a and the other side space L1b in the joined state of the one side member T1a and the other side member T1h is formed. The partial partition wall T1b is provided on the one side member T1a, and the remaining partition wall T1i forming the remaining part of the partition wall is provided on the other side member T1h. A seal member T1j is interposed between the partial partition wall T1b and the residual partition wall T1i, and the partial partition wall T1b and the residual partition wall T1i are hermetically connected.
Further, a prime mover 70 including a heater 71, a cooler 72, and a prime mover 70 is provided in the other side space L1b of the internal space of the tubular body K1, and the one side member T1a includes the internal space. A joint opening T1c to which the waveguide T3 is joined by welding is formed in a portion close to the other side space L1b on either one of both end portions.
Incidentally, in the embodiment, the one-side member T1a and the other-side member T1h are configured to have the same shape except for the configuration related to the joint opening T1c.

尚、音響筒Tは、第1ループ筒T1に加えて第2ループ筒T2も含んで構成されており、当該第2ループ筒T2を筒状本体K2から構成している。当該筒状本体K2は、筒状本体K1に対し、筒軸心方向(図2でP0又はP1)に沿う長さが長い点を除き、同一の構成を有している。
図1に示すように、筒状本体K2は、筒軸心方向(図2でP1)に沿って内部空間を一方側空間L2aと他方側空間L2bとに仕切られると共に、筒軸心方向の両端部位にて一方側空間L2aと他方側空間L2bとが連結する形態で一方側空間L2aと他方側空間L2bとが循環伝播路(L2a及びL2bとが連結された流路)を形成するものであり、筒状本体K2は、自身のすべての循環伝播路を通る断面にて分割される一方側部材T2aと他方側部材T2hとが接合されて構成されている。
因みに、一方側部材T2aと他方側部材T2hとは、その外周すべてを溶接される形態で接合状態となる。更に、筒状本体K2の内部空間には、一方側部材T2aと他方側部材T2hとの接合状態において、内部空間を一方側空間L2aと他方側空間(図示せず)とに仕切る仕切壁の一部を構成する一部仕切壁(図示せず)が一方側部材T2aに設けられると共に、仕切壁の残部を構成する残部仕切壁T2iが他方側部材T2hに設けられ、一方側部材T2aと他方側部材T2hとの接合状態において、一部仕切壁(図示せず)と残部仕切壁T2iとの間に、シール部材T2jが介装されており、一部仕切壁(図示せず)と残部仕切壁T2iとの間が気密に接続されている。
更に、筒状本体K2の内部空間の一方側空間L2aには、吸熱器81と放熱器82と第2再生器83とから構成される音響ヒートポンプ部80が配設されており、一方側部材T2aには、内部空間の両端部位の何れか一方で一方側空間L2aに近い部位に、導波筒T3が溶接により接合される接合開口部T2cが形成されている。
因みに、当該実施形態においては、接合開口部T2cに係る構成を除き、一方側部材T2aと他方側部材T2hとは同一形状に構成されている。
The acoustic cylinder T is configured to include a second loop cylinder T2 in addition to the first loop cylinder T1, and the second loop cylinder T2 is composed of a cylindrical body K2. The tubular body K2 has the same configuration as the tubular body K1 except that the tubular body K1 has a long length along the tubular axis direction (P0 or P1 in FIG. 2).
As shown in FIG. 1, the cylindrical main body K2 is divided into an inner space L2a and another space L2b along the cylinder axis direction (P1 in FIG. 2), and both ends in the cylinder axis direction. The one side space L2a and the other side space L2b form a circulation propagation path (a flow path in which L2a and L2b are connected) in a form in which the one side space L2a and the other side space L2b are connected at a site. The tubular body K2 is configured by joining one side member T2a and the other side member T2h, which are divided in a cross section passing through all the circulation propagation paths of the tubular body K2.
Incidentally, the one-side member T2a and the other-side member T2h are in a joined state in a form in which the entire outer peripheries thereof are welded. Furthermore, in the internal space of the tubular body K2, one of the partition walls that divides the internal space into the one side space L2a and the other side space (not shown) in the joined state of the one side member T2a and the other side member T2h. A partial partition wall (not shown) forming a part is provided on the one side member T2a, and a remaining partition wall T2i forming a remaining part of the partition wall is provided on the other side member T2h, and the one side member T2a and the other side In the joined state with the member T2h, the seal member T2j is interposed between the partial partition wall (not shown) and the residual partition wall T2i, and the partial partition wall (not shown) and the residual partition wall An airtight connection is made between T2i and T2i.
Further, an acoustic heat pump unit 80 including a heat absorber 81, a radiator 82, and a second regenerator 83 is disposed in the one side space L2a of the internal space of the tubular main body K2, and the one side member T2a. Has a joint opening T2c at which one of the two ends of the internal space is close to the one side space L2a, and the waveguide T3 is joined by welding.
Incidentally, in the embodiment, the one-side member T2a and the other-side member T2h are configured to have the same shape except for the configuration related to the joint opening T2c.

