JP2020112470A - Tip member position estimating method, tip member holding method, tip member connecting method, tip member position estimating system and tip member holding system - Google Patents

Tip member position estimating method, tip member holding method, tip member connecting method, tip member position estimating system and tip member holding system Download PDF

Info

Publication number
JP2020112470A
JP2020112470A JP2019004275A JP2019004275A JP2020112470A JP 2020112470 A JP2020112470 A JP 2020112470A JP 2019004275 A JP2019004275 A JP 2019004275A JP 2019004275 A JP2019004275 A JP 2019004275A JP 2020112470 A JP2020112470 A JP 2020112470A
Authority
JP
Japan
Prior art keywords
tip member
linear object
image
tip
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019004275A
Other languages
Japanese (ja)
Other versions
JP7222720B2 (en
Inventor
基善 北井
Motoyoshi Kitai
基善 北井
熱気 小寺
Atsuki Kodera
熱気 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2019004275A priority Critical patent/JP7222720B2/en
Publication of JP2020112470A publication Critical patent/JP2020112470A/en
Application granted granted Critical
Publication of JP7222720B2 publication Critical patent/JP7222720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

To provide a tip member position estimating method, a tip member holding method, a tip member connecting method, a tip member position estimating system and a tip member holding system for grasping a position of a tip member and further preferably, a rotation direction of the tip member.SOLUTION: A tip member position estimating method is a method for estimating a position of a tip member of an electric wire 21 having a connector C1 at a tip thereof, and includes a coordinate acquisition step of acquiring two or more coordinates on the electric wire 21 and a tip member position estimating step of estimating a position of the connector C1 on the basis of the two or more coordinates on the electric wire 21.SELECTED DRAWING: Figure 12

Description

本発明は、先端部材位置推定方法、先端部材把持方法、先端部材接続方法、先端部材位置推定システム、および、先端部材把持システムに関する。 The present invention relates to a tip member position estimating method, a tip member gripping method, a tip member connecting method, a tip member position estimating system, and a tip member gripping system.

対象物を三次元カメラ等で認識して自律的に把持するロボットの普及が進んでいる。線状物を把持することについては、たとえば特開2014−176917号公報(特許文献1)に、線状体の組み付け作業を行なうロボット装置であって、一端が固定された線状体の固定端近傍を把持したのち、把持部を所定の軌跡でスライドさせて他端に移動させる装置が記載されている。これにより、線状物の一例である電線に付いた癖等により正確に推定することが困難な他端を素早く把持できるとされる。 A robot that recognizes an object with a three-dimensional camera or the like and autonomously grips the object is becoming widespread. Regarding gripping a linear object, for example, in Japanese Patent Application Laid-Open No. 2014-176917 (Patent Document 1), there is a robot device for assembling a linear object, and a fixed end of the linear object whose one end is fixed. There is described a device that grips the vicinity and then slides the grip part along a predetermined locus to move it to the other end. This makes it possible to quickly grasp the other end, which is difficult to accurately estimate due to the habit or the like attached to the electric wire, which is an example of the linear object.

特開2016−192138号公報(特許文献2)には、ワイヤーハーネスの製造方法および画像処理方法に関する発明が開示され、ワイヤーハーネスを製造する過程において、電線集合体の三次元形状が測定されることによって加工位置が特定される加工位置特定処理が実施される。 Japanese Patent Laying-Open No. 2016-192138 (Patent Document 2) discloses an invention relating to a method for manufacturing a wire harness and an image processing method, and in the process of manufacturing the wire harness, the three-dimensional shape of the wire assembly is measured. A processing position specifying process for specifying the processing position is performed.

特開2014−176917号公報JP, 2014-176917, A 特開2016−192138号公報JP, 2016-192138, A

電線等の線状物の先端部には、コネクタ等が接続されている場合が多い。ロボットハンドの把持部、例えば、グリッパで線状物の先端部またはコネクタを直接把持し、コネクタを所定の位置に移動させて固定すること、または、コネクタをコネクタハウジングに装着して、コネクタが接続された機器の導通テストを行なうこと等が想定される。 A connector or the like is often connected to the tip of a linear object such as an electric wire. The grip of the robot hand, for example, the tip of the linear object or the connector is directly gripped by a gripper, and the connector is moved to a predetermined position and fixed, or the connector is attached to the connector housing and the connector is connected. Conducting a continuity test of the installed equipment is assumed.

従来は、あらかじめコネクタのCADデータ等を登録しておき、計測したコネクタの形状と登録データとをパターンマッチングすることで、コネクタの位置と向きを認識し、ロボットにコネクタを把持させ、移動させていた。しかし、コネクタには多種多様な形状があり、全ての形状データを事前に登録しておくことが困難であるという課題があった。また、三次元データ同士のパターンマッチング処理は負荷が大きく、計算時間がかかるという課題があった。 Conventionally, by registering CAD data of the connector in advance and pattern matching the measured connector shape with the registered data, the position and orientation of the connector are recognized, and the robot grips and moves the connector. It was However, there are various shapes of connectors, and it is difficult to register all shape data in advance. Further, there is a problem that the pattern matching processing between the three-dimensional data is heavy and takes a long time for calculation.

さらに、コネクタのコネクタハウジングへの装着に際しては、ロボットハンドで把持したコネクタの線状物の軸線周りの回転方向を把握する必要もある。 Further, when the connector is attached to the connector housing, it is necessary to grasp the rotation direction around the axis of the linear object of the connector gripped by the robot hand.

このように線状物の先端部に取り付けられたコネクタ等の先端部材を所定の接続部材に対して装着する場合には、先端部材の位置と、さらに好ましくは先端部材の回転方向を事前に把握しておくことが必要となる。 When the tip member such as the connector attached to the tip of the linear object is attached to the predetermined connecting member in this manner, the position of the tip member, and more preferably, the rotation direction of the tip member is grasped in advance. It is necessary to keep it.

この発明は、上記課題を解決することを目的としており、線状物の先端部分の形状から先端部材の位置と、さらに好ましくは先端部材の回転方向を把握するための、先端部材位置推定方法、先端部材把持方法、先端部材接続方法、先端部材位置推定システム、および、先端部材把持システムを提供することにある。 The present invention is intended to solve the above problems, the position of the tip member from the shape of the tip of the linear object, and more preferably for grasping the rotation direction of the tip member, a tip member position estimation method, A tip member gripping method, a tip member connecting method, a tip member position estimation system, and a tip member gripping system.

この開示における先端部材位置推定方法においては、先端に先端部材を有する線状物の先端部材位置推定方法であって、上記線状物上の2点以上の座標を取得する座標取得工程と、上記線状物上の2点以上の座標に基づいて、上記先端部材の位置を推定する先端部材位置推定工程と、を備える。 The tip member position estimating method according to the present disclosure is a tip member position estimating method for a linear object having a tip member at the tip, which includes a coordinate acquisition step of acquiring coordinates of two or more points on the linear object, A tip member position estimating step of estimating the position of the tip member based on the coordinates of two or more points on the linear object.

他の形態においては、上記先端部材位置推定工程は、上記線状物上の2点以上の座標に基づいて、上記線状物の近似直線を算出する工程と、上記近似直線に基づいて、上記先端部材の位置を推定する工程と、を含む。 In another aspect, the tip member position estimation step includes a step of calculating an approximate straight line of the linear object based on coordinates of two or more points on the linear object, and a step of calculating the approximate straight line of the linear object. Estimating the position of the tip member.

他の形態においては、上記座標取得工程は、上記線状物上の3点以上の座標を取得する工程を含み、上記先端部材位置推定工程は、上記線状物上の3点以上の座標に基づいて、上記線状物の近似曲線を算出する工程と、上記近似曲線に基づいて、上記先端部材の位置を推定する工程と、を含む。 In another aspect, the coordinate acquisition step includes a step of acquiring coordinates of three or more points on the linear object, and the tip member position estimating step converts coordinates of three or more points on the linear object. Based on the approximate curve, and a step of estimating the position of the tip member based on the approximate curve.

他の形態においては、上記座標取得工程は、上記線状物の先端の座標を取得する工程を含む。 In another aspect, the coordinate acquisition step includes a step of acquiring the coordinates of the tip of the linear object.

他の形態においては、上記線状物上の座標が三次元座標である。
他の形態においては、上記先端部材の画像を取得し、上記画像に基づいて、上記先端部材の回転角度を算出する回転角度算出工程をさらに備える。
In another form, the coordinates on the linear object are three-dimensional coordinates.
In another aspect, a rotation angle calculating step of acquiring an image of the tip member and calculating a rotation angle of the tip member based on the image is further included.

この開示における先端部材把持方法においては、線状物の先端に設けた先端部材をロボットハンドで把持する方法であって、計測装置で上記線状物上の2点以上の座標を取得する座標取得工程と、上記線状物上の2点以上の座標に基づいて、上記先端部材の把持位置を算出する先端部材把持位置算出工程と、上記ロボットハンドが上記把持位置で上記先端部材を把持する把持工程と、を備える。 The tip member gripping method according to the present disclosure is a method of gripping a tip member provided at the tip of a linear object with a robot hand, and a coordinate acquisition for acquiring coordinates of two or more points on the linear object by a measuring device. A step, a tip member gripping position calculation step of calculating a gripping position of the tip member based on coordinates of two or more points on the linear object, and a grip of the robot hand gripping the tip member at the grip position. And a process.

この開示における先端部材接続方法においては、上述に記載の先端部材把持方法で上記ロボットハンドが上記先端部材を把持する工程と、上記ロボットハンドが把持した上記先端部材の画像を取得し、上記画像から上記先端部材の回転角度を算出する工程と、上記ロボットハンドを用いて、上記回転角度に基づき、上記先端部材を接続部材に接続する工程と、を有する。 In the tip member connecting method according to the present disclosure, the step of the robot hand holding the tip member by the tip member holding method described above, and an image of the tip member held by the robot hand are acquired, and the image is acquired from the image. There is a step of calculating a rotation angle of the tip member, and a step of connecting the tip member to a connecting member based on the rotation angle using the robot hand.

