JP2020113391A - Manufacturing device for membrane electrode assembly - Google Patents

Manufacturing device for membrane electrode assembly Download PDF

Info

Publication number
JP2020113391A
JP2020113391A JP2019001729A JP2019001729A JP2020113391A JP 2020113391 A JP2020113391 A JP 2020113391A JP 2019001729 A JP2019001729 A JP 2019001729A JP 2019001729 A JP2019001729 A JP 2019001729A JP 2020113391 A JP2020113391 A JP 2020113391A
Authority
JP
Japan
Prior art keywords
frame
shaped sheet
pressing
sheet member
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019001729A
Other languages
Japanese (ja)
Inventor
浩志 原田
Hiroshi Harada
浩志 原田
省吾 大森
Shogo Omori
省吾 大森
慎也 竹下
Shinya Takeshita
慎也 竹下
優 芦高
Yu Ashitaka
優 芦高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019001729A priority Critical patent/JP2020113391A/en
Publication of JP2020113391A publication Critical patent/JP2020113391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a manufacturing method of a membrane electrode assembly capable of suppressing variations in a thickness of an adhered portion while suppressing air bubbles from being caught into an adhesive.SOLUTION: A manufacturing device 300 comprises: a first pressing member 40 which presses a frame-shaped sheet member 50 to a membrane electrode assembly 11 of a MEGA 10'; and a second pressing member 60 which further presses the frame-shaped sheet member 50 thereafter. Each of the first and second pressing members 40 and 60 is a frame-shaped member constituted of an edge part 43. A pressing surface 44 of the first pressing member 40 includes an inclined plane 45 which is inclined in such a manner that both end portions 44a and 44b of the edge part 43 are separated from the frame-shaped sheet member 50 further than a portion therebetween on a cross section of the edge part 43 of the first pressing member 40 in a width direction. On a cross section of an edge part 63 of the second pressing member 60 in the width direction, a pressing surface 64 pressing the frame-shaped sheet member 50 is a flat surface 65 which presses a surface of the frame-shaped sheet member 50 in a uniform manner.SELECTED DRAWING: Figure 7

Description

本発明は、膜電極接合体アセンブリの製造装置に関する。 The present invention relates to an apparatus for manufacturing a membrane electrode assembly assembly.

燃料電池は、複数の燃料電池セルが積層された燃料電池スタックを有している。各燃料電池セルは、膜電極接合体(MEA)と、膜電極接合体を両側から挟持する一対のセパレータとを有する。膜電極接合体は通常矩形状であり、その外周部に枠状シート部材が配置され、その枠状シート部材と一対のセパレータとが接着一体化されることで燃料電池セルとされる。セパレータで挟持する前の、膜電極接合体と枠状シート部材は、膜電極接合体アセンブリと称される。 The fuel cell has a fuel cell stack in which a plurality of fuel cells are stacked. Each fuel cell has a membrane electrode assembly (MEA) and a pair of separators that sandwich the membrane electrode assembly from both sides. The membrane electrode assembly is usually rectangular, and a frame-shaped sheet member is arranged on the outer peripheral portion thereof, and the frame-shaped sheet member and a pair of separators are bonded and integrated to form a fuel cell. The membrane electrode assembly and the frame-shaped sheet member before being sandwiched by the separators are referred to as a membrane electrode assembly assembly.

膜電極接合体アセンブリの製造に当たっては、矩形状である膜電極接合体の外周部に額縁状に接着剤を塗布し、額縁状に塗布された接着剤を利用して、枠状シート部材を接着する。接着に当たっては、接着部分に気泡が残存するのを回避するために、押圧部材を用いて、枠状シート部材の上から接着剤が塗布された領域を押圧することが行われる。 In manufacturing a membrane electrode assembly, an adhesive is applied in a frame shape on the outer periphery of a rectangular membrane electrode assembly, and the frame-shaped sheet member is bonded using the adhesive applied in a frame shape. To do. In bonding, in order to avoid bubbles remaining in the bonded portion, a pressing member is used to press the area coated with the adhesive from above the frame-shaped sheet member.

たとえば、特許文献1には、膜電極接合体アセンブリの製造方法の一例が記載されている。そこでは、矩形状の膜電極接合体の外周部に額縁状に接着剤を塗布し、額縁状に塗布された接着剤を利用して額縁状の枠状シート部材を接着する。 For example, Patent Document 1 describes an example of a method for manufacturing a membrane electrode assembly. There, an adhesive is applied in a frame shape to the outer peripheral portion of a rectangular membrane electrode assembly, and a frame-shaped frame-shaped sheet member is adhered using the adhesive applied in a frame shape.

この接着に際し、枠状シート部材における膜電極接合体の外周部に額縁状に塗布された接着剤に対応する開口部の部分を、膜電極接合体に対して傾斜させた姿勢として接着剤と接触させる。その状態で枠状シート部材の上から押圧して、枠状シート部材と膜電極接合体とを接着一体化する。枠状シート部材における少なくとも接着剤に対応する開口部の部分を傾斜させておくことにより、膜電極接合体に塗布された接着剤と枠状シート部材との接触面に気泡が生じるのが抑制される。それにより、燃料電池セルとして作動するときに、作動ガスが接着部分を通して外部に漏洩する等の不都合が生じるのを回避することができる。 At the time of this adhesion, the portion of the opening corresponding to the adhesive applied in a frame shape on the outer peripheral portion of the membrane electrode assembly in the frame-shaped sheet member is contacted with the adhesive in a posture inclined with respect to the membrane electrode assembly. Let In this state, the frame-shaped sheet member is pressed from above to bond and integrate the frame-shaped sheet member and the membrane electrode assembly. By tilting at least the portion of the opening corresponding to the adhesive in the frame-shaped sheet member, it is possible to suppress the generation of bubbles on the contact surface between the adhesive applied to the membrane electrode assembly and the frame-shaped sheet member. It Thereby, when operating as a fuel cell, it is possible to avoid the inconvenience that the working gas leaks to the outside through the adhesive portion.

なお、膜電極接合体は、通常、固体電解質膜とその両面に形成された触媒層とで構成される。触媒層の電解質膜に面する側とは反対の面にさらにガス拡散層を積層した膜電極接合体も用いられており、膜電極ガス拡散層積層体(MEGA)と称される場合もある。 The membrane electrode assembly is usually composed of a solid electrolyte membrane and catalyst layers formed on both surfaces thereof. A membrane electrode assembly in which a gas diffusion layer is further laminated on the surface of the catalyst layer opposite to the side facing the electrolyte membrane is also used, and is sometimes referred to as a membrane electrode gas diffusion layer laminate (MEGA).

