JP2020113287A - 磁界による位置特定及びナビゲーション - Google Patents

磁界による位置特定及びナビゲーション Download PDF

Info

Publication number
JP2020113287A
JP2020113287A JP2020025262A JP2020025262A JP2020113287A JP 2020113287 A JP2020113287 A JP 2020113287A JP 2020025262 A JP2020025262 A JP 2020025262A JP 2020025262 A JP2020025262 A JP 2020025262A JP 2020113287 A JP2020113287 A JP 2020113287A
Authority
JP
Japan
Prior art keywords
magnetic field
robot
calibration
oscillator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020025262A
Other languages
English (en)
Inventor
アレクサンダー クライナー,
Kleiner Alexander
アレクサンダー クライナー,
ニコライ ロマノフ,
Nikolai Romanov
ニコライ ロマノフ,
フレデリック フック,
Hook Frederic
フレデリック フック,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iRobot Corp
Original Assignee
iRobot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by iRobot Corp filed Critical iRobot Corp
Publication of JP2020113287A publication Critical patent/JP2020113287A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0035Calibration of single magnetic sensors, e.g. integrated calibration
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/30End effector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Cultivation Of Plants (AREA)
  • Harvester Elements (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

【課題】磁界検出を用いて移動型ロボット位置を判断するためのシステム及び方法を提供する。【解決手段】移動型ロボットは、環境内の表面上を移動可能な本体と、本体に担持され、較正磁界を生成するよう構成された較正コイル322と、本体に担持され、較正磁界に応答するセンサ回路319と、本体に担持され、センサ回路と通信する制御装置312とを含む。センサ回路は、較正磁界に基づいて較正信号323を生成するよう構成されている。制御装置は、較正信号に応じてセンサ回路を較正するよう構成され、それによって環境内の発信器磁界304を検出して発信器磁界に基づいて検出信号を生成するよう構成された、較正されたセンサ回路が得られる。制御装置は、検出信号に応じて移動型ロボットの姿勢310を推測するよう構成されている。【選択図】図3