この開示における先端部材位置推定システムにおいては、線状物上の2点以上の座標を取得する計測装置と、上記線状物上の2点以上の座標に基づいて、上記線状物の先端に設けられた先端部材の位置を推定する演算部と、を備える。 In the tip member position estimation system according to the present disclosure, the tip of the linear object is determined based on a measuring device that acquires coordinates of two or more points on the linear object and coordinates of two or more points on the linear object. And a calculation unit that estimates the position of the provided tip member.

他の形態においては、上記先端部材を撮像する画像取得手段と、上記画像取得手段で得られた画像に基づいて、上記先端部材の回転角度を算出する回転角度算出手段と、をさらに有する。 In another aspect, the image pickup device further includes an image acquisition unit that captures an image of the tip member, and a rotation angle calculation unit that calculates a rotation angle of the tip member based on an image obtained by the image acquisition unit.

この開示における先端部材把持システムにおいては、先端に先端部材を有する線状物の先端部材把持システムであって、上記線状物上の2点以上の座標を取得する計測装置と、上記線状物上の2点以上の座標に基づいて、上記線状物の先端に設けられた先端部材の位置を推定する演算部と、上記推定された上記先端部材の位置に基づいて、上記先端部材を把持する把持部と、を有する。 The tip member gripping system according to the present disclosure is a tip member gripping system for a linear object having a tip member at the tip, and a measuring device that acquires coordinates of two or more points on the linear object, and the linear object. An arithmetic unit that estimates the position of the tip member provided at the tip of the linear object based on the coordinates of two or more points above, and grips the tip member based on the estimated position of the tip member. And a grip portion for

この発明によれば、線状物の形状から先端部材の位置と、さらに好ましくは対象物の回転方向を把握するための、先端部材位置推定方法、先端部材把持方法、先端部材接続方法、先端部材位置推定システム、および、先端部材把持システムを提供することを可能とする。 According to the present invention, a tip member position estimating method, a tip member gripping method, a tip member connecting method, and a tip member for grasping the position of the tip member from the shape of a linear object, and more preferably the rotational direction of the object. It is possible to provide a position estimation system and a tip member gripping system.

関連技術の三次元計測装置の機能ブロック図である。It is a functional block diagram of the three-dimensional measuring device of related technology. 関連技術の三次元計測方法を説明するための図である。It is a figure for demonstrating the three-dimensional measuring method of related technology. 関連技術の三次元計測方法の工程フロー図である。It is a process flow figure of the three-dimensional measuring method of related technology. ステレオカメラで撮像された第1画像を示す図である。It is a figure which shows the 1st image imaged with the stereo camera. ステレオカメラで撮像された第2画像を示す図である。It is a figure which shows the 2nd image imaged with the stereo camera. 関連技術の三次元計測方法の第1抽出工程の操作フロー図である。It is an operation flow diagram of the 1st extraction process of the three-dimensional measuring method of related technology. 第1線像が抽出された第1画像を示す図である。It is a figure which shows the 1st image from which the 1st line image was extracted. 第2線像が抽出された第1画像を示す図である。It is a figure which shows the 1st image from which the 2nd line image was extracted. 着目点が選択された第1画像を示す図である。It is a figure which shows the 1st image in which the point of interest was selected. エピポーラ線と第2線像との交点が求められた第2画像を示す図である。It is a figure which shows the 2nd image in which the intersection of an epipolar line and a 2nd line image was calculated|required. 色テーブルの一例を示す図である。It is a figure which shows an example of a color table. 本実施の形態の先端部材位置推定方法を示す概略図である。It is a schematic diagram showing a tip member position presumption method of this embodiment. 電線の先端部にコネクタが接続された電気機器を示す図である。It is a figure which shows the electric equipment with which the connector was connected to the front-end|tip part of an electric wire. コネクタの正面を示す図である。It is a figure which shows the front surface of a connector. コネクタハウジングの正面を示す図である。It is a figure which shows the front of a connector housing. 本実施の形態の先端部材把持システムの全体図である。It is an overall view of the tip member gripping system of the present embodiment. 本実施の形態の接続工程の自動化システムのフローを示す図である。It is a figure which shows the flow of the automation system of the connection process of this Embodiment. 本実施の形態のロボットハンドに採用されるグリッパの詳細構造を示す斜視図である。It is a perspective view which shows the detailed structure of the gripper employ|adopted for the robot hand of this Embodiment.

本実施の形態について、以下、図を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。図においては、実際の寸法比率では記載しておらず、構造の理解を容易にするために、一部比率を異ならせて記載している。 The present embodiment will be described below with reference to the drawings. In the embodiments described below, when reference is made to the number, amount, etc., the scope of the present invention is not necessarily limited to the number, amount, etc., unless otherwise specified. The same parts or corresponding parts are designated by the same reference numerals, and duplicate description may not be repeated. It is planned from the beginning that the configurations in the embodiments are appropriately combined and used. In the drawings, the actual dimensional ratios are not shown, but some of the ratios are different for easier understanding of the structure.

以下の開示においては、線状物の一例として電線を用いた場合について説明しているが、電線に限定されるものではない。この説明での線状物とは、細長い形状を有する物体であれば何でもよい。線状物の一例としては、電線、ワイヤーハーネス、はんだ、紐、糸、繊維、ガラス繊維、光ファイバ、チューブ、その他の線状物が挙げられる。細線を束にした電線に限定されず、一本線から構成される電線等も含まれる。 In the following disclosure, the case where an electric wire is used as an example of the linear object is described, but the present invention is not limited to the electric wire. The linear object in this description may be any object as long as it has an elongated shape. Examples of linear objects include electric wires, wire harnesses, solders, strings, threads, fibers, glass fibers, optical fibers, tubes, and other linear objects. The electric wire is not limited to an electric wire in which thin wires are bundled, and an electric wire or the like formed of a single wire is also included.

(関連技術:線状物の三次元計測方法および三次元計測装置)
以下、図1から図11を参照して、関連技術として、線状物の三次元計測方法および装置の一例について説明する。
(Related technology: 3D measuring method and 3D measuring device for linear objects)
Hereinafter, an example of a three-dimensional measuring method and apparatus for linear objects will be described as a related technique with reference to FIGS. 1 to 11.

図1を参照して、三次元計測装置10は、ステレオカメラ11、演算部15、記憶部16、および、入出力部17を備える。演算部15、記憶部16、および、入出力部17を総称して、制御部と呼ぶことがある。 With reference to FIG. 1, the three-dimensional measuring device 10 includes a stereo camera 11, a calculation unit 15, a storage unit 16, and an input/output unit 17. The arithmetic unit 15, the storage unit 16, and the input/output unit 17 may be collectively referred to as a control unit.

ステレオカメラ11は、第1カメラ12、第2カメラ13、および、カメラ制御部14を含む。第1カメラ12は、カラーの二次元画像である第1画像を撮像するカラーカメラである。第2カメラ13は、カラーの二次元画像である第2画像を撮像するカラーカメラであって、第1カメラ12に対する相対位置が固定されている。 The stereo camera 11 includes a first camera 12, a second camera 13, and a camera control unit 14. The first camera 12 is a color camera that captures a first image that is a two-dimensional color image. The second camera 13 is a color camera that captures a second image that is a two-dimensional color image, and its relative position with respect to the first camera 12 is fixed.

カメラ制御部14は、第1カメラ12および第2カメラ13を制御し、演算部15との通信を行なう。カメラ制御部14は、たとえば、演算部15から撮像指示を受信して第1カメラ12および第2カメラ13に撮像指示を送信し、第1画像および第2画像を演算部15に転送する。 The camera control unit 14 controls the first camera 12 and the second camera 13, and communicates with the calculation unit 15. The camera control unit 14 receives, for example, an imaging instruction from the calculation unit 15, transmits the imaging instruction to the first camera 12 and the second camera 13, and transfers the first image and the second image to the calculation unit 15.

演算部15は、カメラ制御部14との通信の他、ステレオカメラ11から受信した第1画像および第2画像を処理して線状物の三次元位置を算出する。記憶部16は、ステレオカメラ11が撮像した第1画像および第2画像、対象物の色テーブルを記憶する他、演算に必要な中間データや演算結果等を記憶する。入出力部17は、作業者からの指令を受け付けたり、作業者に対して計測結果を表示する。 The calculation unit 15 calculates the three-dimensional position of the linear object by processing the first image and the second image received from the stereo camera 11, in addition to the communication with the camera control unit 14. The storage unit 16 stores the first image and the second image captured by the stereo camera 11, the color table of the target object, and also stores intermediate data and calculation results necessary for the calculation. The input/output unit 17 receives a command from the worker and displays the measurement result to the worker.

図2を参照して、この計測方法では、電線21、電線22および電線23を第1カメラ12および第2カメラ13で撮像する。電線21上のある点Pに対して、第1カメラによる第1画像30への投影点Qと、第2カメラによる第2画像40への投影点Rが得られれば、既知である第1カメラおよび第2カメラの位置情報を利用して、点Pの三次元位置を算出することができる。第1カメラおよび第2カメラの位置情報は、予め2つのカメラをキャリブレーションしておくことで取得できる。 With reference to FIG. 2, in this measuring method, the electric wire 21, the electric wire 22, and the electric wire 23 are imaged by the first camera 12 and the second camera 13. If a projection point Q on the first image 30 by the first camera and a projection point R on the second image 40 by the second camera are obtained with respect to a certain point P on the electric wire 21, the known first camera The three-dimensional position of the point P can be calculated using the position information of the second camera. The position information of the first camera and the second camera can be obtained by calibrating the two cameras in advance.

図2は白黒で描かれているが、計測対象である3本の電線21、電線22および電線23は色分けされており、互いに異なる色、たとえば赤、青、黄などの被覆を有する。計測対象となる線状物は、線状の物体であれば特に限定されない。 Although FIG. 2 is drawn in black and white, the three electric wires 21, 22, and 23 to be measured are color-coded and have coatings of different colors, such as red, blue, and yellow. The linear object to be measured is not particularly limited as long as it is a linear object.

図3は、三次元計測方法のフロー図である。以下、各工程について説明する。
計測に先立って、色テーブルを作成する。色テーブルは、計測対象となり得る線状物の種類毎にその色を記録したテーブルである。図11に、電線の種類毎に、その色を赤・緑・青(RGB)の3原色の輝度で表した色テーブルを一例として示す。色テーブルは記憶部16に記憶される。
FIG. 3 is a flowchart of the three-dimensional measurement method. Hereinafter, each step will be described.
Create a color table prior to measurement. The color table is a table in which the color is recorded for each type of linear object that can be measured. FIG. 11 shows, as an example, a color table in which the color of each type of electric wire is represented by the luminance of the three primary colors of red, green, and blue (RGB). The color table is stored in the storage unit 16.