特開2018−120736号公報JP, 2008-120736, A

ところで、本発明者らは、膜電極接合体アセンブリの製造およびそれを用いた燃料電池セルの製造に多く携わってきているが、燃料電池セルの製造の低コスト化および製造のサイクルタイムの短縮化が求められている今日、特許文献1に記載された製造方法は、枠状シート部材に部分的に傾斜部を形成するステップが含まれ、サイクルタイム短縮の観点からは、なお改善する余地があることを経験した。 By the way, the inventors of the present invention have been involved in the production of a membrane electrode assembly and the production of a fuel cell using the same, but the production cost of the fuel cell is reduced and the production cycle time is shortened. Today, the manufacturing method described in Patent Document 1 includes a step of partially forming an inclined portion on the frame-shaped sheet member, and there is still room for improvement from the viewpoint of shortening the cycle time. Experienced that.

そこで、たとえば、押圧部材の押圧面を、枠状シート部材の表面に対して、傾斜させることにより、接着剤に気泡が噛み込むことを抑えることもできるが、この場合には、押圧面の傾斜により、枠状シート部材と膜電極接合体とが接着される部分の厚さが変動してしまう。 Therefore, for example, by inclining the pressing surface of the pressing member with respect to the surface of the frame-shaped sheet member, it is possible to prevent air bubbles from being caught in the adhesive. In this case, however, the pressing surface is inclined. As a result, the thickness of the portion where the frame-shaped sheet member and the membrane electrode assembly are bonded varies.

本発明は、上記の事情に鑑みてなされたものであり、本発明として、膜電極接合体アセンブリの製造に際して、接着剤に気泡が噛み込むことを抑えつつ、枠状シート部材と膜電極接合体とが接着される部分の厚さの変動を抑えることができる膜電極接合体アセンブリの製造方法を提供する。 The present invention has been made in view of the above circumstances, and as the present invention, in manufacturing a membrane electrode assembly, the frame-shaped sheet member and the membrane electrode assembly are suppressed while preventing air bubbles from being caught in the adhesive. Provided is a method of manufacturing a membrane electrode assembly assembly capable of suppressing fluctuations in the thickness of the portions to which are bonded.

前記課題を鑑みて、本発明による膜電極接合体アセンブリの製造装置は、外周部に額縁状に接着剤が塗布された膜電極接合体に対して、額縁状に塗布された前記接着剤を介して、前記膜電極接合体の外周に樹脂製の枠状シート部材を接着して、膜電極接合体アセンブリを製造する膜電極接合体アセンブリの製造装置であって、前記製造装置は、接着時に前記膜電極接合体に対して前記枠状シート部材を押圧する第1押圧部材と、前記第1押圧部材で押圧した後、前記枠状シート部材をさらに押圧する第2押圧部材と、を備えており、前記第1および第2押圧部材は、前記膜電極接合体に塗布された接着剤の形状に合わせた、縁部で構成される額縁状の部材であり、前記第1押圧部材の各縁部の幅方向の断面において、前記枠状シート部材を押圧する押圧面は、前記縁部の両端部のうち、少なくとも一端が、前記両端部の間の部分よりも、前記枠状シート部材から離れるように傾斜した傾斜面を有しており、前記第2押圧部材の各縁部の幅方向の断面において、前記枠状シート部材を押圧する押圧面は、前記枠状シート部材の表面を均一に押圧する平坦面であることを特徴とする。 In view of the above-mentioned problems, the manufacturing apparatus for a membrane electrode assembly according to the present invention uses a frame-shaped adhesive applied to the membrane-electrode assembly having an outer peripheral portion coated with a frame-shaped adhesive. A frame-shaped sheet member made of resin is adhered to the outer periphery of the membrane electrode assembly to manufacture a membrane electrode assembly assembly, wherein the manufacturing apparatus is the A first pressing member that presses the frame-shaped sheet member against the membrane electrode assembly; and a second pressing member that presses the frame-shaped sheet member after pressing with the first pressing member. The first and second pressing members are frame-shaped members composed of edge portions that match the shape of the adhesive applied to the membrane electrode assembly, and each edge portion of the first pressing member In the cross section in the width direction, the pressing surface that presses the frame-shaped sheet member is such that at least one of the both ends of the edge portion is farther from the frame-shaped sheet member than the portion between the both ends. And a pressing surface that presses the frame-shaped sheet member uniformly in the cross section in the width direction of each edge of the second pressing member that presses the surface of the frame-shaped sheet member uniformly. It is characterized by a flat surface.

本発明によれば、製造装置の第1押圧部材の各縁部の幅方向の断面において、枠状シート部材を押圧する押圧面は、縁部の両端部のうち、少なくとも一端が、両端部の間の部分よりも、枠状シート部材から離れるように傾斜した傾斜面を有している。これにより、第1押圧部材で、枠状シート部材を押圧するだけで、枠状シート部材と接着剤との間の空気を枠体の少なくとも一端側に逃がすことでき、接着剤に空気が噛み込むことを簡単かつ迅速に防止することができる。 According to the present invention, in the cross section in the width direction of each edge portion of the first pressing member of the manufacturing apparatus, the pressing surface for pressing the frame-shaped sheet member has at least one of both end portions of the edge portion It has an inclined surface inclined so as to be separated from the frame-shaped sheet member rather than the portion between them. Thereby, the air between the frame-shaped sheet member and the adhesive can be released to at least one end side of the frame body only by pressing the frame-shaped sheet member with the first pressing member, and the air is trapped in the adhesive. This can be prevented easily and quickly.

このようにして第1押圧部材により押圧された枠状シート部材は、第1押圧部材の傾斜面に応じて変形する。しかしながら、第2押圧部材の各縁部の幅方向の断面において、枠状シート部材を押圧する押圧面は、枠状シート部材の表面を均一に押圧する平坦面を有しているので、第2押圧部材で、変形した枠状シート部材を押圧するだけで、枠状シート部材の変形を平面状に矯正し、枠状シート部材と膜電極接合体とが接着される部分の厚さの変動を均一にすることができる。 The frame-shaped sheet member thus pressed by the first pressing member is deformed according to the inclined surface of the first pressing member. However, in the cross section in the width direction of each edge of the second pressing member, the pressing surface that presses the frame-shaped sheet member has a flat surface that uniformly presses the surface of the frame-shaped sheet member. By simply pressing the deformed frame-shaped sheet member with the pressing member, the deformation of the frame-shaped sheet member is corrected into a flat shape, and fluctuations in the thickness of the portion where the frame-shaped sheet member and the membrane electrode assembly are bonded are suppressed. Can be uniform.

なお、本発明でいう枠状シート部材が接着される「膜電極接合体」とは、固体電解質膜の両面に触媒層(電極層)が形成されたもの、または、これに対して、一方の表面または両面にガス拡散層が形成されたものの双方を含むものである。 The "membrane electrode assembly" to which the frame-shaped sheet member is adhered in the present invention means that a catalyst layer (electrode layer) is formed on both surfaces of a solid electrolyte membrane, or one of It includes both those having a gas diffusion layer formed on the surface or both surfaces.