当該実施形態に係る音響筒Tでは、熱音響機関100として働く場合、所定の出力を出すべく、その内部圧力を一定以上(例えば、1.0MPa以上)に設定する必要がある。このため、筒状本体K1、K2は、一定の耐圧を有する材料から構成することが好ましく、例えば、ステンレス鋼等の材料を好適に用いることができる。 In the acoustic tube T according to the embodiment, when working as the thermoacoustic engine 100, it is necessary to set the internal pressure to a certain level or more (for example, 1.0 MPa or more) in order to produce a predetermined output. Therefore, the tubular bodies K1 and K2 are preferably made of a material having a certain pressure resistance, and for example, a material such as stainless steel can be preferably used.

〔寸法関係及びエネルギバランスについて〕
これまで説明してきた熱音響機関100にあっては、その全体構成を小型化することが可能であるが、小型化に伴い音響筒Tの筒径を数cmまで小さくした場合、粘性ロスが増大し、十分な出力が得られない場合がある。以下では、所定の寸法関係を有する熱音響機関100において、エネルギバランスを算出すると共に、当該寸法関係を有する熱音響機関100における音響筒Tの内部圧力と出力との関係をシミュレーションにより算出し、所定の寸法関係の熱音響機関100において適切な出力を発揮可能な音響筒Tの適切な内部圧力の範囲を導出した。
[About dimensional relationship and energy balance]
In the thermoacoustic engine 100 described above, it is possible to downsize the entire configuration, but if the tube diameter of the acoustic tube T is reduced to several cm with the downsizing, viscous loss increases. However, it may not be possible to obtain sufficient output. In the following, in the thermoacoustic engine 100 having a predetermined dimensional relationship, the energy balance is calculated, and the relationship between the internal pressure of the acoustic tube T and the output in the thermoacoustic engine 100 having the dimensional relationship is calculated by a simulation. The range of the appropriate internal pressure of the acoustic tube T capable of exhibiting an appropriate output in the thermoacoustic engine 100 having the dimensional relationship was derived.

図3に示す熱音響機関100において、音響筒Tの筒内直径は3cmであり、X0を始点として筒軸心方向に沿ったX0〜X11の位置は、以下の表1に示す通りである。尚、図3の熱音響機関100は、模式図であり、筒内直径の値の縮尺とX0〜X11で示す位置の縮尺とは同一ではない。 In the thermoacoustic engine 100 shown in FIG. 3, the in-cylinder diameter of the acoustic cylinder T is 3 cm, and the positions of X0 to X11 along the cylinder axis direction starting from X0 are as shown in Table 1 below. The thermoacoustic engine 100 of FIG. 3 is a schematic diagram, and the scale of the value of the in-cylinder diameter is not the same as the scale of the positions indicated by X0 to X11.

Figure 2020118418
Figure 2020118418

第1再生器73及び第2再生器83の微細流路半径を0.036mmとし、空隙率を83%とし、作動媒体をHeとし、金属メッシュの目開きが0.14mm、線径が0.04mm、発振周波数を320Hzとし、音響筒Tの内部圧力を1.0MPaとした場合のエネルギバランスを示す。
冷却器72では、冷媒CWの流入温度t1が15℃で吸熱量Q1が1369Wの状態で通流し、加熱器71では、熱媒HWの流入温度t2が400℃で放熱量Q2が1881Wの状態で通流し、放熱器82では、冷媒CWの流入温度t3が15℃で作動媒体による放熱量Q3が538Wの状態で通流するものとした。この場合、吸熱器81では、出力冷媒Woutの作動媒体による吸熱量Q4が193Wの状態で出力温度t4が−50℃の状態で通流することとなった。
The fine channel radius of the first regenerator 73 and the second regenerator 83 was 0.036 mm, the porosity was 83%, the working medium was He, the mesh opening of the metal mesh was 0.14 mm, and the wire diameter was 0. The energy balance is shown when the pressure is 04 mm, the oscillation frequency is 320 Hz, and the internal pressure of the acoustic tube T is 1.0 MPa.
In the cooler 72, the inflow temperature t1 of the refrigerant CW flows at a temperature of 15° C. and the heat absorption amount Q1 is 1369 W. In the heater 71, the inflow temperature t2 of the heat medium HW is 400° C. and the heat radiation amount Q2 is 1881 W. In the radiator 82, it is assumed that the inflow temperature t3 of the refrigerant CW is 15° C. and the heat radiation amount Q3 by the working medium is 538 W. In this case, in the heat absorber 81, the amount of heat absorbed by the working medium of the output refrigerant Wout Q4 is 193 W, and the output temperature t4 is -50°C.