計測時には、ステレオカメラ11で電線21、電線22および電線23を撮像する。電線21、電線22および電線23は第1カメラ12によって第1画像30に撮像される。それと同時に、電線21、電線22および電線23は第2カメラ13によって、第1カメラとは異なる視点から、第2画像40に撮像される。第1画像および第2画像は演算部15に転送され、記憶部16に記憶される。 At the time of measurement, the stereo camera 11 images the electric wire 21, the electric wire 22, and the electric wire 23. The electric wire 21, the electric wire 22, and the electric wire 23 are captured in the first image 30 by the first camera 12. At the same time, the electric wire 21, the electric wire 22, and the electric wire 23 are captured by the second camera 13 in the second image 40 from a viewpoint different from that of the first camera. The first image and the second image are transferred to the calculation unit 15 and stored in the storage unit 16.

演算部15は、ステレオカメラ11から第1画像30および第2画像40を取得する。このとき、図4を参照して、第1画像30には3本の電線21、電線22および電線23のそれぞれ像31、像32および像33が写っている。同様に、図5を参照して、第2画像40には3本の電線21、電線22および電線23のそれぞれの像41、像42および像43が写っている。 The calculation unit 15 acquires the first image 30 and the second image 40 from the stereo camera 11. At this time, referring to FIG. 4, the first image 30 includes images 31, 32 and 33 of the three electric wires 21, 22 and 23, respectively. Similarly, with reference to FIG. 5, the second image 40 includes images 41, 42, and 43 of the three electric wires 21, the electric wires 22, and the electric wires 23, respectively.

演算部15は、第1画像30上で、特定の電線21を第1線像として抽出する。図6を参照して、この第1線像を抽出する工程(第1線像抽出工程)は、色による抽出操作、二値化操作、ノイズ除去操作、細線化操作を含む。 The calculation unit 15 extracts the specific electric wire 21 as a first line image on the first image 30. Referring to FIG. 6, the step of extracting the first line image (first line image extracting step) includes a color extracting operation, a binarizing operation, a noise removing operation, and a thinning operation.

色による抽出操作では、演算部15は計測しようとする電線21の色を色テーブルから取得して、第1画像30上でその特定の色の線状物21の像31だけを第1線像34として抽出する。 In the extraction operation by color, the calculation unit 15 acquires the color of the electric wire 21 to be measured from the color table, and only the image 31 of the linear object 21 of the specific color on the first image 30 is the first line image. Extract as 34.

具体的には、第1画像の各画素の色をその特定の色と比較して、両者が同じと判断される場合にはその画素を残し、両者が異なると判断される場合にはその画素を消去する。色が同じであるか異なるかの判断は、両者の差が所定の値以下であるか否かによって行なうことができる。 Specifically, the color of each pixel of the first image is compared with the specific color, and when both are judged to be the same, the pixel is left, and when both are judged to be different, the pixel is Erase. The determination as to whether the colors are the same or different can be made based on whether or not the difference between the two is less than or equal to a predetermined value.

たとえば、電線21に対応するRGB値を色テーブルから取得して、第1画像30の各画素のRGB値をそれと比較し、RGBの各値の差が所定の値以下であれば、その画素は電線21と同じ色であると判断する。所定の値は、RGBの階調数や、異なる種類の電線間での色の違いの程度等を考慮して定めることができる。 For example, the RGB value corresponding to the electric wire 21 is acquired from the color table, the RGB value of each pixel of the first image 30 is compared with that, and if the difference between the RGB values is less than or equal to a predetermined value, the pixel is It is determined that the color is the same as that of the electric wire 21. The predetermined value can be determined in consideration of the number of RGB gradations, the degree of color difference between different types of electric wires, and the like.

次に、第1画像30を二値化する。これは適当な閾値を用いて、各画素の値を0か1に置き換える操作である。二値化操作によって以後の画像処理が容易になる。二値化操作は色による抽出操作と同時に行ってもよい。同じ色と判定した画素を1とし、異なる色と判定した画素を0とすることで2値化できる。 Next, the first image 30 is binarized. This is an operation for replacing the value of each pixel with 0 or 1 by using an appropriate threshold value. The binarization operation facilitates subsequent image processing. The binarization operation may be performed simultaneously with the color extraction operation. Binarization can be performed by setting the pixels determined to have the same color to 1 and the pixels determined to have different colors to 0.

次に、第1画像30に対してノイズ除去操作を行なう。上記色による抽出操作によって第1線像34が抽出されたが、第1画像にはカメラのショットノイズなどによる孤立した画素が残っている。1つの画素に対するRGB用の撮像素子の位置が実際にはわずかにずれていることから、各電線の像31、像32および像33の輪郭部など、色が急峻に変化する部分で画像の色が乱れや孤立した画素が残っている可能性がある。このような画素を除去することによって、より正確な第1線像34が得られる。 Next, the noise removal operation is performed on the first image 30. Although the first line image 34 is extracted by the above-described color extracting operation, isolated pixels due to shot noise of the camera remain in the first image. Since the position of the RGB image sensor with respect to one pixel is actually slightly deviated, the color of the image is changed at a portion where the color changes sharply, such as the contours of the images 31, 32 and 33 of each wire. May be disturbed or there may remain isolated pixels. A more accurate first line image 34 is obtained by removing such pixels.

次に、第1線像34を細線化する。これは第1線像の連結性を保ちながら線幅を1に細める操作である。細線化操作の方法は、線幅の中心に位置する画素を選択するなど、公知の方法を用いることができる。これにより、以後の画像処理が容易になるし、対応点等をより正確に求めることができる。 Next, the first line image 34 is thinned. This is an operation for reducing the line width to 1 while maintaining the connectivity of the first line images. As a thinning operation method, a known method such as selecting a pixel located at the center of the line width can be used. As a result, subsequent image processing is facilitated, and corresponding points can be obtained more accurately.

図7に得られた第1線像34を示す。第1線像が抽出された第1画像30は記憶部16に記憶される。 FIG. 7 shows the obtained first line image 34. The first image 30 from which the first line image is extracted is stored in the storage unit 16.

図3に戻って、第2画像40に対しても第1画像30と同様の操作を行い、第2線像44を抽出する(第2線像抽出工程)。図8に第2線像44を示す。第2線像が抽出された第2画像は記憶部16に記憶される。 Returning to FIG. 3, the same operation as the first image 30 is performed on the second image 40 to extract the second line image 44 (second line image extracting step). The second line image 44 is shown in FIG. The second image from which the second line image is extracted is stored in the storage unit 16.

図9を参照して、演算部は、第1画像30の第1線像34上に着目点Qを選択する。点Qは電線21の点P(図2)の第1画像への投影点である。 Referring to FIG. 9, the calculation unit selects the point of interest Q on the first line image 34 of the first image 30. A point Q is a projection point of the point P (FIG. 2) of the electric wire 21 on the first image.

図10を参照して、演算部は、第2画像40上で、第1画像30の着目点Qに対応するエピポーラ線45を求める。第2線像44とエピポーラ線45との交点Rを求め、これを着目点Qに対応する点とする。点Rは電線21の点P(図2)の第2画像への投影点である。 With reference to FIG. 10, the calculation unit obtains the epipolar line 45 corresponding to the point of interest Q of the first image 30 on the second image 40. An intersection R between the second line image 44 and the epipolar line 45 is obtained, and this is set as a point corresponding to the point of interest Q. The point R is a projection point of the point P (FIG. 2) of the electric wire 21 on the second image.

以上の工程により、図2に示した電線21の点Pに対して、第1画像30への投影点Qと、第2画像40への投影点Rが得られたので、演算部は点Pの三次元位置を算出する。 Through the above steps, the projection point Q on the first image 30 and the projection point R on the second image 40 are obtained for the point P of the electric wire 21 shown in FIG. Calculate the three-dimensional position of.

次に、第1線像34上に新しい着目点を選択して、着目点選択以降の工程を繰り返す。次の着目点としては、前の着目点に連結された隣接点を選択することができる。このようにして着目点Qをずらしながら、すなわち点Pを電線21上で移動させながら三次元位置を求めることによって、電線21の三次元計測を行なう。 Next, a new point of interest is selected on the first line image 34, and the steps after the point of interest selection are repeated. As the next point of interest, an adjacent point connected to the previous point of interest can be selected. In this way, the three-dimensional measurement of the electric wire 21 is performed by shifting the point of interest Q, that is, by moving the point P on the electric wire 21 to obtain the three-dimensional position.

電線21について必要な情報が得られた時点で、上記繰り返し処理を終了する。引き続き他の電線、たとえば電線22の三次元計測を行なう場合は、電線22の色を色テーブルから取得して、第1カメラおよび第2カメラが撮像した当初の第1画像および第2画像に対して、第1線像抽出工程から後の工程を繰り返す。 When the necessary information about the electric wire 21 is obtained, the repeating process is ended. When three-dimensionally measuring another electric wire, for example, the electric wire 22, the color of the electric wire 22 is acquired from the color table, and the first and second images captured by the first camera and the second camera are compared with each other. Then, the steps after the first line image extraction step are repeated.

ここで、色テーブルについて、さらに詳しく説明する。
図11に例示した色テーブルは、線状物の種類毎に1つのRGB値が記載されたものであったが、線状物1種類に対して複数のRGB値を記載しておき、いずれかのRGB値と同色と判定されれば、当該線状物であると判断してもよい。色はRGB以外の表色系で記録されていてもよい。たとえば、国際照明委員会(CIE)が策定したCIELAB表色系に基づいてL*、a*、b*で表現されていてもよい。ステレオカメラからの出力がRGB値であっても、表色系間の換算は容易である。
Here, the color table will be described in more detail.
In the color table illustrated in FIG. 11, one RGB value is described for each type of linear object, but a plurality of RGB values are described for one type of linear object, and If it is determined that the color is the same as the RGB value of, the linear object may be determined. The colors may be recorded in a color system other than RGB. For example, it may be represented by L*, a*, b* based on the CIELAB color system established by the International Commission on Illumination (CIE). Even if the output from the stereo camera is RGB values, conversion between color systems is easy.