本実施形態で製造される膜電極接合体アセンブリの模式的斜視図である。It is a typical perspective view of the membrane electrode assembly assembly manufactured by this embodiment. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図1に示す膜電極接合体アセンブリを用いて作られる燃料電池セルの一例を示す一部拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view showing an example of a fuel battery cell made using the membrane electrode assembly assembly shown in FIG. 1. (a)は、膜電極接合体の接着剤の塗布位置を説明するための模式的斜視図であり、(b)は、(a)のB−B線に沿う断面図である。(A) is a schematic perspective view for explaining the application position of the adhesive of the membrane electrode assembly, and (b) is a sectional view taken along the line BB of (a). (a)は、第1押圧部材の平面図であり、(b)は、C−C線に沿う断面図であり、(c)および(d)は、(b)に示す第1押圧部材の変形例である。(A) is a top view of a 1st press member, (b) is sectional drawing which follows CC line, (c) and (d) is a 1st press member of (b). This is a modified example. (a)は、第2押圧部材の平面図であり、(b)は、D−D線に沿う断面図である。(A) is a top view of a 2nd press member, (b) is sectional drawing which follows the DD line. (a)〜(d)は、膜電極接合体アセンブリの製造工程を説明するための図である。(A)-(d) is a figure for demonstrating the manufacturing process of a membrane electrode assembly assembly. (a)は、図7(c)および図7(d)における押圧工程(接着工程)を説明する拡大断面図であり、(b)および(c)は、図6(c)および図6(d)の第1押圧部材を用いた場合の押圧工程(接着工程)を説明する拡大断面図である。7A is an enlarged cross-sectional view for explaining the pressing step (bonding step) in FIGS. 7C and 7D, and FIGS. 6B and 6C are FIGS. 6C and 6C. It is an expanded sectional view explaining the press process (bonding process) when the 1st press member of d) is used. 参考例1および参考例2におけるプレス時間とシール幅(接着剤幅)との関係を示したグラフである。5 is a graph showing the relationship between the pressing time and the seal width (adhesive width) in Reference Example 1 and Reference Example 2. 参考例1および参考例2におけるプレス荷重と気泡抜き時間との関係を示したグラフである。5 is a graph showing the relationship between the press load and the bubble removal time in Reference Example 1 and Reference Example 2. 実施例1および比較例1における接着部分の位置における接着剤の厚みを示したグラフである。5 is a graph showing the thickness of the adhesive at the position of the adhesive portion in Example 1 and Comparative Example 1. 参考例3および参考例4における接着回数とずれ量との関係を示したグラフである。9 is a graph showing the relationship between the number of adhesions and the amount of deviation in Reference Examples 3 and 4.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本実施形態の製造装置300によって製造される膜電極接合体アセンブリ100の模式的斜視図であり、図2は、図1のA−A線に沿う断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of a membrane electrode assembly assembly 100 manufactured by the manufacturing apparatus 300 of the present embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG. 1.

膜電極接合体アセンブリ100は、膜電極拡散層接合体(MEGA)10と枠状シート部材50とを備える。MEGA10は平面視で矩形状であり、図2に示すように、膜電極接合体11と、その両面に積層されたガス拡散層12a、12bとを有する。膜電極接合体11は、電解質膜とその両面に形成された触媒層とで構成される。なお、以下の明細書では、膜電極接合体11の一方側にガス拡散層12aが接合されず、その他方側にガス拡散層12bが接合されたものを、MEGA10’と称する。 The membrane electrode assembly assembly 100 includes a membrane electrode diffusion layer assembly (MEGA) 10 and a frame-shaped sheet member 50. The MEGA 10 has a rectangular shape in a plan view, and includes a membrane electrode assembly 11 and gas diffusion layers 12a and 12b laminated on both surfaces thereof, as shown in FIG. The membrane electrode assembly 11 is composed of an electrolyte membrane and catalyst layers formed on both surfaces thereof. In the following description, the MEGA 10' is defined as one in which the gas diffusion layer 12a is not joined to one side of the membrane electrode assembly 11 and the gas diffusion layer 12b is joined to the other side.

この例において、下位に位置するガス拡散層12bの平面視での大きさと形状は膜電極接合体11の大きさと形状とほぼ同じある。上位に位置するガス拡散層12aは下位に位置するガス拡散層12bよりも小さい。なお、本実施形態では、膜電極接合体11にガス拡散層12bが接合されて、MEGA10’が製造された後、ガス拡散層12aが接合される前に、MEGA10’の膜電極接合体11に枠状シート部材50が接着される。 In this example, the size and shape of the lower gas diffusion layer 12b in plan view are substantially the same as the size and shape of the membrane electrode assembly 11. The upper gas diffusion layer 12a is smaller than the lower gas diffusion layer 12b. In addition, in this embodiment, after the gas diffusion layer 12b is joined to the membrane electrode assembly 11 to manufacture the MEGA 10′ and before the gas diffusion layer 12a is joined, the membrane electrode assembly 11 of the MEGA 10′ is joined. The frame-shaped sheet member 50 is adhered.

図4(a)および(b)に示すように、MEGA10’の膜電極接合体11の表面は、枠状シート部材50が接着される枠状(額縁状)の接着領域13Aと、接着領域13Aよりも内側において、ガス拡散層12aが接合される接合領域13Bと、を有する。 As shown in FIGS. 4A and 4B, the surface of the membrane electrode assembly 11 of the MEGA 10′ has a frame-shaped (frame-shaped) bonding region 13A to which the frame-shaped sheet member 50 is bonded and a bonding region 13A. And a joining region 13B to which the gas diffusion layer 12a is joined.

枠状シート部材50は、樹脂製であり、図3に示す燃料電池セル200内のセパレータ71a、71bを流れる燃料ガス(水素ガス)、酸化剤ガス(大気)、および冷却水をシールする部材であり、可撓性を有している。 The frame-shaped sheet member 50 is made of resin and is a member that seals fuel gas (hydrogen gas), oxidant gas (atmosphere), and cooling water flowing through the separators 71a and 71b in the fuel cell 200 shown in FIG. Yes, it has flexibility.

後述する図7(b)にも示されるように、枠状シート部材50は、膜電極接合体11にその後接合されるガス拡散層12aが入り込むことのできる形状と大きさの空所51を中央部に持つ額縁状の部材である。枠状シート部材50の外周縁部には、セパレータ71a、71bに熱圧により接着するための接着剤層52を有している。MEGA10’に対して枠状シート部材50が接着一体化されて、その後、MEGA10’にガス拡散層12aが接合されて、膜電極接合体アセンブリ100とされる。 As shown in FIG. 7B, which will be described later, the frame-shaped sheet member 50 has a space 51 having a shape and size in the center through which the gas diffusion layer 12a to be bonded to the membrane electrode assembly 11 can enter. It is a frame-shaped member held in the part. The frame-shaped sheet member 50 has an adhesive layer 52 on the outer peripheral edge portion for bonding the separators 71a and 71b by heat and pressure. The frame-shaped sheet member 50 is integrally bonded to the MEGA 10 ′, and then the gas diffusion layer 12 a is bonded to the MEGA 10 ′ to form the membrane electrode assembly 100.