Description

[関連出願の援用]
本特許出願は、2015年6月5日出願の米国仮特許出願第62/171,498号の利益を主張する出願である。米国仮特許出願第62/171,498号は、参照により本明細書に組み込まれるものとする。
本明細書は、概して、磁界検出を用いて移動型ロボット位置を判断するためのシステム及び方法に関する。
移動型ロボットの位置特定技術は、ロボットの周りの環境に対するロボット自身の位置及び向き(例えば、姿勢)をロボットに判断させるプロセスを含むことができる。周りの環境のマップを構築できるロボットは、ある程度の自律性を有するようにマップ内でのロボット自身の位置を特定できる。このマップを構築して生成されたマップを用いるプロセスは、Simultaneous Localization and Mapping(SLAM)として知られている。SLAMは、マップの構築(マッピング)及びマップの利用(位置特定)に関するものであり、従って位置特定に関連するプロセス及びマッピングに関連するプロセスを含む。ロボットは、これらのプロセスを同時に又は多重化された方法で実行することができる。SLAM技術は、走行距離計測法、機械的接触センサ、又はレーザ距離計や画像ベースのセンサといった非接触距離センサを用いたマップの構築を含むことができる。
移動型ロボットは、磁界に応答して電気信号を生成するセンサコイルを用いて環境内の磁界を検出することができる。移動型ロボットの制御装置は、電気信号を用いて、環境内に発信器磁界を発する磁界発信器に対するロボットの位置及び向き(例えば、姿勢)を判断することができる。センサコイルによって生成される電気信号は、磁界発信器によって発せられた発信器磁界に応答して生成された検出信号及びロボットの少なくとも一つの較正コイルによって発せられた較正磁界に応答して生成された較正信号を含み得る。較正コイルは、センサコイルが較正磁界に対して同様に応答するよう(例えば、較正磁界に応答して同様の振幅を生成するよう)ロボットに配置することができる。センサコイルは、それぞれが検出信号及び較正信号を生成する、三つの別々のコイルを含み得る。
いくつかの例では、センサコイルが較正コイルによって生成される較正磁界に対して同等の応答を示すことを想定して較正コイルが配置されているため、制御装置は、ロボットの較正コイルを制御して、センサコイルによって生成される検出信号のそれぞれを正規化する。制御装置は、較正信号に基づいて、磁界に応答して生成される電気信号を増幅させるセンサ回路のゲインを調整することができる。制御装置は、センサコイルのそれぞれによって生成される較正信号の振幅に基づいて、センサコイルのそれぞれによって生成される検出信号を正規化することができる。
いくつかの例では、制御装置は、所定のダイナミックレンジ内の検出信号を表す検出データの振幅を維持する。発信器磁界の振幅は磁界発信器から離れた位置ほど小さくなり、それによって検出信号の振幅が減少する。制御装置は、検出データの振幅に基づいて較正磁界の振幅を調節することができる。ロボットの磁界発信器から離れる動きによって検出データの振幅が減少すると、制御装置は、センサ回路のゲインによって検出信号が増幅されて検出データが所定のダイナミックレンジ内の振幅を有するよう、較正磁界の振幅を特定の閾値に調整することができる。
いくつかの例では、ロボットが環境内を移動すると、制御装置は、検出信号(例えば、検出信号の振幅又は位相)を環境内におけるロボットの位置及び向きにマッピングする伝達関数(例えば、マップ又はマッピング)を用いてロボットの姿勢を判断することができる。いくつかの場合においては、ロボットは、静的に較正された伝達関数を含み得る。ロボットが環境内を移動すると、ロボットは、動作信号から推測した相対距離で検出信号を動的に較正することができる。動作信号は、ロボットが移動した距離、ロボットの速度、又はロボットの加速度を表し得る。検出信号を動作信号で較正することで、ロボットは、磁界のひずみに遭遇した際にロボットの姿勢を推測することができる。
いくつかの例では、移動型ロボットは、環境内の表面上を移動可能な本体と、本体に担持され、較正磁界を生成するよう構成された較正コイルと、本体に担持され、較正磁界に応答するセンサ回路と、本体に担持され、センサ回路と通信する制御装置とを含む。センサ回路は、較正磁界に基づいて較正信号を生成するよう構成されている。制御装置は、較正信号に応じてセンサ回路を較正するよう構成され、それによって環境内の発信器磁界を検出して発信器磁界に基づいて検出信号を生成するよう構成された、較正されたセンサ回路が得られる。制御装置は、検出信号に応じて移動型ロボットの姿勢を推測するよう構成されている。
いくつかの例では、移動型ロボットはロボット芝刈り機であっても良く、表面は芝地を含んでも良く、移動型ロボットは本体の下部に切断機構を更に含んでも良い。制御装置は、切断機構で芝生を切断しながら本体を芝地上で動かすために遠隔装置と情報を交換するよう構成しても良い。情報は、芝地上のある点に対する移動型ロボットの位置及び芝地上での動きの指示を含んでも良い。
いくつかの例では、移動型ロボットは清掃ロボットであっても良く、表面は部屋の床を含んでも良い。制御装置は、本体を床上で動かして移動型ロボットの床清掃機構又は清掃パッドを用いて床を清掃させるために遠隔装置と情報を交換するよう構成しても良い。情報は、部屋内における移動型ロボットの位置及び部屋のあらゆる場所での動きの指示を含んでも良い。
いくつかの例では、センサ回路はフィルタ回路及び発信器磁界に応答する複数のセンサコイルを含んでも良い。制御装置は、較正信号を表すデータに基づいてフィルタ回路用の係数を判断し、係数をフィルタ回路に適用してセンサコイルによって検出された複数の異なる周波数に対応する複数の周波数チャンネルのゲインの差を正規化するよう構成しても良い。
いくつかの例では、センサ回路は増幅回路を含んでも良い。制御装置は、較正信号を表すデータに基づいて増幅回路のゲインを判断し、ゲインを増幅回路に適用して較正信号の振幅の動的変更を可能にするよう構成しても良い。
いくつかの例では、センサ回路は、異なるコイル軸を規定して発信器磁界の異なる成分に応答するよう配置された三つのセンサコイルを備えても良い。コイル軸は立体的に直交しても良い。センサコイルは球の外形の少なくとも一部に接近するよう配置しても良い。
いくつかの例では、制御装置は、較正信号及び発信器磁界を表す較正前データに応じてセンサ回路を較正するよう構成しても良い。制御装置は、較正磁界の振幅と発信器磁界の振幅との間の差を閾値と比較し、差に基づいてセンサ回路を較正するよう構成しても良い。
いくつかの例では、較正されたセンサ回路は、発信器磁界の成分の、較正コイルからの出力に基づいた最大磁界周波数と最小磁界周波数との間にある周波数の検出に応答して検出信号を生成するよう構成しても良い。
いくつかの例では、移動型ロボットは、センサ回路による発信器磁界の検出に応答して本体を表面上で移動させるよう動作可能なモータを含み得る。モータは、発信器磁界を検出するとロボットの速度を落とすよう構成することができる。
いくつかの例では、ロボットはつながれていなくても良い。
いくつかの例では、制御装置は、検出信号を表すデータを用いた高速フーリエ変換を実行して発信器磁界の位相及び振幅を取得すること、及び位相の経時ドリフトを判断して発信器磁界を発する発信コイルとセンサ回路にある発信器磁界を検出するセンサコイルの相対向きの変化を検出することを含む操作を実行することで移動型ロボットの姿勢を推測するよう構成しても良い。
いくつかの例では、移動型ロボットは、ロボットが移動した距離、ロボットの速度、及びロボットの加速度の少なくとも一つに応答し、動作信号を生成するよう構成された動作検出器を含み得る。制御装置は、動作信号に基づいてマップを生成し、動作信号を表すデータに応じて環境に対するロボットの姿勢を判断するよう構成することができる。
いくつかの例では、センサ回路は、軸が立体的に直交する三つのセンサコイルを含み得る。較正コイルは、三つのセンサコイルのそれぞれに対して同じ角度を規定するよう配置することができる。
いくつかの例では、自律型ロボットシステムは、発信器磁界を生成するよう構成された発信コイルを備える磁界発信器と、自律的に磁界発信器に関して環境内を移動するよう構成されたロボットを含む。ロボットは、較正磁界を生成するよう構成された較正コイルを備える。自律型ロボットシステムは磁界受信器を含む。磁界受信器は、発信器磁界及び較正磁界に応答するセンサコイルを含む。自律型ロボットシステムは、更に、磁界受信器による発信器磁界の検出に基づいて磁界発信器に対するロボットの位置を判断するよう構成された位置判断回路を含む。位置判断回路は、磁界受信器によって検出された較正磁界を表すデータに基づいて自己較正を実行するよう構成されている。
いくつかの例では、磁界発信器は三つの発信コイルを備えても良い。三つの発信コイルはそれぞれ発信コイル軸を規定して発信器磁界の一成分を生成するよう構成しても良い。発信コイル軸は立体的に直交しても良い。発信コイルは第一球の外形の少なくとも一部に接近するよう配置しても良い。磁界受信器は三つのセンサコイルを備えても良い。三つのセンサコイルはそれぞれセンサコイル軸を規定して発信器磁界の一成分に応答するものであっても良い。センサコイル軸は立体的に直交しても良い。センサコイルは第二球の外形の少なくとも一部に接近するよう配置しても良い。
いくつかの例では、第一球は第二球より大きくても良い。
いくつかの例では、較正コイルはセンサコイルのそれぞれに対して同じ角度を規定しても良い。角度は50度から60度の間であっても良い。
いくつかの例では、ロボットと磁界発信器は物理的に切り離されていても良い。
いくつかの例では、移動型ロボットによって実行される姿勢を推測する方法は、移動型ロボットの較正コイルを用いて較正磁界を生成し、移動型ロボットのセンサ回路を用いて較正磁界を検出することを含む。方法は、較正磁界を表す較正データに基づいてセンサ回路を較正し、それによって較正されたセンサ回路が得ることを含む。方法は、更に、較正されたセンサ回路を用いて発信器磁界を検出し、較正されたセンサ回路を用いて検出した発信器磁界を表すデータに基づいて移動型ロボットの姿勢を推測することを含む。
いくつかの例では、センサ回路はフィルタ回路及び発信器磁界に応答する複数のセンサコイルを含んでも良い。センサ回路の較正は、較正データに基づいてフィルタ回路用の係数を判断し、係数をフィルタ回路に適用してセンサコイルによって受信された複数の異なる周波数に対応する複数の周波数チャンネルのゲインの差を正規化することを含んでも良い。
いくつかの例では、センサ回路は増幅回路を含んでも良い。センサ回路の較正は、較正データに基づいて増幅回路のゲインを判断し、ゲインを増幅回路に適用してセンサ回路によって出力される較正信号の振幅の動的変更を可能にすることを含んでも良い。
いくつかの例では、センサ回路を較正することは、較正データ及び発信器磁界を表す較正前データの両方に基づき得る。
いくつかの例では、センサ回路の較正は、較正磁界の振幅と発信器磁界の振幅との間の差を閾値と比較し、差に基づいてセンサ回路を較正することを含んでも良い。
いくつかの例では、較正されたセンサ回路は、発信器磁界の成分の周波数の検出に応答して検出信号を生成しても良い。周波数は、最大磁界周波数と最小磁界周波数との間にあっても良い。最大磁界周波数及び最小磁界周波数は、較正コイルからの出力に基づいていても良い。
前述の構成は、限定されないが、以下の長所を含み得る。ロボットは、センサコイルによって生成された検出信号を用いて、環境内のある特徴(例えば、固定された磁界発信器)によって生成された発信器磁界に対するロボットの姿勢を推測することができる。多くの場合、ロボットは、発信器磁界に基づいて自身の姿勢を推測することができる。従って、ロボットは、時間とともに蓄積される姿勢の変化を追跡することによる位置の推測を行う必要が無い。位置及び向きの推測は、時間とともに蓄積され得る誤差が発生し難い。
加えて、環境内に配置されたロボットは、初期化された時点で自身の姿勢を推測することができる。ロボットが移動されるか未知の場所に配置された場合、制御装置は、測定された磁界の特徴に基づいてロボットの姿勢を判断することができる。従って、ロボットは、自身の姿勢を判断するために以前の姿勢を表す以前のデータを必要としない。
本明細書で説明するシステム及び方法は、ロボットの位置及び向きの推測の正確度、精度、及び計算効率を向上させると考えられる較正処理も含む。一例では、制御装置は、検出信号を表す検出データを、センサコイル間で大きく違わないと想定される較正信号で正規化することで、制御装置が受信する異なるセンサコイルからの検出データ間の正確度及び整合度を向上させることができる。
別の例では、ロボットの発信器からの距離が増加すると、検出信号の振幅が減少し、磁界の他の検出信号との区別がより難しくなり得る。制御装置は、較正磁界を動的に変更し、それによってセンサコイルによって生成される較正信号を動的に変更することで、正規化された検出信号のダイナミックレンジ(例えば、検出信号の最小値及び最大値)を小さくして計算効率を向上させることができる。従って、検出信号の振幅が大幅に減少しても、制御装置が受信する検出データを小さいダイナミックレンジ内で変化させることができるため、計算効率を向上させ、大きいダイナミックレンジの信号を処理できる高価な部品の必要性を低減させる。
この発明の概要を含む本明細書で説明する二以上の特徴を組み合わせて、本明細書で具体的に説明されていない実施例を形成することができる。
本明細書で説明するロボット又はその動作態様は、一以上の非一時的機械可読記憶媒体に保存され、一以上の処理装置で実行して本明細書で説明する動作を制御(例えば、統合)することができる指示を含む、コンピュータプログラム製品として実施する又はコンピュータプログラム製品で制御することができる。本明細書で説明するロボット又はその動作態様は、一以上の処理装置及び様々な動作を実施するための実行可能な指示が保存されているメモリを含み得るシステム又は方法の一部として実施することができる。
一以上の実施例の詳細は、添付の図面及び以下の明細書に記載されている。その他の特徴及び長所は、明細書、図面及び特許請求の範囲から明らかになるであろう。
図1Aは、磁界を発する磁界発信器が置かれた環境内を移動する移動型ロボットの斜視図である。 図1Bは、磁界を発する磁界発信器が置かれた環境内を移動する飛行ロボットの斜視図である。 図2は、環境の特徴に基づいたひずみを示す磁界を発する磁界発信器が置かれた環境内を移動する移動型ロボットの斜視図である。 図3は、磁界発信器及びロボットの検出/制御システムのブロック図である。 図4は、図3に示す検出/制御システムによって生成された電気信号の周波数領域のグラフである。 図5は、磁界発信器を備えるドッキングステーションから離れる方向に移動するロボットの側面図である。 図6は、図5に示すロボットの異なる姿勢で収集した二つのサンプルのグラフである。 図7は、磁界発信器が置かれた環境内でのロボットの複数の可能な姿勢の上面図である。 図8は、磁界発信器の正面斜視図である。 図9は、検出/制御システムの正面斜視図である。 図10は、検出/制御システムを備えるロボットの底面図である。 図11は、移動型ロボットの位置及び向きを推測するために移動型ロボットによって実行されるプロセスを示すフローチャートである。 図12は、検出/制御システムのゲインを調整するために移動型ロボットによって実行されるプロセスを示すフローチャートである。 図13は、磁界を発する複数の磁界発信器が置かれた環境内を移動するロボットの斜視図である。 図14は、磁界を発する磁界発信器が置かれた屋内環境内を移動するロボットの斜視図である。
異なる図面中の同様の参照番号は、同様の要素を示す。
本明細書では、磁界を用いてある環境内における移動型ロボットが自身の姿勢(例えば、位置及び向き)を推測することを可能にする、移動型ロボット用のナビゲーションシステムの例を説明する。ナビゲーションシステムは、環境内に発信器磁界を発する磁界発信器を含むことができる。移動型ロボットは、磁界発信器によって発せられた発信器磁界を検出するよう構成することができる。移動型ロボットは、検出された発信器磁界に基づいて、環境内を横断又は移動することができる。移動型ロボットは、発信器磁界を測定して、発信器磁界を表す電気信号である検出信号を生成するセンサ回路を含むことができる。制御装置によって操作可能なセンサ回路は、検出信号に基づいて検出データを出力する。ロボットの制御装置は、検出データに基づいて、環境内でのロボットの位置及び向きを推測することができる。
例えば、ナビゲーションシステムは、発信器磁界(例えば、磁気双極子場)の三つの直交する成分を生成するよう構成された、三つの概して直交するコイルを有する発信器を含むことができる。発信器磁界の各成分を生成するために用いられる電気信号は、発信器磁界の各成分が他の成分と区別できるように多重化される。ロボットは、複数の受信アンテナ(例えば、三組の概して直交するコイル)を含む。発信器は、発信器磁界の三つの直交する成分を生成することで、三つの直交する軸(例えば、x、y及びz軸)を有する参照座標枠を規定することができる。その結果、三次元空間に関して測定されたロボットの姿勢は、発信器磁界の測定結果に基づいて判断することができる。従って、ロボットの位置及び向きの推測は、発信器磁界の三つの成分の九つの測定結果に基づいている。
制御装置は、ナビゲーションシステムの正確度、精度、及び効率を向上させるための較正プロセス及び正規化プロセスを含むことができる。制御装置は、移動型ロボットが環境内を移動しても変化しない安定した参照値でセンサ回路を較正することができる。従って、制御装置は、較正されていないセンサ回路を較正することができ、それによって較正されたセンサ回路が得られる。このような較正プロセスによって、検出信号から推測される姿勢の正確度及び精度を向上させることができる。