画素のRGB値と色テーブルのRGB値との差が所定の値以下であれば、その画素の色とテーブルの色が同じであると判断したが、同色であると判断する色の範囲を色テーブルに記録しておいてもよい。色の範囲を記録する場合、L*a*b*の値で表現されていた方が、光量変化にロバストな閾値範囲を設定しやすく、より好ましい。たとえば、L*値の閾値範囲を広く取っておき、a*値、b*値の閾値範囲を狭くすることで、線状物の明るさが一定程度変化しても、他色のケーブルと混同せず同色であるとみなすことができる。 If the difference between the RGB value of the pixel and the RGB value of the color table is less than or equal to a predetermined value, it was determined that the color of the pixel and the color of the table were the same, but the range of colors determined to be the same You may record it on the table. When recording the color range, it is more preferable that the value is represented by the value of L*a*b* because it is easy to set a threshold range that is robust against the change in the light amount. For example, by keeping the threshold range of the L* value wide and narrowing the threshold range of the a* value and the b* value, even if the brightness of the linear object changes to a certain extent, it will not be confused with a cable of another color. Can be considered to be the same color.

色テーブルは、好ましくは、実際の計測環境において、実際に線状物を撮像したときの画像の色に基づいて作成される。具体的には、線状物を手やロボットハンドで持つなどして、第1カメラまたは第2カメラの前で様々な位置・向きに動かしながら撮像し、画像からその線状物の色情報を取得する。第1画像および第2画像上の線状物の色は、計測環境における照明の種類や配置、線状物の光沢度や向きなど、種々の要因によって変化する。色テーブルに、実際の計測条件下で線状物の画像が撮り得る範囲の色を記録しておくことにより、線状物を抽出する際の誤認識を減らすことができる。 The color table is preferably created based on the color of the image when the linear object is actually captured in the actual measurement environment. Specifically, by holding the linear object with a hand or a robot hand, the linear object is imaged while moving in various positions and directions in front of the first camera or the second camera, and the color information of the linear object is obtained from the image. get. The color of the linear object on the first image and the second image changes depending on various factors such as the type and arrangement of illumination in the measurement environment, the glossiness and direction of the linear object. By recording in the color table the colors of the range in which the image of the linear object can be taken under the actual measurement conditions, it is possible to reduce erroneous recognition when extracting the linear object.

たとえば、上記三次元計測方法における把持対象の線状物としては、ケーブルの他、ワイヤーハーネス、その他種々の線状物に適用可能である。上記工程および操作は、それが可能である場合には、実行する順序を入れ替えたり、省略してもよい。 For example, the linear object to be grasped in the above three-dimensional measuring method can be applied to a wire harness and various other linear objects in addition to the cable. The above steps and operations may be performed in a different order or omitted if possible.

上記三次元計測方法は、ステレオ方式における公知のマッチング方法との併用を排除するものではない。多数の線状物の中に同色の線状物が複数ある場合には、計測先端部材の形状その他の特徴に着目したマッチング方法を併用するメリットがある。 The above-mentioned three-dimensional measurement method does not exclude the combined use with a known matching method in the stereo system. When there are a plurality of linear objects of the same color among a large number of linear objects, there is an advantage in using a matching method that focuses on the shape and other characteristics of the measurement tip member.

<先端部材位置推定方法の第1実施形態>
次に、図12を参照して、先端部材位置推定方法について説明する。図12は、本実施の形態の先端部材位置推定方法を示す概略図である。
<First Embodiment of Tip Member Position Estimation Method>
Next, with reference to FIG. 12, a tip member position estimating method will be described. FIG. 12 is a schematic diagram showing the tip member position estimating method according to the present embodiment.

上記の電線21を例にして説明する。電線21の先端部には、先端部材としてコネクタC1が予め接続されている。先端部材はコネクタに限らず、線状物の先端に設けられ、線状物と太さ、形状、色のいずれかが異なる物であればよい。上記線状物の三次元計測方法に基づき、電線21の色を判別する。さらに、電線21の着目点として、電線21の先端部分にあるP1、P2、P3、P4、P5の三次元位置情報(三次元座標)を得る。図では説明上P1、P2、P3、P4、P5は離れて記載しているが、実際は、着目点は近接していてもよい。三次元位置情報を把握すべき先端部分の長さは任意に設定可能であり、取得すべき着目点の数量も任意に設定可能である。2点以上、好ましくは、3点以上の三次元座標を取得するとよい。取得すべき着目点の1点は、電線21と先端部材との接点である電線21の先端P21であることが好ましい。先端部材の起点位置を把握することで、より精確に先端部材の位置を推定することができるためである。 The above electric wire 21 will be described as an example. A connector C1 is connected in advance to the tip of the electric wire 21 as a tip member. The tip member is not limited to the connector, but may be any member that is provided at the tip of the linear object and has a different thickness, shape, or color from the linear object. The color of the electric wire 21 is determined based on the three-dimensional measuring method of the linear object. Further, as the point of interest of the electric wire 21, three-dimensional position information (three-dimensional coordinates) of P1, P2, P3, P4, and P5 at the tip of the electric wire 21 is obtained. In the figure, P1, P2, P3, P4, and P5 are described apart from each other for the sake of description, but actually, the points of interest may be close to each other. The length of the tip end portion for which the three-dimensional position information is to be grasped can be arbitrarily set, and the number of target points to be acquired can also be arbitrarily set. Three-dimensional coordinates of two or more points, preferably three or more points, may be acquired. One of the points of interest to be acquired is preferably the tip P21 of the electric wire 21, which is a contact point between the electric wire 21 and the tip member. This is because the position of the tip member can be more accurately estimated by grasping the starting point position of the tip member.

電線21は、赤色等、任意の一色に着色されているか、又は、赤色等、任意の一色のカバーにより覆われていることで、正確な三次元計測方法を実施することができる。電線21の色とコネクタC1の色とが異なる色であれば、電線21とコネクタC1とを別々に認識しやすいため、より好適である。 The electric wire 21 is colored in any one color such as red or is covered with a cover of any one color such as red, so that an accurate three-dimensional measurement method can be performed. If the color of the electric wire 21 and the color of the connector C1 are different, it is easier to recognize the electric wire 21 and the connector C1 separately, which is more preferable.

次に、コネクタC1の位置を推定する。コネクタC1の位置を推定するとは、電線21に取り付けられたコネクタC1の取り付け方向を推定することを意味する。コネクタC1の取り付け方向は、電線21の先端部分の延長線の方向と一致すると仮定する。次に、P1、P2、P3、P4、P5の三次元位置情報から、コネクタC1の取り付け方向を推定する。電線が柔軟物であって、コネクタC1は非柔軟物である場合、コネクタC1の位置および向きは、電線の先端部分の形状に倣うことが多いため、電線の先端部分の形状や位置情報から推定することができる。 Next, the position of the connector C1 is estimated. Estimating the position of the connector C1 means estimating the attachment direction of the connector C1 attached to the electric wire 21. It is assumed that the mounting direction of the connector C1 coincides with the direction of the extension line of the tip portion of the electric wire 21. Next, the mounting direction of the connector C1 is estimated from the three-dimensional position information of P1, P2, P3, P4, and P5. When the electric wire is a flexible object and the connector C1 is a non-flexible object, the position and orientation of the connector C1 often follow the shape of the tip portion of the electric wire, and thus are estimated from the shape and position information of the tip portion of the electric wire. can do.

コネクタC1の取り付け方向を推定する方法として以下の(i)から(iii)が挙げられる。 The following methods (i) to (iii) can be given as methods for estimating the mounting direction of the connector C1.

(i)任意の2点以上の着目点に基づいて、近似直線を算出し、算出した近似直線上に先端部材が位置すると推定する方法。具体的には、着目点P1および着目点P3の2点を結んだ近似直線が延びる方向(x線)を、コネクタC1の取り付け方向と推定する。 (I) A method of calculating an approximate straight line based on arbitrary two or more points of interest and estimating that the tip member is located on the calculated approximate straight line. Specifically, the direction (x line) in which the approximate straight line connecting the two points of interest P1 and P3 extends is estimated as the attachment direction of the connector C1.

(ii)任意の3点以上の着目点に基づいて、近似曲線を算出し、算出した近似曲線上に先端部材が位置すると推定する方法。具体的には、着目点P1から着目点P5を用いて電線21の近似曲線を計測し、この曲線(y曲線)が、電線21のコネクタC1の取り付け方向と推定する。 (Ii) A method of calculating an approximate curve based on arbitrary three or more points of interest and estimating that the tip member is located on the calculated approximate curve. Specifically, the approximated curve of the electric wire 21 is measured using the points of interest P1 to P5, and this curve (y curve) is estimated to be the mounting direction of the connector C1 of the electric wire 21.

(iii)任意の3点以上の着目点に基づいて、近似曲線を算出し、線状物の先端における算出した近似曲線の接線上に先端部材が位置すると推定する方法。具体的には、曲線(y曲線)の着目点P21上での接線(z線)が、電線21の先端部コネクタC1の取り付け方向と推定する。 (Iii) A method of calculating an approximate curve based on arbitrary three or more points of interest and estimating that the tip member is located on the tangent line of the calculated approximate curve at the tip of the linear object. Specifically, the tangent line (z line) on the point of interest P21 of the curve (y curve) is estimated to be the mounting direction of the distal end connector C1 of the electric wire 21.

(i)に示す方法によりx線の延びる方向をコネクタC1の取り付け方向として近似推定する方法は、利用する着目点の数が少ない分、制御装置(たとえば図1の演算部15)での演算速度は速い。他方、(ii)および(iii)に示す方法によりx線の延びる方向をコネクタC1の取り付け方向として近似推定する方法は、利用する着目点の数が多い分、(i)に示す方法よりも精度は高いと考えられる。 In the method of approximating the direction in which the x-ray extends as the mounting direction of the connector C1 by the method shown in (i), the calculation speed in the control device (for example, the calculation unit 15 in FIG. 1) is reduced because the number of points of interest used is small. Is fast. On the other hand, the method of approximating the extending direction of the x-ray as the mounting direction of the connector C1 by the methods shown in (ii) and (iii) is more accurate than the method shown in (i) because of the large number of points of interest to be used. Is considered high.