尚、原動機70での熱音変換効率は27%とし、発生する音響エネルギΔQgは512Wとなる。原動機から音響ヒートポンプへの伝搬で、音響エネルギは512Wから、345Wに減衰する。音響ヒートポンプ部80の音熱変換効率は56%とし、変換され消費された音響エネルギΔQhは345Wとなる。 The heat sound conversion efficiency of the prime mover 70 is 27%, and the generated acoustic energy ΔQg is 512W. Propagation from the prime mover to the acoustic heat pump attenuates acoustic energy from 512W to 345W. The sound-heat conversion efficiency of the acoustic heat pump unit 80 is 56%, and the converted and consumed acoustic energy ΔQh is 345W.

ここで、これまで説明した寸法関係を有する熱音響機関100の音響筒Tの内部圧力が変化した場合において、原動機70への入力熱エネルギ、原動機70から出力される音響エネルギ、及び変換効率を、図4に示す。
図4から、出力としての音響エネルギは、熱交換量の制限を考慮しない場合、内部圧力に比例して大きくなることがわかる。熱音響機関100の出力を冷凍機に用いる場合、20%以上の変換効率が望まれるため、上記寸法関係の熱音響機関100では、実用的には1.0MPa以上の加圧が必要である。
Here, when the internal pressure of the acoustic tube T of the thermoacoustic engine 100 having the dimensional relationship described above changes, the input heat energy to the prime mover 70, the acoustic energy output from the prime mover 70, and the conversion efficiency are: As shown in FIG.
It can be seen from FIG. 4 that the acoustic energy as output increases in proportion to the internal pressure when the heat exchange amount limitation is not taken into consideration. When the output of the thermoacoustic engine 100 is used in a refrigerator, a conversion efficiency of 20% or higher is desired, so that the thermoacoustic engine 100 having the above-described dimensional relationship requires pressurization of 1.0 MPa or higher for practical use.

更に、音響筒Tの内径をパラメータとし、内部圧力を2.5MPaとした場合のシミュレーション結果を図5に示す。その他の条件は、上述したものと同一であるとする。
図5に示すシミュレーション結果から、内径が1.5mm以下では伝搬ロスが大きく、システムが成立しないと言える。当該シミュレーション結果から、内部圧力が1.0MPa以上において、音響筒Tの内径の最大値が2.0cm以上10cm以下とすることが好ましい。
Further, FIG. 5 shows the simulation result when the inner diameter of the acoustic tube T is used as a parameter and the internal pressure is 2.5 MPa. The other conditions are the same as those described above.
From the simulation results shown in FIG. 5, it can be said that the system does not work when the inner diameter is 1.5 mm or less, the propagation loss is large. From the simulation results, it is preferable that the maximum inner diameter of the acoustic tube T is 2.0 cm or more and 10 cm or less when the internal pressure is 1.0 MPa or more.