一例では、移動型ロボットは、移動型ロボットが環境内を移動してもセンサコイルの位置において振幅及び位相が変化しない較正磁界を生じさせる較正コイルを含む。センサ回路の複数のセンサコイルは較正磁界を検出し、各センサコイルは較正磁界に応答して較正信号を生成する。複数のセンサコイルのそれぞれによって生成された較正信号は、複数のセンサコイルに対する較正コイルの配置から、互いに大きく異なることは予期されない。従って、検出データは、較正信号に基づいて正規化することができる。制御装置は、複数のセンサコイルのそれぞれからの検出信号を表す検出データが較正信号で正規化されるように、較正信号を用いてセンサ回路を較正するよう構成することができ、その結果較正されたセンサ回路が得られる。較正されたセンサ回路は、環境内の発信器磁界を検出し、発信器磁界に基づいて検出データを出力するよう構成されている。制御装置は、次いで、検出データを処理してロボットの姿勢を推測することができる。本明細書で説明する較正は、発信器によって生成された発信器磁界の各成分の振幅が変化した場合に発信器磁界に応答してセンサコイルによって測定される信号が較正されるよう、一定間隔で実行される動的較正である。
制御装置は、オンボード較正及び/又は他のセンサの利用によって、例えば発信器磁界の変形及びひずみによって生じるエラーに起因する検出信号からの姿勢推測のエラー及び不正確性を低減することができる。これらの変形及びひずみは、例えば、磁気双極子構造の散乱を引き起こす環境内の金属構造物及びその他の大型の導電性物体によって引き起こされ得る。発信器磁界は、環境内の動かない構造物及び物体の存在によって一貫してひずむ。従って、ロボットは、発信器磁界に関する情報を測定し保存することができる。ロボットが同じ位置に戻った場合、ひずんだ磁界の測定結果は位置情報を提供することができる。一例では、制御装置は、ロボットの動作センサからの動作信号(例えば、ロボットが移動した距離、ロボットの速度、及び/又はロボットの加速度を表す信号)に基づいて姿勢推測を行う。動作信号は、磁界の変形に対して頑強であるため、検出信号に現れ得る磁界の変形を制御装置が検出することを可能にする。環境内の大型の導電性物体が動かない場合、ロボットは、これらの物体によって生成される磁界のパターンもSimultaneous Localization and Mapping(SLAM)システム用の位置特定用特徴として利用することができる。制御装置は、較正されたセンサ回路及び動作センサによって生成された信号を併用することで、正確かつ高精度に環境内での移動型ロボットの姿勢を判断することができる。
・ナビゲーションシステムの概要
図1Aに示すように、移動型ロボット100は、環境104内の表面102上で移動又は操作し、磁界発信器108が発する発信器磁界106に基づいて環境104内での自身の姿勢を推測する。推測される姿勢は、通常は移動しない環境104内の参照点(例えば、磁界発信器108)に対して測定されるロボットの向き及び位置を含む。図1Aに示す例では、ロボット100は、芝や草を含み得る表面102の芝刈りをする芝刈りロボットであり得る。しかしながら、本明細書で説明するシステム及び方法は、あらゆる種類の移動型装置に適用することができる。ロボット100は、環境104内を磁界発信器108に関して動き回る。
磁界発信器108が発する発信器磁界106は、磁界発信器108に対して外側に、空間の三次元の全方向(例えば、x軸、y軸及びz軸によって規定される三次元座標系)に伝搬するため、ロボットは、表面102上での動きに限定されず、表面102より上にある座標を含む環境104内を動き回ることができる。図1Bに示す例では、飛行ロボット109は、表面102より上でホバリングや飛行ができる飛行ドローンであり得る。磁界は、飛行ロボット109のx,y位置及び高度又は仰角を判断するのに用いることができる。
移動型ロボット100は、直交するx軸、y軸及びz軸を含む座標系110に対する自身の位置を推測することができる。移動型ロボット100は、更に、座標系内での自身の向き(例えば、x軸周りのθ向き、y軸周りのΦ向き、及びz軸周りのΨ向き)を推測することができる。ロボット100が環境104内で移動及び回転し、そしてそれによりロボット100の磁界検出器112が環境104内で移動及び回転すると、ロボット100に配置された磁界受信器112は発信器磁界106の特性(例えば、位相及び振幅)の変化に応答する。磁界受信器112は発信器磁界106に応答して電気信号を生成し、ロボット100はこれらの電気信号に基づいて自身の姿勢を推測することができる。
いくつかの例では、図2に示すように、ロボット200(例えば、図1Aに示すロボット100)が環境204の表面202上で移動又は動作すると、ロボット200は磁界発信器210が発する発信器磁界208のひずみ206を検出することができる。例えば自動車212といった大型の導電性物体は、その近傍の磁界をひずませることができるため、発信器磁界208にひずみ206を生じさせる。ロボット200に配置された磁界受信器214は、発信器磁界208のひずみ206を検出し、ある特定の位置で測定されたひずみ206に対応する検出信号を表すデータを保存することができる。ロボット200に配置された動作センサ216も、ロボット200の移動特徴(例えば、移動距離、速度、又は加速度)を検出することができる。
ロボット200は、動作センサ216及び磁界受信器214によって生成された信号を用いてひずみ206を検出することができる。例えば、磁界受信器214は、一般的に大型の導電性物体によって生じる発信器磁界208の振幅及び位相の変化(例えば、ひずみ206)を表す検出信号を生成することができる。動作センサ216は、ロボット200の移動量を表す動作信号を生成することができる。ロボット200は、ロボット200がひずみ206の近傍を移動する際にひずみ206を表す検出信号が正確にロボット200の移動量を反映するよう、検出信号及び動作信号を処理することができる。従って、ロボット200は、ひずみが存在する場合においてもロボット200の姿勢を推測することができる。いくつかの場合においては、ロボット200は、ひずみ206の存在を判断することで、発信器磁界208に応答して生成された検出信号とロボットの姿勢との間の伝達関数として用いることができるトポグラフィ又はマップを学習することができる。従って、ロボット200は、ひずみ206をSLAM法における再位置特定用の特徴として用いることができる。
制御装置は、一般的に、操作及び処理を実行して、磁界発信器によって生成された磁界に基づいて磁界発信器に対する磁界受信器の位置及び向きを推測することができる。操作及び処理は、計算を簡略化して制御装置の処理効率を向上させる物理的仮定を含み得る。一例では、磁界発信器によって生成される磁界は準静的であると仮定することができるため、操作及び処理においては高次項を考慮せず、それによって磁界受信器の位置及び向きの推測に必要な計算を簡略化している。準静的磁界であるとの仮定は、想定される磁界発信器と磁界受信器との間の距離、例えば0から10kmにおいては、本明細書で説明する推測される位置及び向きの正確度及び精度には大きくは影響しない。
更に、発信コイル及びセンサコイルの構造的仮定も、正確度及び精度に影響を与え得る。いくつかの例では、磁界発信器の三つの別々であり且つ互いに直交する発信コイルは発信器磁界を生成する。各発信コイルは発信器磁界の一成分を生成するため、各成分は互いに実質直交する。
更なる例では、磁界受信器の三つの別々であり且つ互いに直交するセンサコイルは磁界を検出する。磁界トランシーバに対する磁界受信器の位置及び向きを計算する処理の例は、“Method and apparatus for determining remote object orientation and position”と題して1985年12月9日に出願された米国特許第4、737、794号に詳細に説明されており、その全内容が本明細書に組み込まれるものとする。
本明細書で説明する操作及び処理を用いて姿勢を推測するために、環境内を移動する移動型ロボット(例えば、図1Aに示すロボット100、図1Bに示すロボット109、又は図2に示すロボット200)は、環境内における磁界発信器に対するロボットの位置及び向きを推測するために磁界発信器が発する発信器磁界を検出する回路を含み得る。図3は、発信器磁界304を発する磁界発信器302(例えば、図1Aに示す磁界発信器108又は図2に示す磁界発信器)を含むナビゲーションシステム300のブロック図を示す。ロボットに配置された検出/制御システム306は、発信器磁界304に応答して電気信号を生成する。検出/制御システム306は、検出/制御システム306の制御装置312が、電気信号に基づいて、磁界発信器302の位置及び向きに対するロボットの三次元位置308及び三次元向き310を判断することが可能な位置判断回路を含む。従って、ロボットの位置308及び向き310は、固定位置に配置又は固定されて通常は動かない環境内の参照点(例えば、磁界発信器302)に対して測定される。
・磁界発信器
磁界発信器302は、環境内の固定の位置及び向きに留まったまま、環境内に発信器磁界304を発する。磁界発信器302は、作業中(例えば、芝刈り作業中、清掃作業中、ナビゲーション作業中、及びその他のロボットによって実行される作業中)は環境内の固定の位置及び向きに留まることができる。従って、磁界発信器302は、例えばロボットが作業中は、環境内の固定点に対して動かない。検出/制御システム306は、例えば、検出/制御システム306が実質的に磁界発信器302から電気的に絶縁されるよう、物理的には磁界発信器302につながれない構成とすることができる。
磁界発信器302は、発信コイル314を用いて発信器磁界304を発する。発信コイル314は、三つの別々の発信コイル314A、314B、314Cを含む(本明細書では、まとめて発信コイル314と呼ぶ)。発信コイル314A、314B、314Cは、それぞれ、信号生成器316A、316B、316C(本明細書では、まとめて信号生成器316と呼ぶ)及び電力アンプ318A、318B、318C(本明細書では、まとめて電力アンプ318と呼ぶ)を含む発信器回路から、増幅された電気信号315A、315B、315Cを受信する。従って、磁界発信器302は、三つの独立した信号生成器316A、316B、316C及び三つの独立した電力アンプ318A、318B、318Cを含む。各コイル314A、314B、314Cにおいて、関連する増幅された電気信号315A、315B、315C(本明細書では、まとめて増幅された電気信号315と呼ぶ)は、関連する信号生成器316A、316B、316Cによって生成された関連する増幅されていない電気信号317A、317B、317C(本明細書では、まとめて増幅されていない電気信号317と呼ぶ)に由来する。関連する電力アンプ318A、318B、318Cは、関連する増幅されていない電気信号317A、317B、317Cを受信し、増幅されていない電気信号317A、317B、317Cの電力を増幅して、発信コイル314A、314B、314Cがそれぞれ受信する増幅された電気信号315A、315B、315Cを生成する。各発信コイル314A、314B、314Cは、対応する信号生成器316A、316B、316C及び電力アンプ318A、318B、318Cによって生成された増幅された電気信号315A、315B、315Cを用いて、発信器磁界304の関連する成分を生成する。発信器磁界304は、それぞれが発信コイル314A、314B、314Cのうちの一つによって生成された三つの別々の成分を含むと説明したが、いくつかの実施例では、発信器磁界304は、それぞれが発信コイル314A、314B、314Cによって生成される成分のうちの一つに対応する三つの別々の磁界を重畳したものであっても良い。
発信コイル314は、発信コイル314のコイル軸が環境の三次元空間の線形独立な基準を形成するよう配向されている。発信コイル314は、線形独立な軸を有するため、信号生成器316及び電力アンプ318によって生成される電気信号の振幅及び周波数によって、空間の三次元の全方向(例えば、x、y、z方向)において発信器磁界304の振幅及び周波数を制御することができる。一例では、磁界発信器302の制御装置は、信号生成器316で生成された信号の位相、周波数及び振幅を調整すること、又は電力アンプ318のゲインを増加させて発信コイル314に伝達される電気信号の振幅を増加させることができる。いくつかの場合においては、各発信コイル314用の電気信号の周波数及び振幅は、事前に(例えば、製造段階で)指定しても良い。各発信コイル314用の関連する信号生成器316及び関連する電力アンプ318は、事前に指定した周波数及び振幅が達成されるように設定しても良い。電力アンプ318は、所定の点における発信器磁界304が三次元の全方向において同様の振幅を有するようにそれぞれ設定しても良い。
一般に、信号生成器316のそれぞれによって生成された信号は、発信器磁界304の複数の成分が互いに区別可能となるように多重化することができる。例えば、電気信号は、時分割多重、周波数分割多重、及び/又はスペクトル拡散多重(spread spectrum multiplexing)又は位相多重(phase multiplexing)を用いて多重化することができる。周波数分割多重の一例では、各発信コイル314用の信号生成器316は、例えば、1kzから10kHzの間、10kHzから20kHzの間、又は20kHzから30kHzの間の指定の周波数を有するように、増幅されていない電気信号317を生成することができる。周波数は、互いに、例えば60Hzから500Hz又は500Hzから5kHzだけ異なっていても良い。発信コイル314によって生成された発信器磁界304の成分は、増幅されていない電気信号317と同様の周波数を有する。従って、周波数は、ノイズ(例えば、モータ、誘導コイル、及びその他の磁界を生成し得る電気システムによるノイズ)の周波数が、発信コイル314に発信される増幅された電気信号315の周波数の範囲外にあるよう選択することができる。
・検出/制御システム
発信器磁界304はロボットが環境内を移動すると変化するため、検出/制御システム306は、発信器磁界304を検出し、ある特定の位置での発信器磁界304の三つの成分の固有の特徴を用いて位置308及び向き310を推測することができる。検出/制御システム306のセンサ回路319は、発信器磁界304を検出し、センサコイル320を用いて検出信号321を生成又は出力する。センサ回路319は、制御装置312と通信する。制御装置312は、検出信号321に基づいて、三次元における位置308(例えば、x、y及びz)及び三次元における向き310(例えば、θ、Φ及びΨ)を判断することができる。検出/制御システム306のセンサコイル320は、それぞれが発信器磁界304に応答して検出信号321を生成する、三つの別々のセンサコイル320A、320B、320C(本明細書では、まとめてセンサコイル320と呼ぶ)を含む。センサコイル320のコイル軸は線形独立であり、それによって、ロボットが環境内を移動する際に三つのセンサコイル320の検出信号321が互いに独立して変化することを可能にしている。センサコイル320の軸の線形独立性は、更に、センサコイル320が三次元の全方向に広がる磁界を検出することを可能にする。
各例において、検出/制御システム306は、位置308及び向き310の推測の正確度、精度、及び計算効率を向上させるために様々な較正及び正規化操作を実行する。一例では、検出/制御システム306は、正確度及び精度を向上させるために、検出/制御システム306に関して固定された(例えば、検出/制御システム306に対して動かない)較正磁界に応答して生成された較正信号に基づいて、検出信号321を表す検出データ325を動的に正規化することができる。別の例では、検出/制御システム306は、制御装置312によって利用される検出信号321を表すデータを圧縮されたダイナミックレンジ内に維持するために、較正磁界を動的に調整する。更なる例では、検出/制御システム306は、更に、発信器磁界304のひずみが存在する場合においても姿勢の推測の正確度及び精度を向上させるために、動作を表す信号を用いて、検出信号321と姿勢(すなわち、位置308及び向き310)との間の伝達関数(例えば、マップ、マッピング又はその他の機能)を動的に較正する。本明細書では、これらの処理及びシステムのそれぞれについて説明する。
・検出信号の正規化
検出/制御システム306は、ロボットの姿勢を推測するために、較正コイル322を用いて、制御装置312が受信した検出データ325の正規化に用いられる磁界を生成する。従って、検出/制御システム306又は検出/制御システム306の位置判断回路は、磁界受信器(例えば、センサコイル320)によって検出された較正磁界を表すデータに基づいて自己較正を実行するよう構成されている。検出/制御システム306は、検出データ325を同様の較正値に較正することで、位置308及び向き310の推測の同様の変化を表すためにセンサコイル320のそれぞれにおける検出信号321が同様の変化量を示すようにすることができる。検出データ325を正規化することで、同様のダイナミックレンジ内にある検出データ325によって、センサコイル320のそれぞれからの出力の相互の正確度及び精度を向上させることができる。
較正コイル322は、各センサコイル320が同じように応答できる較正磁界324を生成する。一例では、センサコイル320は、センサコイル320のそれぞれが較正コイル322によって生成される較正磁界324に対して同じように応答するように、互いに且つ較正コイル322に関して配置することができる。センサコイル320は実質直交する軸を有することができ、較正コイル322は、較正コイル322の軸がセンサコイル320のそれぞれの軸に対して同じ角度を規定するよう配置することができる。較正コイル322の軸とセンサコイル320のそれぞれとの間の角度は、50度から60度の間の角度とすることができる。センサコイル320はそれぞれ較正コイル322に対して同じ角度を規定するため、センサコイル320は、較正磁界324の検出に応答して、振幅及び周波数が実質同様の較正信号323を生成又は出力することができる。検出/制御システム306は、センサコイル320をこれらの較正信号323で較正することで、位置308及び向き310の推測の正確度及び精度を向上させることができる。