<先端部材位置推定方法の第2実施形態>
先端部材位置推定方法の第2実施形態は、ステレオカメラ11で線状物を撮像し、第1画像および第2画像を取得し、第1画像および第2画像上で計測対象となる第1線像と第2線像を抽出する工程までは、第1実施形態と同様である。
<Second Embodiment of Tip Member Position Estimation Method>
In the second embodiment of the tip member position estimation method, a linear object is imaged by the stereo camera 11, a first image and a second image are acquired, and a first line to be measured on the first image and the second image. The process up to the step of extracting the image and the second line image is the same as in the first embodiment.

次に、第1画像上で第1線像を延長し、第1線像の端点から所定距離にある第1先端部材推定点を求める。同様に、第2画像上で第2線像を延長し、第2線像の端点から所定距離にある第2先端部材推定点を求める。そして、第1先端部材推定点及び第2先端部材推定点がそれぞれの画像上における先端部材の位置する点と仮定する。 Next, the first line image is extended on the first image, and the first tip member estimation point located at a predetermined distance from the end point of the first line image is obtained. Similarly, the second line image is extended on the second image, and the second tip member estimation point located at a predetermined distance from the end point of the second line image is obtained. Then, it is assumed that the first tip member estimation point and the second tip member estimation point are points where the tip member is located on each image.

演算部は、第1先端部材推定点と第2先端部材推定点をステレオ法における2枚の画像の対応点として、コネクタC1の三次元位置を算出する。 The computing unit calculates the three-dimensional position of the connector C1 by using the first tip member estimation point and the second tip member estimation point as corresponding points of the two images in the stereo method.

<先端部材位置推定方法の第3実施形態>
線状物が所定の台上や壁に沿っている場合、線状物上の着目点の2次元情報を取得することで、先端部材の位置を推定することができる。この場合、2次元カメラを用いて、線状物を撮像し、先端部材位置推定方法の第1実施形態(i)から(iii)のいずれかと同様の方法で、コネクタC1の取り付け方向と推定する。
<Third Embodiment of Tip Member Position Estimation Method>
When the linear object is along a predetermined platform or wall, the position of the tip member can be estimated by acquiring the two-dimensional information of the point of interest on the linear object. In this case, a linear object is imaged using a two-dimensional camera, and the attachment direction of the connector C1 is estimated by the same method as any one of the first embodiment (i) to (iii) of the tip member position estimation method. ..

<先端部材把持方法>
上記第1実施形態から第3実施形態のいずれかの方法を用いて、コネクタC1の取り付け方向を推定し、ロボットハンドによる先端部材把持方法を決定する。ロボットハンドによる具体的な把持位置は、電線21の着目点P21でもよいし、着目点P21から上述の方法で推定したコネクタの取り付け方向に、所定距離(L1)の位置にあるコネクタC1上の位置を把持位置と決定してもよい。
<Tip member gripping method>
The mounting direction of the connector C1 is estimated by using any one of the methods of the first to third embodiments described above, and the method of gripping the tip member by the robot hand is determined. The specific gripping position by the robot hand may be the target point P21 of the electric wire 21, or a position on the connector C1 located at a predetermined distance (L1) from the target point P21 in the connector mounting direction estimated by the above method. May be determined as the gripping position.

上記先端部材位置推定方法の第1実施形態から第3実施形態のいずれの方法を用いるかについては、電線太さ、電線の材質、電線の固さ、芯線の有無、カメラの解像度等によって決定される。 Which of the first to third embodiments of the above-mentioned tip member position estimation method is used is determined by the thickness of the wire, the material of the wire, the hardness of the wire, the presence or absence of the core wire, the resolution of the camera, and the like. It

<先端部材位置推定システム200および先端部材把持システム1000>
次に、図13から図17を参照して、上記先端部材位置推定方法を用いた先端部材位置推定システム200およびロボットハンドによる先端部材把持システム1000について説明する。
<Tip member position estimation system 200 and tip member gripping system 1000>
Next, with reference to FIG. 13 to FIG. 17, a tip member position estimating system 200 using the above tip member position estimating method and a tip member gripping system 1000 by a robot hand will be described.

図13に電線21の先端部にコネクタC1が接続された電気機器100を示す。電気機器100の一例としては、駆動モーター、オルタネーター、バッテリー、コンプレッサ、自動車の電装品、家電、その他の様々な電気機器を挙げることができる。 FIG. 13 shows the electric device 100 in which the connector C1 is connected to the tip of the electric wire 21. Examples of the electric device 100 include a drive motor, an alternator, a battery, a compressor, an electric component of an automobile, a home electric appliance, and various other electric devices.

本実施の形態では、電気機器100の導通テストを行なうために、後述するロボットハンドを用いて、電気機器100に電線21を介して接続されたコネクタC1を、コネクタハウジングC2に自動接続する工程(先端部材接続方法)について説明する。 In the present embodiment, a step of automatically connecting the connector C1 connected to the electric device 100 via the electric wire 21 to the connector housing C2 by using a robot hand described later in order to conduct a continuity test of the electric device 100 ( The method of connecting the tip member) will be described.

図14にコネクタC1および図15にコネクタハウジングC2を図示する。図14を参照して、コネクタC1は、筒状の胴体部C11を有する。胴体部C11の軸方向(図13中矢印A方向)が、推定したコネクタC1の取り付け方向と一致すると推定する。 14 shows a connector C1 and FIG. 15 shows a connector housing C2. Referring to FIG. 14, the connector C1 has a tubular body portion C11. It is estimated that the axial direction of the body portion C11 (the arrow A direction in FIG. 13) matches the estimated mounting direction of the connector C1.

胴体部C11の内部には、複数のピンC12が所定位置に配列されている。胴体部C11の外周面には、コネクタC1の位置決めを行なうため、胴体部C11の軸方向に沿って延びるリブC13が設けられている。この図14に示す状態を、コネクタC1の正面が認識できる状態とする。コネクタC1の正面が認識できることにより、コネクタC1の回転状態(リブC13の位置に基づく回転角度の算出)を認識できることとなる。 Inside the body portion C11, a plurality of pins C12 are arranged at predetermined positions. A rib C13 extending along the axial direction of the body C11 is provided on the outer peripheral surface of the body C11 for positioning the connector C1. The state shown in FIG. 14 is a state in which the front of the connector C1 can be recognized. Since the front surface of the connector C1 can be recognized, the rotation state of the connector C1 (calculation of the rotation angle based on the position of the rib C13) can be recognized.

図15を参照して、コネクタハウジングC2は、ピンC12に対応する位置にピン受けC22が設けられたハウジングC21を有する。ハウジングC21には、リブC13が挿入される位置決め凹部C23が設けられている。 Referring to FIG. 15, the connector housing C2 has a housing C21 in which a pin receiver C22 is provided at a position corresponding to the pin C12. The housing C21 is provided with a positioning recess C23 into which the rib C13 is inserted.

次に、図16および図17を参照して、ロボットアーム500に設けられたロボットハンド600を用いて、コネクタC1をコネクタハウジングC2に装着する自動化の一例について説明する。図16は、先端部材把持システム1000の全体図、図17は、装着工程の自動化システムのフローを示す図である。 Next, with reference to FIGS. 16 and 17, an example of automation of mounting the connector C1 on the connector housing C2 using the robot hand 600 provided on the robot arm 500 will be described. FIG. 16 is an overall view of the tip member gripping system 1000, and FIG. 17 is a view showing the flow of the mounting process automation system.

先端部材把持システム1000の制御は、後述の先端部材位置推定システム200で行なう。この先端部材位置推定システム200は、図1で説明した三次元計測装置10と同じである。以下、先端部材位置推定システム200の説明には、図1に示した三次元計測装置10と同じ参照符号を付す場合がある。 The tip member gripping system 1000 is controlled by a tip member position estimating system 200 described later. This tip member position estimation system 200 is the same as the three-dimensional measuring apparatus 10 described in FIG. Hereinafter, the description of the tip member position estimation system 200 may be given the same reference numerals as those of the three-dimensional measuring apparatus 10 shown in FIG. 1.

図16を参照して、先端部材把持システム1000は、筐体700を有する。筐体700の上部は、透明壁400が配置され内部の装着工程を目視することができる。筐体700の内部には、所定位置にロボット900および対象物配置台800が配置されている。ロボット900は、ロボットアーム500を備えており、ロボットアーム500の先端部は、ロボットハンド600が装着されている。対象物配置台800の上には、図13に示したコネクタC1を有する電気機器100、および、コネクタハウジングC2が配置されている。 With reference to FIG. 16, the tip member gripping system 1000 has a housing 700. The transparent wall 400 is disposed on the top of the housing 700 so that the mounting process inside can be visually checked. Inside the housing 700, the robot 900 and the object placement table 800 are placed at predetermined positions. The robot 900 includes a robot arm 500, and a robot hand 600 is attached to the tip of the robot arm 500. On the object placement table 800, the electric device 100 having the connector C1 shown in FIG. 13 and the connector housing C2 are placed.

さらに、筐体700の内部の所定位置には、ステレオカメラ11等を含む先端部材位置推定システム200、および、エリアカメラ300が配置されている。エリアカメラ300は、詳細は後述するが、正面画像取得手段として機能し、画像処理により、コネクタC1の向き(回転角度)を測定する際に用いられる。エリアカメラ300から得られた正面画像情報は、三次元計測装置10に入力される。三次元計測装置10は、この正面画像に基づき、コネクタC1の回転角度を算出する回転角度算出手段を含む。この回転角度算出手段は、演算部15に設けてもよいし、回転角度算出部を設けてもよい。 Further, at a predetermined position inside the housing 700, a tip member position estimation system 200 including the stereo camera 11 and the like, and an area camera 300 are arranged. The area camera 300, which will be described in detail later, functions as a front image acquisition unit and is used when measuring the orientation (rotation angle) of the connector C1 by image processing. The front image information obtained from the area camera 300 is input to the three-dimensional measuring device 10. The three-dimensional measuring device 10 includes a rotation angle calculation unit that calculates the rotation angle of the connector C1 based on this front image. This rotation angle calculation means may be provided in the calculation unit 15 or a rotation angle calculation unit.