図3に示すように、膜電極接合体アセンブリ100の両面に一対のセパレータ71a、71bが配置されて、燃料電池セル200とされる。図示の燃料電池セル200では、枠状シート部材50の上面外周縁に形成された接着剤層52によって、上位のセパレータ71aは枠状シート部材50に接着一体化されており、枠状シート部材50の下面外周縁に形成された接着剤層52によって、下位のセパレータ71bが枠状シート部材50に接着一体化されている。 As shown in FIG. 3, a pair of separators 71 a and 71 b are arranged on both surfaces of the membrane electrode assembly 100 to form the fuel cell 200. In the illustrated fuel cell 200, the upper separator 71a is bonded and integrated with the frame-shaped sheet member 50 by the adhesive layer 52 formed on the outer peripheral edge of the upper surface of the frame-shaped sheet member 50. The lower separator 71b is bonded and integrated with the frame-shaped sheet member 50 by the adhesive layer 52 formed on the outer peripheral edge of the lower surface.

図4(a)は、膜電極接合体11の接着剤20の塗布位置を説明するための模式的斜視図であり、図4(b)は、図4(a)のB−B線に沿う断面図である。膜電極接合体アセンブリ100の製造に際して、膜電極接合体11に対して枠状シート部材50を接着一体化する。接着一体化するために、図示のように、膜電極接合体11の額縁状の接着領域13Aに、接着剤20が塗布される。 FIG. 4A is a schematic perspective view for explaining the application position of the adhesive 20 of the membrane electrode assembly 11, and FIG. 4B is taken along the line BB of FIG. 4A. FIG. When manufacturing the membrane electrode assembly 100, the frame-shaped sheet member 50 is bonded and integrated with the membrane electrode assembly 11. In order to bond and integrate, as shown in the figure, the adhesive 20 is applied to the frame-shaped bonding region 13A of the membrane electrode assembly 11.

図1にも示すように、枠状シート部材50は矩形状であり、その中央部に空所51を有している。枠状シート部材50が膜電極接合体11に接着一体化される。枠状シート部材50の空所51近傍の裏面は、膜電極接合体11に塗布された接着剤20と接した状態となる。後に説明するように、その上から第1押圧部材40と第2押圧部材60で、順次、枠状シート部材50を押圧することで、枠状シート部材50と膜電極接合体11は確実に接着一体化する。なお、この接着一体化後、その空所51内に、ガス拡散層12aが入り込み、ガス拡散層12aが膜電極接合体11に接合されて、膜電極接合体アセンブリ100を得ることができる。 As shown in FIG. 1, the frame-shaped sheet member 50 has a rectangular shape and has a void space 51 in the center thereof. The frame-shaped sheet member 50 is bonded and integrated with the membrane electrode assembly 11. The back surface of the frame-shaped sheet member 50 near the void 51 is in contact with the adhesive 20 applied to the membrane electrode assembly 11. As will be described later, by sequentially pressing the frame-shaped sheet member 50 with the first pressing member 40 and the second pressing member 60 from above, the frame-shaped sheet member 50 and the membrane electrode assembly 11 are reliably bonded. Unify. After the bonding and integration, the gas diffusion layer 12a enters into the void 51 and the gas diffusion layer 12a is joined to the membrane electrode assembly 11 to obtain the membrane electrode assembly assembly 100.

膜電極接合体アセンブリ100の製造装置300は、図7(a)〜(d)に示すように、MEGA10’を載置する基台301と、前記した第1押圧部材(第1プレス型)40および第2押圧部材(第2プレス型)60と、これらを順次基台301に向けて押下する加圧装置(図示せず)と、を備える。加圧装置は、第1押圧部材40および第2押圧部材60の順で、枠状シート部材50を順次押圧することができるものであれば、その機構は特に限定されない。 As shown in FIGS. 7A to 7D, the manufacturing apparatus 300 of the membrane electrode assembly 100 includes a base 301 on which the MEGA 10 ′ is mounted, and the first pressing member (first press die) 40 described above. And a second pressing member (second press type) 60, and a pressure device (not shown) for sequentially pressing these toward the base 301. The mechanism of the pressing device is not particularly limited as long as it can sequentially press the frame-shaped sheet member 50 in the order of the first pressing member 40 and the second pressing member 60.

たとえば、加圧装置が、第1押圧部材40で枠状シート部材50を押圧した後、第1押圧部材40を搬送し、第2押圧部材60でさらに枠状シート部材50を押圧する搬送装置(図示せず)とこれを制御する制御装置(図示せず)を備えてもよい。 For example, the pressure device conveys the first pressing member 40 after pressing the frame-shaped sheet member 50 with the first pressing member 40, and further conveys the frame-shaped sheet member 50 with the second pressing member 60 (conveying device ( (Not shown) and a control device (not shown) for controlling this may be provided.

また、別の構成として、加圧装置が、MEGA10’と枠状シート部材50とを、基台301上において搬送する搬送装置(図示せず)を備え、搬送方向に沿って配列された第1押圧部材40および第2押圧部材60の押圧を制御する制御装置(図示せず)を備えてもよい。この際、第1押圧部材40および第2押圧部材60を基台301に対して昇降させる昇降機構(フローティング機構)を有してもよい。 As another configuration, the pressure device includes a transport device (not shown) that transports the MEGA 10 ′ and the frame-shaped sheet member 50 on the base 301, and the first device is arranged along the transport direction. A control device (not shown) that controls the pressing of the pressing member 40 and the second pressing member 60 may be provided. At this time, an elevating mechanism (floating mechanism) for elevating the first pressing member 40 and the second pressing member 60 with respect to the base 301 may be provided.

第1押圧部材40は、図5(a)に示すように、平面視で額縁状の形状であり、矩形状の枠体41と、矩形状の枠体41で囲まれた空所42とを有する。空所42の大きさと形状は、枠状シート部材50に形成された空所51の大きさおよび形状とほぼ同じである。枠体41は、互いに直交する4本の縁部43と、隣接する2本の縁部43の交差部である4つの角部47と、で構成される。本実施形態では、4本の縁部43の幅は等しいが、これらの幅が異なっていてもよい。なお、図5(b)〜(d)、図6(b)では、押圧前の枠状シート部材50の位置を仮想線(二点鎖線)で示している。 As shown in FIG. 5A, the first pressing member 40 has a frame-like shape in a plan view, and includes a rectangular frame body 41 and a space 42 surrounded by the rectangular frame body 41. Have. The size and shape of the void 42 are substantially the same as the size and shape of the void 51 formed in the frame-shaped sheet member 50. The frame body 41 includes four edge portions 43 that are orthogonal to each other and four corner portions 47 that are intersections of two adjacent edge portions 43. In the present embodiment, the four edges 43 have the same width, but they may have different widths. 5(b) to 5(d) and 6(b), the position of the frame-shaped sheet member 50 before pressing is indicated by a virtual line (two-dot chain line).