検出/制御システム306は、較正磁界324を用いてセンサコイル320のそれぞれによって生成される検出信号321の増幅量(例えば、センサ回路319のゲイン)を設定する。本明細書で説明するように、検出信号321は、センサ回路319のアンプ回路、フィルタ回路及び変換回路を通過した後に検出データ325となる。同様に、較正信号323は較正信号323を表す較正データ327となる。制御装置312は、較正データ327及び較正前の検出データ325に基づいて、較正前の検出データ325が較正された検出データ325となるようセンサ回路319を較正することができる。制御装置312は、較正前の検出データ325を用いてセンサ回路319を較正した後は、検出信号321を表す較正された検出データ325を用いて正確かつ高精度にロボットの姿勢を推測することができる。
較正コイル322はセンサコイル320に対して動かないため、ロボットの環境内での移動中の異なる時間において、センサコイル320によって検出される較正磁界324の振幅は同じであることが予想される。反対に、センサコイル320によって生成される検出信号321の振幅は、磁界発信器302と検出/制御システム306との間の距離が大きくなるほど小さくなる。従って、制御装置312は、センサコイル320によって生成された検出信号321を較正磁界324で正規化することができる。ロボットが環境内を移動しても、較正信号323は実質同じままである。
通常、検出/制御システム306は、ノイズ(例えば、較正コイル322及び発信コイル314とは別のものに起因する磁界からのノイズ)の影響を減らすために、検出信号321を増幅する。検出/制御システム306は、較正磁界324の周波数及び振幅に基づいて増幅のゲインを設定することができる。一例では、センサ回路319のセンサコイル320は、発信器磁界304の各成分の周波数の検出に応答して検出信号321を生成する。センサ回路319のセンサコイル320は、較正磁界324の各成分の周波数の検出に応答して較正信号323も生成することができる。
較正磁界324は、発信器磁界304の三つの成分の周波数の両側に二つの周波数成分を含んでも良い。第一周波数成分は発信器磁界304の三つの成分の周波数より低い周波数を有し、第二周波数成分は発信器磁界304の三つの成分の周波数より高い周波数を有する。その結果、検出/制御システム306は、本明細書で説明するように、第一周波数成分及び第二周波数成分で区切られた周波数のゲインを増加又は減少させることで、発信器磁界304の各成分を増幅又は減衰させることができる。従って、最大磁界周波数(例えば、高周波数成分の周波数)及び最小磁界周波数(低周波数成分の周波数)の間の周波数を有する発信器磁界304の成分は、検出信号321と較正信号323との間の相対振幅に基づいて増幅/減衰される。
第一周波数成分の周波数及び第二周波数成分の周波数は、複数ある「チャンネル」のうちの一つを選択又は使用するためにあらかじめ定めることができ、発信器及び受信器は環境内で最もノイズが少ないチャンネルを選択するよう取り決めることができる。典型的なチャンネルは約200Hzから500Hzの幅を有し、一般的には1000Hzから30,000Hzの領域内で離隔している。しかしながら、いくつかの例では、チャンネルの幅は500Hzより大きい場合がある。例えば、第一周波数成分は、500Hzから1kHzの間、1kHzから5kHzの間、又は5kHzから10kHzの間であり得る。第二周波数成分は、10kHzから15kHzの間、15kHzから20kHzの間、又は20kHzから30kHzの間であり得る。発信器磁界304の各成分は、周波数が第一及び第二周波数成分の周波数の間にあるような、本明細書で説明する周波数を有し得る。
従って、使用中は、各コイル320は、発信器磁界304及び較正磁界324の両方を含み得る環境内の磁界を検出する。図4は、例えば、ロボットの位置及び向きを推測するために複数のセンサコイルのうちの一つからサンプルを収集中に生成される電気信号400の周波数領域のグラフ(例えば、高速フーリエ変換により得られるグラフ)の一例を示す。電気信号400は、図3に示すセンサコイル320のうちの一つによって生成される、検出信号321及び較正信号323を含む電気信号の例であり得る。電気信号400は一つの電気信号として説明しているが、電気信号400は複数の別々の電気信号(例えば、検出信号321及び較正信号323)を重畳したものとして説明することもできる。このような例では、検出応答405A、405B、405Cは検出信号を表し、較正応答410A、410Bは較正信号を表すことができる。
センサコイル(例えば、センサコイル320のうちの一つ)によって生成される電気信号400は、発信器磁界の三つの成分(例えば、発信コイル314A、314B、314Cによって生成される発信器磁界304の成分)のそれぞれに対する応答405A、405B、405Cを含む。電気信号400は、(例えば、較正磁界324に関して本明細書で説明した)較正磁界の第一及び第二周波数成分に対する応答410A、410Bを更に含む。従って、較正磁界及び発信器磁界は、電気信号400に、五つの異なる周波数、すなわち、較正磁界324の第一周波数成分の較正周波数415A、発信器磁界の成分の三つの検出周波数420A、420B、420C、及び較正磁界の第二周波数成分の較正周波数415Bにおいて電気的応答を示させることができる。図4に示すように、三つの検出周波数420A、420B、420Cは較正周波数415A、415Bの間にある。
それぞれがセンサコイル320のうちの一つによって生成される検出信号321及び較正信号323を含む電気信号は、センサコイル320A、320B、320Cのそれぞれに関連付けられた自動ゲイン制御(AGC)回路326A、326B、326C(本明細書では、まとめてAGC回路326と呼ぶ)、アンプ回路328A、328B、328C(本明細書では、まとめてアンプ回路328と呼ぶ)、及びフィルタ回路330A、330B、330C(本明細書では、まとめてフィルタ回路330と呼ぶ)を含むセンサ回路319を通して伝達される。通常、コイル320はそれぞれ検出信号321及び較正信号323を関連付けられたAGC回路326に伝達し、AGC回路326は検出信号321及び較正信号323の両方をAGCゲイン分増幅させる。関連付けられたアンプ回路328は、所定のアンプゲイン分信号を増幅させる。関連付けられたフィルタ回路330は、増幅された検出信号及び増幅された較正信号を受信し、フィルタ周波数周辺の増幅された信号をフィルタゲイン分増幅させる。AGCゲイン分、所定のアンプゲイン分、及びフィルタゲイン分増幅後、増幅された電気信号はアナログ−デジタル変換器(A/D)332の関連付けられたポートによってデジタル信号に変換され、制御装置312に伝達される。従って、デジタル化された増幅された電気信号は、制御装置312が位置308及び向き310を推測するために用いる、検出信号321を表す検出データ325及び較正信号323を表す較正データ327を含む。センサ回路319は、検出信号321を表すデータのダイナミックレンジを更に下げて制御装置312のダイナミックレンジの条件を下げるために、増幅又は減衰のための追加のステップを含んでも良い。
制御装置312は、検出データ325のダイナミックレンジを更に下げるために、増幅フィードバックループ334及び減衰フィードバックループ336を用いてセンサ回路319を較正する。フィードバックループ334、336はそれぞれ較正データ327を含み、デジタル信号をセンサ回路319及び減衰器回路338が利用可能なアナログ信号に変換するためのデジタル−アナログ変換器(D/A)337も含む。増幅フィードバックループ334は、較正データ327及び検出データ325に基づいて、センサコイル320のそれぞれに対する電気信号321、323のセンサ回路ゲイン(例えば、フィルタゲイン)を設定することができる。減衰フィードバックループ336は、検出データ325及び較正データ327に基づいて減衰器回路338の減衰器損失を設定することができる。減衰器回路338及びその減衰器損失によって、較正磁界324の振幅が決まる。
一例では、制御装置312は、検出データ325と較正データ327の振幅の差を判断し、減衰器損失及びフィルタゲインを設定する。ここで図4も参照して、制御装置312は、増幅された検出応答425A、425B、425Cが増幅された較正信号430A、430Bと同程度の振幅を有するように、増幅フィードバックループ334及び減衰フィードバックループ336を用いて各電気信号400に対してフィルタ回路330のフィルタゲイン及び減衰器回路338の減衰器損失をそれぞれ設定する。制御装置312は、センサ回路319を較正するために、フィルタ回路330の係数を決定することによってフィルタゲインを設定する。制御装置312は、次いで、それらの係数をフィルタ回路330に適用することで、センサコイル320によって検出される異なる周波数に対応する周波数チャンネルのゲインの差を正規化することができる。制御装置は、増幅された検出応答425A、425B、425Cの振幅の平均値を計算する。制御装置312は、増幅された較正応答430A、430Bの振幅の平均値も計算することができる。制御装置312は、増幅された検出応答425A、425B、425Cの振幅の平均値に基づいて、増幅された検出応答425A、425B、425Cが所定の振幅の範囲内となるようにフィルタ回路330のフィルタゲインを設定することができる。所定の範囲は、例えば0.1マイクロアンペアから1マイクロアンペアの間、1マイクロアンペアから10マイクロアンペアの間、又は10マイクロアンペアから100マイクロアンペアの間であり得る。一般に、所定の範囲はコイルのサイズに大きく依存し、コイルの構造に基づいて変化する。
フィルタ回路330は、周波数415Aと周波数415Bの間の周波数においてゲインが最大となるフィルタ形状428を有しても良い。電気信号400はノイズ応答430も含み得るため、通常は検出信号及び較正信号の興味のある周波数より外側でノイズ応答430の周波数が発生するよう、応答405A、405B、405C、410A、410Bの周波数を選択しても良い。従って、フィルタゲインは、検出信号(例えば、応答405A、405B、405C)を表すデータを、応答410A、410Bによって規定される範囲外の周波数を有するノイズ応答430よりも増幅することができる。ノイズ応答430は、例えば、ノイズ磁界を生成することができるモータ、誘電コイル、又はその他の電気装置が原因であり得る。従って、フィルタ回路330は、応答405A、405Bで規定される狭帯域においてゲインが高く、狭帯域の外側の周波数においてゲインが低いバンドパスフィルタとなり得る。帯域の幅は、例えば、50Hzから500Hz、500Hzから5kHz、又は5kHzから20kHzであり得る。いくつかの例では、帯域の幅は調整可能であり、周波数応答の形状も調整可能である。
・較正磁界の調整
制御装置312は、検出信号321を表すデータ325を圧縮ダイナミックレンジ内に維持するのを容易にするために、較正磁界324を動的に調整することができる。制御装置312は、較正コイル322用の減衰器損失と、それに対応する、姿勢と増幅された検出応答425A、425B、425Cの振幅との間の静的較正伝達関数(例えば、姿勢と検出信号との間のマップ又はマッピング)を含む記憶素子で動作可能であっても良い。静的較正伝達関数は、例えばロボットの製造段階で決定し記憶素子に保存することができる。比又は差を所定の範囲の間に維持するために制御装置312が新しい減衰器損失を選択した場合、制御装置312は新しい静的較正伝達関数に基づいて姿勢308及び向き310を推測する。制御装置312は、減衰器損失及びフィルタゲインを動的に変更することで、検出信号321を表すデータを圧縮ダイナミックレンジ内に維持することができ、それによってセンサコイル320によって生成される検出信号321を表すデータの処理のために制御装置312に要求される計算能力が低減される。
図4を再度参照し、制御装置312は、増幅された検出応答425A、425B、425Cの振幅の平均値及び増幅された較正応答430A、430Bの振幅の平均値に基づいて、二つの平均値の比が所定の範囲内となるよう減衰器回路338の減衰器損失を設定することができる。例えば、制御装置312は、増幅された較正応答430A、430Bの振幅の平均値に対する増幅された検出応答425A、425B、425Cの振幅の平均値の比を、0.95から1.05の間、0.9から1.1の間、及び0.85から1.15の間に維持するよう減衰器損失を設定することができる。いくつかの場合においては、制御装置312は、比を計算する代わりに、平均値の差を計算して差を閾値と比較する。いくつかの場合においては、制御装置312は、差を0.01から0.1マイクロアンペアの間、0.1から1マイクロアンペアの間、又は1から10マイクロアンペアの間に維持することができる。他の場合においては、制御装置312は、AGC回路326のゲインを監視し、AGC回路326のゲインをAGC回路326のゲイン最大値と最小値の間に維持するよう減衰器損失を設定する。制御装置312は、比又は差が所定の範囲外となった場合、比又は差が所定の範囲内に戻るよう、新規の減衰器損失及び対応する伝達関数を選択することができる。
制御装置312は、本明細書で説明した較正方法を用いて、検出応答425A、425B、425Cの平均値を計算すると説明した。他の実施例では、制御装置は、最小値、最大値、又は振幅を説明するその他の測定基準を計算することができる。制御装置は、較正磁界324に対する応答410A、410Bの振幅を説明する、最小値、最大値、又はその他の測定基準を計算することもできる。制御装置312は、次いで、減衰器損失及び/又はフィルタゲインを設定するために、最小値、最大値、又はその他の測定基準を閾値と比較することができる。
較正方法は、フィルタゲイン調整するために利用されるとも説明した。他の例では、制御装置312は、較正信号323を表す較正データ327及び検出信号321を表す検出データ325に基づいて、加えて又は代替的に、センサ回路319のプログラマブルゲインアンプ(PGA)回路のアンプゲインを決定することができる。制御装置312は、検出データ325及び較正データ327に基づいてPGA回路のアンプゲインを決定することができる。制御装置312は、次いで、検出信号321及び較正信号323の振幅の動的変更を可能にするために、アンプゲインをPGA回路に適用することができる。
・伝達関数の較正
検出/制御システム306は、通常、検出信号321及び検出信号321と姿勢との間の伝達関数を用いてロボットの位置308及び向き310を推測しようとする。本明細書で説明するように、制御装置312は、例えばロボットの製造段階で予め決定されている静的に較正された伝達関数及び検出/制御システム306にアクセスすることができる。使用中、制御装置312は更に動的に伝達関数を調整してロボットの姿勢の推測の正確度及び精度を向上させることができる。いくつかの例では、静的に較正された伝達関数は、例えば大型の金属製又は導電性の物体によって引き起こされる発信器磁界304のひずみの影響で、環境内の異なる位置における発信器磁界304に対して不正確であり得る。動的較正によって、不正確性を低減させるための伝達関数の調整をすることができる。
制御装置312によって実行される伝達関数は、制御装置312が検出信号321の特定に基づいてロボットの姿勢を推測することを可能にするマップ又はマッピングであり得る。伝達関数は、発信器磁界304の検出された振幅及び位相に対して予想されるロボットの位置及び向きであり得る。例えば、制御装置312は、検出信号321の振幅に基づいて位置308を計算することができる。制御装置312は、検出信号321の位相に基づいて向き310を計算することができる。センサコイル320は、発信器磁界304に応答して検出信号321を生成する。従って、制御装置312は、発信器磁界304の検出に基づいて及び伝達関数を用いてロボットの姿勢を推測することができる。
検出/制御システム306は、伝達関数の動的な調整又は較正を達成するために、動作信号342を生成する動作センサ340を含んでも良い。動作センサ340は、ロボットが移動した距離、ロボットの速度、又はロボットの加速度の少なくとも一つを表す動作信号342を生成する動作検出器である。動作センサ340は、全ての軸の周りの相対回転も検出することができる(例えば、IMU)。A/D変換器332は、動作信号を、制御装置312によって利用される、動作信号を表すデータ339に変換する。
いくつかの場合においては、制御装置312は、動作信号342のみを用いてSLAM技術を実行することができる。制御装置312は、動作信号342に基づいて環境のマップを生成することができ、動作信号342を表すデータ339に基づいてロボットの姿勢を判断することができる。動作信号342は、例えば、ロボットの駆動部に関連付けられたエンコーダ、光学マウスセンサ、慣性計測装置(IMU)、加速度計又はジャイロスコープからのデータを含み得る。動作信号342のデータ339は、制御装置312がロボットの相対位置を判断するために用いる推測航法用データとして用いられる。従って、ロボットが環境内を移動する際、制御装置312は、動作信号342のみを用いて、ロボットの以前の位置に対して測定されたロボットの相対位置を判断することができる。推測航法は、比較的短い距離においては正確であるものの、時間と共に蓄積されるドリフト誤差が発生する傾向がある。蓄積されたドリフトは、距離の計算及び向きの計算の両方に影響し得る。