なお、正面画像取得手段として二次元カメラのエリアカメラ300を採用する場合について説明しているが、ステレオカメラ11を正面画像取得手段として兼用させてもよい。 Although the case where the area camera 300 of the two-dimensional camera is adopted as the front image acquisition unit has been described, the stereo camera 11 may also be used as the front image acquisition unit.

ロボットアーム500には、たとえば、FANUC Robot LR Mate 200iD/7L(可搬重量7kg、リーチ長さ900mm)が採用される。ロボットハンド600の先端には、一対のグリッパ610が設けられており、エアシリンダによる平行開閉が行なわれる。グリッパ610の幅は約10mm、長さは約20mm程度である。グリッパ610の開閉ストロークは、約10mm程度である。 For the robot arm 500, for example, a FANUC Robot LR Mate 200iD/7L (load capacity 7 kg, reach length 900 mm) is adopted. A pair of grippers 610 is provided at the tip of the robot hand 600, and parallel opening and closing is performed by an air cylinder. The gripper 610 has a width of about 10 mm and a length of about 20 mm. The opening/closing stroke of the gripper 610 is about 10 mm.

先端部材位置推定システム200は、クラボウ製の線状物認識用3Dビジョンが用いられる。対象物とステレオカメラ11との距離は、約500mm、視野範囲は400mm×250mm、焦点深度は±100mmである。線状物把持位置認識機能として、把持位置等、および、ロボットハンド姿勢を出力する際に用いられる。 The tip member position estimation system 200 uses a 3D vision for linear object recognition made by Kurabo Industries. The distance between the object and the stereo camera 11 is about 500 mm, the visual field range is 400 mm×250 mm, and the depth of focus is ±100 mm. As a linear object gripping position recognition function, it is used when outputting the gripping position and the like, and the robot hand posture.

エリアカメラ300には、Fanuc製のエリアカメラ、または、Balser製エリアカメラ(Dart)が用いられる。視野範囲は、200mm×150mm程度である。コネクタ方向認識機能として、コネクタの回転角度を出力する際に用いられる。 As the area camera 300, a Fanuc area camera or a Balser area camera (Dart) is used. The visual field range is about 200 mm×150 mm. It is used as a connector direction recognition function when outputting the rotation angle of the connector.

次に、図17を参照して、先端部材把持システム1000を用いた、コネクタC1のコネクタハウジングC2への装着工程(配線自動化工程)について説明する。なお、以下のフローは、先端部材位置推定システム200内に設けられたカメラ制御部14および/または演算部15で実行する。 Next, with reference to FIG. 17, a mounting process (wiring automation process) of the connector C1 to the connector housing C2 using the tip member gripping system 1000 will be described. Note that the following flow is executed by the camera control unit 14 and/or the calculation unit 15 provided in the tip member position estimation system 200.

先端部材位置推定システム200を用いて、電線21の先端部分およびコネクタC1を3Dスキャンする(ステップ1(S1と称す。以下同様))。コネクタC1は必須ではなく、電線21の先端部分が3Dスキャンできればよい。得られた3D画像情報に基づき、コネクタC1の把持が可能な位置にコネクタC1が位置するか否かの判別を行なう(S2)。具体的には、三次元計測装置10を用いて、先端部分の把持位置認識機能を発揮させて、先端部分の把持位置を確認する。コネクタC1の把持が不可能と判断した場合には、テストを終了する(S3)。 Using the tip member position estimation system 200, the tip portion of the electric wire 21 and the connector C1 are 3D-scanned (step 1 (referred to as S1. The same applies hereinafter)). The connector C1 is not essential as long as the tip portion of the electric wire 21 can be 3D-scanned. Based on the obtained 3D image information, it is determined whether or not the connector C1 is located at a position where the connector C1 can be held (S2). Specifically, the three-dimensional measuring device 10 is used to perform the grip position recognizing function of the tip portion to confirm the grip position of the tip portion. When it is determined that the connector C1 cannot be gripped, the test ends (S3).

コネクタC1の把持が可能と判断した場合には、コネクタC1の根元から所定の距離(L1)の位置を把持するか、または、コネクタC1の根元部の近傍の電線の着目点P1を把持するかの情報(把持位置)、把持手前位置(把持位置近傍の所定位置)、および把持方向をロボットアーム500およびロボットハンド600に送信する(S4)。 When it is determined that the connector C1 can be gripped, whether the position of a predetermined distance (L1) from the root of the connector C1 is gripped, or the point of interest P1 of the electric wire near the root of the connector C1 is gripped. Information (grasping position), the gripping front position (predetermined position near the gripping position), and the gripping direction are transmitted to the robot arm 500 and the robot hand 600 (S4).

把持手前位置とは、ロボットハンドが先端部材を把持する動作の前に待機または通過する位置であり、電線やコネクタに干渉しない位置である。把持手前位置は、例えばコネクタC1の上方、下方または側方であって、予め決められた距離だけ離れた位置であってもよいし、コネクタC1の3次元形状に基づいて決定してもよい。 The gripping front position is a position where the robot hand waits or passes before the operation of gripping the tip member, and is a position where it does not interfere with the electric wire or the connector. The gripping front position may be, for example, above, below, or to the side of the connector C1 and separated by a predetermined distance, or may be determined based on the three-dimensional shape of the connector C1.

ロボットハンド600がコネクタC1を把持する把持方向(把持姿勢)は、ロボットハンドの把持部とコネクタC1とが略直角をなすように把持することが好ましい。コネクタC1を把持した後にコネクタハウジングC2に挿入する際もロボットの制御が容易になるからである。好ましくは、把持手前位置において、コネクタC1を把持した際に把持部とコネクタC1とが直角をなす向きになるように、ロボットハンド600の姿勢を調整する。その後、ロボットハンド600は、把持手前位置から把持位置に向かって直進し、把持位置に到達後、コネクタC1を把持する。これにより、ロボットハンド600がコネクタハウジングC2に干渉しにくい状態で、コネクタC1をコネクタハウジングC2に挿入することが可能となる。 In the gripping direction (gripping posture) in which the robot hand 600 grips the connector C1, it is preferable that the robot hand 600 grips the connector C1 at a substantially right angle with the grip portion of the robot hand. This is because the robot can be easily controlled even when the connector C1 is gripped and then inserted into the connector housing C2. Preferably, at the gripping front position, the posture of the robot hand 600 is adjusted so that the gripping portion and the connector C1 form a right angle when gripping the connector C1. After that, the robot hand 600 goes straight from the front gripping position toward the gripping position, and after reaching the gripping position, grips the connector C1. As a result, the connector C1 can be inserted into the connector housing C2 in a state where the robot hand 600 is less likely to interfere with the connector housing C2.

いずれの位置を保持するかについては、予め設定しておくとよい。以下では、コネクタC1の根元部(電線との接点付近)を把持するものとして説明する。 Which position to hold may be set in advance. In the description below, the base of the connector C1 (near the contact point with the electric wire) is gripped.

先端部材位置推定システム200を用いて、ロボットハンド600をコネクタC1の根元部に移動させる(S5)。ロボットハンド600がコネクタC1の根元部近傍(把持手前位置)に移動し、把持姿勢をとる(S5)。その後、ロボットハンドは直進して把持位置に到達し(S6)、コネクタC1の根元部を把持可能か否かの判別を行なう(S7)。具体的には、ロボットハンド600の開いた一対のグリッパ610が把持位置に到達したか否かの判別を行なう。 The robot hand 600 is moved to the base of the connector C1 using the tip member position estimation system 200 (S5). The robot hand 600 moves to the vicinity of the base of the connector C1 (position near the grip) and takes a grip posture (S5). After that, the robot hand goes straight to reach the grip position (S6), and determines whether or not the root portion of the connector C1 can be gripped (S7). Specifically, it is determined whether or not the pair of open grippers 610 of the robot hand 600 has reached the grip position.

ロボットハンド600により、コネクタC1の根元部の把持が不可能と判別した場合には、ロボットアーム500およびロボットハンド600の動作を停止させ(S8)、テストを終了させる。 When the robot hand 600 determines that the base of the connector C1 cannot be gripped, the operations of the robot arm 500 and the robot hand 600 are stopped (S8), and the test is ended.

ロボットハンド600により、コネクタC1の根元部の把持が可能と判別した場合には、ロボットハンド600の一対のグリッパ610を閉方向に平行移動させて、ロボットハンド600によりコネクタC1の根元部を把持する(S9)。 When the robot hand 600 determines that the base portion of the connector C1 can be gripped, the pair of grippers 610 of the robot hand 600 are moved in parallel in the closing direction, and the robot hand 600 grips the base portion of the connector C1. (S9).

次に、ロボットアーム500により、コネクタC1をコネクタ方向認識ステーション(ST)に移動させる(S10)。コネクタ方向認識ステーションは、コネクタC1の正面(図14)が認識できる位置に、ロボットアーム500およびロボットハンド600の位置を制御することを意味する。具体的には、エリアカメラ300を用いて、コネクタ方向認識機能を発揮させて、コネクタの回転方向(回転角度)を計算する(S11)。コネクタハウジングC2への装着が不可であると判断した場合には、先端部材把持システム1000を停止させる(S12)。 Next, the robot arm 500 moves the connector C1 to the connector direction recognition station (ST) (S10). The connector direction recognition station means controlling the positions of the robot arm 500 and the robot hand 600 to a position where the front surface (FIG. 14) of the connector C1 can be recognized. Specifically, using the area camera 300, the connector direction recognition function is exerted to calculate the rotation direction (rotation angle) of the connector (S11). When it is determined that the connector housing C2 cannot be mounted, the tip end member gripping system 1000 is stopped (S12).

コネクタハウジングC2への装着が可能であると判断した場合には、ロボットアーム500およびロボットハンド600を用いて、コネクタC1をコネクタハウジングC2の手前まで移動させる(S13)。 When it is determined that the connector C1 can be attached to the connector housing C2, the connector C1 is moved to the front of the connector housing C2 using the robot arm 500 and the robot hand 600 (S13).