このような縁部43の頂部は、各縁部43の長さ方向に沿って、直線状に形成されている。また、4つの各角部47は、直交する2本の縁部43を45°の角度でカットしたもの同士を、90°に組み付けた形状となっている。 The top of the edge 43 is formed in a straight line along the length direction of each edge 43. Each of the four corner portions 47 has a shape in which two orthogonal edge portions 43 cut at an angle of 45° are assembled to each other at 90°.

枠体41の押圧面44側は、図5(b)に示すように、押圧方向(図面の下方)に向けて膨出する湾曲形状とされている。具体的には、第1押圧部材40の各縁部43の幅方向の断面において、断面形状は全長にわたって、その同じ形状であり、幅方向の中央が、枠状シート部材50に向かって最も高くなっている。しかしながら、枠状シート部材50に向かって最も高くなっている位置が、幅方向の中央よりも、外側または内側であってもよく、この位置を中央からずらすことにより、接着剤20の流動性を制御することができる。 As shown in FIG. 5B, the pressing surface 44 side of the frame 41 has a curved shape that bulges in the pressing direction (downward in the drawing). Specifically, in the cross section in the width direction of each edge 43 of the first pressing member 40, the cross-sectional shape is the same shape over the entire length, and the center in the width direction is the highest toward the frame-shaped sheet member 50. Has become. However, the highest position toward the frame-shaped sheet member 50 may be outside or inside of the center in the width direction, and by shifting this position from the center, the fluidity of the adhesive 20 is improved. Can be controlled.

本実施形態では、第1押圧部材40の各縁部43の幅方向の断面において、枠状シート部材50を押圧する押圧面44は、押圧時に枠状シート部材50と対向する面である。押圧面44は、幅方向の断面において、枠状シート部材50の表面に対して傾斜した傾斜面45、45を有している。傾斜面45、45は、各端部44a、44bが各端部44a、44bの間の部分よりも枠状シート部材50から離れる(逃げる)ように、縁部43の中央から各端部44a、44bに向かって傾斜している。本実施形態では、傾斜面45は、膨らむように湾曲した曲面状であるが、たとえば、傾斜面が平面状であってもよい。 In the present embodiment, the pressing surface 44 that presses the frame-shaped sheet member 50 is a surface that faces the frame-shaped sheet member 50 at the time of pressing in the cross section in the width direction of each edge 43 of the first pressing member 40. The pressing surface 44 has inclined surfaces 45, 45 that are inclined with respect to the surface of the frame-shaped sheet member 50 in the cross section in the width direction. The inclined surfaces 45, 45 are separated from the center of the edge 43 by the ends 44a, 44b so that the ends 44a, 44b are farther from the frame-shaped sheet member 50 than the part between the ends 44a, 44b. It is inclined toward 44b. In the present embodiment, the inclined surface 45 has a curved surface shape that is curved so as to bulge, but the inclined surface may have a planar shape, for example.

なお、本実施形態では、押圧面44は、幅方向の両端部が、その両端部の間の部分よりも枠状シート部材50から離れるように傾斜した傾斜面45を有しているが、たとえば、図5(c)に示すように、押圧面44が、縁部43の両端部44a、44bのうち、内側の端部44bが、外側の端部44aよりも、枠状シート部材50から離れるように傾斜した傾斜面45Aであってもよい。 In addition, in the present embodiment, the pressing surface 44 has the inclined surface 45 that is inclined so that both end portions in the width direction are separated from the frame-shaped sheet member 50 more than a portion between the both end portions, As shown in FIG. 5C, in the pressing surface 44, the inner end portion 44b of the both end portions 44a and 44b of the edge portion 43 is farther from the frame-shaped sheet member 50 than the outer end portion 44a. The inclined surface 45A may be inclined as described above.

この他にも、図5(d)に示すように、押圧面44が、縁部43の両端部44a、44bのうち、外側の端部44aが、内側の端部44bよりも、枠状シート部材50から離れるように傾斜した傾斜面45Bであってもよい。なお、内側の端部44bの近傍には、セパレータ71a、71bの接合後、燃料ガス等が流れる流路が形成されるため、第1押圧部材40により、押圧時に内側の端部44bに接着剤が流れ込まない断面形状が好ましく、このような断面形状は、図5(b)、図5(d)に示す断面形状である。 In addition to this, as shown in FIG. 5( d ), the pressing surface 44 is a frame-shaped sheet in which the outer end 44 a of the both ends 44 a and 44 b of the edge 43 is more than the inner end 44 b. It may be an inclined surface 45B inclined so as to be separated from the member 50. Since a flow path for fuel gas and the like is formed near the inner end 44b after the separators 71a and 71b are joined together, the first end pressing member 40 applies an adhesive to the inner end 44b during pressing. Is preferable, and such a cross-sectional shape is the cross-sectional shape shown in FIGS. 5B and 5D.

なお、上述した基台301に、ガス拡散層12bが接合された膜電極接合体11(MEGA10’)を、着脱自在に固定する固定部を設けてもよい。固定部は、基台301に吸引固定する吸引機構であってもよく、膜電極接合体11を把持する爪把持、片あて等であってもよい。 The base 301 described above may be provided with a fixing portion that detachably fixes the membrane electrode assembly 11 (MEGA 10') to which the gas diffusion layer 12b is joined. The fixing portion may be a suction mechanism that suction-fixes the base 301, or may be a claw grip that grips the membrane electrode assembly 11, a one-sided touch, or the like.

図6(a)に示すように、第2押圧部材60も、平面視で額縁状の形状であり、矩形状の枠体61と、矩形状の枠体61で囲まれた空所62と、を有する。空所62の大きさと形状は、第1押圧部材40と同様に、枠状シート部材50に形成された空所51の大きさおよび形状とほぼ同じである。枠体61は、互いに直交する4本の直線状の縁部63と、隣接する2本の縁部63の交差部である4つの角部67とで構成される。4つの各角部67は、直交する2本の縁部63を45°の角度でカットしたもの同士を、90°に組み付けた形状となっている。 As shown in FIG. 6A, the second pressing member 60 also has a frame-like shape in a plan view, and has a rectangular frame body 61 and a space 62 surrounded by the rectangular frame body 61. Have. Similar to the first pressing member 40, the size and shape of the space 62 are substantially the same as the size and shape of the space 51 formed in the frame-shaped sheet member 50. The frame body 61 is composed of four linear edge portions 63 that are orthogonal to each other and four corner portions 67 that are intersections of two adjacent edge portions 63. Each of the four corner portions 67 has a shape in which two orthogonal edge portions 63 cut at an angle of 45° are assembled to each other at 90°.