〔別実施形態〕
(1)上記実施形態にあっては、音響エネルギ変換部として、音響ヒートポンプ部80を備える構成例を示した。
音響エネルギ変換部としては、音響ヒートポンプ部80に替えて、音波の振動から電力を発生する往復動型タービン発電機を備える構成を採用しても構わない。
説明を追加すると、往復動型タービン発電機は、図示は省略するが、音響筒Tの第2ループ筒T2の筒内部において、一の回転翼と、当該回転翼を挟む状態で設けられる一対の固定翼を備えている。当該構成においては、回転翼は、一方の固定翼にて旋回され回転翼へ向かう音波と、他方の固定翼にて旋回され回転翼へ向かう音波との双方により、回転力を付与されることとなるが、一対の固定翼は、両者により旋回される音波が回転翼へ付与する回転力の回転方向が同一方向となるように設けられる。
更に、回転翼には、誘導発電機としての回転子が設けられると共に、音響筒Tの筒軸心方向で回転翼が設けられている部位で音響筒Tの筒外径部位には、誘導発電機としての固定子が設けられおり、回転翼と共に回転子が回転することで固定子としてのコイルにて誘導起電力を発生する。
当該構成を採用することにより、音響筒Tの内部で発生する音波の振動エネルギが、電気エネルギに変換される。
[Another embodiment]
(1) In the above embodiment, the configuration example in which the acoustic heat pump unit 80 is provided as the acoustic energy conversion unit is shown.
As the acoustic energy conversion unit, instead of the acoustic heat pump unit 80, a configuration including a reciprocating turbine generator that generates electric power from vibration of sound waves may be adopted.
If a description is added, the reciprocating turbine generator, although not shown, is provided inside the second loop cylinder T2 of the acoustic cylinder T with one rotor and a pair of rotors sandwiching the rotor. It has fixed wings. In the configuration, the rotary blade is imparted with a rotational force by both a sound wave swirled by one fixed blade toward the rotary blade and a sound wave swirled by the other fixed blade toward the rotary blade. However, the pair of fixed blades is provided such that the sound waves swirled by the two fixed blades have the same rotational direction of the rotational force applied to the rotary blades.
Further, the rotor is provided with a rotor as an induction generator, and at the portion where the rotor is provided in the cylinder axis direction of the acoustic tube T, the induction power generation is performed on the outer diameter portion of the acoustic tube T. A stator as a machine is provided, and an induced electromotive force is generated by a coil as a stator as the rotor rotates together with the rotor blades.
By adopting this configuration, the vibration energy of the sound wave generated inside the acoustic tube T is converted into electric energy.

(2)上記実施形態において、音響筒Tは、第1ループ筒T1に加え、第2ループ筒T2と、導波筒T3とから構成される例を示した。
しかしながら、音響筒Tは、第1ループ筒T1のみから構成しても構わず、当該第1ループ筒T1を筒状本体K1としての一方側部材T1aと他方側部材T1hとから構成しても構わない。当該構成を採用する場合、原動機70及び音響エネルギ変換部は、当該第1ループ筒T1に設けられる。また、一方側部材T1aには、導波管T3が接合される接合開口部T1cが設けられない構成が採用される。
更に、当該構成において、音響筒Tを、第1ループ筒T1と、当該第1ループ筒T1に連接される導波筒T3とから構成しても構わない。この場合、第1ループ筒T1に原動機70を設けると共に、導波筒T3に音響エネルギ変換部として、往復動型タービン発電機を備える構成を採用しても構わない。
(2) In the above embodiment, the acoustic cylinder T is composed of the second loop cylinder T2 and the waveguide cylinder T3 in addition to the first loop cylinder T1.
However, the acoustic cylinder T may be composed of only the first loop cylinder T1, or the first loop cylinder T1 may be composed of the one side member T1a and the other side member T1h as the cylindrical body K1. Absent. When adopting this configuration, the prime mover 70 and the acoustic energy conversion unit are provided in the first loop cylinder T1. In addition, the one-side member T1a has a configuration in which the joining opening T1c to which the waveguide T3 is joined is not provided.
Further, in this configuration, the acoustic cylinder T may be composed of the first loop cylinder T1 and the waveguide cylinder T3 connected to the first loop cylinder T1. In this case, a configuration may be adopted in which the prime mover 70 is provided in the first loop cylinder T1 and the reciprocating turbine generator is provided in the waveguide cylinder T3 as an acoustic energy conversion unit.