次に、ロボットアーム500およびロボットハンド600を用いて、コネクタC1のリブC13の位置が、コネクタハウジングC2の位置決め凹部C23に合う位置に、コネクタC1の軸を回転中心軸として回転させる(S14)。 Next, using the robot arm 500 and the robot hand 600, the rib C13 of the connector C1 is rotated so that the position of the rib C13 matches the positioning recess C23 of the connector housing C2 with the axis of the connector C1 as the rotation center axis (S14).

次に、ロボットアーム500およびロボットハンド600を用いて、コネクタC1をコネクタハウジングC2に挿入する(S15)。なお、コネクタC1の回転(S14)はコネクタC1をコネクタハウジング手前へ移動する際(S13)に同時に行ってもよい。その後、電気機器100の導通テストを実行する(S16)。以上により、電気機器100の導通テストを終了する。 Next, the connector C1 is inserted into the connector housing C2 using the robot arm 500 and the robot hand 600 (S15). The rotation of the connector C1 (S14) may be performed simultaneously when the connector C1 is moved to the front of the connector housing (S13). Then, the continuity test of the electric device 100 is performed (S16). With the above, the continuity test of the electric device 100 is completed.

上述した先端部材把持システム1000においては、ロボットハンド600を用いてコネクタC1の根元部を把持する場合について説明したが、コネクタC1の中心部や先端部コネクタC1の根元部の近傍の電線の着目点P1を把持してもよい。ロボットハンド600は、コネクタC1の根元部の1箇所を把持する場合について説明しているが、ロボットハンド600を2以上設け、コネクタC1の根元部の把持のみでなく、電線21の他の箇所を他のロボットハンド600で把持することにより、電線21の他の機器への干渉を回避させるようにしてもよい。 In the above-described tip member gripping system 1000, the case where the root part of the connector C1 is gripped using the robot hand 600 has been described, but the focus points of the electric wires near the center part of the connector C1 and the root part of the tip part connector C1. You may hold P1. Although the robot hand 600 has described the case of gripping one part of the base of the connector C1, two or more robot hands 600 are provided to hold not only the base of the connector C1 but also other parts of the electric wire 21. By gripping with another robot hand 600, the interference of the electric wire 21 with other devices may be avoided.

以上、本実施の形態における先端部材位置推定方法、先端部材把持方法、先端部材接続方法、先端部材位置推定システム、および、先端部材把持システムによれば、先端部材の向きと、さらに好ましくは先端部材の回転方向を事前に把握するための、線状物先端方向推定方法、線状物先端方向推定装置、および、装着自動化装置の提供を可能としている。 As described above, according to the tip member position estimating method, tip member gripping method, tip member connecting method, tip member position estimating system, and tip member gripping system in the present embodiment, the orientation of the tip member, and more preferably the tip member. It is possible to provide a linear object tip direction estimation method, a linear object tip direction estimation device, and a mounting automation device for grasping the rotation direction of the object in advance.

図18を参照して、本実施の形態のロボットハンド600に採用されるグリッパ610の詳細構造について説明する。図18は、グリッパ610の詳細構造を示す斜視図である。グリッパ610は、対向するように一対に設けられている。 With reference to FIG. 18, a detailed structure of the gripper 610 adopted in the robot hand 600 of the present embodiment will be described. FIG. 18 is a perspective view showing the detailed structure of the gripper 610. The grippers 610 are provided in a pair so as to face each other.

グリッパ610は、支持部610aと、この支持部610aの下端において相互の対向する方向(内側)に延びる腕部610bとを含む。腕部610bの先端面には、半円柱状の第1溝部610cと、この第1溝部610cに連通する円柱状の第2溝部610eが設けられている。第2溝部610eよりも第1溝部610cの方が大径であることから、第1溝部610cと第2溝部610eとの間には、係止面610dが設けられる。 The gripper 610 includes a support portion 610a and an arm portion 610b extending in the mutually opposing directions (inward) at the lower end of the support portion 610a. A semi-cylindrical first groove portion 610c and a cylindrical second groove portion 610e communicating with the first groove portion 610c are provided on the tip surface of the arm portion 610b. Since the first groove portion 610c has a larger diameter than the second groove portion 610e, a locking surface 610d is provided between the first groove portion 610c and the second groove portion 610e.

ロボットハンド600でプラグC11を把持する際、グリッパ610の腕部610bが当接することで、コネクタC1が、保持される。第1溝部610cによりプラグC11が保持され、第2溝部610eにより電線C12が保持されるか、電線C12が第2溝部610e内に収まる。プラグC11をコネクタハウジングC2に挿入する際、係止面610dにプラグC11の一端側が押し付けられて挿入される。係止面610dにプラグC11が当接することで、グリッパ610からコネクタC1の抜けを防止することができる。 When gripping the plug C11 with the robot hand 600, the arm portion 610b of the gripper 610 abuts, so that the connector C1 is held. The plug C11 is held by the first groove 610c and the electric wire C12 is held by the second groove 610e, or the electric wire C12 is settled in the second groove 610e. When the plug C11 is inserted into the connector housing C2, one end of the plug C11 is pressed against the locking surface 610d and inserted. When the plug C11 contacts the locking surface 610d, the connector C1 can be prevented from coming off from the gripper 610.

なお、プラグC11に対する保持力を高めるために、第1溝部610cおよび/または第2溝部610eに、シート状の弾性部材(滑り止め部材)を装着するようにしてもよい。 A sheet-shaped elastic member (slip prevention member) may be attached to the first groove portion 610c and/or the second groove portion 610e in order to increase the holding force with respect to the plug C11.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

10 三次元計測装置、11 ステレオカメラ、12 第1カメラ、13 第2カメラ、14 カメラ制御部、15 演算部、16 記憶部、17 入出力部、21,22,23 電線(線状物)、30 第1画像、31 第1画像上の電線21の像、32 第1画像上の電線22の像、33 第1画像上の電線23の像、34 第1線像、40 第2画像、41 第2画像上の電線21の像、42 第2画像上の電線22の像、43 第2画像上の電線23の像、44 第2線像、45 エピポーラ線、200 先端部材位置推定システム、300 エリアカメラ、400 透明壁、500 ロボットアーム、600 ロボットハンド、610 グリッパ、610a 支持部、610b 腕部、610c 第1溝部、610d 係止面、610e 第2溝部、700 筐体、800 配線対象物配置台、1000 先端部材把持システム、C1 コネクタ、C11 胴体部、C12 ピン、C13 リブ、C2 コネクタハウジング、C21 ハウジング、C22 ピン受け、C23 位置決め凹部、P 電線21上の点、Q 点Pの第1画像への投影(着目点)、R 点Pの第2画像への投影(対応点)。 10 three-dimensional measuring device, 11 stereo camera, 12 first camera, 13 second camera, 14 camera control unit, 15 arithmetic unit, 16 storage unit, 17 input/output unit, 21, 22, 23 electric wire (linear object), 30 first image, 31 image of electric wire 21 on first image, 32 image of electric wire 22 on first image, 33 image of electric wire 23 on first image, 34 first line image, 40 second image, 41 Image of electric wire 21 on second image, 42 Image of electric wire 22 on second image, 43 Image of electric wire 23 on second image, 44 Second line image, 45 Epipolar line, 200 Tip member position estimation system, 300 Area camera, 400 transparent wall, 500 robot arm, 600 robot hand, 610 gripper, 610a support portion, 610b arm portion, 610c first groove portion, 610d locking surface, 610e second groove portion, 700 housing, 800 wiring object placement Platform, 1000 Tip member gripping system, C1 connector, C11 body, C12 pin, C13 rib, C2 connector housing, C21 housing, C22 pin receiver, C23 positioning recess, P Point on electric wire 21, first image of Q point P To the second image (corresponding point).

Claims (11)