本明細書で説明するように、検出/制御システム306は、磁界発信器302の位置及び向きに対するロボットの位置308及び向き310を推測することができる。従って、検出/制御システム306は、以前に検出/制御システム306によって収集され処理されたサンプルを参照することなく、検出/制御システム306によって収集され処理された一つのサンプルに対して位置308及び向き310を(例えば、動作信号342に関して本明細書で説明した、以前のサンプルに対する一つのサンプルの位置及び向きを計算するSLAM技術と比較して)有利に測定することができる。
制御装置312が検出信号321から位置308及び向き310を推測することを可能にする伝達関数の正確度を向上させるために、制御装置312は、動作信号から推測される相対位置を用いて伝達関数を修正することができる。ロボットが環境内を移動する際、制御装置312は、例えば、動作信号342から推測される相対位置及び相対向きを、検出信号321から判断される位置308及び向き310と比較することができる。
一例では、制御装置312は、二つの別々のサンプルにおいて、相対位置及び相対向きを、検出信号321を用いて推測された位置308及び向き310から計算することができる。図5は、位置505A、505Bにおいて、一次元方向(y方向)に、磁界発信器502(例えば、図3に示す磁界発信器302)を含むドッキングステーション501から離れるように移動するロボット500を示す。位置505A、505Bは、検出信号を表すデータ(例えば、センサコイル320の一つによって生成される検出信号321を表すデータ325)の、一次元(例えば、y次元)における二つの連続するサンプルに対応する。
図5に示すように、磁界受信器503を含むロボット500は、ドッキングステーション501と、ひいては磁界発信器502と物理的につながれていない(すなわち、ドッキングステーション501から切り離されている)。通常、ロボット500は、本明細書で説明する方法及び操作を実行するために磁界発信器502又は磁界発信器502を含むドッキングステーション501といった構造物に電気的又は機械的につながれている必要はない。
図6は、二つのサンプルの検出信号(例えば、検出信号321)を表すデータのグラフ600を示す。検出信号を表すデータは検出/制御システム(例えば、検出/制御システム306)を用いて生成され、第一位置505Aに対応する第一サンプル605Aと、双方とも第二位置505Bに対応する較正されていないサンプル605B及び較正されたサンプル605Cとを含む。較正されていないサンプル605Bは、検出信号の振幅とロボットの位置との間の伝達関数を修正する前の検出信号を表すデータに対応する。較正されたサンプル605Cは、動作信号に基づいて伝達関数を修正した後の検出信号を表すデータに対応する。
図6に示すように、検出信号を表すデータの振幅610は、第一サンプル605Aから第二サンプル(例えば、較正されていないサンプル605B又は較正されたサンプル605C)にかけて減少しており、第二位置505Bが第一位置505Aよりも磁界発信器502から離れていることを示している。制御装置は、較正されていないサンプル605B及び振幅610と位置612との間の較正されていない伝達関数を用いることで、第一位置505Aと第二位置505Bとの間の相対移動距離615を推測することができる。同様に、制御装置は、動作信号(例えば、図3に示す動作信号342)を用いることで、相対移動距離620を推測することができる。
制御装置は、較正されていないサンプル605B及び動作信号から推測された相対移動距離615、620を比較することで、相対移動距離615、620の間の差625を判断することができる。制御装置は、第二サンプルから推測された相対移動距離が動作信号から推測された相対移動距離620と一致するよう較正されていない伝達関数を較正することができる。その結果、制御装置が較正されていない伝達関数を較正した後、較正された伝達関数は、動作信号からの相対移動距離620と同様となる相対移動距離を推測する較正されたサンプル605Cをもたらす。このように、制御装置は、伝達関数を較正することで、発信器磁界の振幅及び位相に対応する予想される位置及び向きがそれぞれより正確になるよう伝達関数を修正する。ここで図3を再度参照し、制御装置312は、動作信号342で伝達関数を較正することで、ロボットの環境内における位置308及び向き310をより正確に推測することができる。
図6に関して説明した較正方法は、発信器磁界のひずみ(例えば、図2に示すひずみ206)に関連する推測される位置及び向きの誤差を減らすことができる。一例では、制御装置312が環境内を移動すると、制御装置312は、発信器磁界304の振幅及び位相に対応するロボットの予想される位置及び向きを出力する伝達関数を修正する。制御装置312は、制御装置312で操作可能な記憶素子に伝達関数を保存することができる。制御装置312は、ロボットが発信器磁界304のひずみに近づいた場合、伝達関数を用いて磁界発信器302の位置及び向きに対するロボットの位置308及び向き310を推測し、動作信号342を用いて相対位置及び相対向きを推測することができる。制御装置312は、動作信号342に基づいてひずみの存在を判断することができ、検出信号321を表すデータの振幅と位置308との間の伝達関数及び検出信号321を表すデータの位相と向き310との間の伝達関数を較正することもできる。
発信器磁界304の全体的なトポグラフィはひずみによって変化するため、ひずみは制御装置312用の再位置特定用特徴の役割を果たすことができる。本明細書で説明した伝達関数を制御装置312に調整させるひずみにロボットが遭遇した場合、制御装置312は、仮想マップがひずみに対応する特徴を有するよう仮想マップにマーキングすることで、仮想マップ上にひずみの存在を示すことができる。仮想マップは、環境全体にわたって、異なる位置における発信器磁界304の成分の振幅を示すことができる。加えて又は代替的に、仮想マップは、環境全体にわたって、異なる向きにおける発信器磁界304の成分の位相を示すことができる。
ロボットが遭遇した特徴は、幾何学形状にわたって固有の磁界特性を有し得る。磁界特性は、幾何学形状に沿った様々な位置及び向きにおける検出信号321を表すデータの位相及び振幅を含み得る。制御装置312は、ロボットが特徴に遭遇する次の稼働において、ロボットが次の稼働における特徴の位置を推測し、推測された次の稼働における特徴の位置を以前の稼働における特徴の位置と比較できるよう、特徴を学習することができる。制御装置312は、二つの推測結果の間の差に基づいて、二つの推測位置が一致するように、記憶素子に保存されている仮想マップを再配向又は再配置するための再位置特定を実行することができる。従って、制御装置312は、ひずみに対する再位置特定によって、姿勢の推測の誤差を減らすことができる。再位置特定の詳細な方法は、“Simultaneous Localization and Mapping for a Mobile Robot”と題して2013年3月8日に出願されている米国特許出願第13/790,643に説明されており、その全てが参照により本明細書に組み込まれる。
図6に関して説明した例は一次元を示しているが、本明細書で説明する較正方法及び再位置特定方法は、三次元(x、y及びz次元)における位置及び向きの較正に適用することができる。例えば、制御装置312は、検出信号321の位相及び振幅を得るために、検出信号321を表すデータを用いて高速フーリエ変換を実行することができる。制御装置312は、位相に基づいてロボットの向きを判断することができる。制御装置312は、発信コイル314とセンサコイル320の相対向きの変化を検出するために、第一サンプルと第二サンプルとの間の位相のドリフトを判断することができる。制御装置312は、更に、向き310の推測結果を、動作信号342からの相対向きの推測結果に較正し、動作信号342からの相対向きの推測結果と比較することができる。
較正方法は、複数の推測位置308及び複数の推測向き310を示し得る検出信号321に起因する半球状多義性(hemispherical ambiguities)の解消にも用いることができる。半球状多義性は、環境内での発信器磁界304の対称性により生じ得る。例えば、図7に示すように、ロボットの制御装置(例えば、制御装置312)は、本明細書で説明する伝達関数を用いて、検出信号を表すデータに基づいて、ロボットの姿勢は第一姿勢700又は第二姿勢705といった複数の考えられる姿勢のうちの一つであると推測することができる。ロボットは、磁界発信器715(例えば、図3に示す磁界発信器302)によって生成される発信器磁界710を検出することで自身の姿勢を推測する。制御装置は、動作信号(例えば、動作信号342)を監視することで、第一姿勢700及び第二姿勢705から姿勢を選択することができる。一例では、動作信号からロボットは磁界発信器715から離れるように移動していると制御装置が判断した場合、制御装置は、ロボットは第一姿勢700にあると判断することができる。動作信号からロボットは磁界発信器715に向かって移動していると制御装置が判断した場合、制御装置は、ロボットは第二姿勢705にあると判断することができる。このように、動作信号は更に、磁界発信器715によって生成される発信器磁界710の対称性が原因で生じる半球状多義性を制御装置が解消することを可能にすることができる。
・発信器及び受信器の構造
磁界発信器(例えば、磁界発信器302)及び検出/制御システム(例えば、検出/制御システム306)の構造により、ロボットの位置308及び向き310の推測の正確度及び精度を更に向上させることができる。図8は、三つの発信コイル802A、802B、802C及び電気回路804を含む、磁界発信器800の一例を示す。本明細書で説明するように、電気回路804は、発信コイル802A、802B、802Cに伝達される電気信号の振幅、周波数、及びその他の特性を調節することができる。従って、電気回路804は、発信コイル802A、802B、802Cが発する発信器磁界の振幅及び周波数を設定することができる。
発信コイル802A、802B、802Cは、球の外形の少なくとも一部に接近するよう配置されている。球状配置でコイル802A、802B、802Cを配置することで、各コイル802A、802B、802Cの面積の均等化が簡単になる。均等化された面積により、ロボットの姿勢の推測に必要な処理を単純化できる。例えば、球の直径は、10センチメートルから20センチメートルの間、20センチメートルから25センチメートルの間、及び25センチメートルから30センチメートルの間であり得る。その結果、コイル802A、802B、802Cも、上記直径を有するよう球に沿って配置することができる。
更に、コイル802A、802B、802Cを球状配置で球の大円(最大円断面積)に沿って配置することにより、コイル802A、802B、802Cの軸の線形独立性が向上する。本明細書で説明するように、コイル802A、802B、802Cの軸は、互いに直交し立体的に広がるよう配置することができる。球状配置は、コイル802A、802B、802Cの軸が共通の点で又は共通の点の近傍で交差するようコイル802A、802B、802Cを配置することを容易にし、それによってコイル802A、802B、802Cのそれぞれによって生成される発信器磁界の成分の線形独立性が向上する。
検出/制御システム900(例えば、検出/制御システム306)も、図9に示すように、球状配置のセンサコイル902A、902B、902Cを有することができる。本明細書で説明するように、検出/制御システム900は、センサコイル902A、902B、902Cによって生成される電気信号を受信し、次いで磁界発信器(例えば、磁界発信器800)に対する検出/制御システム900の向き及び位置を判断するための回路904を含み得る。
センサコイル902A、902B、902Cは、球の外形の少なくとも一部に接近するよう配置されている。球状配置でコイル902A、902B、902Cを配置することで、各コイル902A、902B、902Cの面積の均等化が簡単になる。均等化された面積により、ロボットの姿勢の推測に必要な処理を単純化できる。コイル902A、902B、902Cは、同様の面積を有することで、磁界の変化に対して同様に応答することができる。例えば、球の直径は、2センチメートルから7センチメートルの間、7センチメートルから15センチメートルの間、及び15センチメートルから20センチメートルの間であり得る。その結果、コイル902A、902B、902Cも、上記直径を有するよう球に沿って配置することができる。発信コイル802A、802B、802Cの直径の、センサコイル902A、902B、902Cの直径に対する比は、例えば、1.2から2の間、2から3の間、3から4の間、またはそれ以上であり得る。比が大きくなるほど、推測される位置及び向きの正確度及び精度が向上する。
更に、センサコイル902A、902B、902Cを球状配置で球の大円(最大円断面積)に沿って配置することにより、コイル902A、902B、902Cの軸の線形独立性が向上する。本明細書で説明するように、コイル902A、902B、902Cの軸は、互いに直交し立体的に広がるよう配置することができる。球状配置は、コイル902A、902B、902Cの軸が共通の点で又は共通の点の近傍で交差するようコイル902A、902B、902Cを配置することを容易にし、それによってコイル902A、902B、902Cのそれぞれによって生成される発信器磁界の成分の線形独立性が向上する。球の中心を横切る較正コイル906の軸は、コイル902A、902B、902Cの軸に対して同じ角度を規定するよう容易に配置することができ、それによって本明細書で説明する較正方法の精度及び正確度が向上する。
・ロボットの例
本明細書で説明する検出/制御システムは、様々な環境で様々な機能を果たすことが可能なロボットに実装することができる。ロボット1000の底面図を示す図10に示す一例では、環境内の表面を移動しながら清掃、芝刈り、又はその他のロボット作業を実行することができるロボット1000は、本体1001を含み得る。ロボット芝刈り機においては、表面は芝生であり得る。清掃ロボットにおいては、表面は床であり得る。
ロボット1000の本体1001は、磁界トランシーバに対するロボット1000の位置及び向きを検出することが可能な検出/制御システム1002(例えば、検出/制御システム306)を収容する。本明細書で説明するように、検出/制御システム1002は、磁界トランシーバにより生成される発信器磁界に基づいた高精度で正確であり且つ効率的なロボットの位置及び向きの推測を容易にするために、制御装置、磁界受信器、センサ回路、及びその他の適切なシステムを含み得る。
本明細書で説明する較正方法を実行するために、ロボット1000は、検出/制御システム1002で操作可能な、又は検出/制御システム1002の一部として、動作センサを含み得る。検出/制御システム1002は、制御システム1002(例えば、検出/制御システム1002の制御装置)がロボット1000の加速度、速度、又は姿勢を推測することができるよう、動作センサから信号を受信することができる。これらの動作センサは、検出/制御システム1002がロボット1000の相対移動距離を推測できるように、駆動車輪1006A、1006B用のモータ1005A、1005Bで作動するエンコーダ1004A、1004Bを含み得る。動作センサは、検出/制御システム1002がロボット1000の加速度、速度、及び相対姿勢を推測することができるように、IMU1008(例えば、加速度計及びジャイロスコープ)も含み得る。車輪1006A、1006B及びキャスタ車輪1007は、ロボット1000が環境の表面上を移動する際に本体1001を支持する。
ロボット1000の環境内での移動を制御するモータ1005A、1005Bは、ロボット1000が環境内を移動する際に検出/制御システム1002が検出可能な磁界ノイズをもたらし得る。本明細書で説明するように、検出/制御システム1002の較正コイルによって生成される較正磁界の周波数は、通常磁界ノイズが較正磁界で規定される周波数の範囲外で発生するよう選択することができる。いくつかの実施例においては、検出/制御システム1002は、モータ1005A、1005Bの作動を、検出/制御システム1002が発信器磁界及び較正磁界を検出した時に基づいて制御することができる。検出中は、検出/制御システム1002は、例えばモータに伝達される電力を減らすか又はモータ1005A、1005Bの作動を遅くすることができる。従って、ロボットの姿勢を推測するために検出/制御システム1002が発信器磁界及び較正磁界を検出している時は、モータ1005A、1005Bにより生成される磁界ノイズが低減される。このようなモータ1005A、1005Bの操作により、推測されるロボットの姿勢の正確度を向上させることができる。
ロボット1000は、環境内で作業を実行するための機構1010を含む。一例では、機構1010は、ロボット1000が環境内の芝生上を動き回る際に回転する一以上のブレードを含む切断機構である。検出/制御システム1002は、ロボット1000が芝生を横切って移動する際にロボット1000が切断機構を用いて芝生を切断できるよう、切断機構を制御することができる。
別の例では、機構1010は、ロボット1000が環境内の床上を移動する際にデブリを床から取り込むことを可能にする、ローラ、吸引源、ゴミ容器、及びその他の適切な構成要素を含む床清掃機構である。検出/制御システム1002は、ロボット1000が床上を移動して床を清掃できるよう床清掃機構を制御することができる。
いくつかの実施例においては、機構1010は、ロボット1000の液体貯蔵部からの清掃液で濡らすことが可能な清掃パッドである。ロボット1000が環境内の床上を移動する際、検出/制御システム1002は、環境内の床上に清掃液を噴出させるようロボット1000を制御する。検出/制御システム1002は、更に、清掃パッドが清掃液を吸収するように、清掃液上を移動するようロボット1000を制御することができる。従って、ロボット1000は、清掃パッドを用いて環境内の床をこすって清掃することができる。