(3)上記実施形態において、第1ループ筒T1を構成する筒状本体K1としての一方側部材T1aと他方側部材T1hとは、溶接により接合されている例を示した。他の例として、一方側部材T1aと他方側部材T1hとは、互いに鍔部を有し、当該鍔部をボルト等により締結する形態で、接合される構成を採用しても構わない。
第2ループ筒T2を構成する一方側部材T2aと他方側部材T2hとの接合についても同様であり、また、導波筒T3と一方側部材T1aとの接合、導波筒T3と一方側部材T2aとの接合についても同様である。
(3) In the above embodiment, the example in which the one-side member T1a and the other-side member T1h as the tubular body K1 forming the first loop cylinder T1 are joined by welding has been shown. As another example, the one-side member T1a and the other-side member T1h may have a flange portion and may be joined to each other by fastening the flange portion with a bolt or the like.
The same applies to the joining of the one-side member T2a and the other-side member T2h that form the second loop tube T2, and the joining of the waveguide tube T3 and the one-side member T1a, and the waveguide tube T3 and the one-side member T2a. The same applies to the joining with.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiments (including other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments, as long as no contradiction occurs. The embodiments disclosed in the present specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified within a range not departing from the object of the present invention.

本発明の熱音響機関は、ループ筒及び導波筒を短くして全体の小型化を図ることができ、家庭用にも適用し得るもので、且つ組み付けが容易な熱音響機関として、有効に利用可能である。 INDUSTRIAL APPLICABILITY The thermoacoustic engine of the present invention can be shortened by shortening the loop tube and the waveguide tube and can be downsized as a whole. It is available.

70 :原動機
71 :加熱器
72 :冷却器
73 :第1再生器
80 :音響ヒートポンプ部
81 :吸熱器
82 :放熱器
83 :第2再生器
100 :熱音響機関
L1a :一方側空間
L1b :他方側空間
L2a :一方側空間
L2b :他方側空間
T1a :一方側部材
T1b :一部仕切壁
T1c :接合開口部
T1h :他方側部材
T1i :残部仕切壁
T1j :シール部材
T2a :一方側部材
T2c :接合開口部
T2h :他方側部材
T2i :残部仕切壁
T2j :シール部材
T3 :導波筒
70: prime mover 71: heater 72: cooler 73: first regenerator 80: acoustic heat pump 81: heat absorber 82: radiator 83: second regenerator 100: thermoacoustic engine L1a: one side space L1b: other side Space L2a: One side space L2b: Other side space T1a: One side member T1b: Partial partition wall T1c: Joining opening T1h: Other side member T1i: Remaining partition wall T1j: Sealing member T2a: One side member T2c: Joining opening Part T2h: Other member T2i: Remaining partition wall T2j: Seal member T3: Waveguide

Claims (4)

作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上設けると共に、前記原動機にて増幅された音響エネルギを電力又は熱に変換する音響エネルギ変換部を一つ以上設ける熱音響機関であって、
前記音響筒は、筒軸心方向に沿って内部空間を一方側空間と他方側空間とに仕切られると共に、前記筒軸心方向の両端部位にて前記一方側空間と前記他方側空間とが連結する形態で前記一方側空間と前記他方側空間とが循環伝播路を形成する筒状本体を有し、
前記循環伝播路に少なくとも前記原動機が配設され、
前記筒状本体は、自身のすべての前記循環伝播路を通る断面にて分割される一方側部材と他方側部材とが接合されて構成されている熱音響機関。
An acoustic tube filled with a working medium and in which sound waves propagate, a heater for heating the working medium from the outside, a cooler for cooling the working medium from the outside, and acoustic energy of sound waves between the heater and the cooler. A thermoacoustic engine having at least one or more prime mover composed of a first regenerator for amplifying the electric power, and one or more acoustic energy converting part for converting acoustic energy amplified by the prime mover into electric power or heat. ,
The acoustic tube has an inner space partitioned into one side space and the other side space along the cylinder axis direction, and the one side space and the other side space are connected at both end portions in the cylinder axis direction. In the form, the one side space and the other side space have a cylindrical main body forming a circulation propagation path,
At least the prime mover is arranged in the circulation propagation path,
The tubular main body is a thermoacoustic engine configured by joining one side member and the other side member, which are divided in a cross section passing through all the circulation propagation paths of itself.
前記音響筒は、前記筒状本体に連通接続される導波筒を有し、
前記一方側部材と前記他方側部材との何れか一方に、前記導波筒を接合する接合開口部が設けられている請求項1に記載の熱音響機関。
The acoustic tube has a waveguide tube that is connected to the tubular body for communication.
The thermoacoustic engine according to claim 1, wherein one of the one-side member and the other-side member is provided with a joint opening for joining the waveguide.
前記筒状本体の前記内部空間には、前記一方側部材と前記他方側部材との接合状態において、前記内部空間を前記一方側空間と前記他方側空間とに仕切る仕切壁の一部を構成する一部仕切壁が前記一方側部材に設けられると共に、前記仕切壁の残部を構成する残部仕切壁が前記他方側部材に設けられ、
前記一方側部材と前記他方側部材との接合状態において、前記一部仕切壁と前記残部仕切壁との間に、シール部材が介装されている請求項1又は2に記載の熱音響機関。
The internal space of the tubular main body constitutes a part of a partition wall that partitions the internal space into the one side space and the other side space when the one side member and the other side member are joined. A part of the partition wall is provided on the one side member, and a remaining part partition wall that constitutes the remaining part of the partition wall is provided on the other side member,
The thermoacoustic engine according to claim 1 or 2, wherein a seal member is interposed between the partial partition wall and the remaining partition wall in a joined state of the one-side member and the other-side member.
前記音響筒の内径の最大値が2.0cm以上10cm以下である場合に、前記音響筒の内部圧力を1.0MPa以上に設定する請求項1〜3の何れか一項に記載の熱音響機関。 The thermoacoustic engine according to any one of claims 1 to 3, wherein when the maximum inner diameter of the acoustic tube is 2.0 cm or more and 10 cm or less, the internal pressure of the acoustic tube is set to 1.0 MPa or more. ..
JP2019012239A 2019-01-28 2019-01-28 Thermoacoustic engine Pending JP2020118418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012239A JP2020118418A (en) 2019-01-28 2019-01-28 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012239A JP2020118418A (en) 2019-01-28 2019-01-28 Thermoacoustic engine