枠体61の押圧面側は、矩形状に突出しており、第2押圧部材60の各縁部63の幅方向の断面において、その断面形状は全長にわたって同じ形状である。具体的には、第2押圧部材60の各縁部63の幅方向の断面において、枠状シート部材50を押圧する押圧面64は、枠状シート部材50の表面を均一に押圧する平坦面65になっている。 The pressing surface side of the frame 61 projects in a rectangular shape, and the cross-sectional shape of each edge 63 of the second pressing member 60 in the width direction has the same cross-sectional shape over the entire length. Specifically, in the cross section in the width direction of each edge 63 of the second pressing member 60, the pressing surface 64 that presses the frame-shaped sheet member 50 is a flat surface 65 that uniformly presses the surface of the frame-shaped sheet member 50. It has become.

なお、塗布時の接着剤の幅をL1とし、塗布時の接着剤の高さをT1とし、第1押圧部材40による押圧後の接着剤の幅をL2とし、接着剤の厚さをT2とした際に、第1押圧部材40の幅は、L2以上とすることが好ましい(ただし、L1<L2、T1>T2)。また、第1押圧部材40と第2押圧部材60の幅は、押圧後の接着剤の幅L2よりも十分に広い幅であってもよい。また、第1押圧部材40と第2押圧部材60は、押圧時の枠状シート部材の変形に追従するように構成されていることが好ましい。 The width of the adhesive at the time of application is L1, the height of the adhesive at the time of application is T1, the width of the adhesive after being pressed by the first pressing member 40 is L2, and the thickness of the adhesive is T2. At this time, the width of the first pressing member 40 is preferably L2 or more (however, L1<L2, T1>T2). The width of the first pressing member 40 and the second pressing member 60 may be sufficiently wider than the width L2 of the adhesive after pressing. Moreover, it is preferable that the first pressing member 40 and the second pressing member 60 are configured to follow the deformation of the frame-shaped sheet member at the time of pressing.

膜電極接合体アセンブリ100の製造手順を、図7を参照して説明する。最初に、図7(a)に示すように、基台301の上に、MEGA10’を、下位のガス拡散層12bが基台301の側となるようにして載置する。次に、膜電極接合体11の接着領域13Aに、額縁状に接着剤20を塗布する。図4は、接着剤20を塗布した後の状態を示している。 The manufacturing procedure of the membrane electrode assembly assembly 100 will be described with reference to FIG. 7. First, as shown in FIG. 7A, the MEGA 10 ′ is placed on the base 301 so that the lower gas diffusion layer 12 b is on the base 301 side. Next, the adhesive 20 is applied to the adhesion region 13A of the membrane electrode assembly 11 in a frame shape. FIG. 4 shows a state after the adhesive 20 is applied.

接着剤20を塗布した後、図7(b)に示すように、MEGA10’の膜電極接合体11の上に、枠状シート部材50を接着領域13Aに配置する。配置した枠状シート部材50の上に、さらに、第1押圧部材40を、その湾曲形状である下面側を枠状シート部材50側にして配置する。なお、吸引機構等により、MEGA10’を基台301に固定してもよい。 After applying the adhesive 20, as shown in FIG. 7B, the frame-shaped sheet member 50 is arranged in the adhesion region 13A on the membrane electrode assembly 11 of the MEGA 10'. The first pressing member 40 is further arranged on the frame-shaped sheet member 50 thus arranged, with the curved lower surface side thereof facing the frame-shaped sheet member 50. The MEGA 10 ′ may be fixed to the base 301 by a suction mechanism or the like.

枠状シート部材50の上に第1押圧部材40を配置した後、加圧装置を作動して、図7(c)に矢印で示すように、第1押圧部材40を基台301に向けて加圧する。第1押圧部材40の加圧により、枠状シート部材50は接着剤20を押し潰すようにして降下していき、MEGA10’と接着一体化する。 After disposing the first pressing member 40 on the frame-shaped sheet member 50, the pressurizing device is operated to direct the first pressing member 40 toward the base 301 as indicated by an arrow in FIG. Pressurize. By the pressurization of the first pressing member 40, the frame-shaped sheet member 50 descends so as to crush the adhesive 20, and is bonded and integrated with the MEGA 10'.

その状態が、図7(c)および図8(a)の左図に示される。枠状シート部材50の押圧が進むに従って、第1押圧部材40の幅方向の両側に向かって、枠状シート部材50と接着剤20との間の空気が抜ける。このようにして、接着剤20からの気泡抜きが進行し、接着界面に気泡が存在しない状態での接着一体化が可能となる。この際、第1押圧部材40により押圧された枠状シート部材50は、第1押圧部材40の傾斜面45に応じて変形する。 This state is shown in the left diagram of FIG. 7(c) and FIG. 8(a). As the pressing of the frame-shaped sheet member 50 progresses, the air between the frame-shaped sheet member 50 and the adhesive 20 escapes toward both sides of the first pressing member 40 in the width direction. In this way, the removal of bubbles from the adhesive 20 progresses, and the bonding and integration can be performed in the state where no bubbles are present at the bonding interface. At this time, the frame-shaped sheet member 50 pressed by the first pressing member 40 is deformed according to the inclined surface 45 of the first pressing member 40.

そこで、第1押圧部材40を枠状シート部材50から引き離し、次に、第1押圧部材40と同様に、第2押圧部材60を枠状シート部材50と対向する位置に配置し、第2押圧部材60で、枠状シート部材50を押圧する。図7(d)および図8(a)の右図に示すように、第2押圧部材60の、枠状シート部材50を押圧する押圧面64は、枠状シート部材50の表面を均一に押圧する平坦面65を有している。したがって、第2押圧部材60で、変形した枠状シート部材50を押圧するだけで、枠状シート部材50の変形を平面状に矯正することができる。これにより、枠状シート部材50とMEGA10’とが接着された接着部分の厚さの変動を均一にすることができる。 Therefore, the first pressing member 40 is separated from the frame-shaped sheet member 50, and then, similarly to the first pressing member 40, the second pressing member 60 is arranged at a position facing the frame-shaped sheet member 50, and the second pressing member 40 is pressed. The member 60 presses the frame-shaped sheet member 50. As shown in the right diagrams of FIGS. 7D and 8A, the pressing surface 64 of the second pressing member 60 that presses the frame-shaped sheet member 50 uniformly presses the surface of the frame-shaped sheet member 50. It has a flat surface 65 that Therefore, only by pressing the deformed frame-shaped sheet member 50 with the second pressing member 60, the deformation of the frame-shaped sheet member 50 can be corrected into a flat shape. This makes it possible to make uniform the variation in the thickness of the bonded portion where the frame-shaped sheet member 50 and the MEGA 10' are bonded.