検出/制御システム1002は、ロボット1000に本明細書で説明する作業を実行させるために、遠隔装置と情報を交換するよう構成することができる。情報は、ロボット1000の磁界トランシーバに対する位置及び向きを含み得る。情報は、本明細書で説明する、芝生、床、又はその他の表面といった、ロボット1000が機構1010に関連する作業を実行することができる環境内の表面上での動作の指示も含み得る。いくつかの実施例においては、環境は、建物内の一以上の相互に接続された部屋、屋外、田畑、又は本明細書で説明する機構に適したその他の環境である。
その他の機能を実行するよう構成された様々なロボット、及びその他の関連する機構を有する様々なロボットは、磁界発信器に対するロボット1000の位置及び向きの推測を容易にするために、検出/制御システム1002を含み得る。更なる適切なロボット及び機構は、“Methods and systems for complete coverage of a surface by an autonomous robot,”と題して2010年11月5日に出願された米国特許出願公開第2011/0167574号、“Robotic Vacuum,”と題して2012年4月30日に出願された米国特許出願第13/460,261号、“Robot Confinement”と題して2007年3月19日に出願された米国特許出願第11/688,213号、“Surface Cleaning Pad”と題して2014年10月3日に出願された米国仮特許出願第62/059,637号、及び“Robotic Lawn Mowing Boundary Determination”と題して2014年10月10日に出願された米国特許出願第14/512,098号で説明されており、これらの開示の全てが参照により本明細書に組み込まれる。
・ナビゲーション処理例
図11は、例えば磁界発信器によって生成される磁界を用いてロボットの姿勢を推測するための処理1100のフローチャートを示す。処理1105において、ロボットの制御装置はナビゲーションコマンドを発行する。ナビゲーションコマンドは、ロボットに駆動機構を起動させて移動し環境内を動き回らせる指示を含み得る。ナビゲーションコマンドは、モータに関連するノイズを低減するためにロボットのモータ用の電力を下げることも含み得る。ナビゲーションコマンドは、ロボットの検出/制御システムによって生成されたデータに基づくことができる。
処理1110において、ロボットの制御装置は、例えば磁界に応答するセンサコイルによって生成された、磁界信号を受信する。磁界信号は、環境内の磁界に応答して生成された電気信号である。磁界信号は、磁界発信器からの発信器磁界に応答して生成された検出信号を含み得る。磁界信号は、較正コイルからの較正磁界に応答して生成された較正信号も含み得る。ロボットは、センサコイル、較正コイル及び制御装置を含む検出/制御システム(例えば、上述した検出/制御システム306)を含み得る。較正磁界は、本明細書で図4に関して説明したように、第一周波数成分及び第二周波数成分を含み得る。発信器磁界は、較正磁界の周波数の間の周波数の成分を有し得る。磁界は、検出/制御システムから発せられたものでも磁界発信器から発せられたものでもないノイズ磁界を含み得る。制御装置が磁界信号を受信する前に、制御装置は、ノイズ磁界を引き起こす装置への電力を減らしてノイズ磁界の振幅を低減することができる。
処理1115において、制御装置は、磁界信号を表すデータの振幅を判断する。制御装置は、検出信号を表すデータの振幅及び較正信号を表すデータの振幅を判断することができる。制御装置は、加えて、磁界信号を表すデータの位相及び周波数を判断することができる。本明細書で説明するように、磁界信号を表すデータ(例えば、図3に示す検出データ325及び較正データ327)は、図3に関して説明したように、増幅回路、フィルタ回路、及びデジタル化回路を用いて生成することができる。
処理1120において、制御装置は、例えば磁界信号を表すデータを正規化する、較正操作を実行する。例えば、制御装置は、図3に示す較正コイル322に関して説明した較正及び正規化操作を実行することができる。制御装置は、振幅、位相、周波数、及びその他の磁界信号を表すデータの特性を較正及び正規化することができる。一例では、制御装置は、処理1120の較正操作を実行する際、図12に示す処理1200を実行する。
図12を参照して、制御装置は、処理1200を実行して検出信号を較正信号で正規化し、検出信号のダイナミックレンジを低減させる。処理1200は、検出信号の振幅、周波数、位相、又はその他の特性を正規化することができる。
処理1205において、制御装置は、較正信号を表すデータ(例えば、図3に示す較正データ327)を受信する。処理1205と同時に発生する処理1210においては、制御装置は、検出信号を表すデータ(例えば、図3に示す検出データ325)を受信する。較正信号を表すデータ及び検出信号を表すデータは、較正信号及び検出信号を検出/制御システムの増幅回路、フィルタ回路、及びデジタル化回路に通すことで生成することができる。
制御装置は、次いで、処理1215及び1220において、較正信号を表すデータ及び検出信号を表すデータから振幅を判断する。いくつかの場合においては、制御装置は、追加的又は代替的に、位相、周波数、及びその他のデータに関連するパラメータを判断する。
処理1225において、制御装置は、較正信号を表すデータからの振幅と検出信号を表すデータからの振幅を比較する。本明細書で説明するように、制御装置は、平均値、最小値、最大値、及びその他の振幅の測定単位を比較することができる。比較においては、制御装置は、振幅の差を計算し、振幅の差を閾差と比較することができる。制御装置は、差を適正な差の範囲と比較することができる。
処理1230において、制御装置は、比較結果に基づいて較正信号及び検出信号に関連するゲインを調節する。例えば、制御装置は、フィルタ回路、PGA回路又は較正信号及び検出信号を増幅させるその他の増幅回路のゲインを制御することができる。制御装置は、通常検出信号が所定の範囲内に維持されるようゲインを調節することができる。制御装置は、処理1200を実行することで、検出信号を表すデータのダイナミックレンジを低減することができる。
図11を再度参照し、制御装置は、処理1125において動作信号を受信する。動作信号は、ロボットが移動した距離、ロボットの速度、又はロボットの加速度のうちの少なくとも一つを示し得る。動作信号は、例えば、光学マウスセンサ、IMU、加速度計、ジャイロスコープ、エンコーダ、又はその他の適切な検出器によって生成することができる。動作信号は、ロボットの相対位置及び相対向きを推測するための推測航法操作に用いることができる。
処理1130において、制御装置は、受信した動作信号に基づいて磁界伝達関数を調整する。磁界伝達関数によって、検出信号とロボットの位置及び向き(例えば、姿勢)との間の関係を規定することができる。制御装置が初期化された場合、制御装置で操作可能な記憶素子に磁界伝達関数をロードすることができる。この例では、磁界伝達関数は、最初はロボットの製造段階で設定することができる静的較正である。次いで、制御装置は、初期磁界伝達関数を動作信号に基づいて調整することができる。処理1130中に実施可能な方法及び操作の例は、図3に関してより詳細に説明されている。
処理1135において、制御装置は、磁界伝達関数を用いて、検出信号を表すデータの振幅に基づいてロボットの姿勢を推測する。姿勢は、磁界発信器に対する位置及び向きを含む。いくつかの場合においては、制御装置は、制御装置で操作可能な記憶素子に保存されているマップに姿勢を保存する。本明細書で説明するように、マップはSLAM法に用いることができる。
処理1100の様々な操作が連続的に又は同時に発生し得る。例えば、いくつかの実施例においては、制御装置は、各データ収集サンプルに対して、磁界信号及び動作信号を実質同時に受信する。次いで、制御装置は、連続的に磁界信号を表すデータの振幅を判断し、較正操作を実行し、動作信号に基づいて磁界伝達関数を調整し、磁界伝達関数を用いて、検出信号を表すデータの振幅に基づいてロボットの指定を推測することができる。
いくつかの実施例においては、制御装置は、処理1130及び1135を飛ばして所定の磁界伝達関数を用いることができる。磁界伝達関数は、例えば、ロボットの製造段階で記憶素子に保存することができる。
磁界発信器(例えば、磁界発信器800)及び検出/制御システム(例えば、検出/制御システム900)の構造は、本明細書で説明した、三つの発信コイルを含む磁界発信器及び三つのセンサコイルを含む検出/制御システムの例に限定されない。いくつかの追加の例においては、磁界発信器は二つの発信コイルを、検出/制御システムは二つのセンサコイルを含み得る。この例では、発信器磁界は、それぞれが発信コイルによって生成される成分のうちの一つに対応する二つの別々の磁界の重畳であり得る。制御装置は、検出信号に基づいて、二次元(例えば、x,y次元)における位置及び二次元(例えば、θ,Φ次元)における向きを判断することができる。このようなシステムは、単一の平面で構成される環境又は第三次元又は第三方向の変化が限定されているか重要でない場合に適している。3コイルシステムではなく2コイルシステムを用いることで、システム内の発信器及び受信器のコストの低減という利点が得られる。
上に示した例においては、一つの発信器がロボットの位置を特定するための検出システムが用いる磁界を提供するとした。しかしながら、システムは一つの発信器に限定されない。例えば、図13に示すように、本明細書で説明する磁界発信器及び検出/制御システムを含むシステムは、一つの磁界発信器及び一つの検出/制御システムに限定されない。むしろ、複数の磁界発信器(例えば、1300A及び1300B)及び/又は複数の検出/制御システムがあっても良い。一例では、複数の磁界発信器(例えば、1300A及び1300B)を同時に用いて環境の拡張された範囲を提供することができる。この例では、第一磁界発信器1300Aは第一発信器磁界を発し、第二磁界発信器1300Bは、二つの発信器磁界が重複し、第一発信器磁界が弱くなるほど第二発信器磁界が強くなるような第二発信器磁界を提供するよう配置することができる。ロボット100の制御装置は、検出信号に基づいて、(例えば、ロボット100が発信器から離れる方向に移動して)第一発信器磁界が弱くなるまで第一磁界発信器1300Aに対する位置及び向きを判断することができ、次いで第二磁界発信器1300Bに対する位置及び向きを判断するよう切り替える。いくつかの例においては、ロボット100は、第一発信器1300Aからの磁界の信号強度を判断し、信号強度が閾値より高い場合は発信器1300Aからの磁界を用いてロボットの位置を特定する。信号強度が閾値より低い場合は、ロボット100は発信器1300Bからの信号に基づいてロボットの位置を特定する。位置特定システムの範囲を更に広げる場合、発信器(例えば、3つや4つの発信器)を更に追加することができる。このように、複数の発信器の存在により位置特定システムの範囲が広がり、1つの信号(例えば、第一発信器からの信号)が弱くなると、ロボットは異なる発信器からの信号を探し始める。第二発信器からの信号が強くなると、ロボットは、第一発信器からの信号に基づく位置特定から、第二発信器からの信号に基づく位置特定に切り替える。ロボットが複数の発信器から同時に十分な強度の信号を受信する期間がある。位置特定のための引き継ぎは、スムーズな移行を可能にするために、両方の信号が受信されている期間に発生し得る。
別の例では、測定された複数の磁界発信器からの信号は、発信コイルやセンサコイルの向きや直交性に対する感度に起因する位置及び向きの誤差を向上させるために同時に用いることができる。例えば、一つの発信器がロボット用のドッキング/充電ステーション内に位置している場合、発信器は、ロボットのドッキング/充電ステーションへの接触又は衝突により回転している可能性がある。第一発信器の近傍に存在するもう一つの発信器は、このような動き又は回転がいつ発生したかを判断するのに用いることができる。例えば、ロボットは、磁界がいつ回転したかを判断し、それに応じて自身の位置判断を調整することができる。いくつかの例では、第一及び第二磁界発信器は、互いに比較的近く(例えば、互いに1−3メートル以内、互いに2−5メートル以内、互いに4−7メートル以内)に配置することができる。制御装置は、両磁界発信器からの検出信号に基づいて、二つの発信器磁界に対する位置及び向きを同時に三角法で測定することができる。従って、二つの発信器は、磁界範囲が大きく重複して両発信器からの信号を正確度の向上に用いることができるよう配置される。
本明細書で説明する磁界発信器及び検出/制御システムからなるシステムは、固定された磁界発信器及びロボットに実装された検出/制御システムに限定されない。むしろ、一例では、磁界発信器を制御システムと共にロボットに実装してもよく、センサコイルからなる検出システムが固定されていても良い。この例では、固定された検出システムは、電力消費が少なく、バッテリ配列や、太陽電池といったその他の低電力源を電源とすることができるため、固定の電源から遠い位置に配置することが可能になる。
本明細書で説明する例の少なくともいくつかにおいては、磁界は屋外環境においてロボットの位置を特定するために用いられているが、本明細書で説明するシステム及び方法は、追加的に又は代替的に、屋内でのロボットの位置特定に用いることができる。例えば、図14に示すように、真空ロボットや清掃パッドを有するロボットといった清掃ロボット1400、ホームセキュリティ又は監視ロボット、又はその他のロボットは、家又は建物内に位置する発信器1401からの磁界を測定するよう較正された受信器を含み得る。ロボット1400が電源を充電することが可能なドッキングステーションは、発信器1401を含むことができる。いくつかの例では、発信器は、コンセントに直接接続するか、又は家具1403の後ろ(例えば、図に示すように長椅子の後ろ又は下)やその他の物の後ろに配置することができる。従って、発信器1401及びドッキングステーションは、例えば家具1403の下や後ろに配置することで、事情の知らない者の視界から隠すことができる。それでも、磁界はソファや家具によって妨害されないため、ロボット1400は、部屋内での自身の位置の判断及びドッキングステーションへの誘導の両方に信号を用いることができる。従って、いくつかの例では、ドッキングステーションの発信器1401から発せられロボット1400のドッキングステーションへの誘導に用いられる信号は、ドッキング処理の少なくとも一部の間において、家具の少なくとも一つ(例えば、家具1403)を通して伝達される。ドッキングステーションを、人には通常見えない又はアクセスできないロボット1400がアクセス可能な領域(例えば、高さが3−10インチの間である家具の下、高さがロボットの高さより高く床面から6インチ未満である家具の下)に配置できるようにすることは有利であり得る。加えて、磁界信号は、家内の壁を形成する木やその他の材質を通過することができる。そのため、(例えば図14に示すように)ロボット1400が部屋1405Aから部屋1405Bに移動する際に、同じ発信器を用いてロボット1400の位置を特定することができる。
本明細書で説明するロボットは、少なくとも部分的に、例えばプログラムプロセッサ、コンピュータ、複数のコンピュータ、及び/又はプログラム可能なロジックコンポーネントといった一以上のデータ処理装置で実行するための又は一以上のデータ処理装置の動作を制御するための、例えば一以上の非一時的な機械可読媒体といった一以上の情報媒体で明白に具現化された一以上のコンピュータプログラムといった、一以上のコンピュータプログラム製品を用いて制御することができる。
コンピュータプログラムは、コンパイルされた又は解釈された言語を含むあらゆる形式のプログラム言語で書くことができ、単体プログラムやモジュール、コンポーネント、サブルーチン、又は演算環境での使用に適したその他の単位を含む、あらゆる形式に展開することができる。
本明細書で説明するロボットの制御に関連する操作は、一以上のコンピュータプログラムを実行して本明細書で説明する機能を実行する一以上のプログラム可能なプロセッサで実行することができる。本明細書で説明するロボットの全体又は一部の制御は、例えばFPGA(Field Programmable Gate Array)及び/又はASIC(Application−Specific integrated circuit)といった専用論理回路を用いて実施することができる。
コンピュータプログラムの実行に適したプロセッサは、例えば、汎用及び専用マイクロプロセッサ、並びにあらゆる種類のデジタルコンピュータの一以上のプロセッサを含む。通常、プロセッサは、読み出し専用記憶領域又はランダムアクセス記憶領域或いはその両方から指示及びデータを受信する。コンピュータの要素は、指示を実行するための一以上のプロセッサ及び指示やデータを保存するための一以上の記憶領域装置を含む。コンピュータはまた、通常、例えば、磁気、光磁気ディスク、又は光ディスクのようなデータを保存するための集合基板といった一以上の機械可読記憶媒体を含むか、データを受信するため又はデータを転送するために一以上の機械可読記憶媒体に操作可能に接続されているか、あるいはその両方である。コンピュータプログラム指示及びデータの具現化に適した機械可読記憶媒体は、例えば、EPROM、EEPROM、及びフラッシュ記憶領域装置といった半導体記憶領域装置、例えば内部ハードディスクやリムーバブルディスクといった磁気ディスク、光磁気ディスク、及びCD−ROMやDVD−ROMディスクを含む、あらゆる形式の不揮発性記憶領域を含む。
本明細書で説明する異なる実施形態の要素を組み合わせて、具体的に上で記載していない他の実施形態を形成することができる。本明細書で説明する構造からその動作に負の影響を与えることなく要素を取り除くことができる。更に、様々な別々の要素を一以上の個別の要素に結合して本明細書で説明する機能を実行するようにしても良い。