Publications (1)

Publication Number Publication Date
JP2020118418A true JP2020118418A (en) 2020-08-06

Family

ID=71891936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012239A Pending JP2020118418A (en) 2019-01-28 2019-01-28 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP2020118418A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148595A (en) * 1989-11-02 1991-06-25 Showa Alum Corp Heat pipe
US20110265493A1 (en) * 2010-04-30 2011-11-03 Palo Alto Research Center Incorporated Thermoacoustic Apparatus With Series-Connected Stages
JP2013234823A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2013234820A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine
JP2017003136A (en) * 2015-06-05 2017-01-05 日本特殊陶業株式会社 Thermoacoustic engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148595A (en) * 1989-11-02 1991-06-25 Showa Alum Corp Heat pipe
US20110265493A1 (en) * 2010-04-30 2011-11-03 Palo Alto Research Center Incorporated Thermoacoustic Apparatus With Series-Connected Stages
JP2013234823A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2013234820A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2016183844A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic engine
JP2017003136A (en) * 2015-06-05 2017-01-05 日本特殊陶業株式会社 Thermoacoustic engine

Similar Documents

Publication Publication Date Title
US8443599B2 (en) Thermoacoustic apparatus
JP2007237020A (en) Thermoacoustic device
JP6233835B2 (en) Thermoacoustic engine and manufacturing method thereof
JPWO2004085934A1 (en) Cooling system
JP5423531B2 (en) Thermoacoustic engine
US20040170287A1 (en) Accoustic wave amplifier/attenuator apparatus, pipe system having the same and manufacturing method of the pipe system
JP5453950B2 (en) Thermoacoustic engine
JP2020118418A (en) Thermoacoustic engine
Nathad et al. Experimental analysis of an economical lab demonstration prototype of a thermo acoustic refrigerator (TAR)
JP2010071559A (en) Thermoacoustic cooling device
Yang et al. Numerical and experimental study of a looped travelling‐wave thermoacoustic electric generator for low‐grade heat recovery
JP3216536U (en) Thermoacoustic engine
Yang et al. Performance comparison of looped thermoacoustic electric generators with various thermoacoustic stages
JP7015517B2 (en) Loop type thermoacoustic engine with branch pipe
JP6498008B2 (en) Thermoacoustic engine
Lawn Development of a thermoacoustic travelling-wave engine
JP2011002119A (en) Thermoacoustic engine
Prashantha et al. Effect of stack spacing on the performance of thermoacoustic refrigerators using helium and air as working substances
JP6453393B2 (en) Method for manufacturing thermoacoustic engine
Hamood et al. Two-stage thermoacoustic electricity generator for waste heat recovery
JP6938095B2 (en) Thermoacoustic engine
JP6410677B2 (en) Thermoacoustic engine
JP5446498B2 (en) Thermoacoustic engine
JP6830650B2 (en) Thermoacoustic engine
JP7057224B2 (en) Thermoacoustic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516