なお、図7(c)に示す押圧工程において、図5(c)に示す第1押圧部材40Aを用いて、枠状シート部材50を押圧すれば、枠状シート部材50の押圧が進むに従って、枠状シート部材50と接着剤20との間の空気が、枠状シート部材50の内側に向かって抜ける(図8(b)左図参照)。 In the pressing step shown in FIG. 7C, if the frame-shaped sheet member 50 is pressed using the first pressing member 40A shown in FIG. 5C, as the pressing of the frame-shaped sheet member 50 progresses, Air between the frame-shaped sheet member 50 and the adhesive 20 escapes toward the inside of the frame-shaped sheet member 50 (see the left diagram in FIG. 8B).

一方、図7(c)に示す押圧工程において、図5(d)に示す第1押圧部材40Bを用いて、枠状シート部材50を押圧すれば、枠状シート部材50の押圧が進むに従って、枠状シート部材50と接着剤20との間の空気が、枠状シート部材50の外側に向かって抜ける(図8(c)左図参照)。第1押圧部材40A、40Bのいずれを用いた場合でも、第2押圧部材60で、枠状シート部材50を押圧すれば、枠状シート部材50の変形を平面状に矯正することができる(図8(b)右図、図8(c)右図参照)。 On the other hand, in the pressing step shown in FIG. 7C, if the frame-shaped sheet member 50 is pressed using the first pressing member 40B shown in FIG. 5D, as the pressing of the frame-shaped sheet member 50 progresses, Air between the frame-shaped sheet member 50 and the adhesive 20 escapes toward the outside of the frame-shaped sheet member 50 (see the left diagram in FIG. 8C). Regardless of which of the first pressing members 40A and 40B is used, the deformation of the frame-shaped sheet member 50 can be corrected into a flat shape by pressing the frame-shaped sheet member 50 with the second pressing member 60 (Fig. 8(b) right figure, FIG. 8(c) right figure).

(参考例1、2)
以下に、図5(b)に示す第1押圧部材を用いて、図7(b)から図7(c)に示す状態となるように、枠状シート部材を押圧した場合を参考例1とし、押圧面が平坦面となる第1押圧部材を用いて、同様の状態で、枠状シート部材を押圧した場合を参考例2として、それぞれに対して押圧試験を行った。なお、参考例1で用いた第1押圧部材は、押圧面が、幅方向の断面において、半径5.5mmの半円状の曲面である。
(Reference examples 1 and 2)
Hereinafter, a case where the frame-shaped sheet member is pressed using the first pressing member shown in FIG. 5B so as to be in the states shown in FIGS. 7B to 7C is referred to as Reference Example 1. A pressing test was performed on each of the first pressing members whose pressing surface is a flat surface in the same state as in Reference Example 2 in which the frame-shaped sheet member was pressed. In the first pressing member used in Reference Example 1, the pressing surface is a semicircular curved surface having a radius of 5.5 mm in the cross section in the width direction.

参考例1および参考例2における第1押圧部材で押圧した際の、プレス時間とシール幅(接着部分において接着剤が気泡なく充填されている幅)との関係、および、プレス荷重と気泡抜き時間との関係を確認した。この結果を、図9および図10に示す。図9に示すように、参考例1の場合には、参考例2に比べて、短時間で所望のシール幅が確保できることがわかる。これは、参考例1の場合には、押圧面が凸状に湾曲しているため、参考例2に比べて接着剤が広がり易かったことによると考えられる。 The relationship between the pressing time and the seal width (the width in which the adhesive is filled in the adhesive portion without bubbles) when pressing with the first pressing member in Reference Examples 1 and 2, and the press load and the bubble removal time. Confirmed the relationship with. The results are shown in FIGS. 9 and 10. As shown in FIG. 9, in the case of Reference Example 1, it can be seen that a desired seal width can be secured in a shorter time than in Reference Example 2. This is considered to be because in the case of Reference Example 1, since the pressing surface was curved in a convex shape, the adhesive spread more easily than in Reference Example 2.

図10に示すように、参考例1の場合には、参考例2に比べて、低いプレス荷重で、気泡抜きができている。これは、参考例1の場合には、押圧面が凸状に湾曲しているため、参考例2に比べて、第1押圧部材の幅方向の両側に向かって、接着剤と枠状シート部材と間の空気が抜けやすいからであると考えられる。 As shown in FIG. 10, in the case of Reference Example 1, air bubbles can be removed with a lower press load than in Reference Example 2. This is because in the case of Reference Example 1, since the pressing surface is curved in a convex shape, the adhesive and the frame-shaped sheet member are moved toward both sides in the width direction of the first pressing member as compared with Reference Example 2. It is thought that this is because the air between and can easily escape.

以下の本発明の実施例を説明する。 Examples of the present invention will be described below.

(実施例1)
図1に示す、一方のガス拡散層が接合されたMEGAと枠状シート部材とを準備し、MEGAの膜電極接合体の接着領域に接着剤を塗布した後、枠状シート部材を、第1押圧部材で押圧し、その後、第2押圧部材で押圧した試験体を作製した。
(Example 1)
After preparing the MEGA and the frame-shaped sheet member to which one gas diffusion layer is bonded as shown in FIG. 1 and applying an adhesive to the bonding region of the MEGA membrane electrode assembly, the frame-shaped sheet member A test body was prepared which was pressed by the pressing member and then pressed by the second pressing member.

(比較例1)
実施例と同様に、試験体を作製した。実施例1と相違する点は、枠状シート部材を、第1押圧部材で押圧するのみで、その後、第2押圧部材で押圧しなかった点である。
(Comparative Example 1)
A test body was prepared in the same manner as in the example. The difference from Example 1 is that the frame-shaped sheet member was only pressed by the first pressing member, and was not subsequently pressed by the second pressing member.

実施例1および比較例1の試験体に対して、MEGAと枠状シート部材との接着剤の厚みを、幅方向に1mm間隔毎に測定した。その結果を、図11に示す。図11からも明らかなように、比較例1の場合には、第1押圧部材の押圧面の形状に応じて接着剤の両端部の厚さが中心よりも厚くなっていた。しかし、実施例1の試験体は、押圧面が平坦面である第2押圧部材で、枠状シート部材をさらに押圧したので、接着部分の厚さの変動を均一にすることができたと考えられる。 For the test bodies of Example 1 and Comparative Example 1, the thickness of the adhesive between the MEGA and the frame-shaped sheet member was measured at intervals of 1 mm in the width direction. The result is shown in FIG. As is clear from FIG. 11, in the case of Comparative Example 1, the thickness of both ends of the adhesive was larger than that of the center, depending on the shape of the pressing surface of the first pressing member. However, in the test body of Example 1, it is considered that the second pressing member, whose pressing surface is a flat surface, further pressed the frame-shaped sheet member, so that the variation in the thickness of the bonded portion could be made uniform. ..

(実施例2)
実施例1と同じように、試験体を10体作製した。実施例1と相違する点は、一方のガス拡散層が接合されたMEGAを吸引する吸引機構を基台に設け、基台の吸引機構でMEGAを吸引固定した状態で、枠状シート部材とともに第1押圧部材で、接着剤を介して膜電極接合体を押圧した点である。
(Example 2)
Ten test bodies were prepared in the same manner as in Example 1. The difference from the first embodiment is that a suction mechanism for sucking MEGA to which one gas diffusion layer is bonded is provided on the base, and the MEGA is suction-fixed by the suction mechanism of the base, and the suction mechanism is used together with the frame-shaped sheet member. 1 The point where the pressing member pressed the membrane electrode assembly via the adhesive.