Claims (1)

  1. 移動型ロボットであって、
    環境内の表面上を移動可能な本体と、
    前記本体に担持され、較正磁界を生成するよう構成された較正コイルと、
    前記本体に担持され、前記較正磁界に応答するセンサ回路であって、該較正磁界に基づいて較正信号を生成するよう構成されたセンサ回路と、
    前記本体に担持され、前記センサ回路と通信する制御装置であって、前記較正信号に応じて該センサ回路を較正するよう構成され、それによって前記環境内の発信器磁界を検出して該発信器磁界に基づいて検出信号を生成するよう構成された、較正されたセンサ回路が得られる、制御装置と、を備え、
    前記制御装置は、前記検出信号に応じて前記移動型ロボットの姿勢を推測するよう構成された、移動型ロボット。
JP2020025262A 2015-06-05 2020-02-18 磁界による位置特定及びナビゲーション Pending JP2020113287A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562171498P 2015-06-05 2015-06-05
US62/171,498 2015-06-05
US14/799,319 2015-07-14
US14/799,319 US10379172B2 (en) 2015-06-05 2015-07-14 Magnetic field localization and navigation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017558975A Division JP6665202B2 (ja) 2015-06-05 2015-11-19 磁界による位置特定及びナビゲーション

Publications (1)