先端に先端部材を有する線状物の先端部材位置推定方法であって、
前記線状物上の2点以上の座標を取得する座標取得工程と、
前記線状物上の2点以上の座標に基づいて、前記先端部材の位置を推定する先端部材位置推定工程と、
を備える、先端部材位置推定方法。
A method for estimating the position of the tip member of a linear object having a tip member at the tip,
A coordinate acquisition step of acquiring coordinates of two or more points on the linear object;
A tip member position estimating step of estimating the position of the tip member based on coordinates of two or more points on the linear object;
And a tip member position estimating method.
前記先端部材位置推定工程は、前記線状物上の2点以上の座標に基づいて、前記線状物の近似直線を算出する工程と、
前記近似直線に基づいて、前記先端部材の位置を推定する工程と、を含む、
請求項1に記載の先端部材位置推定方法。
The tip member position estimating step of calculating an approximate straight line of the linear object based on the coordinates of two or more points on the linear object;
Estimating the position of the tip member based on the approximate straight line.
The tip member position estimating method according to claim 1.
前記座標取得工程は、前記線状物上の3点以上の座標を取得する工程を含み、
前記先端部材位置推定工程は、前記線状物上の3点以上の座標に基づいて、前記線状物の近似曲線を算出する工程と、
前記近似曲線に基づいて、前記先端部材の位置を推定する工程と、を含む、
請求項1に記載の先端部材位置推定方法。
The coordinate acquisition step includes a step of acquiring coordinates of three or more points on the linear object,
The tip member position estimating step of calculating an approximate curve of the linear object based on coordinates of three or more points on the linear object;
Estimating the position of the tip member based on the approximated curve.
The tip member position estimating method according to claim 1.
前記座標取得工程は、前記線状物の先端の座標を取得する工程を含む、
請求項1から請求項3のいずれか一項に記載の先端部材位置推定方法。
The coordinate acquisition step includes a step of acquiring the coordinates of the tip of the linear object,
The tip member position estimating method according to any one of claims 1 to 3.
前記線状物上の座標が三次元座標である、
請求項1から請求項4のいずれか一項に記載の先端部材位置推定方法。
The coordinates on the linear object are three-dimensional coordinates,
The tip member position estimation method according to any one of claims 1 to 4.
前記先端部材の画像を取得し、前記画像に基づいて、前記先端部材の回転角度を算出する回転角度算出工程をさらに備える、
請求項1から請求項5のいずれか一項に記載の先端部材位置推定方法。
Further comprising a rotation angle calculation step of acquiring an image of the tip member and calculating a rotation angle of the tip member based on the image,
The tip member position estimation method according to any one of claims 1 to 5.
線状物の先端に設けた先端部材をロボットハンドで把持する方法であって、
計測装置で前記線状物上の2点以上の座標を取得する座標取得工程と、
前記線状物上の2点以上の座標に基づいて、前記先端部材の把持位置を算出する先端部材把持位置算出工程と、
前記ロボットハンドが前記把持位置で前記先端部材を把持する把持工程と、
を備える、先端部材把持方法。
A method of gripping a tip member provided at the tip of a linear object with a robot hand,
A coordinate acquisition step of acquiring coordinates of two or more points on the linear object with a measuring device;
A tip member gripping position calculation step of calculating a gripping position of the tip member based on coordinates of two or more points on the linear object;
A gripping step in which the robot hand grips the tip member at the gripping position,
A method for holding a tip member, comprising:
先端部材接続方法であって、
請求項7に記載の前記先端部材把持方法で前記ロボットハンドが前記先端部材を把持する工程と、
前記ロボットハンドが把持した前記先端部材の画像を取得し、前記画像から前記先端部材の回転角度を算出する工程と、
前記ロボットハンドを用いて、前記回転角度に基づき、前記先端部材を接続部材に接続する工程と、
を有する、先端部材接続方法。
A method for connecting a tip member,
A step of gripping the tip member by the robot hand using the tip member gripping method according to claim 7;
Acquiring an image of the tip member gripped by the robot hand, and calculating a rotation angle of the tip member from the image,
Using the robot hand, based on the rotation angle, connecting the tip member to a connecting member,
And a method for connecting a tip member.
線状物上の2点以上の座標を取得する計測装置と、
前記線状物上の2点以上の座標に基づいて、前記線状物の先端に設けられた先端部材の位置を推定する演算部と、
を備える、先端部材位置推定システム。
A measuring device for acquiring coordinates of two or more points on a linear object,
A computing unit that estimates the position of the tip member provided at the tip of the linear object based on the coordinates of two or more points on the linear object;
A tip member position estimation system comprising:
前記先端部材を撮像する画像取得手段と、
前記画像取得手段で得られた画像に基づいて、前記先端部材の回転角度を算出する回転角度算出手段と、
をさらに有する、請求項9に記載の先端部材位置推定システム。
An image acquisition unit that images the tip member,
Based on the image obtained by the image acquisition means, rotation angle calculation means for calculating the rotation angle of the tip member,
The tip member position estimation system according to claim 9, further comprising:
先端に先端部材を有する線状物の先端部材把持システムであって、
前記線状物上の2点以上の座標を取得する計測装置と、
前記線状物上の2点以上の座標に基づいて、前記線状物の先端に設けられた前記先端部材の位置を推定する演算部と、
前記推定された前記先端部材の位置に基づいて、前記先端部材を把持する把持部と、
を有する、先端部材把持システム。
A tip member gripping system for a linear object having a tip member at the tip,
A measuring device for acquiring coordinates of two or more points on the linear object;
A computing unit that estimates the position of the tip member provided at the tip of the linear object based on the coordinates of two or more points on the linear object;
A gripping portion that grips the tip member based on the estimated position of the tip member;
A tip member gripping system.
JP2019004275A 2019-01-15 2019-01-15 Tip member position estimation method, tip member gripping method, tip member connection method, tip member position estimation system, and tip member gripping system Active JP7222720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019004275A JP7222720B2 (en) 2019-01-15 2019-01-15 Tip member position estimation method, tip member gripping method, tip member connection method, tip member position estimation system, and tip member gripping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019004275A JP7222720B2 (en) 2019-01-15 2019-01-15 Tip member position estimation method, tip member gripping method, tip member connection method, tip member position estimation system, and tip member gripping system

Publications (2)

Publication Number Publication Date
JP2020112470A true JP2020112470A (en) 2020-07-27
JP7222720B2 JP7222720B2 (en) 2023-02-15

Family

ID=71667711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019004275A Active JP7222720B2 (en) 2019-01-15 2019-01-15 Tip member position estimation method, tip member gripping method, tip member connection method, tip member position estimation system, and tip member gripping system

Country Status (1)

Country Link
JP (1) JP7222720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158604A1 (en) * 2021-01-25 2022-07-28 三菱電機株式会社 Brazing device, method for controlling brazing device, and program
WO2022264911A1 (en) * 2021-06-16 2022-12-22 倉敷紡績株式会社 Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176147A (en) * 1992-12-10 1994-06-24 Kobe Steel Ltd Method and device for detecting end point of object
JPH07311040A (en) * 1994-05-17 1995-11-28 Kumagai Gumi Co Ltd Measuring method for three-dimensional coordinate
JP2002082028A (en) * 2000-09-07 2002-03-22 Yokohama Rubber Co Ltd:The Measuring apparatus and calculating method for deflection of rod-shaped elastic body
JP2006284359A (en) * 2005-03-31 2006-10-19 Taisei Corp Conduit position measuring system
JP2006284248A (en) * 2005-03-31 2006-10-19 Tekken Constr Co Ltd Position measurement method and instrument for displacement meter
JP2011217787A (en) * 2010-04-05 2011-11-04 Ntn Corp Remotely operated actuator
JP2013152139A (en) * 2012-01-25 2013-08-08 Kokusai Kogyo Co Ltd Target for measurement and total station measurement method
JP2015232513A (en) * 2014-06-10 2015-12-24 日本電信電話株式会社 Flexure estimation device and program
JP2016192138A (en) * 2015-03-31 2016-11-10 株式会社オートネットワーク技術研究所 Manufacturing method of wire harness and image processing method
JP2017045674A (en) * 2015-08-28 2017-03-02 株式会社オートネットワーク技術研究所 Wire harness manufacturing device, wire harness manufacturing method, and process-target wire position specifying method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176147A (en) * 1992-12-10 1994-06-24 Kobe Steel Ltd Method and device for detecting end point of object
JPH07311040A (en) * 1994-05-17 1995-11-28 Kumagai Gumi Co Ltd Measuring method for three-dimensional coordinate
JP2002082028A (en) * 2000-09-07 2002-03-22 Yokohama Rubber Co Ltd:The Measuring apparatus and calculating method for deflection of rod-shaped elastic body
JP2006284359A (en) * 2005-03-31 2006-10-19 Taisei Corp Conduit position measuring system
JP2006284248A (en) * 2005-03-31 2006-10-19 Tekken Constr Co Ltd Position measurement method and instrument for displacement meter
JP2011217787A (en) * 2010-04-05 2011-11-04 Ntn Corp Remotely operated actuator
JP2013152139A (en) * 2012-01-25 2013-08-08 Kokusai Kogyo Co Ltd Target for measurement and total station measurement method
JP2015232513A (en) * 2014-06-10 2015-12-24 日本電信電話株式会社 Flexure estimation device and program
JP2016192138A (en) * 2015-03-31 2016-11-10 株式会社オートネットワーク技術研究所 Manufacturing method of wire harness and image processing method
JP2017045674A (en) * 2015-08-28 2017-03-02 株式会社オートネットワーク技術研究所 Wire harness manufacturing device, wire harness manufacturing method, and process-target wire position specifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158604A1 (en) * 2021-01-25 2022-07-28 三菱電機株式会社 Brazing device, method for controlling brazing device, and program
JP7471468B2 (en) 2021-01-25 2024-04-19 三菱電機株式会社 Brazing apparatus, brazing apparatus control method and program
WO2022264911A1 (en) * 2021-06-16 2022-12-22 倉敷紡績株式会社 Three-dimensional measurement method for strip-shaped object, connection method of strip-shaped object, strip-shaped object connection system control device, and strip-shaped object connection system

Also Published As

Publication number Publication date
JP7222720B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
EP1413850B1 (en) Optical sensor for measuring position and orientation of an object in three dimensions
US9089966B2 (en) Workpiece pick-up apparatus
US9436987B2 (en) Geodesic distance based primitive segmentation and fitting for 3D modeling of non-rigid objects from 2D images
WO2022061673A1 (en) Calibration method and device for robot
KR20080029548A (en) System and method of moving device control based on real environment image
JP7222720B2 (en) Tip member position estimation method, tip member gripping method, tip member connection method, tip member position estimation system, and tip member gripping system
CN115629066A (en) Method and device for automatic wiring based on visual guidance
JP7106571B2 (en) LINEAR OBJECT GRIP METHOD AND CONTROL DEVICE
TWI760596B (en) Front-end moving method, control device and three-dimensional camera of linear object
JP7175203B2 (en) Tip member position calculation method, tip member gripping method, tip member connection method, tip member position calculation system, and tip member gripping system
JP7177639B2 (en) Three-dimensional measurement method for belt-shaped object and three-dimensional measurement device for belt-shaped object
US20220234208A1 (en) Image-Based Guidance for Robotic Wire Pickup
WO2022092168A1 (en) Robot control device, and robot system
JP7217109B2 (en) Belt-shaped object work position determination method, robot control method, belt-shaped object work position determination device, and belt-shaped object handling system
JP7159159B2 (en) Three-dimensional measurement method and apparatus for linear objects
JP2010214546A (en) Device and method for assembling
WO2020050121A1 (en) Working position determining method for strip-shaped object, robot control method, working position determining device for strip-shaped object, strip-shaped object handling system, three-dimensional measuring method for strip-shaped object, and three-dimensional measuring device for strip-shaped object
JP7312663B2 (en) Linear object working position determining method, robot control method, linear object fixing method, linear object working position determining device, and linear object gripping system
CN112672859B (en) Method for determining working position of belt, robot control method, working position determining device, belt processing system, three-dimensional measuring method, and three-dimensional measuring device
CN117817671B (en) Robot system based on visual guidance and robot system calibration method
TWI839380B (en) Method for determining working position of strip, robot control method, device for determining working position of strip, strip processing system, three-dimensional measurement method of strip, and three-dimensional measurement device of strip
JP2024055669A (en) Method for generating training data and method for estimating position and orientation of connector
WO2019188198A1 (en) Three-dimensional measurement device for linear object and three-dimensional measurement method for linear object
JP2021089670A (en) Method for recognizing bundled material, method for determining work position of bundled material, method for controlling robot, device for determining work position of bundled material, and system for performing bundled material
CN117817671A (en) Robot system based on visual guidance and robot system calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7222720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150