(実施例3)
実施例2と同じように、試験体を10体作製した。実施例2と相違する点は、基台にMEGAを吸引する吸引機構を設けず、第1押圧部材で、接着剤を介して膜電極接合体の上に配置された枠状シート部材を押圧した点である。
(Example 3)
Ten test bodies were prepared in the same manner as in Example 2. The difference from Example 2 is that a suction mechanism for sucking MEGA is not provided on the base, and the frame-shaped sheet member arranged on the membrane electrode assembly is pressed by the first pressing member via the adhesive. It is a point.

実施例2および実施例3の各MEGAの膜電極接合体と枠状シート部材のずれ量を確認した。結果、実施例2の如く、基台の吸引機構により、MEGAを吸引しながら押圧した場合には、実施例3に比べて、押圧時に枠状シート部材の位置ずれが小さいことがわかった。 The amount of deviation between the membrane electrode assembly of each MEGA of Example 2 and Example 3 and the frame-shaped sheet member was confirmed. As a result, it was found that when the MEGA was pressed while being sucked by the suction mechanism of the base as in Example 2, the positional deviation of the frame-shaped sheet member during pressing was smaller than in Example 3.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. You can make changes.

10,10’:MEGA、11:膜電極接合体、40:第1押圧部材、44:押圧面、45,45A,45B:傾斜面、50:枠状シート部材、60:第2押圧部材、64:押圧面、65:平坦面、100:膜電極接合体アセンブリ、300:製造装置 10, 10': MEGA, 11: membrane electrode assembly, 40: first pressing member, 44: pressing surface, 45, 45A, 45B: inclined surface, 50: frame-shaped sheet member, 60: second pressing member, 64 : Pressing surface, 65: flat surface, 100: membrane electrode assembly assembly, 300: manufacturing device

Claims (1)

外周部に額縁状に接着剤が塗布された膜電極接合体に対して、額縁状に塗布された前記接着剤を介して、前記膜電極接合体の外周に樹脂製の枠状シート部材を接着して、膜電極接合体アセンブリを製造する膜電極接合体アセンブリの製造装置であって、
前記製造装置は、接着時に前記膜電極接合体に対して前記枠状シート部材を押圧する第1押圧部材と、前記第1押圧部材で押圧した後、前記枠状シート部材をさらに押圧する第2押圧部材と、を備えており、
前記第1および第2押圧部材は、前記膜電極接合体に塗布された接着剤の形状に合わせた、縁部で構成される額縁状の部材であり、
前記第1押圧部材の各縁部の幅方向の断面において、前記枠状シート部材を押圧する押圧面は、前記縁部の両端部のうち、少なくとも一端が、前記両端部の間の部分よりも、前記枠状シート部材から離れるように傾斜した傾斜面を有しており、
前記第2押圧部材の各縁部の幅方向の断面において、前記枠状シート部材を押圧する押圧面は、前記枠状シート部材の表面を均一に押圧する平坦面であることを特徴とする膜電極接合体アセンブリの製造装置。
A frame-shaped sheet member made of resin is adhered to the outer periphery of the membrane electrode assembly through the adhesive applied in a frame shape to the membrane electrode assembly in which a peripheral surface is coated with an adhesive agent in a frame shape. And a manufacturing apparatus for a membrane electrode assembly, which manufactures a membrane electrode assembly, comprising:
The manufacturing apparatus includes a first pressing member that presses the frame-shaped sheet member against the membrane electrode assembly during bonding, and a second pressing member that presses the frame-shaped sheet member with the first pressing member. And a pressing member,
The first and second pressing members are frame-shaped members composed of edge portions, which match the shape of the adhesive applied to the membrane electrode assembly,
In a cross section in the width direction of each edge of the first pressing member, the pressing surface that presses the frame-shaped sheet member has at least one end of both ends of the edge more than a part between the both ends. , Having an inclined surface inclined away from the frame-shaped sheet member,
In the cross section in the width direction of each edge of the second pressing member, the pressing surface that presses the frame-shaped sheet member is a flat surface that uniformly presses the surface of the frame-shaped sheet member. Manufacturing equipment for electrode assembly.
JP2019001729A 2019-01-09 2019-01-09 Manufacturing device for membrane electrode assembly Pending JP2020113391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001729A JP2020113391A (en) 2019-01-09 2019-01-09 Manufacturing device for membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001729A JP2020113391A (en) 2019-01-09 2019-01-09 Manufacturing device for membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2020113391A true JP2020113391A (en) 2020-07-27

Family

ID=71667606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001729A Pending JP2020113391A (en) 2019-01-09 2019-01-09 Manufacturing device for membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2020113391A (en)

Similar Documents

Publication Publication Date Title
KR101846424B1 (en) Laminate immobilizing jig, laminate assembly manufacturing system, and manufacturing method for laminate assembly
JP5695086B2 (en) 5-layer membrane electrode assembly having peripheral portions bonded thereto and manufacturing method thereof
CA2672969A1 (en) Fuel cell, method of manufacturing fuel cell, and unit cell assembly
JP2007115600A (en) Separator for fuel cell, its conveying method, and conveying device
JP6119589B2 (en) Manufacturing method of membrane electrode assembly with frame and manufacturing method of fuel cell
JP4882221B2 (en) Separator bonding method
JP7020284B2 (en) Jig for joining
JP2008235096A (en) Manufacturing method of fuel cell, fuel cell separator, and its transport system
CN114497612A (en) Bipolar plate with reinforcing structure
JP6743717B2 (en) Method for manufacturing MEA plate
JP7056504B2 (en) Equipment for manufacturing membrane electrode assembly plates
US20210288338A1 (en) Fuel cell and method for producing fuel cell
CN110071306B (en) Method for manufacturing fuel cell
JP2020113391A (en) Manufacturing device for membrane electrode assembly
JPWO2017060972A1 (en) Fuel cell stack
JP2019192327A (en) Fuel cell and manufacturing method of fuel cell
JP7052593B2 (en) Manufacturing method of fuel cell single cell
CN112751054A (en) Unit cell of fuel cell
US20050077006A1 (en) Vacuum lamination apparatus and vacuum lamination method
JP2006286518A (en) Separator adhesion device and separator adhesion method
JP4701679B2 (en) Battery module manufacturing method and manufacturing apparatus
JP6442554B2 (en) Manufacturing method and apparatus for electrolyte membrane / electrode structure with resin frame
JP6926999B2 (en) How to manufacture fuel cell
JP6848803B2 (en) Fuel cell
JP2021118144A (en) Manufacturing method of fuel cell laminate