Publication Number Publication Date
JP2020113287A true JP2020113287A (ja) 2020-07-27

Family

ID=57441561

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017558975A Active JP6665202B2 (ja) 2015-06-05 2015-11-19 磁界による位置特定及びナビゲーション
JP2020025262A Pending JP2020113287A (ja) 2015-06-05 2020-02-18 磁界による位置特定及びナビゲーション

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017558975A Active JP6665202B2 (ja) 2015-06-05 2015-11-19 磁界による位置特定及びナビゲーション

Country Status (6)

Country Link
US (2) US10379172B2 (ja)
EP (1) EP3302260B1 (ja)
JP (2) JP6665202B2 (ja)
CN (1) CN106470603B (ja)
AU (1) AU2015396963B2 (ja)
WO (1) WO2016195744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270508A1 (ja) * 2021-06-25 2022-12-29 愛知製鋼株式会社 磁気計測装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10379172B2 (en) * 2015-06-05 2019-08-13 Irobot Corporation Magnetic field localization and navigation
US9885742B2 (en) * 2015-09-09 2018-02-06 Cpg Technologies, Llc Detecting unauthorized consumption of electrical energy
KR101856503B1 (ko) * 2016-04-29 2018-05-11 엘지전자 주식회사 이동 로봇 및 그 제어방법
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
EP3469442A4 (en) 2016-06-30 2020-09-16 TTI (Macao Commercial Offshore) Limited SELF-CONTAINED LAWN MOWER AND ASSOCIATED NAVIGATION SYSTEM
CN108227692A (zh) * 2016-12-09 2018-06-29 苏州宝时得电动工具有限公司 自动移动设备、自动工作系统及其控制方法
SE542736C2 (en) * 2017-04-25 2020-06-30 Husqvarna Ab Adaptive signal reception
DE102017117148A1 (de) * 2017-07-28 2019-01-31 RobArt GmbH Magnetometer für die roboternavigation
CN108240810B (zh) * 2017-08-28 2021-06-29 同济大学 地下空间三维磁感应定位系统
US10746819B2 (en) * 2017-09-18 2020-08-18 Google Llc Correcting field distortion in electromagnetic position tracking systems
CN107479099A (zh) * 2017-09-30 2017-12-15 深圳拓邦股份有限公司 一种电磁场检测装置、可移动设备及边界识别系统
US10830572B2 (en) * 2017-10-12 2020-11-10 Google Llc Hemisphere ambiguity correction in electromagnetic position tracking systems
US20190129442A1 (en) * 2017-10-30 2019-05-02 Sphero, Inc. Magnetic robot calibration
CA3030409A1 (en) * 2018-01-19 2019-07-19 Ascension Technology Corporation Calibrating a magnetic transmitter
KR20190109609A (ko) * 2018-02-23 2019-09-26 엘지전자 주식회사 이동로봇과 도킹기기 이들을 포함하는 이동로봇 시스템
EP3531151B1 (en) * 2018-02-27 2020-04-22 Melexis Technologies SA Redundant sensor error reduction
DE112018007180T5 (de) * 2018-02-28 2020-12-10 Honda Motor Co., Ltd. Ort-schätzung-vorrichtung, bewegendes objekt, ort-schätzung-verfahren und programm
FR3079298B1 (fr) * 2018-03-23 2020-11-27 Safran Landing Systems Dispositif de mesure d'une position d'un corps mobile par rapport a un corps fixe
JP7180133B2 (ja) * 2018-06-14 2022-11-30 株式会社Soken 端末位置推定システム、端末位置推定装置、端末位置推定方法、及び制御プログラム
WO2019245320A1 (ko) * 2018-06-22 2019-12-26 삼성전자주식회사 이미지 센서와 복수의 지자기 센서를 융합하여 위치 보정하는 이동 로봇 장치 및 제어 방법
EP3591805A1 (en) * 2018-07-03 2020-01-08 Koninklijke Philips N.V. Power transmitter and method of operation therefor
DE102018005649A1 (de) * 2018-07-13 2020-01-16 Fachhochschule Dortmund Verfahren und Einrichtung zur 3D-Orientierungs- und 3D-Positionsbestimmung auf Basis einer einachsigen Spule und eines MARG-Sensors
KR102291884B1 (ko) * 2018-08-03 2021-08-20 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR102242713B1 (ko) 2018-08-03 2021-04-22 엘지전자 주식회사 이동 로봇 및 그 제어방법, 및 단말기
KR102238352B1 (ko) 2018-08-05 2021-04-09 엘지전자 주식회사 스테이션 장치 및 이동 로봇 시스템
US11960278B2 (en) 2018-08-05 2024-04-16 Lg Electronics Inc. Moving robot and controlling method thereof
CN110948479B (zh) * 2018-09-26 2022-12-30 上海云绅智能科技有限公司 一种坐标校准方法及系统、机器人
US11320835B2 (en) 2018-12-11 2022-05-03 Irobot Corporation Magnetic navigation systems for autonomous mobile robots
EP3918449A4 (en) * 2019-01-28 2022-03-16 Magic Leap, Inc. METHOD AND SYSTEM FOR RESOLVING HEMISPHERE AMBIGUITY IN SIX DEGREE OF FREEDOM POSE MEASUREMENTS
CN113168178A (zh) * 2019-02-01 2021-07-23 苏州宝时得电动工具有限公司 自移动设备和磁性边界系统
US11819285B2 (en) * 2019-04-05 2023-11-21 Covidien Lp Magnetic interference detection systems and methods
DE102020110212A1 (de) * 2019-04-16 2020-10-22 Ascension Technology Corporation Positions- und Orientierungsbestimmung mit einer Helmholtz-Vorrichtung
DE102019215913A1 (de) * 2019-10-16 2021-04-22 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines mobilen Agenten
CN114679949B (zh) * 2020-12-30 2024-03-15 南京泉峰科技有限公司 一种自驱动设备系统和充电站
DE102021121987A1 (de) * 2021-08-25 2023-03-02 AL-KO Geräte GmbH Mähroboter und Mährobotersystem
CN115443791B (zh) * 2022-08-05 2024-03-29 深圳拓邦股份有限公司 割草机的重定位方法、系统及可读存储介质
CN115943778B (zh) * 2023-02-15 2024-02-20 泗阳县聚星农业发展有限公司 一种自动调节种植深度的蔬菜播种用自走式机器人

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601583A (ja) 1983-06-17 1985-01-07 Nippon Soken Inc 磁気方向検出装置
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US7809421B1 (en) 2000-07-20 2010-10-05 Biosense, Inc. Medical system calibration with static metal compensation
US6636757B1 (en) 2001-06-04 2003-10-21 Surgical Navigation Technologies, Inc. Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US6774624B2 (en) * 2002-03-27 2004-08-10 Ge Medical Systems Global Technology Company, Llc Magnetic tracking system
SE0201740D0 (sv) 2002-06-07 2002-06-07 Electrolux Ab Electroniskt diregeringssystem
EP2013671B1 (en) * 2006-03-17 2018-04-25 iRobot Corporation Lawn care robot
WO2008156653A1 (en) * 2007-06-13 2008-12-24 Alken Inc., Dba Polhemus Ac magnetic tracking system with phase locking
JP5364907B2 (ja) 2009-08-18 2013-12-11 独立行政法人土木研究所 変形計測システムおよび変形計測方法
JP6162955B2 (ja) 2009-11-06 2017-07-12 アイロボット コーポレイション 自律ロボットにより表面を完全にカバーする方法およびシステム
US8392044B2 (en) * 2010-07-28 2013-03-05 Deere & Company Robotic mower boundary sensing system
CN111281266B (zh) 2011-04-29 2021-12-10 艾罗伯特公司 移动清洁机器人和自主覆盖机器人
JP5924641B2 (ja) 2011-10-17 2016-05-25 学校法人東京電機大学 医療用チューブの先端位置検出システムおよび当該システムに適用する医療用チューブ
US9326823B2 (en) 2012-05-02 2016-05-03 University Of Maryland, College Park Real-time tracking and navigation system and method for minimally invasive surgical procedures
US9020637B2 (en) 2012-11-02 2015-04-28 Irobot Corporation Simultaneous localization and mapping for a mobile robot
US9689934B2 (en) 2013-02-26 2017-06-27 Mir Behrad KHAMESEE Method for providing force information in a magnetic field environment using remote measurement of flux
US10379172B2 (en) * 2015-06-05 2019-08-13 Irobot Corporation Magnetic field localization and navigation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270508A1 (ja) * 2021-06-25 2022-12-29 愛知製鋼株式会社 磁気計測装置

Also Published As

Publication number Publication date
CN106470603A (zh) 2017-03-01
WO2016195744A1 (en) 2016-12-08
AU2015396963A1 (en) 2017-11-30
US20190383887A1 (en) 2019-12-19
US20160377688A1 (en) 2016-12-29
EP3302260A1 (en) 2018-04-11
AU2015396963B2 (en) 2020-08-20
EP3302260B1 (en) 2021-08-11
JP6665202B2 (ja) 2020-03-13
JP2018524559A (ja) 2018-08-30
US11635476B2 (en) 2023-04-25
US10379172B2 (en) 2019-08-13
CN106470603B (zh) 2021-08-24
EP3302260A4 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP2020113287A (ja) 磁界による位置特定及びナビゲーション
Park et al. Autonomous mobile robot navigation using passive RFID in indoor environment
KR102292262B1 (ko) 이동 로봇 및 그 제어방법
JP2018524559A5 (ja)
US20200041601A1 (en) Moving robot, method for controlling the same, and terminal
CN103477185B (zh) 用于确定对象表面的3d坐标的测量系统
US20210271238A1 (en) Moving robot and controlling method thereof
KR20200018198A (ko) 이동 로봇 및 그 제어방법, 이동 로봇 시스템
CN104302453B (zh) 使用差动传感器或视觉测量的地毯偏移估计
US7436522B2 (en) Method for determining the 3D coordinates of the surface of an object
US8315737B2 (en) Apparatus for locating moving robot and method for the same
Kümmerle et al. Simultaneous calibration, localization, and mapping
US11852484B2 (en) Method for determining the orientation of a robot, orientation determination apparatus of a robot, and robot
KR20200018219A (ko) 이동 로봇 및 그 제어방법
Prorok et al. Indoor navigation research with the Khepera III mobile robot: An experimental baseline with a case-study on ultra-wideband positioning
US20080009974A1 (en) Apparatus, method, and medium for localizing moving robot and transmitter
KR20200015880A (ko) 스테이션 장치 및 이동 로봇 시스템
Ghidary et al. A new Home Robot Positioning System (HRPS) using IR switched multi ultrasonic sensors
Oh et al. An indoor localization system for mobile robots using an active infrared positioning sensor
Park et al. Indoor localization for autonomous mobile robot based on passive RFID
Ciezkowski Triangulation positioning system based on a static IR beacon-receiver system
Kaewkorn et al. High-accuracy position-aware robot for agricultural automation using low-cost imu-coupled triple-laser-guided (TLG) system
CN111164380B (zh) 机器人的方位确定的方法、机器人的方位确定设备和机器人
Park et al. An approach for mobile robot navigation under randomly distributed passive RFID environment
Kim et al. Smart wheelchair based on ultrasonic positioning system